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ABSTRACT

Modern distribution matching algorithms for training diffusion or flow models
directly prescribe the time evolution of the marginal distributions between two
boundary distributions. In this work, we consider a generalized distribution
matching setup, where these marginals are only implicitly described as a solution
to some task-specific objective function. The problem setup, known as the Gen-
eralized Schrödinger Bridge (GSB), appears prevalently in many scientific areas
both within and without machine learning. We propose Generalized Schrödinger
Bridge Matching (GSBM), a new matching algorithm inspired by recent ad-
vances, generalizing them beyond kinetic energy minimization and to account for
task-specific state costs. We show that such a generalization can be cast as solving
conditional stochastic optimal control, for which efficient variational approxima-
tions can be used, and further debiased with the aid of path integral theory. Com-
pared to prior methods for solving GSB problems, our GSBM algorithm better
preserves a feasible transport map between the boundary distributions throughout
training, thereby enabling stable convergence and significantly improved scala-
bility. We empirically validate our claims on an extensive suite of experimental
setups, including crowd navigation, opinion depolarization, LiDAR manifolds,
and image domain transfer. Our work brings new algorithmic opportunities for
training diffusion models enhanced with task-specific optimality structures.

1 INTRODUCTION

The distribution matching problem—of learning transport maps that match specific distributions—is
a ubiquitous problem setup that appears in many areas of machine learning, with extensive appli-
cations in optimal transport (Peyré & Cuturi, 2017), domain adaptation (Wang & Deng, 2018), and
generative modeling (Sohl-Dickstein et al., 2015; Chen et al., 2018). The tasks are often cast as
learning mappings, X0 7→ X1, such that X0 ∼ µ X1 ∼ ν follow the (unknown) laws of two distri-
butions µ, ν. For instance, diffusion models1 construct the mapping as the solution to a stochastic
differential equation (SDE) whose drift uθ

t (Xt) : Rd × [0, 1]→ Rd is parameterized by θ:

dXt = uθ
t (Xt)dt+ σdWt, X0 ∼ µ,X1 ∼ ν. (1)

The marginal density pt induced by (1) evolves as the Fokker Plank equation (FPE; Risken (1996)),

∂

∂t
pt(Xt) = −∇ · (uθ

t (Xt) pt(Xt)) +
σ2

2
∆pt(Xt), p0 = µ, p1 = ν, (2)

and prescribing pt with fixed σ uniquely determines a family of parametric SDEs in (1). Indeed,
modern successes of diffusion models in synthesizing high-fidelity data (Song et al., 2021; Dhari-
wal & Nichol, 2021) are attributed, partly, to constructing pt as a mixture of tractable conditional
probability paths (Liu et al., 2023b; Albergo et al., 2023; Tong et al., 2023). These tractabilities
enable scalable algorithms that “match uθ

t given pt”, hereafter referred to as matching algorithms.

Alternatively, one may also specify pt implicitly as the optimal solution to some objective func-
tion, with examples such as optimal transport (OT; Villani et al. (2009)), or the Schrödinger Bridge

∗Work done in part as a research intern at FAIR, Meta.
1We adopt constant σ ∈ R throughout the paper but note that all analysis generalize to time-dependent σt.
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problem (SB; Schrödinger (1931); Fortet (1940); De Bortoli et al. (2021)). SB generalizes stan-
dard diffusion models to arbitrary µ and ν with fully nonlinear stochastic processes and, among all
possible SDEs that match between µ and ν, seeks the unique ut that minimizes the kinetic energy.

While finding the transport with minimal kinetic energy can be motivated from statistical physics
or entropic optimal transport (Peyré & Cuturi, 2019; Vargas et al., 2021), with kinetic energy often
being correlated with sampling efficiency in generative modeling (Chen et al., 2022; Shaul et al.,
2023), it nevertheless limits the flexibility in the design of “optimality”. Indeed, kinetic energy
corresponds to the squared-Euclidean cost in OT, which, despite its popularity, is merely one among
numerous alternatives available for deployment (Di Marino et al., 2017). On one hand, it remains
debatable whether the ℓ2 distance defined in the original data space (e.g., pixel space for images),
as opposed to other metrics, are best suited for quantifying the optimality of transport maps. On
the other hand, distribution matching in general scientific domains, such as population modeling
(Ruthotto et al., 2020), robot navigation (Liu et al., 2018), or molecule simulation (Noé et al., 2020),
often involves more complex optimality conditions that require more general algorithms to handle.

To this end, we advocate a generalized setup for distribution matching, previously introduced as the
Generalized Schrödinger Bridge problem (GSB; Chen et al. (2015); Chen (2023); Liu et al. (2022)):

min
θ

∫ 1

0

Ept

[
1

2
∥uθ

t (Xt)∥2 + Vt(Xt)

]
dt subject to (1) or, equivalently, (2). (3)

GSB is a distribution matching problem—as it still seeks a diffusion model (1) that transports µ to
ν. Yet, in contrast to standard SB, the objective of GSB involves an additional state cost Vt which
affects the solution by quantifying a penalty—or equivalently a reward—similar to general decision-
making problems. This state cost can also include distributional properties of the random variable
Xt. Examples of Vt include, e.g., the mean-field interaction in opinion propagation (Gaitonde et al.,
2021), quantum potential (Philippidis et al., 1979), or a geometric prior.

Solving GSB problems involves addressing two distinct aspects: optimality (3) and feasibility (2).
Within the set of feasible solutions that satisfy (2), GSB considers the one with the lowest objective
in (3) to be optimal. Therefore, it is essential to develop algorithms that search within the feasible
set for the optimal solution. Unfortunately, existing methods that approximate solutions to (3) either
require relaxing feasibility (Koshizuka & Sato, 2023), or, following the design of Sinkhorn algo-
rithms (Cuturi, 2013), prioritize optimality over feasibility. While an exciting line of new matching
algorithms (Peluchetti, 2023; Shi et al., 2023) has been developed for SB, i.e., when Vt := 0, to
ensure that the solutions are proximity to the feasible set throughout training, it remains unclear
whether, or how, these “SB Matching” (SBM) algorithms can be extended to handle nontrivial Vt.

We propose Generalized Schrödinger Bridge Matching (GSBM), a new matching algorithm
that generalizes SBM to nontrivial Vt. We discuss how such a generalization can be tied to a
conditional stochastic optimal control (CondSOC) problem, from which existing SBM algorithms
can be derived as special cases. We develop scalable solvers to the CondSOC using Gaussian path
approximation, further debiased with path integral theory (Kappen, 2005). GSBM inherits a similar
algorithmic characterization to its ancestors (Liu et al., 2023b; Shi et al., 2023), in that, during the
optimization process, the learned pθ0 and pθ1 induced by the subsequent solutions of uθ

t remain close
to the boundary marginals (µ, ν) and preserve them exactly under stricter theoretical conditions;
see Sec. 3.1 for details. This distinguishes GSBM from prior methods (e.g., Liu et al. (2022)) that
learn approximate solutions to the same problem (3) but whose subsequent solutions only approach
(µ, ν) after final convergence. This further results in a framework that relies solely on samples from
µ, ν—without knowing their densities—and enjoys stable convergence, making it suitable for high
dimensional applications. A note on the connection to stochastic optimal control and related works
(Liu et al., 2022) can be found in Appendix A. Summarizing, we present the following contributions:

• We propose GSBM, a new matching algorithm for learning diffusion models between two distri-
butions that also respect some task-specific optimality structures in (3) via specifying Vt.

• GSBM casts recent matching methods as conditional stochastic optimal control problems, from
which nontrivial Vt can be incorporated and solved at scale via Gaussian path approximation.

• Compared to prior methods, e.g., Liu et al. (2022), that also provide approximate solutions to (3),
GSBM enjoys stable convergence, improved scalability, and, crucially, maintains a transport map
that remains much closer to the distribution boundaries throughout the entire training.
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Algorithm 1 match (implicit)

Require: pt s.t. p0 = µ, p1 = ν
repeat

Sample X0 ∼ p0, Xt ∼ pt, X1 ∼ p1

Take gradient step w.r.t. Limplicit(θ)
until converges
return ∇sθ⋆

t

Algorithm 2 match (explicit)

Require: pt := Ep0,1
[pt|0,1] s.t. p0=µ, p1=ν, ut|0,1

repeat
Sample X0, X1 ∼ p0,1, Xt ∼ pt|0,1
Compute ut|0,1 given (X0, Xt, X1)
Take gradient step w.r.t. Lexplicit(θ)

until converges
return uθ⋆

t

• Through extensive experiments, we showcase GSBM’s remarkable capabilities across a variety of
distribution matching problems, ranging from standard crowd navigation and 3D navigation over
LiDAR manifolds, to high-dimensional opinion modeling and unpaired image translation.

2 PRELIMINARIES: MATCHING DIFFUSION MODELS GIVEN PROB. PATHS

As mentioned in Sec. 1, the goal of matching algorithms is to learn a SDE parametrized with uθ
t such

that its FPE (2) matches some prescribed marginal pt for all t ∈ [0, 1]. In this section, we review
two classes of matching algorithms that will play crucial roles in the development of our GSBM.

Entropic Action Matching (implicit). This is a recently proposed matching method (Neklyudov
et al., 2023) that learns the unique gradient field governing an FPE prescribed by pt. Specifically, let
sθt (Xt) : Rd × [0, 1]→ R be a parametrized function, then the unique gradient field∇sθt (Xt) —by
which the probability density of the pushforward from µ at time 0 to t matches pt—minimizes

Limplicit(θ) := Eµ

[
sθ0(X0)

]
− Eν

[
sθ1(X1)

]
+

∫ 1

0

Ept

[
∂sθt
∂t

+
1

2
∥∇sθt ∥2 +

σ2

2
∆sθt

]
dt. (4)

Neklyudov et al. (2023) showed that Limplicit(θ) implicitly matches a unique gradient field∇s⋆t with
least kinetic energy, i.e., it is equivalent to minimizing

∫ 1

0
Ept

[
1
2∥∇s

θ
t −∇s⋆t ∥2

]
dt, where

∇s⋆t=argmin
ut

∫ 1

0

Ept

[
1

2
∥ut(Xt)∥2

]
dt subject to (2).

Bridge & Flow Matching (explicit). If the pt can be factorized into pt := Ep0,1
[pt(Xt|x0, x1)],

where the conditional density pt(Xt|x0, x1)—denoted with the shorthand pt|0,1—is associated with
an SDE, dXt = ut(Xt|x0, x1)dt + σdWt, then it can be shown (Lipman et al., 2023; Albergo &
Vanden-Eijnden, 2023; Liu et al., 2023a) that the minimizer of (see Appendix C.1 for the derivation)

Lexplicit(θ) :=

∫ 1

0

Ep0,1Ept|0,1

[
1

2
∥uθ

t (Xt)− ut(Xt|x0, x1)∥2
]

dt, (5)

similar to∇sθ⋆

t , also satisfies the FPE prescribed by pt. In other words, uθ⋆

t preserves pt for all t.

Implicit vs. explicit matching losses. While Entropic Action Matching presents a general match-
ing method with the least assumptions, its implicit matching loss Limplicit (4) scales unfavorably to
high-dimensional applications, due to the need to approximate the Laplacian (using e.g., Hutchinson
(1989)), and also introduces unquantifiable bias when optimizing over a restricted family of func-
tions such as deep neural networks. The explicit matching loss Lexplicit (5) offers a computationally
efficient alternative but requires additional information, namely ut(Xt|x0, x1) ≡ ut|0,1. Remark-
ably, in both cases, the minimizers preserve the prescribed marginal pt. Hence, if p0 = µ and
p1 = ν, these matching algorithms shall always return a feasible solution—a diffusion model that
matches between µ and ν. We summarize the aforementioned two methods in Alg. 1 and 2.

3 GENERALIZED SCHRÖDINGER BRIDGE MATCHING (GSBM)

We propose Generalized Schrödinger Bridge Matching (GSBM), a novel matching algorithm
that, in contrast to those in Sec. 2 assuming prescribed pt, concurrently optimizes pt to minimize (3)
subject to the feasibility constraint (2). All proofs can be found in Appendix B.
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3.1 ALTERNATING OPTIMIZATION SCHEME

Let us revisit the GSB problem (3), particularly its FPE constraint in (2). Recent advances in dy-
namic optimal transport (Liu et al., 2023b) and SB (Peluchetti, 2023) propose a decomposition of
this dynamical constraint into two components: the marginal pt, t ∈ (0, 1), and the joint coupling
between boundaries p0,1, and employ alternating optimization between uθ

t and pt. Specifically, these
optimization methods, which largely inspired recent variants of SB Matching (Shi et al., 2023) and
our GSBM, generally obey the following recipe, alternating between two stages:

Stage 1: Optimize the objective, in our case, (3) w.r.t. the drift uθ
t given fixed pt∈[0,1].

Stage 2: Optimize (3) w.r.t. the marginals pt∈(0,1) given the coupling pθ0,1 defined by uθ
t .

Notice particularly that the optimization posed in Stage 1 resembles the matching algorithms in
Sec. 2. We make the connection concrete in the following proposition:

Proposition 1 (Stage 1). The unique minimizer to Stage 1 coincides with∇s⋆t (Xt).

This may seem counter-intuitive at first glance, both the kinetic energy and Vt show up in (3). This
is due to the fact that uθ

t no longer affects the value of Ept
[Vt(Xt)] once pt is fixed, and out of all uθ

t

whose probability density matches pt, the gradient field is the unique minimizer of kinetic energy.2
We emphasize that the role of Stage 1 is to learn a uθ

t given the prescribed pt and provides a better
coupling pθ0,1 which is then used to refine pt in Stage 2. Therefore, the explicit matching loss (5)
provides just the same algorithmic purpose. Though it only upper-bounds the objective of Stage 1,
its solution often converges stably from a measure-theoretic perspective (see Appendix C.1 for more
explanations). In practice, we find that Lexplicit performs as effectively as Limplicit, while exhibiting
significantly improved scalability, hence better suited for high-dimensional applications.

We now present our main result, which shows that Stage 2 of GSBM can be cast as a variational
problem, where Vt appears through optimizing a conditional controlled process.
Proposition 2 (Stage 2; Conditional stochastic optimal control; CondSOC). Let the minimizer to
Stage 2 be factorized by pt(Xt) =

∫
pt(Xt|x0, x1)p

θ
0,1(x0, x1)dx0dx1 where pθ0,1 is the boundary

coupling induced by solving (1) with uθ
t . Then, pt(Xt|x0, x1) ≡ pt|0,1 solves :

min
ut|0,1

J :=

∫ 1

0

Ept(Xt|x0,x1)

[
1

2
∥ut(Xt|x0, x1)∥2 + Vt(Xt)

]
dt (6a)

s.t. dXt = ut(Xt|x0, x1)dt+ σdWt, X0 = x0, X1 = x1 (6b)

Table 1: Solutions to (6) w.r.t. different Vt, and
how they link to different methods, including
Rectified flow (Liu et al., 2023b), DSBM (Shi
et al., 2023), and our GSBM.

Method Vt(x) pt(Xt|x0, x1)

RecFlow
(σ=0) 0 straight line

(Lemma 3 with α, σ→0)

DSBM
(σ>0) 0 Brownian bridge

(Lemma 3 with α→0)

GSBM
(σ≥0)

quadratic Lemma 3
arbitrary Sec. 3.2

Note that (6) differs from (3) only in the boundary
conditions, where the original distributions µ, ν
are replaced by the two end-points (x0, x1) drawn
from the coupling induced by uθ

t . Generally, the
solution to (6) is not known in closed form, except
in special cases. In Lemma 3, we show such a case
when V (x) is quadratic and σ>0. Note that as
V (x) vanishes, pt|0,1 in Lemma 3 collapses to the
Brownian bridge and GSBM recovers the match-
ing algorithm appearing in prior works (Liu, 2022;
Shi et al., 2023) that approximate OT/SB, as sum-
marized in Table 1. This suggests that our Prop. 2
directly generalizes them to nontrivial Vt.
Lemma 3 (Analytic solution to (6) for quadratic V and σ > 0). Let V (x) := α∥σx∥2, α, σ > 0,
then the optimal solution to (6) follows a Gaussian path X⋆

t ∼ N (ctx0 + etx1, γ
2
t Id), where

ct =
sinh(η(1−t))

sinh η
, et = cosh(η(1−t))− ct cosh η, γt = σ

√
sinh(η(1−t))

η
et, η = σ

√
2α.

These coefficients recover Brownian bridges as α→ 0 and, if further σ → 0, straight lines.
2Notably, the absence of Vt in optimization was previously viewed as an issue for Sinkhorn methods aimed

at solving (3) (Liu et al., 2022). Yet, in GSBM, it appears naturally from how the optimization is decomposed.
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Figure 1: Example of spline optimization
(Alg. 3) for µt ∈ R2, γt ∈ R, and the re-
sulting CondSOC (6) solution.

Algorithm 3 SplineOpt
Require: x0, x1, {Xtk} where 0<t1< · · ·<tK<1

Initialize µt, γt with (9)
for m = 0 to M do

Sample Xi
t ∼ N (µt, γ

2
t Id) with (7)

Compute Vt(X
i
t) and ut(X

i
t |x0, x1) with (8)

Estimate the objective J in (6a)
Take gradient step w.r.t control pts. {Xtk , γtk}

end for
return pt|0,1 parametrized by optimized µt, γt

3.2 APPROXIMATE SOLUTIONS TO CONDSOC FOR GENERAL NONLINEAR STATE COST

We develop methods for searching the approximate solutions to CondSOC in (6), when Vt is neither
quadratic nor degenerate. As we need to search for every pair (x0, x1) drawn from pθ0,1, we seek
efficient methods that are parallizable and simulation-free—outside of sampling from pθ0,1.

Gaussian path approximation. Drawing inspirations from Lemma 3, and since the boundary con-
ditions of (6) are simply two fixed points, we propose to approximate the solution to (6) as a Gaussian
probability path pinned at x0, x1:

pt(Xt|x0, x1) ≈ N (µt, γ
2
t Id), s.t. µ0 = x0, µ1 = x1, γ0 = γ1 = 0, (7)

where µt ∈ Rd and γt ∈ R are respectively the time-varying mean and standard deviation. An
immediate result following from (7) is a closed-form conditional drift (Särkkä & Solin, 2019) (see
Appendix C.2 for the derivation):

ut(Xt|x0, x1) = ∂tµt + at(Xt − µt), where at :=
1

γt

(
∂tγt −

σ2

2γt

)
. (8)

Notice that at ∈ R is a time-varying scalar. Hence, however complex µt, σt may be, the underlying
SDE (with the conditional drift ut(Xt|x0, x1) in (8)) remains linear. Also note that this drift, since
it is a gradient field, is the kinetic optimal choice out of all drifts that generate pt(Xt|x0, x1).

Spline optimization. To facilitate efficient optimization, we parametrize µt, σt respectively as d-
and 1-D splines with some control points Xtk ∈ Rd and γtk ∈ R sampled sparsely and uniformly
along the time steps 0 < t1 < ... < tK < 1:

µt := Spline(t; x0, {Xtk}, x1) γt := Spline(t; γ0=0, {γtk}, γ1=0). (9)

Notice that the parameterization in (9) satisfy the boundary in (7), hence remains as a feasible
solution to (6b) however {Xtk , γtk} change. The number of control points K is much smaller than
discretization steps (K≤30 for all experiments). This significantly reduces the memory complexity
compared to prior works (Liu et al., 2022), which require caching entire discretized SDEs.

Alg. 3 summarizes the spline optimization, which, crucially, involves no simulation of an SDE (6b).
This is because we optimize using just independent samples from pt|0,1, which are known in closed
form. Since the CondSOC problem relaxes distributional boundary constraints to just two end-
points, our computationally efficient variational approximation holds out very well in practice. Fur-
thermore, since we only need to optimize very few spline parameters, we did not find the need to
consider amortized variational inference (Kingma & Welling, 2014). Finally, note that since we
solve CondSOC for each pair (x0, x1) ∼ pθ0,1 and later marginalize to construct pt, we need not
explicitly consider mixture solutions for pt|0,1, as long as we sample sufficiently many pairs of
(x0, x1). In practice, we initialize {Xtk} from uθ

t ,3 and γtk := σ
√
tk(1− tk) from the standard

deviation of the Brownian bridge. Figure 1 demonstrates a 2D example.

Resampling using path integral theory. In cases where the family of Gaussian probability paths
is not sufficient for modeling solutions of (6), a more rigorous approach involves the path integral
theory (Kappen, 2005), which provides analytic expression to the optimal density of (6) given any
sampling distribution with sufficient support. We discuss this in the following proposition.

3This induces no computational overhead, as {Xtk} are intermediate steps when simulating x0, x1 ∼ pθ0,1.
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Algorithm 5 Generalized Schrödinger Bridge Matching (GSBM)
1: Initialize uθ

t and set pt as the solution to (6) with independent coupling p0,1 := µ⊗ ν
2: repeat
3: uθ

t ← match(pt) or match(pt, ut|0,1) ▷ Alg. 1 or 2
4: Sample X0, X1, Xtk from uθ

t on timesteps 0<t1 < · · · < tK<1
5: Optimize pt|0,1, µt, γt ← SplineOpt(X0, X1, {Xtk}) ▷ Alg. 3
6: Determine ut|0,1 from µt, γt using (8)
7: if apply path integral resampling then ▷ optional step
8: pt|0,1 ← ImptSample(pt|0,1) ▷ Alg. 4
9: end if

10: until converges

Proposition 4 (Path integral solution to (6)). Let r(X̄|x0, x1) be a distribution absolutely contin-
uous w.r.t. the Brownian motion, denoted q(X̄|x0), where we shorthand X̄ ≡ Xt∈[0,1]. Suppose r
is associated with an SDE dXt = vt(Xt)dt + σdWt, X0=x0, X1=x1, σ>0. Then, the optimal,
path-integral solution to (6) can be obtained via

p⋆(X̄|x0, x1) =
1
Zω(X̄|x0, x1)r(X̄|x0, x1), (10)

where Z is the normalization constant and ω is the importance weight:

ω(X̄|x0, x1) := exp

(
−
∫ 1

0

1

σ2

(
Vt(Xt) +

1

2
∥vt(Xt)∥2

)
dt−

∫ 1

0

1

σ
vt(Xt)

⊤dWt

)
. (11)

Algorithm 4 ImptSample
Require: pt|0,1, µt, γt, σ > 0

Sample Xi
t∈[0,1] from (6b) given (8)

Compute ωi with (11) and Z =
∑

i ω
i

return Resample pt|0,1 with (10).

In practice, r(X̄|x0, x1) can be any distribution, but
the closer it is to the optimal p⋆, the lower the
variance of the importance weights ω (Kappen &
Ruiz, 2016). It is therefore natural to consider us-
ing the aforementioned Gaussian probability paths as
r(X̄|x0, x1), properly optimized with Alg. 3, then
resampled following proportional to (10)—this is
equivalent in expectation to performing self-normalized importance sampling but algorithmically
simpler and helps reduce variance when many samples have low weight values. While path in-
tegral resampling may make Lexplicit less suitable due to the change in the conditional drift gov-
erning p⋆(X̄|x0, x1) from (8), we still observe empirical, sometimes significant, improvement (see
Sec. 4.4). Overall, we propose path integral resampling as an optional step in our GSBM algo-
rithm, as it requires sequential simulation.4 In practice, we also find empirically that the Gaussian
probability paths alone perform sufficiently well and is easy to use at scale.

3.3 ALGORITHM OUTLINE & CONVERGENCE ANALYSIS

We summarize our GSBM in Alg. 5, which, as previously sketched in Sec. 3.1, alternates between
Stage 1 (line 3) and Stage 2 (lines 4-9). In contrast to DSBM (Shi et al., 2023), which constructs
analytic pt|0,1 and ut|0,1 when Vt = 0, our GSBM solves the underlying CondSOC (6) with nontriv-
ial Vt. We stress that these computations are easily parallizable and admit fast converge due to our
efficient parameterization, hence inducing little computational overhead (see Sec. 4.4).

We note that GSBM (Alg. 5) remains functional even when σ=0, although the GSB problem (3)
was originally stated with σ>0 (Chen et al., 2015). In such cases, the implicit and explicit matching
still preserve pt and correspond, respectively, to action (Neklyudov et al., 2023) and flow matching
(Lipman et al., 2023), and CondSOC corresponds to a generalized geodesic path accounting for Vt.

Finally, we provide convergence analysis in the following theorems.
Theorem 5 (Local convergence). Let the intermediate result of Stage 1 and 2, after repeating n
times, be θn. Then, its objective value in (3), L(θn), is monotonically non-increasing as n grows:

L(θn) ≥ L(θn+1).

Theorem 6. The optimal solution to GSB problem (3) is a fixed point of GSBM, Alg. 5.
4We note that simulation of trajectories X̄≡Xt∈[0,1] from (6a,8) can be done efficiently by computing the

covariance function, which requires merely solving an 1D ODE; see Appendix C.2 for a detailed explanation.
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Figure 2: Feasibility vs. optimality on three
crowd navigation tasks with mean-field cost.

Figure 3: Simulation of SDEs with the uθ
t after long

training. Notice how DeepGSB diverges drastically
from our GSBM, which satisfies feasibility at all time.

LiDAR surface
& a tangent plane

GSBM; objective value (3) = 6209
(left: 3D view, right: 2D view)

DeepGSB; obj.=7747
(2D view)

p0 and p1
(2D view)

Figure 4: Crowd navigation over a LiDAR surface. Height is denoted by the grayscale color.

4 EXPERIMENT

We test out GSBM on a variety of distribution matching tasks, each entailing its own state cost Vt(x).
By default, we use the explicit matching loss (5) without path integral resampling, mainly due to its
scalability, but ablate their relative performances in Sec. 4.4. Our GSBM is compared primarily to
DeepGSB (Liu et al., 2022), a Sinkhorn-inspired machine learning method that outperforms existing
deep methods (Ruthotto et al., 2020; Lin et al., 2021). Other details are in Appendix D.

4.1 CROWD NAVIGATION WITH MEAN-FIELD AND GEOMETRIC STATE COSTS

We first validate our GSBM in solving crowd navigation, a canonical example for the GSB prob-
lem (3). Specifically, we consider the following two classes of tasks (see Appendix D.1 for details):

Mean-field interactions. These are synthetic dataset in R2 introduced in DeepGSB, where the
state cost Vt consists of two components: an obstacle cost that assesses the physical constraints, and
an “mean-field” interaction cost between individual agents and the population density pt:

Vt(x) = Lobstacle(x) + Linteract(x; pt), Linteract(x; pt) =

{
log pt(x) (entropy)
Ey∼pt

[ 2
∥x−y∥2+1 ] (congestion)

. (12)

Both entropy and congestion costs are fundamental elements of mean-field games. They measure
the costs incurred for individuals to stay in densely crowded regions with high population density.

Geometric surfaces defined by LiDAR. A more realistic scenario involves navigation through a
complex geometric surface. In particular, we consider surfaces observed through LiDAR scans of
Mt. Rainier (Legg & Anderson, 2013), thinned to 34,183 points (see Fig. 4). We adopt the state cost

V (x) = Lmanifold(x)+Lheight(x), Lmanifold(x) = ∥π(x)−x∥2, Lheight(x) = exp
(
π(z)(x)

)
, (13)

where π(x) projects x to an approximate tangent plane fitted by a k-nearest neighbors (see Fig. 4
and Appendix D.3) and π(z)(x) refers to the z-coordinate of π(x), i.e., its height.

Figure 2 tracks the feasibility and optimality, measured by W2(p
θ
1, ν) and (3), of three mean-field

tasks (Stunnel, Vneck, GMM). On all tasks, our GSBM maintains feasible solutions throughout
training while gradually improving optimality. In contrast, due to the lack of convergence analysis,
training DeepGSB exhibits relative instability and occasional divergence (see Fig. 3). As for the ge-
ometric state costs, Fig. 4 demonstrates how our GSBM faithfully recovers the desired multi-modal
distribution: It successfully identify two viable pathways with low state cost, one of which bypasses
the saddle point. In constrast, DeepGSB generates only uni-modal distributions with samples scat-
tered over tall mountain regions with high state cost, yielding a higher objective value (3).
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Figure 5: Comparison between DSBM (Shi et al., 2023) and our GSBM on: (leftmost 5 columns)
the generation processes and (rightmost 3 columns) their couplings pθ(X1|X0) during training. By
constructing Vt via a latent space, GSBM exhibits faster convergence and yields better couplings.

Figure 6: Mean of pt(Xt|x0, x1). Instead of using linear interpolation as
in DSBM, GSBM optimizes pt|0,1 w.r.t. (6) where Vt is defined via a latent
space, thereby exhibiting more semantically meaningful interpolations.

Table 2: FID values
of dog→cat for DSBM
and our GSBM.

DSBM GSBM

14.16 12.39

4.2 IMAGE DOMAIN INTERPOLATION AND UNPAIRED TRANSLATION

Next, we consider unpaired translation between dogs and cats from AFHQ (Choi et al., 2020). We
aim to explore how appropriate choices of state cost Vt can help encourage more natural interpo-
lations and more semantically meaningful couplings. While the design of Vt itself is an interest-
ing open question, here we exploit the geometry of a learned latent space. To this end, we use
a pretrained variational autoencoder (Kingma & Welling, 2014), then define Vt conditioned on an
interpolation of two end points (notice that x and z respectively belong to image and latent spaces):

Vt(x|x0, x1) = ∥x−Decoder(zt)∥2, zt := I(t,Encoder(x0),Encoder(x1)). (14)

Though I(t, z0, z1) can be any appropriate interpolation, we find the spherical linear interpolation
(Shoemake, 1985) to be particularly effective, due to the Gaussian geometry in latent space. As the
high dimensionality greatly impedes DeepGSB, we mainly compare with DSBM (Shi et al., 2023),
the special case of our GSBM when Vt is degenerate. As in DSBM, we resize images to 64×64.

Figure 5 reports the qualitative comparison between the generation processes of DSBM and our
GSBM, along with their coupling during training. It is clear that, with the aid of a semantically
meaningful Vt, GSBM typically converges to near-optimal coupling early in training, and, as ex-
pected, yields more interpretable generation processes. Interestingly, despite being subject to the
same noise level (σ=0.5 in this case), the GSBM’s generation processes are generally less noisy
than DSBM. This is due to the optimization of the CondSOC problem (6) with our specific choice
of Vt. As shown in Fig. 6, the conditional density pt(Xt|x0, x1) used in GSBM appears to eliminate
unnatural artifacts observed in Brownian bridges, which rely on simple linear interpolation in pixel
space. Quantitatively, our GSBM also achieves lower FID value as a measure of feasibility, as shown
in Table 2. Finally, we note that the inclusion of Vt and the solving of CondSOC increase wallclock
time by a mere 0.5% compared to DSBM (see Table 5).

4.3 HIGH-DIMENSIONAL OPINION DEPOLARIZATION

Figure 7: Distribution of terminal opin-
ion X1 ∈ R1000 and their directional
similarities (DS; see Appendix D.2).

Finally, we consider high-dimensional opinion depolar-
ization, initially introduced in DeepGSB, where an opin-
ion Xt ∈ R1000 is influenced by a polarizing effect
(Schweighofer et al., 2020) when evolving through in-
teractions with the population (see Appendix D.2):

dXt = fpolarize(Xt; pt)dt+ σdWt (15)
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Figure 8: Our GSBM reveals how the optimal solution drastically
changes w.r.t. the levels of noise (σ) when navigating through a
narrow passway surrounded by the obstacles (shown in gray).

Table 3: Relative runtime be-
tween combination of matching
losses and PI resampling on solv-
ing Stunnel, relative to Lexplicit.

Lexplicit Limplicit

without PI 100% 276%
with PI 108% 284%

Table 4: How the objective value (3) changes when enabling
PI resampling on each matching loss and σ in Stunnel. Per-
formance is improved by deceasing (−) the objective values.

σ = 0.5 1.0 2.0

Lexplicit −44.6 ± 5.9 −5.2 ± 2.6 1.5 ± 3.5
Limplicit −112.4 ± 53.7 −2.0 ± 8.0 −0.7 ± 6.0

Table 5: Percentage of time spent in
different stages of Alg. 5, measured
on the AFHQ task.

match Simulate uθ
t Solve (6)

(line 3) (line 4) (lines 5-6)

64.3% 35.2% 0.5%

Without any intervention, the opinion dynamics in (15) tend to segregate into groups with diamet-
rically opposed views (first column of Fig. 7), as opposed to the desired unimodal distribution p1
(second column of Fig. 7). To adapt our GSBM for this task, we treat (15) as a base drift, specifi-
cally defining uθ

t (Xt) := fpolarize(Xt; pt)+vθt (Xt), and then solving the CondSOC (6) by replacing
the kinetic energy with

∫
∥vθt ∥2dt. Similar to DeepGSB, we consider the same congestion cost Vt

defined in (12). As shown in Fig. 7, both DeepGSB and our GSBM demonstrate the capability
to mitigate opinion segregation. However, our GSBM achieves closer proximity to the target p1,
indicating stronger feasibility, and achieve almost half the objective value (3) relative to DeepGSB.

4.4 DISCUSSIONS

Effect of noise (σ). In the stochastic control setting (Theodorou et al., 2010), the task-specific
value of σ plays a crucial role in representing the uncertainty from environment or the error in exe-
cuting control. The optimal control thus changes drastically depending on σ. Figure 8 demonstrates
how our GSBM correctly resolves this phenomenon, on an example of the famous “drunken spider”
problem discussed in Kappen (2005). In the absence of noise (σ=0), it is very easy to steer through
the narrow passage. When large amounts of noise is present (σ=1.0), there is a high chance of
colliding with the obstacles, so the optimal solution is to completely steer around the obstacles.

Ablation study on path integral (PI) resampling. In Table 4, we ablate how the objective value
changes when enabling PI resampling on different matching losses and noise σ and report their
performance (averaged over 5 independent trails) on the Stunnel task. We observe that PI resam-
pling tends to enhance overall performance, particularly in low noise conditions, at the expense of a
slightly increased runtime of 8%. Meanwhile, as shown in Table 3, implicit matching (4) typically
requires longer time overall (×2.7 even in two dimensions), compared to its explicit counterpart.

Profiling GSBM. The primary algorithmic distinction between our GSBM and previous SB
matching methods (Shi et al., 2023; Peluchetti, 2023) lies in how pt|0,1 and ut|0,1 are computed
(see Lemma 3), where GSBM involves solving an additional CondSOC problem, i.e., lines 5-6 in
Alg. 5. Table 5 suggests that these computations, uniquely attached to GSBM, induce little compu-
tational overhead compared to other components in Alg. 5. This computational efficiency is due to
our efficient variational approximation admitting simulation-free, parallelizable optimization.

5 CONCLUSION AND LIMITATION

We developed GSBM, a new matching algorithm that provides approximate solutions to the Gen-
eralized Schrödinger Bridge (GSB) problems. We demonstrated strong capabilities of GSBM over
prior methods in solving crowd navigation, opinion modeling, and interpretable domain transfer. It
should be noticed that GSBM requires differentiability of Vt and relies on the quadratic control cost
to establish its convergence analysis, which, despite notably improving over prior methods, remains
as necessary conditions. We acknowledge these limitations and leave them for future works.
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Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason Grout, Sylvain Corlay, et al. Jupyter
notebooks-a publishing format for reproducible computational workflows. In ELPUB, pp. 87–90,
2016.

Takeshi Koshizuka and Issei Sato. Neural Lagrangian Schrödinger bridge: Diffusion modeling for
population dynamics. In International Conference on Learning Representations (ICLR), 2023.

Nicholas Legg and Scott Anderson. Southwest Flank of Mt.Rainier, WA, 2013. URL https:
//opentopography.org/meta/OT.052013.26910.1. Accessed on 2023-09-12.
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Christian Léonard, Sylvie Rœlly, and Jean-Claude Zambrini. Reciprocal processes. A measure-
theoretical point of view. Probability Surveys, 2014.

David Levin. The approximation power of moving least-squares. Mathematics of Computation, 67
(224):1517–1531, 1998.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

11

http://github.com/google/flax
https://github.com/pytorch/functorch
https://github.com/pytorch/functorch
https://opentopography.org/meta/OT.052013.26910.1
https://opentopography.org/meta/OT.052013.26910.1


Published as a conference paper at ICLR 2024

Xuechen Li, Ting-Kam Leonard Wong, Ricky T. Q. Chen, and David Duvenaud. Scalable gradients
for stochastic differential equations. In International Conference on Artificial Intelligence and
Statistics (AISTATS), 2020.

Alex Tong Lin, Samy Wu Fung, Wuchen Li, Levon Nurbekyan, and Stanley J Osher. Alternating the
population and control neural networks to solve high-dimensional stochastic mean-field games.
Proceedings of the National Academy of Sciences, 118(31), 2021.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. In International Conference on Learning Representations (ICLR), 2023.

Guan-Horng Liu, Tianrong Chen, Oswin So, and Evangelos A Theodorou. Deep generalized
Schrödinger bridge. In Advances in Neural Information Processing Systems (NeurIPS), 2022.

Guan-Horng Liu, Arash Vahdat, De-An Huang, Evangelos A Theodorou, Weili Nie, and Anima
Anandkumar. I2SB: Image-to-Image Schrödinger bridge. In International Conference on Ma-
chine Learning (ICML), 2023a.

Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport. arXiv preprint
arXiv:2209.14577, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate
and transfer data with rectified flow. In International Conference on Learning Representations
(ICLR), 2023b.

Zhiyu Liu, Bo Wu, and Hai Lin. A mean field game approach to swarming robots control. In
American Control Conference (ACC). IEEE, 2018.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations (ICLR), 2019.

Alain Mazzolo and Cécile Monthus. Conditioning diffusion processes with killing rates. Journal of
Statistical Mechanics: Theory and Experiment, 2022(8):083207, 2022.

Kirill Neklyudov, Daniel Severo, and Alireza Makhzani. Action matching: A variational method for
learning stochastic dynamics from samples. In International Conference on Machine Learning
(ICML), 2023.
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A REVIEWS ON STOCHASTIC OPTIMAL CONTROL AND RELATED WORKS

Solving Generalized Schrödinger bridge by reframing as stochastic optimal control The so-
lution to a Generalized Schrödinger Bridge (GSB) problem (3) can also be expressed as the solution
a stochastic optimal control (SOC) problem, typically structured as

min
ut(·)

∫ 1

0

Ept

[
1

2
∥ut(Xt)∥2 + Vt(Xt)

]
dt+ Ep1

[ϕ(X1)] , (16a)

s.t. dXt = ut(Xt)dt+ σdWt, X0 ∼ µ, (16b)
where we see that the terminal distribution “hard constraint” in GSB (3) is instead relaxed into a soft
“terminal cost” ϕ(·) : Rd → R. Problems with the forms of either (16) or (3) are known to be tied
to linearly-solvable Markov decision processes (Todorov, 2007; Rawlik et al., 2013), corresponding
to a tractable class of SOC problems whose optimality conditions—the Hamilton–Jacobi–Bellman
equations—admit efficient approximation. This is attributed to the presence of the ℓ2-norm control
cost, which can be interpreted as the KL divergence between controlled and uncontrolled processes.
The interpretation bridges the SOC problems to probabilistic inference (Levine, 2018; Okada &
Taniguchi, 2020), from which machine learning algorithms, such as our GSBM, can be developed.

However, naı̈vely transforming GSB problems (3) into SOC problems can introduce many poten-
tial issues. The design of the terminal cost is extremely important, and in many cases, it is an
intractable cost function as we do not have access to the densities µ and ν. Prior works have mainly
stuck to simple terminal costs (Ruthotto et al., 2020), using biased approximations based on batch
estimates (Koshizuka & Sato, 2023), or using an adversarial approach to learn the cost function (Zhu
et al., 2017; Lin et al., 2021). Furthermore, this approach will necessitate differentiating through an
SDE simulation, requiring high memory usage. Though memory-efficient adjoint methods have been
developed (Chen et al., 2018; Li et al., 2020), they remain computationally expensive to use at scale.

In contrast, our GBSM approach only requires samples from µ and ν. By enforcing boundary distri-
butions as a hard constraint instead of a soft one, our algorithm finds solutions that satisfy feasibility
much better in practice. This further allows us to consider higher dimensional problems without the
need to introduce additional hyperparameters for tuning a terminal cost. Finally, our algorithm dras-
tically reduces the number of SDE simulations required, as both the matching algorithm (Stage 1)
and the CondSOC variational formulation (Stage 2) of GSBM can be done simulation-free.

Comparison to related works Table 6 compares to prior learning based methods that also pro-
vide approximate solutions to (3) to our GSBM. Meanwhile, Fig. 9 summarizes different classes of
matching algorithms.

Table 6: Our GSBM features better feasibility, requires only samples from µ, ν, has local conver-
gence analysis, and exhibits much better scalability.

Feasibility (2) Requirement from
distributions µ, ν

Convergence
analysis Dimension d

NLSB (Koshizuka & Sato, 2023) ✗(relaxed) samples & densities ✓(local) 5
DeepGSB (Liu et al., 2022) ≈ F only in limit samples & densities ✗ 1000

GSBM (this work) ≈ F only samples ✓(local) ≳ 12K

Figure 9: Summary of different matching algorithms. Notice that OT and SB are w.r.t. ℓ2 costs.

15



Published as a conference paper at ICLR 2024

B PROOFS

Proposition 1 (Stage 1). The unique minimizer to Stage 1 coincides with∇s⋆t (Xt).

Proof. By keeping pt fixed in (3), the value of Ept
[Vt(Xt)] no longer relies on uθ

t , rendering (3) the
same optimization problem as in the implicit matching; see (4) and Sec. 2. As the implicit matching
(4) admits a unique minimizer∇s⋆t , we conclude the proof.

Proposition 2 (Stage 2; Conditional stochastic optimal control; CondSOC). Let the minimizer to
Stage 2 be factorized by pt(Xt) =

∫
pt(Xt|x0, x1)p

θ
0,1(x0, x1)dx0dx1 where pθ0,1 is the boundary

coupling induced by solving (1) with uθ
t . Then, pt(Xt|x0, x1) ≡ pt|0,1 solves :

min
ut|0,1

J :=

∫ 1

0

Ept(Xt|x0,x1)

[
1

2
∥ut(Xt|x0, x1)∥2 + Vt(Xt)

]
dt (6a)

s.t. dXt = ut(Xt|x0, x1)dt+ σdWt, X0 = x0, X1 = x1 (6b)

Proof. Let us recall the GSB problem (3) in the form of FPE constraint (2):

min
ut

∫ 1

0

Ept

[
1

2
∥ut(Xt)∥2 + Vt(Xt)

]
dt (17a)

s.t.
∂

∂t
pt(Xt) =−∇ · (ut(Xt) pt(Xt)) +

σ2

2
∆pt(Xt), p0 = µ, p1 = ν. (17b)

Under mild regularity assumptions (Anderson, 1982; Yong & Zhou, 1999) such that Leibniz rule and
Fubini’s Theorem apply, we can separate p0,1—as it is assumed to be fixed—out of the marginal pt.
Specifically, the objective value (17a) can be decomposed into∫ 1

0

Ept

[
1

2
∥ut∥2 + Vt

]
dt =

∫ 1

0

Ep0,1

[
Ept|0,1

[
1

2
∥ut∥2 + Vt

]]
dt, by law of total expectation

= Ep0,1

[∫ 1

0

Ept|0,1

(
1

2
∥ut∥2 + Vt

)
dt
]
, by Fubini’s Theorem

which recovers (6a). Similarly, each term in the FPE (17b) can be decomposed into

∂

∂t
pt(Xt) =

∂

∂t

∫
pt(Xt|x0, x1)p0,1(x0, x1)dx0,1 = Ep0,1

[
∂

∂t
pt|0,1

]
,

∇ · (ut(Xt) pt(Xt)) = ∇ ·
(
ut(Xt)

∫
pt(Xt|x0, x1)p0,1(x0, x1)dx0,1

)
= ∇ ·

(∫
ut(Xt)pt(Xt|x0, x1)p0,1(x0, x1)dx0,1

)
= Ep0,1

[
∇ ·

(
ut pt|0,1

)]
,

∆pt(Xt) = ∇ · (∇pt(Xt))

= ∇ ·
(
∇

∫
pt(Xt|x0, x1)p0,1(x0, x1)dx0,1

)
= Ep0,1

[
∇ · ∇pt|0,1

]
= Ep0,1

[
∆pt|0,1

]
,

and, finally, p0(x0) = Ep0,1
[δx0

(x)] and p1(x1) = Ep0,1
[δx1

(x)]. Collecting all related terms yields:

∂

∂t
pt|0,1 = −∇ ·

(
ut pt|0,1

)
+∆pt|0,1, p0 = δx0

, p1 = δx1
,

which is equivalent to the conditional SDE in (6b). Note that we denote ut as ut(Xt|x0, x1) to
emphasize the fact that when pt|0,1(Xt|x0, x1) is factorized out of pt(Xt), the GSB problem (3) can
be factorized into a mixture of SOC problems, each with an end-point constraint (x0, x1).
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Remark (PDE interpretation of Proposition 2 and (6)). The optimal control to (6) is given by
u⋆
t (Xt|x0, x1) = σ2∇ logΨt(Xt|x1), where the time-varying potential Ψt(Xt|x1) solves a par-

tial differential equation (PDE) known as the Hamilton-Jacobi-Bellman (HJB) PDE:
∂

∂t
Ψt(x|x1) = −

1

2
σ2∆Ψt(x|x1) + Vt(x)Ψt(x|x1), Ψ1(x|x1) = δx1(x). (18)

In general, (18) lacks closed-form solutions, except in specific instances. For example, when V is
quadratic, the solution is provided in (19). Additionally, when V is degenerate, (18) simplifies to a
heat kernel, and its solution corresponds to the drift of the Brownian bridge utilized in DSBM (Shi
et al., 2023). Otherwise, one can approximate its solution with the aid of path-integral theory, as
shown in Prop. 4).
Lemma 3 (Analytic solution to (6) for quadratic V and σ > 0). Let V (x) := α∥σx∥2, α, σ > 0,
then the optimal solution to (6) follows a Gaussian path X⋆

t ∼ N (ctx0 + etx1, γ
2
t Id), where

ct =
sinh(η(1−t))

sinh η
, et = cosh(η(1−t))− ct cosh η, γt = σ

√
sinh(η(1−t))

η
et, η = σ

√
2α.

These coefficients recover Brownian bridges as α→ 0 and, if further σ → 0, straight lines.

Proof. This is a direct consequence of conditioned diffusion processes with quadratic killing rates
(Mazzolo & Monthus, 2022). Specifically, Mazzolo & Monthus (2022, Eq. (84)) give the analytic
expression to the optimal control of (6), when Vt := α∥σx∥2:

ut(Xt|x0, x1) =
η

sinh(η(1−t))
x1 −

η

tanh(η(1−t))
Xt, η := σ

√
2α. (19)

As (19) suggests a linear SDE, its mean µt ∈ Rd solves an ODE (Särkkä & Solin, 2019):
dµt

dt
=

η

sinh(η(1−t))
x1 −

η

tanh(η(1−t))
µt

whose analytic solution is given by

µt =
x1

∫ t

0

(
ηgτ

sinh(η(1−τ))

)
dτ +K

gt
, (20)

where K depends on the initial condition and

gt := exp

(∫ t

0

η

tanh(η(1−τ))
dτ

)
(∗)
= exp

(
[ln vτ ]

sinh η
sinh(η(1−t))

)
=

sinh η

sinh(η(1−t))
.

Note that (∗) is due to change of variable vτ := sinh(η(1−τ)). Substituting gt back to (20), and
noticing that x0 = µ0 = x1·0+K

1 = K, yields the desired coefficients:

µt = ctx0 + etx1, ct =
sinh(η(1−t))

sinh η
, et = cosh(η(1−t))− ct cosh η. (21)

Similarly, the variance Σt ∈ Rd×d of the SDE in (19) solves an ODE
dΣt

dt
= − 2η

tanh(η(1−t))
Σt + σ2Id.

Repeating similar derivation, as in solving µt, leads to

Σt =
σ2

η
sinh2(η(1−t)) (coth(η(1−t))− coth η) Id =

σ2

η
sinh(η(1−t))etId. (22)

which gives the desired γt since Σt = γ2
t Id.

We now show how these coefficients (21) and (22) recover Brownian bridge as α or, equivalently,
η := σ

√
2α approaches the zero limit.

lim
η→0

ct = lim
η→0

eη(1−t) − e−η(1−t)

eη − e−η

(∗)
=

1 + η(1− t)− (1− η(1− t))

1 + η − (1− η)
= 1− t,

lim
η→0

et = lim
η→0

(cosh(η(1−t))− ct cosh η) = 1− (1− t) · 1 = t,

lim
η→0

γt = lim
η→0

σ

√
sinh(η(1−t))

η
et

(∗∗)
= σ

√
(1− t)t,
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where (∗) and (∗∗) are respectively due to exp(x) ≈ 1 + x and

lim
η→0

sinh(η(1−t))
η

= lim
η→0

eη(1−t) − e−η(1−t)

2η

(∗)
=

1 + η(1− t)− (1− η(1− t))

2η
= 1− t.

Hence, we recover the analytic solution to Brownian bridge. It can be readily seen that, if further
σ → 0, the solution collapses to linear interpolation between x0 and x1.

Remark (Lemma 3 satisfies the boundary conditions in (6b)). One can verify that c0 = 1, e0 = 0,
and γ0 = 0. Furthermore, we have c1 = 0, e1 = 1, and γ1 = 0. Hence, as expected, Lemma 3
satisfies the boundary condition in (6b).

Proposition 4 (Path integral solution to (6)). Let r(X̄|x0, x1) be a distribution absolutely contin-
uous w.r.t. the Brownian motion, denoted q(X̄|x0), where we shorthand X̄ ≡ Xt∈[0,1]. Suppose r
is associated with an SDE dXt = vt(Xt)dt + σdWt, X0=x0, X1=x1, σ>0. Then, the optimal,
path-integral solution to (6) can be obtained via

p⋆(X̄|x0, x1) =
1
Zω(X̄|x0, x1)r(X̄|x0, x1), (10)

where Z is the normalization constant and ω is the importance weight:

ω(X̄|x0, x1) := exp

(
−
∫ 1

0

1

σ2

(
Vt(Xt) +

1

2
∥vt(Xt)∥2

)
dt−

∫ 1

0

1

σ
vt(Xt)

⊤dWt

)
. (11)

Proof. As the terminal boundary condition of (6b) is pinned at x1, we can transform (6) into:

min
ut|0,1

∫ 1

0

Ept(Xt|x0,x1)

[
1

2σ2
∥ut(Xt|x0, x1)∥2 +

1

σ2
Vt(Xt)

]
dt− log1x1(X1), (23a)

s.t. dXt = ut(Xt|x0, x1)dt+ σdWt, X0 = x0 (23b)

where 1A(·) is the indicator function of the setA. Hence, the terminal cost “− log1x1
(x)” vanishes

at x = x1 but otherwise explodes. Equation (23) is a valid stochastic optimal control (SOC) problem,
and its optimal solution can be obtained as the form of path integral (Kappen, 2005):

p⋆(X̄|x0, x1) =
1

Z ′ exp

(
−
∫ 1

0

1

σ2
Vt(Xt) dt

)
1x1

(X1)q(X̄|x0), (24)

where q(·|x0) is the density of the Brownian motion conditioned on X0 = x0, the normalization
constant Z ′ is such that (24) remains as a proper distribution, and we shorthand X̄ ≡ Xt∈[0,1].
We highlight that Equations (23) and (24) are essential transformation that allow us to recover the
conditional distribution used in prior works (Shi et al., 2023) when Vt := 0 (see the remark below)

Directly re-weighting samples from q using (24) may have poor complexity as most samples are
assigned with zero weights due to 1x1

(·). A more efficient alternative is to rebase the sampling
distribution in (24) from q to an importance sampling r(X̄|x0, x1) such that X0 = x0, X1 = x1, and
is absolutely continuous with respect to q. Then, the remarkable results from information-theoretic
SOC (Theodorou et al., 2010; Theodorou, 2015) suggest

p⋆(X̄|x0, x1) =
1

Z
exp

(
−
∫ 1

0

1

σ2
Vt(Xt) dt

)
q(X̄|x0)

r(X̄|x0, x1)
r(X̄|x0, x1), (25)

where the Radon-Nikodym derivative q
r can be computed via Girsanov’s theorem (Särkkä & Solin,

2019):

q(X̄|x0)

r(X̄|x0, x1)
= exp

(
−
∫ 1

0

1

2σ2
∥vt(Xt)∥2dt−

∫ 1

0

1

σ
vt(Xt)

⊤dWt

)
. (26)

Substituting (26) back to (25) concludes the proof.

Remark (Equation (24) recovers Brownian bridge when Vt := 0). One can verify that, when Vt :=
0, the optimal solution p⋆(X̄|x0, x1) ∝ q(X̄|x0)1x1

(X1) = q(X̄|x0, x1) is simply the Brownian
motion conditioned on the end point being x1, which is precisely the Brownian bridge.
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Theorem 5 (Local convergence). Let the intermediate result of Stage 1 and 2, after repeating n
times, be θn. Then, its objective value in (3), L(θn), is monotonically non-increasing as n grows:

L(θn) ≥ L(θn+1).

Proof. Let pθ
n

t and uθn

t be the marginal distribution and vector field, respectively, after n steps of
alternating optimization according to Alg. 5, i.e., pθ

n

t and uθn

t satisfy the FPE. Furthermore, let pθ
n

0,1

and pθ
n

t|0,1 be the coupling and conditional distribution, respectively, defined by uθn

t , and let p⋆t|0,1 be
the solution to CondSOC (6). This implies that the marginal distributions at step n+ 1 are given by

pθ
n+1

t :=

∫
pθ

n

0,1p
⋆
t|0,1dx0,1. (27)

Now, under mild assumptions (Anderson, 1982; Yong & Zhou, 1999) such that all distributions
approach zero at a sufficient speed as ∥x∥ → ∞, and that all integrands are bounded, we have (note
that inputs to all functions are dropped for notational simplicity):

L(θn) =
∫ ∫

pθ
n

t

(
1

2
∥uθn

t ∥2 + Vt

)
dxtdt

=

∫
pθ

n

0,1

[∫ ∫
pθ

n

t|0,1

(
1

2
∥uθn

t ∥2 + Vt

)
dxt|0,1dt

]
dx0,1 by Fubini’s Theorem

≥
∫

pθ
n

0,1

[∫ ∫
p⋆t|0,1

(
1

2
∥uθn

t ∥2 + Vt

)
dxt|0,1dt

]
dx0,1 by optimizing (6)

=

∫ ∫
pθ

n+1

t

(
1

2
∥uθn

t ∥2 + Vt

)
dxtdt by Fubini’s Theorem and (27)

≥
∫ ∫

pθ
n+1

t

(
1

2
∥uθn+1

t ∥2 + Vt

)
dxtdt (28)

= L(θn+1),

where we factorize the solution of Stage 1 by pθ
n

t :=
∫
pθ

n

0,1p
θn

t|0,1dx0,1. The inequality in (28)

follows from the fact that uθn+1

t , as the solution to the proceeding Stage 1, finds the unique minimizer
that yields the same marginal as pθ

n+1

t while minimizing kinetic energy, i.e.,∫
pθ

n+1

t ∥uθn

t ∥2 dxt ≥
∫

pθ
n+1

t ∥uθn+1

t ∥2 dxt.

Theorem 6. The optimal solution to GSB problem (3) is a fixed point of GSBM, Alg. 5.

Proof. Let p⋆t and u⋆
t be the optimal solution to the GSB problem in (3), and suppose p⋆t :=∫

p⋆t|0,1p
⋆
0,1dx0dx1. It suffices to show that

1. Given x0, x1 ∼ p⋆0,1, the conditional distribution p⋆t|0,1 is the optimal solution to (6).

2. Given p⋆t , both matching algorithms (Alg. 1 and 2) return u⋆
t .

The first statement follows directly from the Forward-Backward SDE (FBSDE) representation of (3),
initially derived in Liu et al. (2022, Theorem 2). The FBSDE theory suggests that the (conditional)
optimal control bridging any x0, x1 ∼ p⋆0,1 satisfies a BSDE (Pardoux & Peng, 2005) that is uniquely
associated with the HJB PDE of (6), i.e., (18). This readily implies that p⋆t|0,1 is the solution to (6).

Since u⋆
t is known to be a gradient field (Liu et al., 2022, Eq. (3)), it must be with the solution

returned by the implicit matching algorithm (Alg. 1), as Limplicit returns the unique gradient field that
matches p⋆t . On the other hand, since the explicit matching loss (5) can be interpreted as a Markovian
projection (Shi et al., 2023), i.e., it returns the closest (in the KL sense) Markovian process to the
reciprocal path measure (Léonard, 2013; Léonard et al., 2014) defined by the solution to (6). Since
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the solution to (6), as proven in the first statement, is simply p⋆t|0,1, the closest Markovian process
is by construction u⋆

t . Hence, the second statement also holds, and we conclude the proof. It is
important to note that, while Lexplicit and Limplicit do not share the same minimizer in general, they
do at the equilibrium p⋆t .

C ADDITIONAL DERIVATIONS AND DISCUSSIONS

C.1 EXPLICIT MATCHING LOSS

How (5) preserves the prescribed pt. A rigorous derivation of (5) can be found in, e.g., Shi et al.
(2023, Proposition 2), called Markovian projection. Here, we provide an alternative derivation that
follows closer to the one from flow matching (Lipman et al., 2023).
Lemma 7. Let the marginal pt be constructed from a mixture of conditional probability paths,
i.e., pt(x) := Ep0,1 [pt(x|x0, x1)], where pt(x|x0, x1) ≡ pt|0,1 is the time marginal of the SDE,
dXt = ut(Xt|x0, x1)dt + σdWt, X0 = x0, X1 = x1, then the SDE drift that satisfies the FPE
prescribed by pt is given by

u⋆
t (x) =

Ep0,1
[ut(x|x0, x1)pt|0,1(x|x0, x1)]

pt(x)
. (29)

Proof. It suffices to check that u⋆
t (x) satisfies the FPE prescribed by pt:

∂

∂t
pt(x) =

∫ (
∂

∂t
pt|0,1

)
p0,1dx0,1

=

∫ (
−∇ ·

(
ut|0,1 pt|0,1

))
p0,1dx0,1 +

∫ (
1

2
σ2∆pt|0,1

)
p0,1dx0,1

(29)
= −∇ · (u⋆

t pt) +
1

2
σ2∆pt.

An immediate consequence of Lemma 7 is that

Lexplicit(θ) = Ept

[
1

2
∥uθ

t (Xt)− u⋆
t (Xt)∥2

]
+O(1), (30)

where O(1) is independent of θ. Hence, the uθ⋆

t preserves the prescribed pt.

Relation to implicit matching (4). Both explicit and implicit matching losses are associated to
some regression objectives, except w.r.t. different targets, i.e., u⋆

t in (30) vs. ∇s⋆t in Sec. 2. As
pointed out in Neklyudov et al. (2023), the two targets relate to each other via the Helmholtz de-
composition (Ambrosio et al., 2008, Lemma 8.4.2), which suggests that u⋆

t = ∇s⋆t + wt where
wt is the divergence-free vector field, i.e., ∇ · (wtpt) = 0. Though this implies that Lexplicit only
upper-bounds the kinetic energy, its solution sequential, by alternating between solving (6) in Stage
2, remains well-defined from the measure perspective (Peluchetti, 2022; 2023; Shi et al., 2023).
Specifically, the sequential performs alternate projection between reciprocal path measure defined
by the solution to (6), in the form pt := Ep0,1

[pt|0,1], and the Markovian path measure, and admits
convergence to the optimal solution for standard SB problems.

C.2 GAUSSIAN PROBABILITY PATH

Derivation of analytic conditional drift in (8). Recall the Gaussian path approximation in (7):

Xt = µt + γtZ, Z ∼ N (0, Id),

which immediately implies the velocity vector field and the score function (Särkkä & Solin, 2019;
Albergo et al., 2023):

∂tXt = ∂tµt +
∂tγt
γt

(Xt − µt) , ∇ log pt(Xt) = −
1

γ2
t

(Xt − µt) .
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Figure 10: How Alg. 6 faithfully re-
covers the covariance matrix of, in
this case, Brownian bridge.

Algorithm 6 CovSample (line 1 in Alg. 4)

Require: SDE (6b) with µt, γt
Discretize t̄ := [t1, · · · , tK ], 0 < t1 < · · · < tK < 1
Solve gt̄ according the 1D ODE in (32)
Compute covariance matrix Ct̄ ∈ RK×K by (33)
Perform Cholesky decomposition Ct̄ = Lt̄L

T
t̄

Sample Xt̄ = µt̄ + Lt̄Zt̄, Zt̄ ∈ RK×d, [Zt̄]ij ∼ N (0, 1)
return Xt̄

We can then construct the conditional drift:

ut(Xt|x0, x1) = ∂tXt +
σ2

2
∇ log pt(Xt) = ∂tµt +

1

γt

(
∂tγt −

σ2

2γt

)
(Xt − µt). (31)

Notice that (31) is of the form of a gradient field due to the linearity in Xt. One can verify that
substituting the Brownian bridge, µt := (1 − t)x0 + tx1 and γt := σ

√
t(1− t), to (31) indeed

yields the desired drift x1−Xt

1−t .

Efficient simulation with analytic covariance function (Footnote 4). Proposition 4 requires
samples from the “joint” distribution in path space. This requires sequential simulation, which
can scale poorly to higher-dimensional applications. Fortunately, there exists efficient computation
to (6b) with the (linear) conditional drift ut|0,1 given by (8), as the analytic solution to (6b) reads

Xt = egt
(
x0 +

∫ t

0

e−gτ bτdτ +

∫ t

0

e−gτσdWs

)
, gt :=

∫ t

0

aτdτ, (32)

where at := 1
γt

(
∂tγt − σ2

2γt

)
∈ R is defined as in (8), bt := ∂tµt − atµt, and

∫
dWs is the

Ito stochastic integral (Itô, 1951). The covariance function between two time steps s, t, such that
0 ≤ s < t ≤ 1, can then be computed by

Cov(s, t) = egs+gt⟨
∫ s

0

e−gτσdWτ ,

∫ t

0

e−gτσdWτ ⟩

(i)
= egs+gt⟨

∫ s

0

e−gτσdWτ ,

∫ s

0

e−gτσdWτ ⟩

(ii)
= egs+gt

∫ s

0

e−2gτσ2dt

(iii)
= egt−gs γ2

s ,

where (i) is due to the independence of the Ito integral between [0, s] and [s, t], (ii) is due to the Ito
isometry, and, finally, (iii) is due to substituting γ2

s = Var(s) := e2gs
∫ s

0
e−2gτσ2dt.

Repeating the same derivation for t, s such that 0 ≤ t < s ≤ 1, the covariance function of (6b)
between any given two timesteps s, t ∈ [0, 1] can be written cleanly as

Cov(s, t) = γ2
min(s,t)e

gmax(s,t)−gmin(s,t) , (33)

which, crucially, requires only solving an “1D” ODE, dgt = atdt, g0 = 0. We summarize the algo-
rithm in Alg. 6 with an example of Brownian bridge in Fig. 10. We note again that all computation
is parallelizable over the batches.

C.3 ANALYTIC SOLUTION TO (6) FOR QUADRATIC V AND σ = 0

Recall the finite-horizon and continuous-time linear quadratic regulator, defined as:

min
ut

x⊤
1 Fx1 +

∫ 1

0

[
x⊤
t Qxt + u⊤

t Rut

]
dt s.t. ẋt = Axt +But, (34)
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whose optimal control u⋆
t = −R−1BPtxt can be obtained by solving a Riccati differential equation:

−Ṗt = A⊤Pt + PtA− PtBR−1B⊤Pt +Q, P1 = F,

or, equivalently, a Lyapunov differential equation (one can verify that Ht = P−1
t for all t):

Ḣt = AHt +HtA
⊤ −BR−1B⊤ +HtQHt, H1 = F−1. (35)

The end-point constraint can be accounted by setting F → ∞, as suggested in Chen & Georgiou
(2015), yielding H1 = 0. With that, the solution to (6) for quadratic V (x) := α∥x∥2 and σ := 0
can be obtained by solving the matrix ODE in (35) with A = 0, B = Id, R = 1

2Id, and Q = αId,
which admits an analytic solution in the form of hyperbolic tangent functions, similar to (19).

D EXPERIMENT DETAILS

D.1 EXPERIMENT SETUP

Table 7: Hyperparameters of the SplineOpt (Alg. 3) for each task.

Stunnel Vneck GMM Lidar AFHQ Opinion

Number of control pts. K 30 30 30 30 8 30
Number of gradient steps M 1000 3000 2000 200 100 700
Number of samples |i| 4 4 4 4 4 4
Optimizer SGD SGD SGD mSGD Adam SGD

Baselines. All experiments on DeepGSB are run with their official implementation5 and default
hyperparameters. We adopt the “actor-critic” parameterization as it generally yields better perfor-
mance, despite requiring additional value networks. On the other hand, we implement DSBM by
ourselves, as our GSBM can be made equivalent to DSBM by disabling the optimization of the
CondSOC problem in (6) and returning the analytic solution of Brownian bridges instead. This al-
lows us to more effectively ablate the algorithmic differences, ensuring that any performance gaps
are attributed to the presence of Vt. All methods, including our GSBM, are implemented in PyTorch
(Paszke et al., 2019).

Network architectures. For crowd navigation (Sec. 4.1) and opinion depolarization (Sec. 4.3), we
adopt the same architectures from DeepGSB, which consists of 4 to 5 residual blocks with sinusoidal
time embedding. For the AFHQ task, we consider the U-Net (Ronneberger et al., 2015) architecture
implemented by Dhariwal & Nichol (2021).6 All networks are trained from scratch, without utilizing
any pretrained checkpoint, and optimized with AdamW (Loshchilov & Hutter, 2019).

Task-specific noise level (σ). For crowd navigation tasks with mean-field cost, we adopt σ =
{1.0, 2.0}, whereas the opinion depolarization task uses σ = 0.5. These values are inherited from
DeepGSB. On the other hand, we use σ = 1 and 0.5 respectively for LiDAR and AFHQ tasks.

GSBM hyperparameters. Table 7 summarizes the hyperparameters used in the spline optimiza-
tion. By default, the generation processes are discretized into 1000 steps, except for the opinion
depolarization task, where we follow DeepGSB setup and discretize into 300 steps.

GSBM implementation (forward & backward scheme). In practice, we employ the same “for-
ward and backward” scheme proposed in DSBM (Shi et al., 2023), parameterizing two drifts, one
for the forward SDE and another for the backward. During odd epochs, we simulate the coupling
(line 4 in Alg. 5) from the forward drift, solve the corresponding CondSOC problem (6), then match
the resulting pt with the backward drift. Conversely, during even epochs, we follow the reverse pro-
cess, matching the forward drift with the pt obtained from backward drift. The forward-backward
alternating scheme generally improves the performance, as the forward drift always matches the
ground-truth terminal distribution p1 = ν (and vise versa for the backward drift).

5https://github.com/ghliu/DeepGSB, under Apache License.
6https://github.com/openai/guided-diffusion, under MIT License.
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Figure 11: Initial and terminal dis-
tributions for each crowd naviga-
tion task with mean-field state cost.
Obstacles are marked gray.

Table 8: Multiplicative fac-
tors of the state cost for each
crowd navigation task: Vt(x) =
λobsLobstacle(x)+λintLinteract(x; pt).

Stunnel Vneck GMM

λobs 1500 3000 1500
λint 50 8 5

Crowd navigation setup. All three mean-field tasks—
Stunnel, Vneck, and GMM—are adopted from DeepGSB, as
shown in Fig. 11. We slightly modify the initial distribution
of GMM to testify fully multi-model distributions. As for the
mean-field interaction cost (12), we consider entropy cost for
the Vneck task, and congestion cost for the Stunnel and GMM
tasks. We adjust the multiplicative factors between Lobstacle and
Linteract to ensure that noticeable changes occur when enabling
mean-field interaction; see Table 8. These factors are much
larger than the ones considered in DeepGSB (λ2 < 3). In
practice, we soften the obstacle cost for differentiability, simi-
lar to prior works (Ruthotto et al., 2020; Lin et al., 2021), and
approximate pt(x) ≈

∑
(x0,x1)

pt(x|x0, x1) as the mixture of
Gaussians.

AFHQ setup. As our state cost Vt is defined via a latent
space, we pretrain a β-VAE (Higgins et al., 2016) with β =
0.1. On the other hand, the spherical linear interpolation
(Slerp; Shoemake (1985)) refers to constant-speed rotational
motion along a great circle arc:

ISlerp(t, z0, z1) :=
sin((1− t) Ω)

sinΩ
z0 +

sin(t Ω)

sinΩ
z1, Ω = arccos(⟨z0, z1⟩). (36)

D.2 OPINION DEPOLARIZATION

Figure 12: Simulation of the polarize drift (37) in R1000.

Polarize drift in (15). We use the same polarize drift from DeepGSB, based on the party model
(Gaitonde et al., 2021). At each time step t, all agents receive the same random information ξt ∈ Rd

sampled independently of pt, then react to this information according to

fpolarize(x; pt, ξt) := Ey∼pt [a(x, y, ξt)ȳ], a(x, y, ξt) :=

{
1 if sign(⟨x, ξt⟩) = sign(⟨y, ξt⟩)
−1 otherwise

,

(37)

where ȳ := y/∥y∥
1
2 and a(x, y, ξt)—the agreement function—indicates whether the two opinions x

and y agree on the information ξt. Hence, (37) suggests that the agents are inclined to be receptive
to opinions they agree with while displaying antagonism towards opinions they disagree with. This
is known to yield polarization, as shown in Figure 12.

Directional similarity in Figures 7 and 12. Directional similarity is a standard visualization for
opinion modeling (Schweighofer et al., 2020) that counts the histogram of cosine angle between
pairwise opinions. Hence, flatter directional similarity suggests less polarize opinion distribution.

D.3 APPROXIMATING GEOMETRIC MANIFOLDS WITH LIDAR DATA

Since LiDAR data is a collection of point clouds in [−5, 5]3 ⊂ R3, we use standard methods for
treating it more as a Riemannian manifold. For every point in the ambient space, we define the
projection operator by first taking a k-nearest neighbors and fitting a 2D tangent plane. LetNk(x) =
{x1, . . . , xk} be the set of k-nearest neighbors for a query point x ∈ R3 in the ambient space. We
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then fit a 2D plane through a moving least-squares approach (Levin, 1998; Wendland, 2004),

argmin
a,b,c

1

k

k∑
i=1

w(x, xi)(ax
(x)
i + bx

(y)
i + c− x

(z)
i )2 (38)

where the superscripts denotes the x, y, z coordinates and we use the weighting w(x, xi) =
exp{−∥x − xi∥/τ} with τ = 0.001. We solve this through a pseudoinverse and obtain the ap-
proximate tangent plane ax + by + c = z. When k → ∞, this tangent plane is smooth; however,
we find that using k = 20 works sufficiently well in our experiments, and our GSBM algorithm is
robust to the value of k. The projection operator π(x) is then defined using the plane,

π(x) = x−
(
x⊤n+ c

∥n∥2

)
n, where n = [a b −1]⊤ . (39)

This projection operator is all we need to treat the LiDAR dataset as a manifold. Differentiating
through π will automatically project the gradient onto the tangent plane. This will ensure that
optimization through the state cost Vt will be appropriated projected onto the tangent plane, allowing
us to optimize quantities such as the height of the trajectory over the manifold.

The exact state cost we use includes an additional boundary constraint:

V (x) = λ
[
∥π(x)− x∥2︸ ︷︷ ︸

Lmanifold

+exp(π(x)(z))︸ ︷︷ ︸
Lheight

+
∑

p∈{x(x),x(y)}

sigm(p−5/0.1) + (1− sigm(p+5/0.1)

︸ ︷︷ ︸
Lboundary

]
,

(40)
where “sigm” is the sigmoid function, used for relaxing the boundary constraint. The loss Lboundary
simply ensures we don’t leave the area where the LiDAR data exists. We set λ = 5000. The gradient
of Lmanifold(x) moves x in a direction that is orthogonal to the tangent plane while the gradient of
Lheight(x) moves x along directions that lie on the tangent plane. If we only have Lmanifold, then
CondSOC essentially solves for geodesic paths and we recover an approximation of Riemannian
Flow Matching (Chen & Lipman, 2023) (parameterized in the ambient space) when σ → 0. The
state cost Lheight depends on π(x) as this ensures we travel down the mountain slope when optimizing
for height. Other state costs can of course also be considered instead of Lheight.

D.4 ADDITIONAL EXPERIMENT RESULTS

Figure 13: Illustration of how different couplings, X1|x0, emerge with nontrivial state costs V (x).

Nontrivial V (x) induces different couplings. Figure 13 illustrates how different couplings,
X1|x0, emerge with nontrivial state costs V (x). Specifically, we color different regions of the initial
distribution (leftmost column) with different colors and track their pushforward maps. We consider
the same V (x), i.e., obstacle and congestion costs, for Stunnel (top row) and adopt quadratic cost
for Spiral → Moon (bottom row). In these two particular cases, having nontrivial V (x) encour-
ages stronger mixing, thereby yielding a different coupling (rightmost column) compared to the one
induced without V (x) (middle column).
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Figure 14: Additional comparison between DSBM (Shi et al., 2023) and our GSBM through the
mean of pt(Xt|x0, x1) with randomly sampled (x0, x1). While DSBM simply performs linear
interpolation between x0 and x1, our GSBM optimizes w.r.t. (6) where Vt is defined via a latent
space, thereby exhibiting more semantically meaningful interpolations.

Table 9: Quantitative comparison between NLSB (Koshizuka & Sato, 2023) and our GSBM. Notice
that our GSBM consistently ensures feasibility. In contrast, as NLSB approaches the GSB problem
by transforming it into a stochastic optimal control (SOC) problem with a soft terminal cost (see
Appendix A), it may overly emphasize on optimality at the expense of feasibility.

FeasibilityW(pθ1, ν) Optimality (3)

Stunnel Vneck GMM Stunnel Vneck GMM

NLSB (Koshizuka & Sato, 2023) 30.54 0.02 67.76 207.06 147.85 4202.71
GSBM (ours) 0.03 0.01 4.13 460.88 155.53 229.12

Figure 15: Performance of NLSB (Koshizuka & Sato, 2023) on the same crowd navigation tasks.
Notice how NLSB was trapped in some local minima on Stunnel and completely failed on GMM.

Additional interpolation results on AFHQ. Figure 14 provides comparison results between
DSBM (Shi et al., 2023) and our GSBM on pt(Xt|x0, x1 with randomly sampled (x0, x1).

Additional comparisons on crowd navigation with mean-field cost. Table 9 and Fig. 15 report
the performance of NLSB7 (Koshizuka & Sato, 2023)—an adjoint-based method for approximat-

7https://github.com/take-koshizuka/nlsb, under MIT License.
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ing solutions to the same GSB problem (3). Figure 16 provides additional comparison between
DeepGSB (Liu et al., 2022) and our GSBM. It should be obvious that our GSBM outperforms both
methods.

Figure 16: Additional comparison betwee DeepGSB (Liu et al., 2022) our GSBM on (top to bottom)
Stunnel with σ = 2.0 and Vneck with σ = {1.0, 2.0}. Notice again how the training of DeepGSB
exhibits relative instability and occasional divergence.
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