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Abstract

Mixture of Experts (MoE) offers remarkable
performance and computational efficiency by
selectively activating subsets of model param-
eters. Traditionally, MoE models use homo-
geneous experts, each with identical capac-
ity. However, varying complexity in input data
necessitates experts with diverse capabilities,
while homogeneous MoE hinders effective ex-
pert specialization and efficient parameter uti-
lization. In this study, we propose a novel Het-
erogeneous Mixture of Experts (HMoE) frame-
work, where experts differ in size and thus pos-
sess diverse capacities. This heterogeneity al-
lows for more specialized experts to handle
varying token complexities more effectively. To
address the imbalance in expert activation, we
propose a novel training objective that encour-
ages the frequent activation of smaller experts,
S0 as to improve computational efficiency and
parameter utilization. Extensive experiments
demonstrate that HMoE achieves a lower loss
rate with fewer activated parameters and outper-
forms conventional homogeneous MoE models
on various pre-training evaluation benchmarks.
Codes will be released upon acceptance.

1 Introduction

Mixture of Experts (MoE) (Jacobs et al., 1991;
Shazeer et al., 2017; Lepikhin et al., 2020; Fedus
et al., 2022; Jiang et al., 2024; Dai et al., 2024) is
a cutting-edge technique in the field of large lan-
guage models (LLMs) (Brown et al., 2020; Achiam
et al., 2023; Ouyang et al., 2022; Touvron et al.,
2023a,b; Dubey et al., 2024) that excels in both
performance and computational efficiency. At its
core, MoE operates on the principle of dividing a
model into multiple components, known as experts
(Shazeer et al., 2017), each specializing in different
tasks or aspects of the data. This specialization
allows MoE to activate a subset of parameters, sig-
nificantly enhancing the model’s robustness and
flexibility. The main advantage of MoE lies in that
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Figure 1: Comparisons of our heterogeneous MoE-3B
with conventional homogeneous MoE-3B. Our proposed
HMOoE is superior on both performance and efficiency.

it can scale with model parameters without incom-
ing extra computational costs.

The specialization of experts (Oldfield et al.,
2024; Chen et al., 2023; Krishnamurthy et al., 2023;
Qiu et al., 2025) is crucial for improving compu-
tational efficiency and performance under sparse
activation. However, almost all MoE models (Jiang
et al., 2024; Dai et al., 2024; Wu et al., 2024; Huang
et al., 2024) rely on identical experts with similar
representational capacities. This design often leads
to convergence, where experts learn similar fea-
tures over time, thereby reducing their uniqueness
and specialization (Zhou et al., 2022; Cai et al.,
2024). Such uniformity limits the model’s ability to
generalize effectively across tasks and undermines
its performance. Moreover, the lack of functional
differentiation among experts makes it challenging
for MoE models to efficiently handle complex in-
puts in NLP (Huang et al., 2024). When all experts
have equivalent representational capacities, the sys-
tem fails to utilize its parameters optimally. As a
result, the potential depth and diversity required for
processing nuanced inputs are lost, which compro-
mises the effectiveness of the MoE architecture.

To address these challenges, a simple idea is to
change the current homogeneous experts to het-
erogeneous ones. Homogeneous indicates that all
experts share identical architecture and size, while
heterogeneous indicates that they do not. How-
ever, the challenges of heterogeneous MoE mainly



exist in the following aspects: (a) How to intro-
duce appropriate heterogeneity to experts? This
fundamental difference between homogeneous and
heterogeneous MoE significantly impacts perfor-
mance. (b) How to design and guide the desired
load distributions for heterogeneous experts? The
optimal activation of heterogeneous experts is dif-
ferent from that in conventional MoE. We should
first conclude what kind of expert activation dis-
tribution is optimal for heterogeneous MoE, and
then provide effective guidance towards such ac-
tivation, balancing both parameter efficiency and
model effectiveness.

In this study, We introduce a novel Heteroge-
neous Mixture of Experts (HMoE) pre-trained
language model with varied expert sizes to create
heterogeneity. However, it is found that, without
training guidance, intuitive HMoE version does
not outperform traditional MoE. Larger experts get
more activation, while smaller ones are underused,
reducing the model’s representational capacity and
hindering heterogeneous expert utilization.

Therefore, we propose novel HMoE training ob-
jectives, P-Penalty Loss, that encourages the acti-
vation of smaller experts, leading to a more rational
allocation of activated parameters and improved
model capability. Besides, we analyze three strate-
gies of designing different heterogeneous expert
size distributions, discovering the insights of opti-
mal heterogeneity of experts in HMoE.

We conduct extensive experiments to verify the
effectiveness and efficiency of our proposed HMoE,
along with in-depth analyses. We contribute to the
success of our enhanced HMoE for following rea-
sons: (a) Experts of varying sizes provide diverse
capacities and promote higher specialization. (b)
Expert heterogeneity ensures complex input get the
necessary resources while simpler input are pro-
cessed economically. (c) Leveraging MoE’s inher-
ent imbalance by activating more small experts to
enhance their overall capability and further reduce
computing costs.

We summarize our contributions as follows:

(1) We introduce a novel HMoE model, improv-
ing both effectiveness and efficiency. To the best of
our knowledge, this work is the first work exploring
heterogeneous MoE as a base language model.

(2) We propose a new training objective that en-
courages the activation of smaller experts, leading
to more efficient utilization of experts and prevent-
ing the disproportionate reliance on larger experts
in HMoE.

(3) Our experiments show that HMoE performs
better while activating fewer parameters, thus
boosting computational efficiency while enhanc-
ing downstream outcomes.

2 Methodology

2.1 Classical Mixture of Experts

Unlike dense models, most MoE models (Lepikhin
et al., 2020; Fedus et al., 2022; Huang et al., 2024;
Dai et al., 2024; Jiang et al., 2024) replace the
FFN layer of the transformer (Vaswani et al., 2017)
block with a MoE layer. The MoE layer consists of
arouter g;(-) and multiple experts {e1, ea, ...,en }.
The experts are composed of a set of independent
Feed-Forward Network (FFN) layers. Experts are
responsible for processing input data according to
their specialized knowledge. For each token, a sub-
set of experts is activated to execute computations,
and the router generates a probability distribution.
The probability of this distribution indicates the
likelihood of assigning the token to each expert.
Routing Strategy. The routing strategy is applied
to select experts to be activated from N experts.
The Top-K Routing (Shazeer et al., 2017) strategy
is the most widely-used strategy, which always ac-
tivates a fixed number of experts for each token. It
calculates the score which represents the probabil-
ity of selecting each expert. We select the top &
experts with the highest scores to activate.
Recently, Top-P Routing (Huang et al., 2024) is
proposed to dynamically activate different numbers
of experts for each token. Specifically, it first sorts
scores from highest to lowest. Then given a fixed
threshold p, if the highest probability is larger than
the threshold, we only activate one expert. Other-
wise, we progressively add additional experts until
the cumulative probability exceeds the threshold p.
Issues of Homogeneous MoE. Currently, most
MOoE work employs a homogeneous design. Each
expert in the MoE layer usually has the same struc-
ture and size. Undoubtedly, this is a simple de-
sign that avoids introducing more hyperparameters.
However, it also brings the following problems:
(1) Lack of Expert Specialization: Different ex-
perts within a homogeneous MoE show a tendency
towards similarity (Zhou et al., 2022). Since homo-
geneous experts have the same modeling capabili-
ties, the router may randomly distributes tokens to
them during pre-training. Without differentiation
mechanisms, multiple experts may focus on sim-
ilar features, resulting in low specialization. Our
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Figure 2: Two distinct model structures for Mixtures of Experts are compared: (a) conventional homogeneous
MoE model with all experts having identical parameter sizes; (b) our proposed heterogeneous MoE model (HMoE)
characterized by substantial variations in parameter sizes of each expert, incorporating a parameter penalty loss
during training to promote utilization of experts with smaller parameter volumes.

analysis in section 3.4 shows this tendency. (2) In-
efficient Parameter Allocation: Intuitively, simpler
inputs can be effectively handled by smaller experts
with less computational capacity, whereas more
complex inputs require the enhanced capability of
larger experts. However, homogeneous MoE mod-
els use experts with identical capacities, resulting
in redundant computations for simple inputs and
insufficient computational resources for complex
ones. While Top-P Routing (Huang et al., 2024)
introduces dynamic routing by assigning varying
numbers of experts to different tokens, its reliance
on fixed thresholds and simplistic difficulty model-
ing limits its ability to adapt effectively to diverse
inputs. (3) Representation Collapse and Load Im-
balance: Homogeneous MoE has a trend toward
representation collapse (Chi et al., 2022), which oc-
curs when the majority of input tokens are assigned
to only a few experts. This phenomenon also leads
to load imbalance. The interconnected nature of
representation collapse and load imbalance ham-
pers the model’s performance and efficiency.

2.2 Heterogeneous Mixture of Experts

To alleviate the above issues in homogeneous MoE,
we propose Heterogeneous Mixture of Experts.
HMOoE includes a router and expert network, with
the key distinction that the models of experts within
the same layer are different. To achieve an HMoE,
we could design different structures and different
sizes for experts. However, within the transformer
model, experts with different structures make the
training process extremely unstable. Therefore, in
this work, we mainly explore HMoE with different
expert sizes, as shown in Figure 2.
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Figure 3: Experimental results of intuitive exploration
on HMOoE. (a) The left figure compares the results of
the intuitive HMoE and conventional Homogeneous
MOoE. Average performance is the average score of six
evaluation benchmarks as introduced in section 3.1. The
Homogeneous MoE adapts load balancing loss while
the intuitive Hetergeneous MoE does not utilize any
auxiliary loss. (b) The right figure shows the activated
ratios of experts in the intuitive HMoE. The relative
expert sizes in HMoE are {9, 11,13, 15,17,19, 21, 23},
matching experts a to h.

2.2.1 An Intuitive Exploration on HMoE

For each expert e;, we follow the FFN design in
LLaMa (Touvron et al., 2023a). The detailed com-
putation is as follows:

ei(x) = Woﬂ' . (SILU(WQJ . X) ® (Wpﬂ' . X)) s
(D

= @
e @

where Wg,i c Rhinputthfn,i’ Wp,i € RPinpur X Pin s
and W, ; € Rham.i X hinput are trainable parameters
of expert e;. hinpy and hyp, ; are dim of input = and
hidden state in FFN. To bring in heterogeneity for
exploration, We intuitively change the hidden dim
i, to control the size of each expert e;.

SiLU(z) = z-o(z), o(z)

2.2.2 Results of The Intuitive HMoE

We implement the aforementioned intuitive HMoE
and conduct evaluation. Contrary to our expecta-



tions, the results do not demonstrate an improve-
ment over homogeneous MoE. Figure 3 shows the
results and activation ratios of experts in HMoE.

Upon investigation, we discovered that the pri-
mary reason for this underperformance was the
highly imbalanced load distribution among experts
in the intuitive HMoE. Larger experts were acti-
vated more frequently, while smaller ones were
rarely utilized. This imbalance led to a decline in
the model’s overall representational capacity. The
root cause is the Matthew’s effect that the larger ex-
perts possess stronger capabilities compared to the
smaller ones, prompting the router to preferentially
activate the larger experts more often, which results
in the insufficient learning of smaller experts.

2.3 Enhanced Heterogeneous MoE

Considering the above-mentioned issues, we pro-
pose the following strategies to enhance HMoE.

2.3.1 Activating More Small Experts

In HMOE, the presence of both large and small ex-
perts introduces a challenge where the optimization
goal of the language model naturally favors the fre-
quent activation of larger experts due to their supe-
rior performance. This tendency results in smaller
experts being underutilized, while larger experts
are activated more often, leading to a significant
increase in activated parameters. This phenomenon
diverges from the intended model objective, where
we aim to align the tasks handled by large and small
experts with their respective capacities. Specif-
ically, we want larger experts to focus on more
complex understanding and reasoning tasks, while
smaller experts handle simpler tasks. This ensures
that all specialized experts are effectively utilized
and sufficiently trained according to their strengths.
Previous work (Fedus et al., 2022) adapts load
balancing loss Ly, to eliminate load unbalancing
among different experts in Homogeneous MoE:

N
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where 7; represents the partation of tokens assigned
to expert e;. P; represents the gating probability
assigned to e;. F; ; represents the gating probability
assigned to e; for token z;. E' represents the set of
activated experts for the token x.

The objective of the load balancing loss is to
achieve experts evenly activated. Nevertheless,
it does not satisfy our motivation for designing
HMOoE. Because of the disparity in expert sizes, the
load-balancing loss fails to stop the model from
preferring to activate larger experts. To address
the issue where larger experts are predominantly
utilized, leading to the underutilization of smaller
experts and a considerable rise in activated param-
eters, we introduce a novel training objective pa-
rameter penalty (P-Penalty) loss Lp_penaity as:

N
Lppenaty = N Y M; P,
=1
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M represents the average dimension of the hid-
den state of the expert e; on the entire input . It
imports the influence of expert size into the loss.
When the model employs more large experts, the
loss rises. Hence, it will direct the model to more
economically utilize smaller experts. In contrast,
for necessary occasions, using larger experts can
yield greater benefits than parameter penalties. At
this point, larger experts will also be activated to
take part in the calculation. To be noted, if all ex-
pert has the same size, our parameter penalty loss
is equal to the classical load balancing loss.

Besides, with the Top-P routing strategy, we find
that MoE tends to activate an increasing number
of experts during training, which reduces the effi-
ciency of MoE. Therefore, we implement the router
entropy loss (Huang et al., 2024) to prevent the
model from using too many parameters, maintain-
ing its ability to selectively activate experts as:

N
»Centropy = NZPZ' X log(P,-). &)
i=1

In our HMOE, besides the original language mod-
eling loss, the final loss for both Top-K and Top-P
routing strategies further includes the parameter
penalty loss Lp_penairy, With Top-P additionally in-
corporating the router entropy loss Lengropy-

2.3.2 Designing More Optimal Heterogeneity

Intuitively, the specific sizes of each heterogeneous
expert have a large impact on the final results. In
this work, we mainly explore three types of hetero-
geneity structures for experts:



(1) Geometric strategy. The geometric strategy
assigns expert sizes in a geometric sequence, such
as {1,2,4,8,16, 32,64, 128} as relative size pro-
portions of the experts. This design emphasizes a
few large-scale experts, which can lead to unbal-
anced resource allocation and neglect of smaller
experts, potentially causing severe load imbalance
and limiting its suitability for tasks requiring bal-
anced processing.

(2) Arithmetic strategy. The arithmetic strat-
egy assigns expert sizes in an arithmetic sequence,
such as {9,11,13,15,17,19,21,23}. This ap-
proach can ensures balanced resource allocation
and smaller size gaps between experts, giving
smaller experts meaningful expressive abilities and
improving training stability. This study primarily
adopts this strategy for research on HMoE.

(3) Hybrid strategy. The hybrid strategy that
jointly combines both homogeneous and heteroge-
neous such as {1,1,1,1,2,2,4,4} is also a good
competitor. We designed this setup based on the
assumption that the MoE model requires multiple
experts with similar capabilities or functionalities.
Especially in scenarios involving expert combina-
tions, completely differentiated experts might have
drawbacks. It has the flexibility to adjust the pro-
portion of homogeneous and heterogeneous parts
based on different task requirements.

As a pioneer of HMoE, we propose three strate-
gies of different heterogeneity levels and conduct
extensive evaluations on different settings for more
insights. More optimal HMoE distributions and
structures will be explored in the future.

3 Experiments

3.1 Experimental Settings

Pre-training Datasets. For our pre-training data,
we used the RedPajama (Computer, 2023) dataset.
It is an open-source dataset consisting of various
sources like the common crawl, C4 (Raffel et al.,
2020), GitHub, Wikipedia, books (Gao et al., 2020),
arXiv, and StackExchange.

Competitors. In our main experiment, we evalu-
ated Dense, homogeneous MoE and our HMoE
model: (1) Dense, which are standard Trans-
former decoder-only models, following the design
of LLaMa (Touvron et al., 2023a), without MoE
layers, implemented with 0.2B and 1B parame-
ters. (2) Homogeneous MoE, where FFN layers
are replaced with MoE Layers including eight ho-
mogeneous experts, implemented with 0.4B, 3B

and 16B total parameters, using both Top-K (k=2)
and Top-P (p=0.6) routing strategies. (3) HMoE,
our proposed method with Heterogeneous MoE
Layers replacing FFN layers, also implemented
with 0.4B, 3B and 16B total parameters with both
Top-K (k=2) and Top-P (p=0.6) strategies. To re-
flect the difference in performance between pure
heterogeneous models and conventional homoge-
neous models, the expert size distribution employs
an arithmetic strategy (The relative expert sizes
are {9,11,13,15,17,19,21,23}). The detailed
setting is introduced in the Appendix A and B.

Evaluation. We evaluated these models on six dif-
ferent benchmarks (Gao et al., 2021) including
PIQA (Bisk et al., 2020), hellaswag (Zellers et al.,
2019), BoolQ (Clark et al., 2019), ARC (Clark
et al., 2018), winogrande (Sakaguchi et al., 2021)
and SIQA (Sap et al., 2019). These tasks examine
models’ language understanding, logical reason-
ing, knowledge utilization, and social awareness
capabilities. The average performance depicted in
Figures 1, 3, 5, and 6 is the average score obtained
across these six benchmarks. Since the activated
parameters of different methods are varied, we en-
sure a fair comparison by basing our model evalua-
tions on identical computational training costs
(FLOPs) instead of the number of training tokens.

3.2 Main Results
3.2.1 IsoFLOP Analysis

We conduct isoFLOP comparisons as shown in Fig-
ure 4. The isoFLOP analysis is a methodology
used to evaluate model performance and training
efficiency by fixing the training computation bud-
get (measured in FLOPs) and comparing different
model configurations. For this analysis, we adapt
TopP routing (p=0.6) strategy and trained 16 con-
ventional MoE models and 16 HMoE models of dif-
ferent sizes, ranging from 100M to 3B parameters,
and recorded their activation parameters and loss
values at different training FLOP levels. At each
FLOP point, the activation parameter correspond-
ing to the lowest loss is selected as the optimal
activation parameter for that specific FLOP budget.
This approach enables a systematic comparison of
model efficiency and performance under equivalent
computational constraints.

We find that if the training FLOPs are too few,
the loss of HMoE is not superior to traditional MoE.
However, from early stages of training (around
2.5 x 10'? FLOPs), HMoE shows a stable trend
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Figure 4: Analysis of isoFLOP for conventional MoE (Top-P) and our poposed HMOoE (Top-P). The medium figure
shows examples of the activated model parameters and loss for three training FLOPs. The medium figure shows the
optimal activated model parameters for various training FLOPs. The right figure shows the variations in loss as
FLOPs increase, given the optimal activated parameter settings.

of outperforming its homogeneous MoE. Further-
more, across different training costs, the optimal ac-
tivation parameter for HMoE consistently remains
lower than that of homogeneous MoE. As the train-
ing cost increases, the gap in optimal activation pa-
rameters widens, highlighting the significant model
efficiency advantage of HMoE. This should sug-
gest that with larger models and more data, the
benefits of heterogeneity may become even more
pronounced, both in performance and efficiency.

3.2.2 Performance on Benchmarks

Table 1 presents a comparative analysis of the re-
sults of various models on benchmarks, we have:

(1) The results shows MoE outperform Dense
models across all metrics, with HMoE showing par-
ticularly outstanding results. The HMoE models
achieved superior performance in almost all evalu-
ation metrics, significantly surpassing conventional
MoE and Dense models.

(2) For models utilizing 7 x 10" FLOPs, the
HMOoE-0.4B model, particularly with the Top-P
routing strategy, stands out. It achieves an average
improvement of 1.21% compared to the Dense-
0.2B model and 1.85% compared to the MoE-0.4B
model. As the computational budget increases to
2.6 x 102 FLOPs, the HMoE-3B model maintains
its lead. With the Top-P routing strategy, it achieves
an average performance gain of 1.50% over the
Dense-1B model and a competitive edge of 0.91%
over the MoE-3B model. At an even higher compu-
tational budget of 9 x 102° FLOPs, the HMoE-16B
model continues to exhibit its effectiveness. With
the Top-P routing strategy, it delivers improvement
of 0.69% over the MoE-16B model.

(3) We observe that HMoE demonstrates a
more pronounced performance improvement on the

ARC-Easy and HellaSwag tasks compared to con-
ventional MoE. The rationale could be that these
two tasks are comparatively easier, and P-penalty
loss in HMoE is employed to guarantee sufficient
training for the small experts. Meanwhile, because
HMOoE allocates more parameters to the larger ex-
pert, the model’s performance on more challenging
tasks remains uncompromised.

(4) Furthermore, the comparison between Top-
K and Top-P routing within the HMoE model is
also insightful. The Top-P routing strategy gen-
erally yields better results, implying that the dy-
namic routing strategy cooperates well with hetero-
geneous experts. We attribute this to the fact that
both Top-P routing and heterogeneous experts are
designed to adapt to the complexity of the input.

3.3 Ablation Study

We conduct an ablation study to analyze auxiliary
losses and expert heterogeneity. All experiments
are based on models with 400M total parameters.

3.3.1 Effectiveness of Auxiliary Losses

Our proposed P-Penalty loss plays a key role in
HMOoE’s performance. To better understand the
impact of auxiliary losses, we conduct an ablation
study. As shown in Figure 5 (left), the P-Penalty
loss helps HMoE achieve the best results among all
auxiliary losses. Additionally, Figures 3 (right) and
5 (right) illustrate how auxiliary losses influence ex-
pert activation. We observe that the load balancing
loss does not alleviate the tendency of larger ex-
perts being activated more frequently than smaller
experts. This imbalance may limit HMoE’s ability
to outperform conventional MoE. In contrast, the
P-Penalty loss appears to better align the model’s
objectives by encouraging the activation of smaller



Method Activated Parameters PIQA  hellaswag BoolQ ARC-Easy winogrande SIQA AVG
7 x 10 FLOPs Training
Dense-0.2B 176M 56.20 26.83 61.43 31.05 51.69 32,65 43.30
MOoE-0.4B (Top-K) 163M 57.67 27.81 62.13 29.70 50.59 32.82 4345
MOoE-0.4B (Top-P) 173M 56.92 27.73 56.54 30.18 51.67 32.89 42.66
HMOoE-0.4B (Top-K) 153M 56.67 28.26 59.80 31.93 52.49 3291 43.68
HMOoE-0.4B (Top-P) 173M 58.98 28.10 60.78 34.14 52.21 32.83 44.51
2.6 x 10%° FLOPs Training
Dense-1B 1.32B 58.92 29.57 61.70 35.26 51.85 3286 45.03
MOoE-3B (Top-K) 0.77B 61.92 32.80 60.06 33.96 52.51 3258  45.64
MOoE-3B (Top-P) 1.23B 61.42 32.16 61.47 33,51 52.27 3291 45.62
HMOoE-3B (Top-K) 0.70B 61.04 32.89 60.26 36.14 52.49 3282 4594
HMOoE-3B (Top-P) 0.68B 61.79 33.22 61.69 36.49 52.96 33.00 46.53
9 x 10?° FLOPs Training
MOoE-16B (Top-P) 3.83B 64.96 41.33 62.56 41.40 51.85 3291 49.16
HMOoE-16B (Top-P) 1.77B 65.12 43.03 61.40 44.21 52.09 33.27 49.85

Table 1: Results on six pre-training model evaluation benchmarks. Our HMoE consistently outperforms Homogen-
erous MoE. To be noted, in order to ensure a relatively fair comparison, in the experimental results of each block,
although the activation parameters of different models are different, they are all trained with the same training cost

(FLOPs), rather than based on the same number of training tokens.
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Figure 5: The left figure shows the effectiveness of
auxiliary losses. The right figure shows the activated
parameter ratio varying by model size across load bal-
ancing loss (above) and our P-Penalty loss (below).

experts more frequently, thereby contributing to
improved model performance and efficiency.

3.3.2 Analyses on Expert Heterogeneity

The expert size distribution in HMoE significantly
influences model performance. Figure 6 (left) com-
pares HMoE across various distributions: geomet-
ric, arithmetic, and hybrid. Our results show that
the geometric distribution performs the worst. Fig-
ure 6 (right) shows that smaller experts in the ge-
ometric progression are less frequently activated.
Even with P-Penalty loss, this may suggest their ca-
pacity is insufficient because of their too-small size.
Conversely, the hybrid model outperforms the arith-
metic one. This finding may indicate that a mix
of experts with both similar and varied sizes offers
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Figure 6: Analysis of expert heterogeneity through ab-
lation. The figure on the left illustrates a performance
comparison across various expert-size design strategies.
The right figure displays the activation ratios of experts
in HMoE using a geometric strategy.

greater potential for exploration and optimization
within the HMoE model.

3.4 In-depth Analyses on HMoE Experts

To compare the expert specialization in our pro-
posed Heterogeneous Mixture of Experts (HMoE)
and traditional Homogeneous Mixture of Experts
(MoE), we analyzed the behavior of experts in both
setups. Figure 7 provides a similarity analysis using
heatmaps, where each cell represents the Wasser-
stein distance between the token distributions of
expert pairs on downstream tasks. In the Homo-
geneous MoE framework, the experts primarily
cluster into two groups, suggesting limited differ-
entiation among experts in this framework. This
indicates that homogeneous setups may struggle to
promote diverse expert specialization effectively.
In contrast, the HMoE framework demonstrates a
more refined expert specialization. Experts of simi-
lar sizes exhibit higher similarity, forming distinct



(a) Homogeneous Experts

(b) Heterogeneous Experts

Figure 7: Similarity study of the homogeneous
and heterogeneous experts. In the homogeneous
MOoE, all experts have identical sizes. In the
heterogeneous MoE, the relative expert sizes are
{9,11,13,15,17,19, 21, 23} as experts from a to A.
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Figure 8: Visualization of activated experts ratio to to-
kens with different understanding difficulty. The expert
size design is the same as Figure 7.

clusters (e.g., expert pairs a/b, c¢/d, and f/g). This
clustering may suggests that experts with compara-
ble sizes tend to develop similar capabilities. The
heterogeneous design thus encourages specialized
expert behavior, emphasizing the advantages of in-
troducing heterogeneity in fostering diversity and
differentiation among experts.

Figure 8 shows the activation ratios of experts for
tokens with varying difficulty levels. The activation
ratio is the frequency that a token activates each
expert divided by the total activations. We observe
relative “hard” tokens (tokens with multiple mean-
ings or tokens with low frequency of occurrence)
activate larger experts more often, while smaller
experts are consistently activated may due to their
general capabilities. It is noteworthy that, although
we present only a few examples, this phenomenon
is universally observed. This should suggests that
our HMoE model effectively allocates tokens to
appropriate experts.

4 Related Work

The Mixture of Experts (MoE) model was first pro-
posed by Jacobs et al. (1991), where each expert
independently learns a subset of the dataset and is
then integrated into a unified system. Building on
this, (Shazeer et al., 2017) introduced the Sparsely-
Gated Mixture-of-Experts layer (SMoE), which
employs a gating network for expert selection and
proposes a Top-K routing strategy, where a fixed
number of experts are selected for each token. Fur-
ther advancements were made by Gshard (Lepikhin
et al., 2020) and SwitchTransformer (Fedus et al.,
2022), which incorporated MoE into the Trans-
former architecture’s FFN layers, utilizing top-1
and top-2 routing, respectively. Expert-choice MoE
(Zhou et al., 2022) introduced Expert Choice Rout-
ing, allowing each expert to independently select a
certain number of tokens, thereby achieving load
balancing. AutoMoE (Jawahar et al., 2022) estab-
lishes a search space tailored for small-scale hetero-
geneous MoE utilizing the top-1 routing strategy
and employs Neural Architecture Search to derive a
sub-network. Their experiments focus on machine
translation tasks, and their approach is not suitable
for pre-trained language models. Lu et al. (2024)
illustrates that not all experts are equal in the MoE
model. They discard less important experts and find
the model that keeps the most performance. Huang
et al. (2024) introduces the Top-P routing strategy,
dynamically allocating the number of experts to
each token. Qiu et al. (2025) proposes global-batch
with LBL for expert specialization. To be noted,
our work is the first work exploring HMoE as a
base language model based on Top-K and Top-P
routing, and demonstarate the superiority of HMoE
in both performance and efficiency.

5 Conclusion

In this work, we propose a novel HMoE model, fea-
turing experts of varying sizes to handle different
token complexities. We enhance it by proposing
a new training objective and exploring expert size
distribution. Our experimental results show that
HMOoE improves both performance and computa-
tional efficiency. We believe that our work opens
new avenues for the development of large language
models. Future research could explore further op-
timization techniques and broader applications of
heterogeneous expert architectures, potentially ex-
tending the benefits observed in this study to an
even wider array of NLP tasks.



6 Limitation

While our study highlights the substantial benefits
of HMOE, several pathways for enhancement and
exploration remain.

First, our experiments demonstrate that as train-
ing costs increase, the efficiency and performance
advantages of HMoE become increasingly evident.
Beyond conducting isoFLOP analyses, we also
pushed the experimental scale to a maximum 16B
MoE model, aligning with the scale used in recent
work. For example, XMoE (Yang et al., 2024)
experiments was validated on 0.5B models; the
Top-P routing (Huang et al., 2024) experiment
was validated on 3B models; Deepseek MoE (Dai
et al., 2024) was studied on 16B models. Although
we believe HMoE would exhibit even more pro-
nounced advantages at larger scales, we remain
curious about the extent of these benefits. To tackle
this, our upcoming endeavors will involve training
more larger-scale HMoE models and making them
available to the open-source community.

Second, we validated our approach using two
widely adopted and representative MoE routing
strategies: Top-P and Top-K. The results demon-
strated strong performance and broad applicabil-
ity, confirming the generalizability of our method.
However, we acknowledge the growing research in-
terest in advanced routing strategies, such as shared
experts (Dai et al., 2024). Notably, our proposed
expert size configurations are highly complemen-
tary to these advanced techniques, paving the way
for exciting opportunities in future work.
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A Detailed Model Setting

All methods are based on the Transformer decoder-
only architecture following LLaMa (Touvron et al.,
2023a). We employ the LLLaMa2 (Touvron et al.,
2023b) tokenizer with a vocabulary size of 32,000.
We conducted a small-scale experimental explo-
ration to determine the setting of model parameters.
For the Dense-0.2B model, we configure 12 Trans-
former Blocks, with the hidden dimensions of the
FFN layers being 3584. In the attention layer, we
use 12 heads, each with a dimension of 64. For
the Dense-1B model, we also configure 12 Trans-
former Blocks, but the hidden dimensions of the
FFN layers are set to 32,768. In the attention layer,
there are 16 heads, each maintaining a dimension
of 64.

For both MoE (homogeneous MoE) and HMoE
models, we utilize three different model sizes. (1)
In the configuration with 0.4B total parameters, the
total hidden dimension for all experts in each MoE
layer sums to 12,288, and there are 12 Transformer
Blocks. Each layer in the MoE model contains 8
experts. All other specifications align with Dense-
0.4B settings. (2) In the configuration with 3B
total parameters, the aggregate hidden dimension
for all experts in each MoE layer is 32,768 and
there are 12 Transformer Blocks. Each layer in the
MoE model contains 8 experts. All other specifi-
cations match those of Dense-1B settings. (3) In
the configuration with 16B total parameters, the
aggregate hidden dimension for all experts in each
MoE layer is 65536 and there are 40 Transformer
Blocks. Each layer in the MoE model contains 16
experts. To be noted,the distribution of expert sizes
in HMoE follows an arithmetic progression.

For Homogeneous MoE, we set the load balanc-
ing loss coefficient to 1 x 1072, as implemented
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in Huang et al. (2024). For HMoE, we set the co-
efficient of parameter penalty loss as 0.1. For the
Top-P routing strategy, we set the coefficient of
router entropy loss as 3 x 1072,

B Detailed Training Setting

Our models are trained utilizing NVIDIA A800
(80G memory) or H800 GPUs (80G memory).
Models with fewer than 3 billion parameters are
trained on a single node with 8 A800 GPUs. MoE
with 16 billion parameters are trained using four
nodes with a total of 32 HS800 GPUs. The AdamW
optimizer is used, with a first-moment decay of
51 = 0.9 and a second-moment decay of Jy =
0.999. A weight decay of 1 x 107° is applied.
The learning rate is gradually increased from O to
1 x 10~* over the initial 1000 steps and is main-
tained thereafter. The context length is set to 4096,
and the global accumulated batch size is 640. All
experiments use a unified random seed value of
12345. We implemented the Zero2 (Rajbhandari
et al., 2020) strategy to accelerate model training
and gradient checkpointing to save GPU memory.
All model and training code is developed with the
torch (Paszke et al., 2017) library.

C Efficient Training of Heterogeneous
MoE

The efficient training of heterogeneous MoE mod-
els presents significant challenges to existing train-
ing approaches, necessitating innovative solutions
to overcome these obstacles. One primary issue
stems from the fact that experts do not have uniform
shapes, which invalidates the traditional batched
matrix multiplication method for expert computa-
tion. To address this challenge, Megablocks (Gale
et al., 2022) implements efficient block sparse ma-
trix multiplication kernels, which effectively han-
dle the complexities introduced by variable-sized
experts. Another concern is the problem of un-
balanced computation and communication arising
from the heterogeneous nature of experts, which
can lead to inefficient resource utilization. To miti-
gate these issues, ES-MoE (Kim et al., 2024) intro-
duces expert-wise offoading and dynamic expert
placement strategy. This approach involves per-
forming expert computation in a serialized manner.
Expert parameters are offloaded to CPU memory
and are fetched back to GPU memory as needed,
based on the distribution of tokens. By doing so,
ES-MOoE not only reduces GPU memory overhead
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Figure 9: Example of our heterogeneous expert par-
allelism strategy. We integrate large experts with low
activation frequency and small experts with high acti-
vation frequency into the same device to achieve load
balancing.

incurred by expert parameters but also alleviates the
computation load imbalance issue, leading to better
hardware resource utilization. Future research in
the area may focus on developing more sophisti-
cated load-balancing techniques and optimizing
memory management strategies both for model
states and activations.

D Heterogeneous Expert Parallelism

To address the load imbalance issue caused by the
frequent activation of small experts in our model,
we propose a new heterogeneous expert parallelism
strategy. The key problem arises from the fact that
small experts are activated more often than large
experts, leading to an imbalance in computational
load across devices. When experts of different
sizes are deployed on separate devices, this imbal-
ance results in devices hosting small experts being
frequently accessed and involved in computation,
while devices hosting large experts are rarely uti-
lized, causing resource wastage.

To mitigate this issue, we place both small and
large experts on the same device as shown in Fig-
ure 9, ensuring that the combined size of large and
small experts on each device is approximately bal-
anced. This strategy allows for the efficient use of
GPU memory across devices by optimizing the dis-
tribution of experts. It also ensures a more balanced
access frequency across devices, as the load is bet-
ter distributed between devices hosting both small
and large experts. Through this strategy, we can
solve the efficiency problem caused by the activa-
tion imbalance in HMoE, leading to better resource
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utilization and overall system performance.

E Efficiency Analysis

In this section, we compare the efficiency of the
heterogeneous MoE with that of the traditional ho-
mogeneous MoE model in both training and infer-
ence stages, under the condition of having the same
total number of parameters and experts.

Both the heterogeneous MoE and the homoge-
neous MoE demonstrate similar training speeds
when the total parameter count and the number
of experts are kept constant as shown in Table 2.
However, due to the design of the parameter penalty
loss in the heterogeneous MoE, the activation pa-
rameters of the experts gradually decrease through-
out the training process. Initially, the activation
parameters of the heterogeneous MoE are higher
than those of the homogeneous MoE, leading to a
slight reduction in training speed at the beginning.
As training progresses, the training speeds of both
models become comparable.

During inference, the heterogeneous MoE out-
performs the homogeneous MoE in terms of speed.
This is because the average activation parameters
in the pre-trained heterogeneous MoE are smaller,
which causes the model to favor selecting smaller
experts for computation. As a result, even though
the number of experts selected for each inference
task may be similar between the two models, the
computational load per expert is reduced in the
heterogeneous MoE. This leads to faster inference
times compared to the homogeneous MoE, which
utilizes experts of a larger size.

F Detailed Introduction of MoE

F.1 Mixture of Experts

Different from dense models, most MoE models
replace the FEN layer of the transformer (Vaswani
et al., 2017) block with the MoE layer. The MoE
layer consists of a router g;(-) and multiple experts
{e1,e€2,...,en}. The experts are composed of a
set of independent Feed-Forward Network (FFN)
layers. Experts are responsible for processing the
input data according to their specialized knowledge.
For each token, a subset of experts is activated to
execute computations, and the router is responsible
for generating a probability distribution. The prob-
ability of this distribution indicates the likelihood
of assigning the token to each expert. We obtain the



Model ‘ Training Samples per Second Average Activated Parameters during Inference
HMOoE-0.4B 13.83 153M
MoE-0.4B 13.86 163M

Table 2: Efficiency comparasion. We show the speed calculated for single A800 GPU.

output of MoE layer based on following process:

N
MoE(x) = Zgz‘(x) -ei(x),

ei(x) = FFN;(x),

(6)

where x is the input states of current layer.

F.2 Routing Strategy

The routing strategy is applied to select experts to
be activated from N experts. The Top-K Rout-
ing (Huang et al., 2024) strategy is one of the
most widely-used strategy, which always activates
a fixed number of experts for each token. We first
calculate the probability distribution P using a soft-
max function. P represents the initial score of
selecting each expert. Then, we keep the highest &k
scores and normalize them. The detailed computa-
tion is as:

P = softmax(Wy - x) = ]sxp (W, - x) ’
Zj=1 exXp (Wr : X)
(7
- .
i(x) = { Siemxe 70 € Top-K(P) (8)
0 i ¢ Top-K(P),

where Top-K(P) returns the indices of the largest
k elements in P, and W, is a learnable router
parameter.

Recently, Top-P Routing (Huang et al., 2024)
is proposed to dynamically activate different num-
ber of experts for each token. Specifically, we
first obtain P by sorting P from highest to lowest.
Then given a fixed threshold p, which is a hyper-
parameter, if the highest probability is larger than
threshold, we only use one expert. Otherwise, we
progressively add additional experts until the cu-
mulative probability exceeds the threshold p. The
detailed computation is as:

t = argmin P >, )
ke{l..,N} j;k !
Top-P(P) = {Index(1), ..., Index(¢)}, (10)
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Figure 10: Various distributions of expert sizes in HMoE
and their corresponding losses. All distributions follow
arithmetic strategy. The x-axis represents the ratio of
the size of the largest expert to the size of the smallest
expert within the distribution.

i ¢ TOp—P(P),

gi(x) = {
(1)

where ¢ represents the minimum number of experts
that need to be activated. Index(j) returns the
indices of element P in original distribution P.

P
ZjeTop»P(P) Py
0,

i € Top-P(P)

G Further Ablation on Expert
Heterogeneity

Our experiments reveal a strong correlation be-
tween loss and the performance of downstream
tasks: lower loss generally leads to better perfor-
mance. With this insight, we investigated how to
determine Expert Heterogeneity. Figure 10 illus-
trates the loss obtained by training HMoE using an
arithmetic sequence strategy with varying levels of
variance, all within the same computational budget.
We observed that as the ratio between the largest
and smallest experts increases (i.e., as the variance
increases), the model’s performance initially de-
grades but then improves. This suggests that in the
heterogeneous design of HMoE, an optimal level
of heterogeneity enhances performance compared
to either excessive heterogeneity or complete ho-
mogeneity. This is consistent with the reason why
the geometric distribution strategy has poor results.
A large gap in expert ability is not conducive to
model training and may lead to representation col-



Task ‘ Activated Parameter Ratio
ARC-Challenge 21.09
ARC-Easy 20.23

Table 3: Average Activated parameter ratios (%) in
HMOoE layers for ARC (Clark et al., 2018) tasks.

Expert Dim ‘ Top Tokens

2304 the, such, your, these, most, you,
both, no, they, each

3328 tables, valley, sun, temper, places,
day, war, water, through, clean

3840 known, least, lowest, immedi-
ately, bare, heavy, known, higher,
several, independent

5376 _ly, _zen, _icker, _last, _per, _var,
_orous, _next, _end, _flat

5888 _decom, _iz, _ro, _inf, _scra,
_coord, _er, problem, _och, _foss

Table 4: Top activated tokens for each expert.

lapse. Based on these findings, we have adopted
a relatively balanced heterogeneous distribution in
our main experiment.

H Activated Parameter Ratio Analysis

We present the activated parameter ratios of ARC
tasks in HMoE layers in Table 3. Specifically, we
observe that ARC-Challenge activates more pa-
rameters compared to ARC-Easy. This implies
that our model can dynamically activate parame-
ters based on the difficulty of the task. This phe-
nomenon is consistent with that in the MoE with
Top-P routing strategy (Huang et al., 2024). By
activating more parameters for more difficult tasks,
the model achieves better performance, while for
simpler tasks, it gains higher efficiency. This ap-
proach balances efficiency and performance. To
be noted, the difference in activated ratios between
difficult and simple tasks is not very large, ensuring
stable computational costs.

I Expert Activation Patterns

We have recorded the tokens with the highest activa-
tion percentages for different sizes of experts in the
ARC tasks. As shown in Table 4, smaller experts
are most frequently activated by relative simple
words or words with less phonetic information. In
contrast, larger experts are most frequently acti-
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Figure 11: Activated parameters of experts in HMoE
(Top-P). The values in the legend indicate the hidden
dimensions of the experts, which represent their sizes.

vated by suffix tokens. We believe that these suffix
tokens may be more ambiguous and thus more dif-
ficult to understand. Medium-sized experts, on the
other hand, are more frequently engaged with to-
kens that have clearer semantics. Importantly, this
pattern emerges naturally through training rather
than being intentionally designed, and the results
in the table represent direct counts of activation
frequency without any selective filtering.

J Activated parameters of different
experts

We explore the underlying causes of the stable
or declining trend in activated parameters within
HMOoE with Top-P routing. As depicted in Figure
11, the activation of smaller experts increases over
the course of training, while larger experts experi-
ence a decline in their activation rates. This high-
lights the effectiveness of our proposed P-Penalty
loss. The increased activation rates of smaller ex-
perts enhance their capacity to comprehend general
knowledge. This shift causes the role of smaller
experts to increasingly resemble that of shared ex-
perts (Dai et al., 2024). Additionally, the activa-
tion frequency of different experts remains con-
stant throughout the training process, indicating
the router’s consistent token allocation.

K P-Penalty Loss during Training

This work proposes P-Penalty Loss to adjust the
activation changes of experts of different sizes. To
demonstrate the effectiveness of P-Penalty Loss,
we show its changes during training in Figure 12.
As training progresses, the language modeling loss
continues to decline, while the P-Penalty Loss rises
rapidly in the first 1,000 steps (approximately 3B
tokens) before gradually decreasing. This is be-
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Figure 12: P-Penalty Loss during training.

cause larger experts, due to their stronger expres-
sive capabilities, yield a greater reduction in LM
loss from activation compared to the penalty im-
posed by P-Penalty Loss.
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