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Abstract

Deep Neural Networks (DNNs) often make predictions based on "spurious" at-
tributes when trained on biased datasets, where most samples have features spuri-
ously correlated with the target labels. This can be problematic if irrelevant features
are easier for the model to learn than the truly relevant ones. Existing debiasing
methods require predefined bias labels and entail computational complexity with
additional networks. We propose an alternative approach inspired by cognitive
science, called Debiasing Global Workspace (DGW). DGW consists of specialized
modules and a shared workspace, allowing for increased modularity and improved
debiasing performance. Additionally, our method enhances the transparency of
decision-making processes through attention masks. We validate DGW across
various biased datasets, proving its effectiveness in better debiasing performance.

1 Introduction

Despite their remarkable performance across many domains [23, 66, 64, 32, 44, 70], Deep Neu-
ral Networks (DNNs) often show poor performance, lacking generalization capability to out-of-
distribution (OOD) data and robustness to biases in their training datasets [58]. These biases occur
when irrelevant features, such as background color, correlate with target labels, causing the models to
rely on these features for making predictions [14]. Specifically, given the biased datasets that possess
many bias-aligned samples (irrelevant features strongly correlate with the labels) and a small number
of bias-conflicting samples (the features that do not align with the labels), models trained on such
data indeed tend to focus on the bias-aligned samples, leading to poor generalization [26, 24].

Various debiasing approaches have been proposed to prevent a model from relying on spurious
correlations when trained on a biased dataset, such as using auxiliary models[49, 55], re-weighting
samples [42, 49], data augmentation [34, 38], and leveraging biased labels [28, 33, 39, 54]. However,
they struggle with insufficiently diverse samples and require accurate bias identification with manual
labeling [4, 57].

NeurIPS 2024 Workshop on Behavioral Machine Learning.



Figure 1: The conceptual framework of Debiasing Global Workspace (DGW). (a) When attention
selects inputs from specialists (Step 0), its latent space activation is copied into the DGW and
immediately translated into representations suitable for each module (Step 1). We control which
module is mobilized into the workspace to receive and process the corresponding data effectively.
The classifier ψi is initiated for intrinsic attributes (Step 2-1), and the classifier ψb is activated for
learning bias attributes (Step 2-2). (b) Broadcast: The information broadcast in DGW can demonstrate
interpretable representation for attribute learning. (c) Unlike the original GWT, where task definitions
can be preset in Step 0, we address them using our training objectives using relative attribution score.
The generic figure is inspired by [60, Fig. 3], and more details are described in Appendix C.1.

In this work, we focus on a completely different way to implement a novel debiasing framework,
inspired by Global Workspace Theory (GWT). While GWT enables to modeling of human con-
sciousness arising from integrating and broadcasting information across specialized, unconscious
processes in the brain [2, 3], many recent studies proposing a deep-learning implementation of
GWT [5, 18, 60, 27] have shown their efficacy in allowing a model to have general-purpose function-
ality, increased modularity, improved performance, and interpretable representation learning. Thus,
we propose a novel GWT instantiation for debiasing, Debiasing Global Workspace (DGW), to elimi-
nate the negative effect of the misleading correlations. Our debiasing approach involves specialized
modules (acting as the specialists in GWT) and an attention-based information bottleneck (acting as
the global workspace in GWT), allowing for achieving straightforward, functional modularity and
effective debiasing performance while providing interpretable representation by visualizing which
attributes are essential for accurate predictions and which are irrelevant and likely to cause errors.

2 Roadmap to Implement Debiasing Global Workspace

This section presents the DGW implementation, which combines existing deep learning components
for effective debiasing frameworks while adhering to neuroscience findings. Additional implementa-
tion details are in Appendix C.

Two specialized modules and the shared workspace. DGW uses two independent specialists:
the intrinsic attribute encoder ϕi and the bias attribute encoder ϕb, and produce the concatenated
features E = [ϕi(x);ϕb(x)] ∈ RL×D. To connect specialists and the shared workspace, we define
e ∈ {Ei,Eb}, where Ei = [ϕi(x); sg(ϕb(x))] and Eb is vice versa, with sg(·) as the stop-gradient
operator. Additionally, we introduce the Global Latent Attention (GLA) module, which acts as a
shared workspace that encourages the synchronization among the input feature vector E via a latent
feature representation Slatent.
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Latent-slot binding specific to each input. The GLA module uses a set number of latent embed-
dings or latent slots C. These latent slots represent the learnable embedding vectors in the DGW,
and perform competitive attention [61] on the input features e. We define slatent ∈ {Si

latent,S
b
latent} ∈

RC×D where Ci is number of slots for intrinsic features and Cb for bias features, with C = Ci +Cb.
The attention mechanism uses the following equation:

A(e, slatent) = softmax

(
k(e) · q(slatent)

⊤
√
D

)
∈ RC×L, (1)

where, k, q are linear projection matrices, and the softmax function normalizes the slots, creating
competition among them. The slots are refined iteratively using the following:

s
(n+1)
latent = GRU

(
s
(n)
latent,Normalize

(
A(e, s

(n)
latent)

⊤
)
· v (E)

)
, (2)

where, s(n)latent is the latent slot representation after n iterations, GRU [8] is a recurrent neural network,
and v is another liner projection matrix. The initial slots s(0)latent are initialized with learnable queries
following [30]. The above computations can be considered to implement a shared global workspace
in [18, 27] because they enable different parts of the model to compete for attention, integrating and
broadcasting information similar to GWT.

Broadcast updated information to specialists. Specialists update their states using informa-
tion from the shared workspace. The inverted cross-attention mechanism allows specialists to
query and interact with updated latent slots s

(n+1)
latent , updating their states through: ē = e ⊕(

A
(
s
(n+1)
latent , e

)
· v

(
s
(n+1)
latent

))
∈ RL×D where v is a linear projection matrix. Here, as the meaning

of information broadcast, ⊕ can be instantiated with various computational operations, including a
residual connection [22].

In GWT, the information broadcast through the global workspace is a necessary and sufficient
condition for conscious perception [60]. Intuitively, the attention mask A(s

(n+1)
latent , e) can be seen as

artificial phenomenal consciousness, indicating the immediate subjective experience of sensations
and perceptions.

Training Objectives. We have two linear classifiers ψi and ψb that take the updated concatenated
vector ē from the previous module as input to predict the target label y. Our training objectives
consist of: i) the relative attribute score learning phase, and ii) the attribute composition phase.

For the relative attribute score learning phase, we define two tasks: identifying intrinsic attributes and
biased attributes within the conceptual framework. Without specific information about bias types,
we utilize the relative difficulty score of each data sample, referring to [49]. Specifically, we train
ϕb, Sb

latent, and ψb to focus on bias attributes using generalized cross entropy (GCE) [68], while
ϕi, Si

latent and ψi are trained with the cross entropy (CE) loss. Samples with high CE loss from
ψb are considered bias-conflicting compared to those with low CE loss. Based on the definition
of the relevance score function: Score(ē, y) ≜ CE(ψb(ē), y)/(CE(ψi(ē), y) + CE(ψb(ē), y)),
the objective function Lrel is defined using the above relative difficulty score of each data sample:
Lrel = Score(ē, y)·CE(ψi(ē), y)+λrelGCE(ψb(ē), y) where λrel is the weight that adjusts between
two loss terms.

In the attribute-composition phase, we swap the disentangled latent vectors among the training
sets [38]. We randomly permute the intrinsic and bias features in each mini-batch, creating Eswap =

[ϕi(x);ϕb
swap(x)] where ϕb

swap(x) denotes the randomly permuted bias attributes. This process
produces augmented bias-conflicting latent vectors. As similar as the definition of e, we define eswap ∈
{Ei

swap,E
b
swap} and generate ēswap following the same process described in eqs 1, 2 and our proposed

broadcast scheme. The objective function for this phase is: Lswap = Score(ē, y) ·CE(ψi(ēswap), y)+

λswapGCE(ψb(ēswap), ỹ) where ỹ denotes target labels for permute bias attributes ϕb
swap(x), and

λswap is the balancing weight between two loss terms.

Therefore, the total loss function is a combination of the above components: Ltotal = Lrel+λswap·Lswap.
Here, λswap is the weight that adjusts the importance of the feature augmentation.
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3 Experiments

This section presents our experimental results, focusing on performance evaluation on various
biased datasets and interpretable analysis for attribute-centric representation learning. The additional
experimental results, including full performance evaluation and analysis, are provided in Appendix D.

Datasets. Following [38], we used three well-known benchmark datasets for debiasing methods
to evaluate DGW’s performance and interpretability: Colored MNIST (C-MNIST), Corrupted
CIFAR10 (C-CIFAR-10), and Biased FFHQ (BFFHQ). C-MNIST and C-CIFAR-10 are synthetic
datasets designed to test model generalization on unbiased test sets by varying the ratio of bias-
conflicting samples (0.5%, 1%, 2%, and 5%). BFFHQ is a real-world dataset from FFHQ [31],
containing face images annotated with age (intrinsic attribute) and gender (bias attribute).

Table 1: Test accuracy (%) on unbiased test sets of C-MNIST
and C-CIFAR-10, and the bias-conflicting test set of BFFHQ with
varying ratio of bias-conflicting samples. (†) methods relying on
the easy-to-learn heuristic, and (‡) methods combined with GWT.
V+CCT indicates the direct integration of Vanilla and CCT. The
best-performing results are shown in bold, and the second-best
results are underlined.

Dataset Ratio (%) Vanilla LFA† V+CCT‡ DGW‡

C-MNIST

0.5 36.2±1.8 67.4±1.7 26.3±1.1 70.3±1.2

1.0 50.8±2.3 79.0±1.0 40.1±2.1 77.4±0.4
2.0 65.2±2.1 85.0±0.8 56.2±1.8 85.3±0.7

5.0 81.6±0.6 88.7±1.3 73.4±0.8 89.1±0.6

C-CIFAR-10

0.5 22.8±0.3 27.9±1.0 15.2±0.3 30.4±2.2

1.0 26.2±0.5 34.3±0.6 20.6±0.4 33.6±2.4
2.0 31.1±0.6 40.3±2.4 24.6±0.5 42.0±1.9

5.0 42.0±0.3 50.3±1.1 35.6±0.8 50.3±1.9

BFFHQ 0.5 54.5±0.6 59.5±3.8 52.6±1.1 65.6±3.3 Figure 2: Visualization of Ai and
Ab for the C-MNIST dataset

Performance Evaluation. Our set of debiasing baselines includes two different approaches: Vanilla
network, and LFA [38]. Vanilla refers to the classification model trained only with the original
cross-entropy (CE) loss without debiasing strategies. LFA and our method do not require prior
knowledge about the bias type. Furthermore, we configure a naive debiasing approach integrated
with GWT implementation: V+CCT. CCT [27] proposed an instantiation of GWT applicable to
implement an interpretable model. To compare our DGW, we simply configure the direction fusion
of the Vanilla network with CCT as a GWT debiasing method. Table 1 shows that DGW performs
equivalently or, in some cases, better than LFA, demonstrating its robustness and flexibility in
debiasing image classification tasks. Furthermore, the poor performance of V+CCT highlights the
importance of finding the proper configuration for debiasing methods, indicating the effectiveness of
our DGW configuration as a debiasing method. Full performance evaluation with more baselines is
in Appendix D.4.

Analysis for Interpretable Attribute Representation. DGW generates two attention masks:
Ai = A(Si

latent,E
i) for intrinsic attributes, focusing on essential features like shape, and Ab =

A(Sb
latent,E

b) for biased attributes, capturing non-essential features like color. We visualize both
attention masks to demonstrate the interpretable representation of learning in our method.

For the C-MNIST dataset, intrinsic attention masks highlight the shapes of the digits, ignoring colors.
For instance, the digits ’0’, ’6’, and ’8’ consistently highlight shape regions (Fig. 2(a)), showing
that the model focuses on shape for classification. Conversely, bias attention masks highlight color
regions, not shapes. Digits ’1’, ’5’, ’2’, and ’8’ in yellow/magenta/green show nearly identical
masks (Fig. 2(b)), indicating a focus on color. This confirms that the biased components of DGW
capture color information, which is irrelevant for digit recognition. More visualization results can be
found in Appendix D.5.
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4 Conclusion

In this work, we introduced Debiasing Global Workspace (DGW), a framework designed to learn
debiased representations of attributes in neural networks. By leveraging attention mechanisms
inspired by the Global Workspace Theory, our method effectively differentiates between intrinsic and
biased attributes, enhancing both performance and interpretability. Comprehensive evaluations across
various biased datasets demonstrated that DGW improves model robustness and generalizability on
biased data and provides interpretable insights into the model’s decision-making process.
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Appendix

A Reproducibility

All source codes, figures, models, etc., are available at https://github.com/jyhong0304/
debiasing_global_workspace.

B Related Work

Debiasing Methods. One of the most well-known existing debiasing methods is those with prede-
fined forms of bias or specific bias labels. This method involves identifying specific biases before
training [28, 33, 39, 54]. The model then learns to ignore or correct these biases. While effec-
tive, it depends on accurately identifying biases beforehand, which can be challenging. Another
approach [4, 57] uses bias labels to tag data, allowing the model to differentiate between biased and
unbiased data during training. This improves learning but requires extensive manual labeling.

Debiasing approaches using the easy-to-learn heuristic are other effective methods. Biases are
easier for models to learn [49] than intrinsic features. Techniques like dynamic training schemes,
re-weighting samples, and data augmentation [15, 38, 47, 39, 41] help models focus on unbiased
features. However, these methods struggle with insufficient diverse samples. Complex models can
learn invariant features or correct representations but are difficult to design and train [59, 69, 1, 4, 15,
16, 33, 40, 47, 57, 65].

Additionally, SelecMix [29] creates new training samples by mixing pairs with similar labels but
different biases, or different labels but similar biases, using an auxiliary contrastive model. While
effective, this adds significant training complexity. χ2 model [67] learns debiased representations by
identifying Intermediate Attribute Samples (IAS) and using a χ-structured metric learning objective.
However, its reliance on training dynamics to identify IASs makes it different from our approach and
out of the scope of our study.

Deep Learning and Global Workspace Theory. In neuroscience and cognitive science, there
is an ongoing effort to develop theories of consciousness (ToCs) to identify the neural correlates
of consciousness, as reviewed by Seth and Bayne [56]. One such theory is the Global Workspace
Theory (GWT) [2, 11, 46], which is inspired by the ‘blackboard’ architecture used in artificial
intelligence. In this architecture, a centralized resource, the blackboard, facilitates information
sharing among specialized processors.

Recent studies have aimed to bridge the gap between neuroscience and deep learning, focusing on
practical solutions for implementing a GWT using current deep learning components while consider-
ing the equivalent brain mechanisms [17, 48, 52, 18, 27]. Bengio [5] emphasized learning high-level
concepts by selecting key elements through attention, forming a low-dimensional conscious state
similar to language, which aids in better representation learning. Mashour et al. [46] details GWT’s
implementation in neuroscience, suggesting that consciousness arises from extensive information
sharing across brain regions via a central network of neurons.

Inspired by GWT, our Debiasing Global Workspace (DGW) framework manages intrinsic and biased
attributes in neural networks. DGW integrates information from intrinsic and bias specialists, ensuring
disentangled representations are considered in decision making. Unlike prior works focusing on
monolithic architecture or general-purpose learning, our approach uniquely applies these theories to
debiasing neural networks.

Object-Centric Representation Learning. Humans outperform sophisticated AI technologies due
to our exceptional ability to recombine previously acquired knowledge, allowing us to extrapolate
to novel scenarios [13, 17, 20]. Pursuing representations that generalize compositionally has been
a significant research topic, with object-centric representation learning [6, 19, 43, 7, 30] emerging
as a prominent effort. This approach represents each object in an image with a unique subset of the
image’s latent code, enabling compositional generalization due to its modular structure.

Due to its simple yet effective design, Slot-Attention (SA) [43] has gained significant attention in
unsupervised object-centric representation learning. Its iterative attention mechanism allows SA to
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learn and compete between slots for explaining parts of the input, showing a soft clustering effect on
visual inputs [43]. Some recent works on implementing a cognitive architecture using object-centric
methods have been proposed [27, 12]. Our approach also emphasizes compositional generalization in
debiasing learning, using the slot-based method to implement a crucial module. The benefits of this
method are noteworthy and deserve further exploration.

C Further Details of Our Method

C.1 The Conceptual Instantiation of Debiasing Global Workspace

Figure 1 in the main text depicts a conceptual overview of our proposed DGW framework. The
conceptual flow of the DGW proceeds through a sequence of steps that we describe in detail here.

Step 0. To learn disentangled representations of intrinsic and biased attributes, we introduce
two specialists: intrinsic ϕi and biased ϕb. In the original GWT, the specialists connect to the
global workspace before any stimulus appears, coupling their latent spaces bidirectionally with the
workspace. We modify this setup to control the connections to backpropagate different information
to two specialists separately (black and red connections between specialists and DGW in Step 0
in Fig. 1). Specifically, the intrinsic and bias specialists function identically in the forward pass.
However, during the backpropagation stage, only the intrinsic attribute encoder updates its parameters
and learns, while the bias attribute encoder remains frozen and does not undergo parameter updates
when the task of the model is to find intrinsic attributes.

Step 1. The DGW acts as an independent and intermediate shared latent space trained to perform
unsupervised neural translation between the C latent spaces from the specialized modules. The
translation system is optimized to ensure that successive translation and back translation (e.g., a cycle
from A to B, then back to A) return the original input [18, 60]. We implement specific operations to
mimic the translation system by leveraging the residual operations [22] and a variant of mixup [62].

In [50], attention determines what information is consciously perceived and what is discarded in
brains. In GWT, attention selects the information that enters the workspace. When a specific module
is connected to the workspace through attention, its latent space activation vector is copied into the
DGW. This internal copy serves as a bidirectional connection interface between the corresponding
module and the DGW.

When a new stimulus, such as the digit ‘zero,’ appears, its latent activity transfers to the corresponding
internal copy inside the workspace, initiating a broadcast to all other domains. This shared latent
space (Si

latent in Fig. 1) uses translations and back translations from all modules to compute and
train via error backpropagation. We introduce a recurrent top-down pathway, and it can sometimes
be considered as a key to account for the global ignition property observed in the brain when an
input reaches consciousness, and the corresponding module is mobilized into the conscious global
workspace [60].

Step 2. The incoming information is then immediately broadcast and translated (via the shared
latent space) into the latent space of all other modules. In GWT, this translation process is automatic.
However, we modify this to manually enforce learning of intrinsic and biased attribute representation
with different loss functions. Specifically, we enforce the classifier ϕi to learn intrinsic attributes
through error backpropagation from specific training objectives (Step 2-1 in Fig. 1). Step 2-2
simultaneously enforces the connection to the classifier ψb and limits backpropagation to the intrinsic
specialist ϕi to learn the bias attribute representations.

C.2 Other Approach to Broadcast Information

While we introduced a residual connection in the main text as the information broadcast, the other way
of operation is a modified version of Manifold Mixup [62], which interpolates feature embeddings to
capture higher-level information.

ē = Mixα

(
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(
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(n+1)
latent , e

)
· v
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)))
,
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where Mixα(a, b) = α · a+ (1− α) · b, and α ∼ Beta(β, β). The updated feature vector ē is then
fed to the classifier ψi and ψb. We compare the performance of using residual connections versus
our modified Manifold Mixup in Appendix D.4.

C.3 Entropy regularization.

We empirically incorporate an additional regularization term on the latent slot attention mask to
enhance performance:

Lent = H(A(s
(n)
latent, e)) +H(A(s

(n)
latent, eswap)),

where A(s
(n)
latent, e) and A(s

(n)
latent, eswap) are attention masks from the last iteration of eq. 2 in the main

text. Minimizing entropy H(A) = H(a1, . . . , a|A|) = (1/|A|)
∑

i −ai · log(ai) encourages the
attention masks to be consistent over the input features captured by the latent slots. This regularization
ensures the model’s attention remains focused and interpretable across different input scenarios.

Therefore, the total loss function is a combination of the above components: Ltotal = Lrel + λswap ·
Lswap + λent · Lent. Here, λswap and λent are weights that adjust the importance of the feature augmen-
tation and entropy regularization, respectively. This comprehensive loss function ensures balanced
training that enhances the model’s ability to learn and generalize effectively while maintaining
interpretability and robustness.

D Further Experimental Results and Details

In this section, we explain further experimental results and details. All experiments are conducted
with three different random seeds and 95% confidence intervals.

D.1 Hardware Specification of The Server

The hardware specification of the server that we used to experiment is as follows:

• CPU: Intel® CoreTM i7-6950X CPU @ 3.00GHz (up to 3.50 GHz)
• RAM: 128 GB (DDR4 2400MHz)
• GPU: NVIDIA GeForce Titan Xp GP102 (Pascal architecture, 3840 CUDA Cores @ 1.6

GHz, 384-bit bus width, 12 GB GDDR G5X memory)

D.2 Datasets

We describe the details of biased datasets, Colored MNIST (C-MNIST), Corrupted CIFAR-10
(C-CIFAR-10), and BFFHQ.

Colored MNIST. Following existing studies [49, 33, 39, 4, 10, 38], this biased dataset comprises
two highly correlated attributes: color and digit. We added specific colors to the foreground of each
digit, generating bias-aligned and bias-conflicting samples for different ratios of bias-conflicting
samples:

• 0.5%: (54751:249)
• 1%: (54509:491)
• 2%: (54014:986)
• 5%: (52551:2449)

Corrupted CIFAR-10. Among 15 different corruptions introduced in the original dataset [25], we
selected types including Brightness, Contrast, Gaussian Noise, Frost, Elastic Transform, Gaussian
Blur, Defocus Blur, Impulse Noise, Saturate, and Pixelate, related to CIFAR-10 classes [37]. We used
the most severe level of corruption for the dataset, with the following bias-aligned and bias-conflicting
samples:

• 0.5%: (44832:228)
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Table A-1: Test accuracy (%) on unbiased test sets of C-MNIST and C-CIFAR-10, and the bias-
conflicting test set of BFFHQ with varying ratio of bias-conflicting samples. (∗) denotes methods
tailored to predefined forms of bias, (°) methods using bias labels, (†) methods relying on the easy-
to-learn heuristic, and (‡) methods combined with GWT. V+CCT indicates the direct integration of
Vanilla and CCT. DGW+M refers to DGW with our mixup strategy, and DGW+R refers to DGW
with residual connection. Performance for HEX and EnD is from [38], while results for Vanilla,
ReBias, LfF, LFA, V+CCT and DGW are from our evaluation. The best-performing results are shown
in bold, and the second-best results are underlined.

Dataset Ratio (%) Vanilla HEX∗ EnD° ReBias∗ LfF† LFA† V+CCT‡ DGW+M‡ DGW+R‡

C-MNIST

0.5 36.2±1.8 30.3±0.8 34.3±1.2 72.2±1.5 47.5±3.0 67.4±1.7 26.3±1.1 68.9±2.8 70.3±1.2

1.0 50.8±2.3 43.7±5.5 49.5±2.5 86.6±0.6 64.6±2.5 79.0±1.0 40.1±2.1 81.3±1.2 77.4±0.4

2.0 65.2±2.1 56.9±2.6 68.5±2.2 92.7±0.3 74.9±3.7 85.0±0.8 56.2±1.8 84.6±1.5 85.3±0.7

5.0 81.6±0.6 74.6±3.2 81.2±1.4 97.1±0.6 80.2±0.9 88.7±1.3 73.4±0.8 88.9±0.2 89.1±0.6

C-CIFAR-10

0.5 22.8±0.3 13.9±0.1 22.9±0.3 20.8±0.2 25.0±1.5 27.9±1.0 15.2±0.3 29.6±0.5 30.4±2.2

1.0 26.2±0.5 14.8±0.4 25.5±0.4 24.4±0.4 31.0±0.4 34.3±0.6 20.6±0.4 34.9±0.4 33.6±2.4

2.0 31.1±0.6 15.2±0.5 31.3±0.4 29.6±2.9 38.3±0.4 40.3±2.4 24.6±0.5 41.3±1.0 42.0±1.9

5.0 42.0±0.3 16.0±0.6 40.3±0.9 41.1±0.2 48.8±0.9 50.3±1.1 35.6±0.8 52.3±0.8 50.3±1.9

BFFHQ 0.5 54.5±0.6 52.8±0.9 56.9±1.4 58.0±0.2 63.6±2.9 59.5±3.8 52.6±1.1 66.9±1.0 65.6±3.3

• 1%: (44527:442)

• 2%: (44145:887)

• 5%: (42820:2242)

BFFHQ. The dataset is created by using the Flickr-Faces-HQ (FFHQ) Dataset [31], focusing on
age and gender as two strongly correlated attributes. The dataset includes 19200 training images
(19104 bias-aligned and 96 bias-conflicting) and 1000 testing samples.

D.3 Image Preprocessing

Following Lee et al. [38], our model is trained and evaluated using fixed-size images. For C-MNIST,
the size is 28 × 28; for C-CIFAR-10, it is 32 × 32, and for BFFHQ, it is 224 × 224. Images for
C-CIFAR-10 and BFFHQ are preprocessed using random crop and horizontal flip transformations,
as well as normalization along each channel (3, H, W) with a mean of (0.4914, 0.4822, 0.4465)
and standard deviation of (0.2023, 0.1994, 0.2010). We do not use augmentation techniques for
C-MNIST.

D.4 Performance Evaluation

Full Performance Comparison. Our set of debiasing baselines includes six different approaches:
Vanilla network, HEX [63], EnD [57], ReBias [4], LfF [49], and LFA [38]. Vanilla refers to the
classification model trained only with the original cross-entropy (CE) loss without debiasing strategies.
EnD leverages the explicit bias labels, such as the color labels in the C-MNIST dataset, during the
training phase. HEX and ReBias assume an image’s texture as a bias type, whereas LfF, LFA, and
our method do not require any prior knowledge about the bias type. Furthermore, we configure a
naive debiasing approach integrated with GWT implementation: V+CCT. CCT [27] proposed an
instantiation of GWT applicable to implement an interpretable model. To compare our DGW, we
simply configure the direction fusion of the Vanilla network with CCT as a GWT debiasing method.
Table. A-1 shows the full table of test performance evaluation.

Implementation Details. We followed the implementation details from [38]. We used a fully
connected network for attribute encoders with three hidden layers for C-MNIST and ResNet-18 for
C-CIFAR-10 and BFFHQ. We employed a fully connected classifier with double the hidden units to
handle the combined output from the intrinsic attribute encoder ϕi and the bias attribute encoder ϕb.

During testing, only the intrinsic classifier ψi(e) was used for final predictions. We used batch sizes
of 256 for C-MNIST and C-CIFAR-10, and 64 for BFFHQ, respectively. 2 concepts and size of 8
were used for C-MNIST, 5 and 16 for C-CIFAR-10, and 10 and 32 for BFFHQ, respectively. We
trained our model and baselines with three trials and reported the averaged accuracy and standard
deviation.
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Figure A-1: Visualization of attention masks Ai for the C-MNIST dataset

Figure A-2: Visualization from the C-MNIST dataset showing attention masks Ab, highlighting color
patterns. Digits in similar colors (e.g., 2, 3, 0, and 6) share similar attention mask patterns.

Training Details. For training, we use the Adam [35] optimizer with default parameters (i.e., betas
= (0.9, 0.999) and weight decay = 0.0) provided in the PyTorch™framework. We define two different
learning rates: LRDGW for our DGW modules, and LR for the remaining modules in our method, including
encoders and classifiers. For C-MNIST, LR is 0.01, while LRDGW is 0.0005 for C-MNIST-2%, 0.002 is
for the remaining ratios of datasets. For C-CIFAR-10, LR is 0.001, and LRDGW is 0.0001. For BFFHQ,
LR is 0.0001 and 0.0002 is for LRDGW.

We utilize StepLR for learning rate scheduling, with a decaying step set to 10K for all datasets. The
decay ratio is 0.5 for both C-MNIST and C-CIFAR-10 and 0.1 for BFFHQ. Following [38], we
adjust the learning rate after performing feature augmentation.

We set the hyperparameters (λre, λswapb , λswap, λent) for our proposed loss functions. (10, 10, 1, 0.01)
is set for the ratio of 0.5% of C-MNIST, and (15, 15, 1, 0.01) for the ratio of 1%, 2%, and 5% of
C-MNIST. We set (1, 1, 1, 0.01) for C-CIFAR-10, and (2, 2, 0.1, 0.01) for BFFHQ.

Our proposed mixup strategy uses the hyperparameter β to select the mixing coefficient α ∼
Beta(β, β). For BFFHQ, we set 0.5, whereas 0.2 for C-MNIST and C-CIFAR-10.

We provide the scripts, including all hyperparameter setups, in our Git repository (Section A) to
reproduce our performance evaluation.

D.5 Analysis for Interpretable Attribute Representation

Initialization of Concept Slots. The initialization of concept slots is crucial for our model’s
performance, tailoring the attention mechanisms to each dataset. We set the initial number of concept
slots (C) as follows:

• For C-MNIST, C is set to 2, reflecting its simple attribute composition
• For C-CIFAR-10, C is set to 10, accommodating its diverse features
• For BFFHQ, C is set to 10, capturing a wide range of human facial features

Additional Visualization on C-MNIST dataset. Figure A-1 displays the attention masks Ai =
A(Si

latent,E
i) generated by our broadcast scheme in the main text for C-MNIST, showing the model

focuses on digit shapes, ignoring color. Fig. A-2 shows the attention masks Ab = A(Sb
latent,E

b)
generated by our proposed broadcast method in the main text, highlighting how the model responds
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Figure A-3: Visualization of Ai and Ab for the C-CIFAR10 dataset

Figure A-4: Face images with attention masks. The first column shows the original image, the next
two columns show attention masks Ai from concept slots 6 and 9, and the last column shows masks
Ab.

to color patterns. Similar colors, like the purple digits 2, 3, 0, and 6, have similar attention masks,
indicating the model’s sensitivity to color.

Visualization on Corrupted CIFAR-10 dataset. For the C-CIFAR-10 dataset, intrinsic masks
focus on uncorrupted parts of the images (Fig. A-3(b)), highlighting true object features. For example,
masks for a truck, car, dog, and horse highlight uncorrupted areas, avoiding noise. Bias masks, on
the other hand, focus on corrupted areas, showing no overlap with intrinsic masks (Fig. A-3(c)).
This complementary relationship illustrates the effective segregation of essential (intrinsic) and
non-essential (biased) information.

Visualization on BFFHQ dataset. Figure A-4 shows DGW’s behavior on the BFFHQ dataset,
where the intrinsic components display complementary behavior within themselves (concept slots
6 and 9), focusing on specific facial features like cheeks for gender classification. This behavior is
due to BFFHQ’s focus on human facial shapes for gender classification, where the model prioritizes
critical facial features, filtering out less relevant data.
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Figure A-5: t-SNE plots for intrinsic features on C-MNIST (with (i) 1.0% and (ii) 2.0% settings).

Figure A-6: t-SNE plots for bias features on C-MNIST (with 0.5% setting).

D.6 Quantitative and Qualitative Analysis

We provide additional analysis to compare our DGW (DGW+M in Table A-1) method with Vanilla
and LFA [38].

t-SNE and Clustering. We measure clustering performance using t-SNE [45] and V-Score [53] on
features from various models capturing intrinsic and bias attributes on C-MNIST. V-Score represents
homogeneity and completeness, with higher values indicating better clustering. In Fig. A-7, our
DGW’s ϕi captures intrinsic attributes effectively, resulting in tighter clusters and better separation,
as indicated by the V-Score. Bias attributes are well captured by the ϕb, as shown in Fig. A-7(d).

We provide more results with t-SNE plots and clustering scores with V-Score [53] as illustrated in
Fig. A-5 and A-6. V-Score, a harmonic mean between homogeneity and completeness, is widely used
to evaluate clustering. A higher V-Score indicates tighter intra-class clusters and better inter-class
separation.

In Fig. A-5, intrinsic features from baselines and the intrinsic attribute encoder ϕi are used. It
consistently shows a higher V-Score, implying better classification and intrinsic attribute capture
compared to baselines. V-Scores are higher in setting (ii) than (i) because more bias-conflicting
samples are used for training in setting (ii).

In Fig. A-6, features from the bias attribute capturing layer of LFA and the bias attribute encoder
ϕb are utilized. It shows a higher V-Score compared to LFA, indicating more effective bias attribute
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Figure A-7: t-SNE plots for intrinsic and bias features on C-MNIST (with 0.5% setting).

Figure A-8: Representations of similarities for vanilla and different methods with all pairs of layers
on C-CIFAR-10 (0.5% setting). High similarity score denotes high values.

Figure A-9: Representations of similarities for vanilla model and different methods with all pairs of
layers on C-CIFAR-10 (5.0% setting). A high similarity score denotes high values.

Figure A-10: Representations of similarities for vanilla model and different methods with all pairs of
layers on BFFHQ (0.5% setting). A high similarity score denotes high values.

separation. Overall, our method outperforms baselines, demonstrating robust separation of intrinsic
and bias attributes to improve debiasing process.

Model Similarity. We visualize model similarity using Centered Kernel Alignment (CKA) [51,
36, 9], comparing similarities between all pairs of layers for different models. In this analysis, I and
B denote ϕi and ϕb. As shown in Fig. A-8, Vanilla and LFA possess similar weights across many
layers, while DGW shows fewer similarities in both initial and deeper layers, indicating different
behavior across layers compared to baselines.
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Table A-3: ECE (%) and NLL under different settings on C-MNIST and C-CIFAR-10.

Dataset C-MNIST C-CIFAR-10

Ratio (%) 0.5 1.0 2.0 5.0 0.5 1.0 2.0 5.0
ECE NLL ECE NLL ECE NLL ECE NLL ECE NLL ECE NLL ECE NLL ECE NLL

Vanilla 10.9 13.17 7.97 6.45 5.70 5.71 9.54 4.10 13.75 5.99 13.14 9.87 12.25 6.65 13.76 5.99
LFA 4.35 67.72 2.79 36.46 2.09 18.35 7.59 3.09 12.09 5.81 11.45 7.27 10.25 5.14 7.56 3.09
DGW 3.41 271.71 2.03 143.36 1.73 41.44 1.61 20.19 11.85 5.71 11.53 6.88 9.96 4.41 7.55 3.01

We use Centered Kernel Alignment (CKA) [51, 36, 9] to visualize similarities between all pairs of
layers in different models, helping us understand model behavior. The bias and intrinsic attribute
encoders ϕb and ϕi in our approach are compared.

Table A-2: ECE (%) and NLL under different
settings on C-CIFAR-10.

Ratio (%) 0.5 1.0 2.0 5.0
ECE NLL ECE NLL ECE NLL ECE NLL

Vanilla 13.75 5.99 13.14 9.87 12.25 6.65 13.76 5.99
LFA 12.09 5.81 11.45 7.27 10.25 5.14 7.56 3.09
DGW (Ours) 11.85 5.71 11.53 6.88 9.96 4.41 7.55 3.01

In Fig. A-9 and Fig. A-10, Vanilla and LFA mod-
els show similar weights in many layers, repre-
sented by bright colors. In contrast, our method
shows significantly lower similarity values, in-
dicating different weights and behaviors across
layers compared to Vanilla and LFA. Our method
affects deeper layers more, where the attention
module is inserted, suggesting a distinct impact
on model behavior.

Model Reliability. We evaluate model generalizability using Expected Calibration Error (ECE)
and Negative Log Likelihood (NLL) [21]. ECE measures calibration error, and NLL assesses
probabilistic quality. As shown in Table A-2, DGW consistently has the lowest ECE and NLL,
indicating better generalizability compared to baselines. To evaluate the generalizability of models,
we measure Expected Calibration Error (ECE) and Negative Log Likelihood (NLL) [21], where ECE
is to measure calibration error and NLL is to calculate the probabilistic quality of a model. In detail,
ECE aims to evaluate whether the predictions of a model are reliable and accurate, which is a simple
yet sufficient metric for assessing model calibration and reflecting model generalizability [21].

In Table A-3, our method consistently shows the lowest ECE, indicating better calibration and
reliability. For C-MNIST, it presents a higher NLL compared to baselines. Since C-MNIST includes
color bias only in the training set, it prevents overfitting by being less affected by bias, leading to
better overall model performance. This trend is consistent across different settings in C-MNIST,
providing insights into analyzing and explaining dataset bias types and complexity characteristics.

E Limitations.

We acknowledge that introducing our modules can increase training complexity, including model size
and training time. This represents a trade-off between performance and decision-making transparency.
While our additional overhead is minimal, further analysis is necessary to optimize and streamline
the process.
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