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ABSTRACT

Current LiDAR-only 3D detection methods inevitably suffer from the sparsity of
point clouds. Sparse point clouds can confuse detectors as they lack sufficient
geometric and semantic information. Many multi-modal methods are proposed to
alleviate this issue, while different representations of images and point clouds make
it difficult to fuse them, resulting in suboptimal performance. In this paper, we
present a new multi-modal framework named SFD (Sparse Fuse Dense) to tackle
these issues. Specifically, we propose to enhance sparse point clouds generated
from LiDAR with dense pseudo point clouds generated from depth completion.
To make full use of information from different types of point clouds, we design a
new RoI feature fusion method 3D-GAF (3D Grid-wise Attentive Fusion), which
fuses 3D RoI features from the couple of point clouds in a grid-wise attentive
way. In addition, we devise a CPFE (Color Point Feature Extractor) to extract
both 3D geometric and 2D semantic features in pseudo point clouds. Moreover,
we introduce a multi-modal data augmentation method named SynAugment to
utilize all data augmentation approaches tailored to LiDAR-only methods. Our
method holds the highest entry on the KITTI 3D object detection leaderboard∗,
demonstrating the effectiveness of SFD. Codes will be public.

1 INTRODUCTION

In recent years, the rise of deep learning and autonomous driving has led to a rapid development of
3D detection. Many excellent 3D detection methods have been proposed Yan et al. (2018); Shi et al.
(2020a); Deng et al. (2020); Zheng et al. (2021b). Current 3D detection models are mainly based on
raw LiDAR point clouds, while the sparsity of point clouds considerably limits their performances.
The sparse LiDAR point clouds provide poor information in far and occluded regions, making it
difficult to generate precise 3D boxes. To solve this problem, researchers typically resort to fusing
visual features from RGB images. Nevertheless, with more data, more annotations and more time,
current multi-modal methods perform less accurately than LiDAR-only methods. We summarize the
main reasons into three points: dimension gap, information loss, data augmentation.

Dimension Gap There is an inherent dimension gap between images and point clouds, indicating
that it is hard to fuse two-dimensional images and three-dimensional point clouds directly. Some
methods Xu et al. (2018); Zhao et al. (2019) crop and reshape image RoI features to fuse with point
cloud features, ignoring the correspondence between 2D pixels and 3D points, consequently leading
to suboptimal performance.

Information Loss Some methods resolve the dimension gap by establishing correspondence be-
tween images and point clouds Liang et al. (2018; 2019); Vora et al. (2020); Xie et al. (2020); Huang
et al. (2020). However, the sparse correspondence caused by sparse point clouds makes the extracted
image features sparse, posing a lot of image information loss.

Data Augmentation The last serious issue is insufficient data augmentation in multi-modal meth-
ods. Complicated data augmentation approaches, such as gt-sampling Yan et al. (2018), random
rotation and random scaling, are difficult to deploy in multi-modal methods because 2D image data
cannot be operated like 3D LiDAR data. However, data augmentation is essential because it can
largely improve the generalization ability of models.

∗On the date of ICLR deadline, i.e., Oct 6, 2021
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Figure 1: Average number of pseudo points
and raw LiDAR points on objects in different
distance ranges.

To generally resolve the aforementioned problems, in this
paper, we propose a novel multi-modal framework named
SFD, which aims to enhance raw LiDAR point clouds with
dense pseudo point clouds generate from depth comple-
tion. As shown in Figure 1, pseudo points on objects are
much more than raw points in all distance ranges. Pseudo
point clouds can provide sufficient information, especially
for distant and occluded objects, as shown in Figure 2,
demonstrating that enhancing raw LiDAR point clouds
with pseudo point clouds is reasonable.

As for the three issues in multi-modal methods, we observe
that pseudo point clouds have the same representation as
raw LiDAR point clouds. Therefore the dimension gap
issue can be eliminated naturally. Besides, pseudo point
clouds carry all image information, allowing us to use all

Figure 2: Comparison between raw LiDAR
point clouds and pseudo point clouds.

image information when fusing the couple of clouds, rather
than rely on the sparse correspondence between images
and raw LiDAR point clouds. For the data augmentation
issue, we solve it by performing the same transformation
as raw LiDAR point clouds on pseudo point clouds (see
our SynAugment in Sec. 3.5).

In addition, aiming to fully fuse dense pseudo point clouds
and raw LiDAR point clouds, we propose an effective RoI
fusion method named 3D-GAF (3D Grid-wise Attentive
Fusion), which fuses 3D RoI features from the couple
of clouds in a grid-wise attentive way. Moreover, to ex-
plore both 2D semantic features and 3D geometric features
carried by pseudo point clouds in 3D RoIs, we present a
CPFE (Color Point Feature Extractor) that takes both 2D
and 3D neighborhood relationships into account.

Main Contributions Firstly, we propose a new multi-modal framework named SFD (Sparse Fuse
Dense), which leverages advantages of pseudo point clouds generated from depth completion to
tackle the sparsity problem in LiDAR-only methods. Moreover, the dimension gap, information
loss and data augmentation issues in multi-modal methods can be solved simultaneously. Secondly,
we design a new RoI feature fusion method 3D-GAF (3D Grid-wise Attentive Fusion) to fully fuse
raw LiDAR point clouds and pseudo point clouds. In order to further extract rich information in
pseudo point clouds, we devise a CPFE (Color Point Feature Extractor). In addition, we present a
multi-modal data augmentation method SynAugment (Synchronized Augmentation), which enables us
to use data augmentation approaches designed for LiDAR-only methods. Finally, we achieve the top
performance on the KITTI 3D detection benchmark with our SFD.

2 RELATED WORK

3D Detection Using Single-modal Data. Current 3d detection methods are mainly based on
LiDAR data. SECOND Yan et al. (2018) proposes a sparse convolution operation to speed up 3D
convolution. PV-RCNN Shi et al. (2020a) leverages the advantages of voxel-based methods and
point-based methods to get more discriminative features. Voxel-RCNN Deng et al. (2020) points out
that precise positioning of raw points is unnecessary. Recently, SE-SSD Zheng et al. (2021b) attains
an excellent performance with self-ensembling.

3D Detection Using Multi-modal Data. Due to the sparsity of point clouds, researchers seek help
from multi-modal methods which utilize both images and raw LiDAR point clouds. Many early
methods use a cascading approach to use multi-modal data Qi et al. (2018); Wang & Jia (2019). More
recent methods Liang et al. (2018); Xie et al. (2020); Huang et al. (2020) use LiDAR and image data
in combination by establishing correspondence between point clouds and images and then indexing
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Figure 3: Comparison between SFD and Voxel-RCNN. For the visualization of SFD and Voxel-
RCNN, we use pseudo clouds and raw clouds, respectively. We show true positives in green and false
positives in indigo. The ground-truth boxes and raw LiDAR points inside the boxes are rendered in
red. Green arrows represent that our predictions are more accurate, and indigo arrows represent false
positives of Voxel-RCNN. The figures beside BEV boxes represent the score and 3d iou.

image features by point clouds. In other fields, there are some works Wang & Neumann (2018); He
et al. (2021) also benefit from multi-modal data.

Depth Completion. Depth completion aims to predict a dense depth map from a sparse one with
the guidance of a color image. Recently, many efficient depth completion methods are proposed
Hu et al. (2021); Imran et al. (2021); Gu et al. (2021). Although the primary purpose of the deep
completion task is to serve downstream tasks, there are few methods using depth completion in 3D
detection. In the image-based 3D object detection field, there are some works Wang et al. (2019); You
et al. (2019) that use depth estimation to generate pseudo point clouds. However, their performances
are greatly limited due to the lack of accurate or sufficient raw LiDAR point clouds.

Related to MMF. MMF Liang et al. (2019) also utilizes depth completion and it benefits from multi-
task multi-sensor fusion. In MMF, pseudo point clouds are used for point feature fusion, and depth
completion feature maps are used for RoI feature fusion. In our method, we concentrate on finding
a more effective RoI feature fusion method. When fusing RoI features, as shown in Figure 5(a),
MMF concatenates reshaped 2D LiDAR RoI features cropped from BEV LiDAR feature maps and 2D
image RoI features cropped from FOV image feature maps (i.e., depth completion feature maps). In
contrast, as shown in Figure 5(b), our method fuses 3D raw LiDAR point clouds and 3D pseudo point
clouds, which brings two benefits. Firstly, 3D representation of images (pseudo point clouds) allows
us to fuse RoI features from raw LiDAR point clouds and images in a more fine-grained manner
(3D-GAF). We elaborate on three advantages of our 3D-GAF over previous RoI fusion methods
(include MMF) in Sec. 3.3. Secondly, with the 3D representation of images, our model can use all
data augmentation approaches tailored to LiDAR-only methods (see our SynAugment in Sec. 3.5),
while MMF cannot. Overall, our method makes fuller use of the advantages of pseudo point clouds
than MMF, and pushes a new state-of-the-art.

3 SPARSE FUSE DENSE

3.1 PRELIMINARIES

For simplicity, we name the raw LiDAR point clouds generated by LiDAR and the pseudo point
clouds generated from depth completion as raw clouds and pseudo clouds, respectively. Given a frame
of raw cloudsR, we can convert it into a sparse depth map S with a known projection TLiDAR→image.
Let I donate the image that corresponds toR. Feeding I and S to a depth completion network, we
can get a dense depth map D. With a known projection Timage→LiDAR, we can get a frame of pseudo
clouds P . Moreover, we concatenate the RGB (r, g, b) and coordinate (u, v) of each pixel in the
image to its corresponding pseudo point. Therefore, the ith pseudo point pi can be represented as (xi,
yi, zi, ri, gi, bi, ui, vi).
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Figure 4: SFD mainly consists of three parts: LiDAR Stream, Pseudo Stream and Sparse Dense Fusion
Head. (1)LiDAR Stream only uses raw clouds (generated by LiDAR) to predict 3D RoIs. Then
RoIs are used to crop raw clouds and pseudo clouds (generated from depth completion). (2)Pseudo
Stream uses raw clouds and images to generate pseudo clouds. Painting pseudo clouds with RGB, we
get the colorful pseudo clouds. Then CPFE (see Figure 7) is performed to extract rich information of
pseudo clouds in RoIs. At the end of Pseudo Stream, pseudo clouds in RoIs are voxelized, and 3D
sparse convolutions are applied. (3)In Sparse Dense Fusion Head, RoI features from raw clouds
and pseudo clouds are fused by 3D-GAF (see Figure 6), then the fused RoI features are used to predict
class confidences and bounding boxes. In addition, an auxiliary head is employed to regularize our
network. It can be detached at inference time.

3.2 OVERVIEW OF METHODS

We show our framework in Figure 4, including: (1) a LiDAR Stream using only raw clouds and serving
as an RPN to produce 3D RoIs; (2) a Pseudo Stream that extracts point features with proposed CPFE,
and extracts voxel features with sparse convolutions; (3) a Sparse Dense Fusion Head that fuses 3D
RoI features from raw clouds and pseudo clouds in a grid-wise attentive manner, and produces final
predictions. We detail our method in the following sections.

3.3 3D GRID-WISE ATTENTIVE FUSION

Due to the dimensional gap, previous methods Chen et al. (2017); Ku et al. (2017); Liang et al. (2019),
directly concatenate reshaped 2D LiDAR RoI features cropped from BEV LiDAR feature maps and
2D image RoI feature cropped from FOV image feature maps in a roi-wise way, which is coarse.
In our method, 2D images are converted to 3D pseudo clouds, allowing us to fuse them in a more
fine-grained manner, as shown in Figure 5. We propose a more effective RoI fusion named 3D-GAF,
consisting of 3D Fusion, Grid-wise Fusion and Attentive Fusion.

(1)3D Fusion. We use a 3D RoI to crop 3D raw clouds and 3D pseudo clouds, which only includes
LiDAR features and image features in the 3D RoI, as shown in Figure 5(b). Previous methods use 2D
RoI to crop image features, which involves features from other objects or backgrounds. It causes a
lot of interference, especially for occluded objects, as shown in Figure 5(a). (2)Grid-wise Fusion.
Because of the same representation of raw RoI features and pseudo RoI features, we can fuse each
couple of grid features separately. It enables us to accurately enhance each part in an object with the
corresponding pseudo grid feature instead of the whole pseudo RoI feature used in previous methods.
(3)Attentive Fusion. We utilize attention to fuse each couple of grid features adaptively, as shown
in Figure 6. For grids where raw clouds are sparse, pseudo features should be enhanced. For grids
where pseudo clouds are inaccurate, pseudo features should be weakened. Table 7 provides ablation
studies on 3D Fusion, Grid-wise Fusion and Attentive Fusion, validating their effectiveness.

Here we provide a detailed description of our 3D-GAF. Let b denote a single 3D RoI. We denote
F raw ∈ Rn×C and F pse ∈ Rn×C as the raw cloud RoI feature and pseudo cloud RoI feature in b,
respectively. Here n (6× 6× 6 by default) is the total number of grids in a 3D RoI, and C is the grid
feature channel. The ith raw RoI grid feature and ith pseudo RoI grid feature in b are denoted as
F raw
i and F pse

i , respectively. As shown in Figure 6, given a couple of RoI grid features (F raw
i , F pse

i ),
we apply two fully connected layers on them and concatenate the outputs, getting compress feature
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Figure 5: Comparison between previous methods and 3D-GAF.

embeddings Ei. Then a fully connected layer and a sigmoid operation are applied sequentially,
resulting in the weight wi ∈ R2, which consists of a weight wraw

i ∈ R1 for the raw grid feature and a
weight wpse

i ∈ R1 for the pseudo grid feature:

Ei = MLP(CONCAT(F raw
i , F pse

i )) (1)

wi = σ(MLP(Ei)) (2)
In addition, we feed the couple of RoI grid features to two fully connected layers, resulting in a
couple of transformed RoI grid features Ti = (T raw

i , T pse
i ):

T raw
i = MLP(F raw

i ), T pse
i = MLP(F pse

i ) (3)

After that, we multiply Ti with weight wi, getting a couple of attentive RoI grid features. Finally,
they are concatenated and fed to a fully connected layer, resulting in a fused RoI grid feature Fi:

Fi = MLP(CONCAT(wraw
i T raw

i , wpse
i T pse

i )) (4)

Figure 6: Illustration of Attentive Fusion.

In practice, all couples of RoI grid features in a batch
can be processed in parallel, so our 3D-GAF is com-
putationally efficient. There are some works Kaul
et al. (2019); He et al. (2020b) that also use a dual fu-
sion architecture, while the motivation and design of
each work are different. We concatenate the pseudo
grid feature and raw grid feature to produce a couple
of weights for the couple of grid features, aiming to
fuse raw clouds and pseudo clouds in different parts
of an object adaptively.

3.4 COLOR POINT FEATURE EXTRACTOR

Figure 7: Illustration of CPConv and CPFE.

A naive approach to exploit 3D-GAF is directly vox-
elizing pseudo clouds without any feature extrac-
tion on them, which obviously cannot fully explore
rich information of pseudo clouds. Therefore, we
propose to perform point-wise feature extraction on
pseudo clouds before voxelization. PointNet++ Qi
et al. (2017) is a good example for extracting fea-
tures of points, but it is not suitable for pseudo clouds.
Firstly, the ball query operation in PointNet++ will
bring massive calculations due to the vast amounts of
pseudo points. Secondly, PointNet++ cannot extract
2D features because the ball query operation does
not take 2D neighborhood relationships into account.
In light of this, we need a feature extractor that can
extract both 3D structural features and 2D semantic
features efficiently.

Color Point Convolution Based on the above two points, we propose a CPConv (Color Point
Convolution), which searches neighbors on a regularly arranged image domain, as inspired by the
voxel query Deng et al. (2020) and grid search Fan et al. (2021). In this way, we can overcome
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the shortcomings of PointNet++. Firstly, a pseudo point can search its neighbors in constant time,
making it much faster than the ball query. Secondly, neighborhood relationships on the image domain
make it possible to extract 2D semantic features. Specifically, we project pseudo points in a 3D RoI
to an image according to their image coordinates (u, v). After projecting, each pseudo point can get
its image neighbors easily. In addition, we search dilate neighbors instead of nearest neighbors for a
larger receptive field, following Yu & Koltun (2015).

Pseudo Point Features For the ith pseudo point pi, we donate its feature as fi = (xi, yi, zi, ri, gi,
bi), which consists of 3D geometric features and 2D semantic features. As motivated by Deng et al.
(2020), we apply a fully connected layer on pseudo point features before performing the neighbor
search to reduce complexity. Then the feature channel is raised to C3, as shown in Figure 7(a).

Position Residuals We utilize 3D and 2D position residuals from pi to its neighbors to make
pi’s features aware of local relationships in 3D and 2D space, which is particularly important for
extracting both 3D structural features and 2D semantic features of pi. For pi’s kth neighbor pik, the
position residual between pi and pik is represented as hik = (xi − xik, yi − yik, zi − zik, ui − uik,
vi − vik, ||pi − pik||), where || · || calculates the Euclidean distance between pi and pik.

Feature Aggregation For K (K = 9 by default) dilate neighbors of pi, we gather their positions and
calculate position residuals. Then we apply a fully connected layer on position residuals, raising their
channels toC3 for alignment with pseudo point features. Given a set of neighbor features F i = {fki ∈
RC3 , k ∈ 1, · · · ,K} and a set of neighbor position residuals Hi = {hki ∈ RC3 , k ∈ 1, · · · ,K}, we
weight each fik with corresponding hik. The weighted neighbor features are concatenated Fan et al.
(2021) instead of max-pooled Deng et al. (2020) for maximum information fidelity. Finally, a fully
connected layer is applied to map aggregated feature channel back to C3.

Multi-Level Feature Fusion To extract deeper features of pseudo clouds, we propose a Color
Point Feature Extractor, which stacks three CPConvs, as illustrated in Figure 7(b). Considering that
high-level features provide a larger receptive field and richer semantic information, while low-level
features can supply finer structure information, we concatenate features from multi-level to get a
more comprehensive and discriminate feature representation for objects.

3.5 SYNCHRONIZED AUGMENTATION

With depth completion, 2D images can be converted into 3D pseudo clouds, allowing us to easily
achieve all existing data augmentation approaches tailored to LiDAR-only methods. Specifically,
we paint pseudo clouds with RGB before data augmentation. Then we only need to perform
data augmentation on pseudo clouds synchronizing with raw clouds to achieve multi-modal data
augmentation, as shown in Figure 8. We call this data augmentation method SynAugment.

MoCa Zhang et al. (2020) provides a common data augmentation pipeline for multi-modal methods
by reversing point cloud transformations and replaying the image transformation. However, it is not
suitable for our SFD. When using gt-sampling, MoCa needs to obtain image masks for all training
samples in advance and perform additional occlusion detection on images, which is complicated.
In addition, the feature mapping in MoCa relies on the sparse correspondence between images and
point clouds, which introduces image information loss. By contrast, our method can use all image
information in 3D RoIs.

Figure 8: Illustration of SynAugment. We perform data augmentations on raw clouds and pseudo
clouds synchronously.
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3.6 LOSS FUNCTION

We follow the detection loss function of Deng et al. (2020), which is donated as Ldet. To prevent
gradients from being dominated by LiDAR Stream, we add auxiliary loss Laux on pseudo RoI features.
Laux is consistent with Ldet, including classification loss and regression loss. The depth completion
network loss Ldepth follows the definition of Hu et al. (2021). Then the total loss is:

L = Ldet + λLaux + βLdepth (5)

where λ and β are the weight of Laux and Ldepth (λ = 1, β = 1 by default).

4 EXPERIMENTS

4.1 DATASET AND EVALUATION METRICS

We evaluate our model on the KITTI 3D and BEV object detection benchmark Geiger et al. (2013).
The KITTI dataset consists of 7481 training samples and 7518 testing samples in the object detection
task. The training data are divided into a train set with 3712 samples and a val set with 3769 samples.
The average precision (AP) on val set obtained from the 40-point and 11-point precision-recall (PR)
are all provided. The average precision (AP) on the test set is obtained from the 40-point precision-
recall (PR). For the reason that Waymo and NuScenes datasets do not provide depth completion
labels, we do not conduct experiments on these two datasets.

4.2 IMPLEMENTATION DETAILS

The LiDAR Stream of SFD is based on Deng et al. (2020), an excellent 3d detector that only uses raw
clouds. For the depth completion, we use Hu et al. (2021), a precise and efficient depth completion
network. Actually, our method is not sensitive to the depth completion network. SFD with TWISE
Imran et al. (2021) can also achieve a comparable result. We replace Smooth-L1 Loss with 3D GIoU
Loss Zhou et al. (2019) in the regression head. The inference speed of SFD is 10.2 HZ on an NVIDIA
RTX 2080 Ti GPU. We follow the data augmentation approaches mentioned in Deng et al. (2020)
and Zheng et al. (2021a). Although our SFD can be trained end-to-end without the depth completion
network pre-trained, we observe that initialization is essential for the performance of 3D detection.
Thus, we pre-train the depth completion network on the KITTI dataset and fix the parameters of the
depth completion network when training our SFD.

Table 1: Comparison with state-of-the-art methods on the KITTI test set for car detection, with 3D
average precisions of 40 sampling recall points evaluated on the KITTI server.

Method Modality AP3D
Easy Mod Hard

SECOND Yan et al. (2018) LiDAR 83.34 72.55 65.82
PointPillars Lang et al. (2019) LiDAR 82.58 74.31 68.99
PointRCNN Shi et al. (2019) LiDAR 86.96 75.64 70.70

Part-A2 Shi et al. (2020b) LiDAR 87.81 78.49 73.51
SA-SSD He et al. (2020a) LiDAR 88.75 79.79 74.16

STD Yang et al. (2019) LiDAR 87.95 79.71 75.09
CIA-SSD Zheng et al. (2021a) LiDAR 89.59 80.28 72.87
PV-RCNN Shi et al. (2020a) LiDAR 90.25 81.43 76.82

Voxel-RCNN Chen et al. (2019) LiDAR 90.90 81.62 77.06
CT3D Sheng et al. (2021) LiDAR 87.83 81.77 77.16

SE-SSD Zheng et al. (2021b) LiDAR 91.49 82.54 77.15
MV3D Chen et al. (2017) LiDAR+RGB 74.97 63.63 54.00

ContFuse Liang et al. (2018) LiDAR+RGB 83.68 68.78 61.67
F-PointNet Qi et al. (2018) LiDAR+RGB 82.19 69.79 60.59

AVOD Ku et al. (2017) LiDAR+RGB 83.07 71.76 65.73
PI-RCNN Xie et al. (2020) LiDAR+RGB 84.37 74.82 70.03

UberATG-MMF Liang et al. (2019) LiDAR+RGB 88.40 77.43 70.22
EPNet Liang et al. (2019) LiDAR+RGB 89.81 79.28 74.59
3D-CVF Yoo et al. (2020) LiDAR+RGB 89.20 80.05 73.11

CLOCs PVCas Pang et al. (2020) LiDAR+RGB 88.94 80.67 77.15
SFD (ours) LiDAR+RGB 90.83 83.96 77.47
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4.3 COMPARISON WITH STATE-OF-THE-ARTS

Table 2: Comparison between Voxel-RCNN
and SFD on the KITTI val set with BEV AP
calculated by 40 recall positions for car class.

Method APBEV
Easy Moderate Hard

Voxel-RCNN 95.52 91.25 88.99
SFD (ours) 96.42 92.27 91.49

We compare our SFD with state-of-the-art methods
on the KITTI test set by submitting our results to
KITTI online test server. As shown in Table 1,
our method surpasses all state-of-the-art multi-modal
methods by a large margin. For LiDAR-only meth-
ods, SFD outperforms previous best method SE-SSD
Zheng et al. (2021b) by 1.42% on the moderate level.
We also provide a comparison on the KITTI val set,
as seen in Table 3, and our SFD also achieves a good performance. In addition, BEV detection results
are provided in Table 2, and Figure 3 shows the prediction visualization of SFD and Voxel-RCNN.

Table 3: Comparison with state-of-the-art methods on the KITTI val set for car detection. The results
are evaluated with the average precision calculated by 11 and 40 recall positions for car class.

Method Modality 3DR11 3DR40

Easy Mod Hard Easy Mod Hard
Fast PointRCNN Chen et al. (2019) LiDAR 89.12 79.00 77.48 - - -

PV-RCNN Shi et al. (2020a) LiDAR 89.35 83.69 78.70 92.57 84.83 82.69
Pyramid-PV Mao et al. (2021) LiDAR 89.37 84.38 78.84 - - -

Voxel-RCNN Deng et al. (2020) LiDAR 89.41 84.52 78.93 92.38 85.29 82.86
SE-SSD Zheng et al. (2021b) LiDAR - 85.71 - 93.19 86.12 83.31

UberATG-MMF Liang et al. (2019) LiDAR+RGB 88.40 77.43 70.22 - - -
3D-CVF Yoo et al. (2020) LiDAR+RGB - - - 89.67 79.88 78.47
EPNet Huang et al. (2020) LiDAR+RGB - - - 92.28 82.59 80.14

CLOCs PVCas Pang et al. (2020) LiDAR+RGB - - - 92.78 85.94 83.25
SFD (ours) LiDAR+RGB 89.74 87.12 85.20 95.47 88.56 85.74

Table 4: Effects of different components in SFD
on the KITTI val set. The results are evaluated
with the AP calculated by 40 recall positions
for car class. “3D-GAF” and “CPFE” stand for
3D Grid-wise Attentive Fusion and Color Point
Feature Extractor, respectively.

Experiment 3D-GAF CPFE AP3D
Easy Moderate Hard

(a) 92.88 85.47 82.98
(b)

√
93.49 86.57 85.30

(c)
√ √

95.47 88.56 85.74

Table 5: Ablation study on SynAugment.
When SynAugment is not used, we remove gt-
sampling, random scaling and random rotation.
The results are evaluated with the AP calculated
by 40 recall positions for car class.

Experiment SynAugment AP3D
Easy Moderate Hard

(a) Yes 92.88 85.47 82.98
No 88.55 78.49 74.42

(b) Yes 93.49 86.57 85.30
No 90.88 80.31 77.87

4.4 ABLATION STUDY

Table 4 and Table 5 detail how each proposed module influences the accuracy of our SFD. Experiment
(a) is our baseline which is modified on Voxel-RCNN Deng et al. (2020). It only uses raw clouds as
input. Experiments (b),(c) and (d) are all equipped with multi-modal data augmentation (SynAugment)
for a fair comparison with experiment (a), which is equipped with single-modal data augmentation.

Effect of 3D Grid-wise Attentive Fusion In Table 4, experiment (b) uses 3D-GAF to fuse raw
RoI features and pseudo RoI features, making a 0.61%, 1.10% and 2.32% improvement on easy,
moderate and hard levels, respectively. It demonstrates the effectiveness of our 3D-GAF.

Effect of Color Point Feature Extractor In Table 4, experiment (c) exploit our CPFE to extract
rich features of pseudo clouds based on experiment (b), yielding a moderate AP of 88.56% with 1.99%
improvement. It also demonstrates that with 3D-GAF and CPFE combined, our SFD outperforms the
baseline by 3.09% on the moderate level.

Effect of Synchronized Augmentation Our SynAugment enables our multi-modal framework to
utilize data augmentation approaches designed for LiDAR-only methods. We take off those data
augmentation approaches designed for LiDAR-only methods from experiments (a) and (b) in Table 4,
resulting in experiments (a) and (b) in Table 5. As shown in Table 5, without SynAugment, the
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performance of our multi-modal method drops drastically, which proves the importance of sufficient
data augmentation for multi-modal methods.

Table 6: Cooperating with different detectors.
The average precisions are calculated by 40
recall positions for car class on easy, moderate
and hard levels.

Methods with SFD AP3D
Easy Moderate Hard

PointRCNN
No 91.40 82.33 80.09
Yes 94.50 85.72 83.29

Improvement +3.10 +3.39 +3.20

Part-A2
No 91.87 82.74 80.42
Yes 93.17 85.91 83.56

Improvement +1.30 +3.17 +3.14

SECOND
No 90.31 81.76 78.88
Yes 94.75 87.20 85.07

Improvement +4.44 +5.44 +6.19

Cooperating with Different Detectors To vali-
date the universality of our method, we equip dif-
ferent LiDAR-only detectors with our SFD frame-
work. In our experiments, we use the PointRCNN Shi
et al. (2019), Part-A2 Shi et al. (2020b) and SECOND
Yan et al. (2018) implemented by OpenPCDet Team
(2020). As shown in Table 6, our method can improve
different detectors significantly. For the one-stage de-
tector SECOND, we use the same architecture as
Pseudo Stream (CPFE with sparse convolutions) to
extract features of raw clouds in the 3D RoI. The raw
clouds are also painted with RGB information to be
consistent with pseudo clouds.

Ablation Study on 3D Grid-wise Attentive Fusion We conduct experiments to verify the effec-
tiveness of each part of 3D-GAF, as shown in Table 7. Experiment (a) directly concatenates raw RoI
features and pseudo RoI features cropped by 2D RoI, which we call 2D RoI-wise Concat Fusion.
Experiment (b) concatenates raw RoI features and pseudo RoI features cropped by 3D RoI, which we
call 3D RoI-wise Concat Fusion. Experiment (c) fuses a couple of RoI features in a grid-wise manner
based on experiment (b), and experiment (d) extends (c) with Attentive Fusion. Results show that
each part of 3D-GAF can improve our SFD. Moreover, we can find that the contribution of Grid-wise
Fusion and Attentive Fusion mainly lie on the moderate level and easy level, respectively.

Table 7: Ablation study on 3D-GAF. “3D”: 3D Fusion. “Grid-wise”: Grid-wise Fusion. “Attentive”:
Attentive Fusion. The results are calculated by 40 recall positions for car class.

Experiment 3D Grid-wise Attentive AP3D
Easy Moderate Hard

(a) 93.08 85.27 82.79
(b)

√
94.83 87.77 85.27

(c)
√ √

94.84 88.23 85.57
(d)

√ √ √
95.47 88.56 85.74

Conditional Analysis To figure out in what cases our method improves the baseline most, we
evaluate our SFD on different distances and different occlusion degrees. As shown in Table 8, distant
and heavily occluded objects are improved most, which verifies our hypothesis that pseudo point
clouds are helpful for objects with sparse raw points.

Table 8: Performance on different distances and different occlusion degrees. The results are evaluated
with 3D AP calculated by 40 recall positions for car class on the moderate level.

with SFD Distance Occlusion
0-20m 20-40m 40m-Inf 0 1 2

No 94.42 77.05 15.03 62.49 76.79 57.46
Yes 95.28 79.34 21.91 63.46 80.03 62.68

Improvement +0.86 +2.29 +6.88 +0.97 +3.24 +5.22

5 CONCLUSION

We propose a new multi-modal framework SFD for high quality 3D detection. With SFD, we
overcome the dilemmas in LiDAR-only methods and multi-modal methods. We propose a new RoI
fusion method 3D-GAF, which fuses raw clouds and pseudo clouds in a more fined-grained manner.
To fully explore informative pseudo clouds, we design a CPFE, which efficiently and effectively
extract both 3D features and 2D features in pseudo clouds. With SynAugment, our SFD can use all
existing data augmentation approaches tailored to LiDAR-only methods. Experimental results on
the KITTI dataset demonstrate that our approach can significantly improve detection accuracy and
outperform other start-of-the-arts, including single-modal and multi-modal methods.
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Appendix

A MORE ABLATION STUDY

Training with Three Classes To further validate the effectiveness of our SFD, we train a single
model for car, pedestrian and cyclist detection. As seen in Figure 9, SFD can consistently improve
the state-of-the-art Voxel-RCNN Deng et al. (2020) on all classes and all evaluation metrics.

Table 9: Performance of SFD on the KITTI val set with AP calculated by 40 recall positions.

Class with SFD AP3D APBEV
Easy Moderate Hard Easy Moderate Hard

Car
No 89.39 83.83 78.73 90.26 88.35 87.81
Yes 95.52 88.27 85.57 96.24 92.09 91.32

Improvement +6.13 +4.44 +6.84 +5.98 +3.74 +3.51

Pedestrian
No 70.55 62.92 57.35 71.62 64.95 61.11
Yes 72.94 66.69 61.59 75.64 69.71 64.75

Improvement +2.39 +3.77 +4.24 +4.02 +4.76 +3.64

Cyclist
No 90.04 71.13 66.67 91.71 74.67 70.02
Yes 93.39 72.95 67.26 93.37 75.31 70.80

Improvement +3.35 +1.82 +0.59 +1.66 +0.64 +0.78

Robustness Analysis on Depth Completion Network PENet Hu et al. (2021) and TWISE Imran
et al. (2021) are recently proposed deep completion networks. We train our SFD with them and
evaluate the results on both the KITTI val set and test set. Although TWISE performs worse than
PENet on the KITTI depth completion benchmark, SFD is not sensitive to this, as shown in Table 10.
The performances of SFD with different depth completion networks are comparable, which manifests
the robustness of our method.

Table 10: Robustness experiment with different depth completion networks. The results evaluated on
the KITTI val set and test set are all provided, with AP calculated by 40 recall positions for car class.

Evaluation Set PENet TWISE AP3D APBEV
Easy Moderate Hard Easy Moderate Hard

val set
√

95.47 88.56 85.74 96.42 92.27 91.49√
95.41 88.58 86.01 96.28 92.25 91.69

test set
√

90.83 83.96 77.47 94.76 91.04 86.31√
90.62 83.60 77.10 94.84 91.23 86.26

Comparison between PointNet++ and CPConv Because of the huge number of pseudo points
(see Figure 1), it is impossible to perform PointNet++ Qi et al. (2017) on all pseudo points, and it is
inevitable to down-sample pseudo clouds. In our experiments, we sample 1024 pseudo points in each
3D RoI. As shown in Table 11, with more inference time, PointNet++ performs much worse than
CPConv. We summarize the reasons as the following two points. Firstly, PointNet++ cannot make
use of 2D semantic features in pseudo clouds because of the ball query. Secondly, down-sampling
used by PointNet++ causes a lot of information loss, while in our CPConv, we can keep all pseudo
points in 3D RoIs thanks to the fast neighbor search.

Table 11: Comparison between PointNet++ and CPConv. The results are evaluated with the average
precision calculated by 40 recall positions for the car class.

Method Inference Time AP3D
Easy Moderate Hard

PointNet++ 95ms 92.25 85.61 83.36
CPConv(Ours) 12ms 95.47 88.56 85.74

Inference Speed We test the inference speed of SFD on an NVIDIA RTX 2080 Ti GPU with batch
size 1. Our SFD runs at 15.2 HZ, excluding the latency of the depth completion network. With Imran
et al. (2021) or Hu et al. (2021) as our depth completion network, the speed of SFD is 11.4 HZ or
10.2 HZ, respectively.
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B MORE QUALITATIVE ANALYSES

Figure 9: Comparison between SFD and Voxel-RCNN. For the visualization of SFD and Voxel-
RCNN, we use pseudo clouds and raw clouds, respectively. We show true positives, false positives
and ground-truth boxes in green, indigo and red, respectively. The raw LiDAR points inside prediction
boxes are rendered in blue. Green arrows represent that our predictions are more accurate, and indigo
arrows represent false positives of Voxel-RCNN.

Figure 10: Different views of pseudo clouds on object Â in Figure 9(b).

Figure 9 provides three cases, corresponding to three situations where SFD improves Voxel-RCNN
Deng et al. (2020).

Occlusion Occlusion is a challenging problem in the scenario of autonomous driving, as shown in
Figure 9(a). Object À is heavily occluded by the black car in front, making its raw clouds insufficient
(see Á). However, pseudo clouds can alleviate this by providing sufficient 3D geometric information
and additional 2D semantic information.

Long Distance Figure 9(b) shows another common scene. Due to the limited resolution of LiDAR,
faraway objects are with much fewer points. As shown in object Ã, it is difficult to predict a precise
box with insufficient raw clouds. However, pseudo clouds on the object are richer. Figure 10 shows
different views of pseudo clouds on Â, demonstrating the rationality of our hypothesis. The pseudo
clouds are qualified to provide supplementary information for raw clouds.
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Background Similar to Foreground Dense pseudo clouds not only benefit location of foreground,
but also help to distinguish background from foreground, as seen in Figure 9(c). In the autonomous
driving scene, some background raw clouds are similar to the foreground due to the sparsity of raw
clouds, which may confuse detectors and cause many false positives. In Figure 9(c), Voxel-RCNN
mistakes the fence for a car because raw clouds on the fence and car are similar. Nevertheless, pseudo
clouds on them are very different, which helps our method to distinguish them.
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