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Abstract

Real-world robotic tasks stretch over extended horizons and encompass multiple1

stages. Learning long-horizon manipulation tasks, however, is a long-standing2

challenge, and demands decomposing the overarching task into several manageable3

subtasks to facilitate policy learning and generalization to unseen tasks. Prior task4

decomposition methods require task-specific knowledge, are computationally inten-5

sive, and cannot readily be applied to new tasks. To address these shortcomings, we6

propose Universal Visual Decomposer (UVD), an off-the-shelf task decomposition7

method for visual long-horizon manipulation using pre-trained visual representa-8

tions designed for robotic control. At a high level, UVD discovers subgoals by9

detecting phase shifts in the embedding space of the pre-trained representation.10

Operating purely on visual demonstrations without auxiliary information, UVD11

can effectively extract visual subgoals embedded in the videos, while incurring12

zero additional training cost on top of standard visuomotor policy training. Goal-13

conditioned policies learned with UVD-discovered subgoals exhibit significantly14

improved compositional generalization at test time to unseen tasks. Furthermore,15

UVD-discovered subgoals can be used to construct goal-based reward shaping16

that jump-starts temporally extended exploration for reinforcement learning. We17

extensively evaluate UVD on both simulation and real-world tasks, and in all18

cases, UVD substantially outperforms baselines across imitation and reinforcement19

learning settings on in-domain and out-of-domain task sequences alike, validating20

the clear advantage of automated visual task decomposition within the simple,21

compact UVD framework. We provide videos and more supplementary details in22

https://uvd2023.github.io/.23

1 Introduction24

Real-world household tasks, such as cooking and tidying, often stretch over extended horizons and25

encompass multiple stages. In order for robots to be deployed in realistic environments, they must26

possess the capability to learn and perform long-horizon manipulation tasks from visual observations.27

Learning vision-based complex skills over long timescales, however, is challenging due to the28

problem of compounding errors, the vastness of the action and observation spaces, and the difficulty29

in providing meaningful learning signals for each step of the task.30

Given these challenges, it is necessary to decompose a long-horizon task into several smaller subtasks31

to make learning manageable. Beyond improving the efficiency of learning, task decomposition32

facilitates learning reusable skills, promotes data-sharing across different trajectories, and further33

enables compositional generalization to unseen sequences of the learned subtasks. Despite its34

usefulness, task decomposition is difficult to perform in practice, and most existing approaches35

require strong assumptions about tasks, datasets, or robotic platforms [1–12]. These methods cannot36
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be used in common settings where the agent only has access to video demonstrations of desired37

behavior on their robotic hardware and little else, motivating the need for an off-the-shelf approach38

that can readily decompose any visual demonstration out-of-the-box.39
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Figure 1: Universal Visual Decomposer uses off-the-shelf
pre-trained visual representations to find subgoals from video
demonstrations by recursively computing embedding dis-
tances from the target goal and setting the first plateau as the
new target goal.

In order to decompose any long-40

horizon task using vision, general41

knowledge about visual task pro-42

gression that can discern embed-43

ded subtasks in long, unsegmented44

task videos must be acquired. In45

this work, we propose Universal Vi-46

sual Decomposer (UVD), an off-the-47

shelf unsupervised subgoal decompo-48

sition method that re-purposes state-49

of-the-art pre-trained visual represen-50

tations [13–19] for automated task51

segmentation. To motivate our ap-52

proach, we observe that several pre-53

trained visual representations, such as54

VIP [17] and R3M [14], are trained to55

capture temporal task progress on di-56

verse, short videos of humans accom-57

plishing goal-directed behavior [20,58

21]. These representations have ac-59

quired well-behaved embedding dis-60

tances that can progress near monoton-61

ically along video frames that depict62

short-horizon, atomic skills. Our key63

insight is that when applied to long64

videos consisting of several subtasks,65

their training on short atomic tasks makes these representations no longer informative about subtask66

membership. That is, they are not trained to capture whether an earlier frame, which may very well67

belong to a different subtask, is making progress towards a subtask that appears later in the video,68

even if the subtasks are related to one another. As a consequence, when the robot task is extended,69

the embedding distances will deviate from monotonicity and exhibit plateaus around frames that70

correspond to phase shifts in the overall task; this provides an unsupervised signal for detecting71

when subtasks have taken place in the original long, unsegmented task video. UVD instantiates72

this insight and proposes an out-of-the-box subgoal discovery procedure that can iteratively extract73

subgoals using the embedding distance information from the end to the beginning; notably, UVD74

does not require any domain-specific knowledge or incur additional training cost on top of standard75

visuomotor policy training. Given its off-the-shelf nature, UVD can be readily applied to a variety of76

unseen robot domains. See Fig. 1 for a conceptual overview of our approach.77

We apply UVD to long-horizon, multi-stage visual manipulation tasks in both simulation and real-78

world environments. Across these tasks, UVD consistently outputs semantically meaningful subgoals79

which are used for policy training and evaluation. We consider both in-domain (IND) and out-80

of-domain (OOD) task evaluations. In IND evaluation, the agent is evaluated on long-horizon81

tasks for which it has been explicitly trained whereas in OOD evaluation, the agent is evaluated to82

generalize to new tasks unseen during training. Using UVD-discovered subgoals, we demonstrate83

substantial policy improvements across these evaluation settings. Firstly, when training agents with84

reinforcement learning (RL), we show that UVD-subgoals can be used to perform reward shaping for85

each of the intermediate subtasks. Using this approach, we demonstrate that the resulting rewards86

can successfully guide a vision-based reinforcement learning agent to learn long-horizon tasks in the87

FrankaKitchen [22] environment. Secondly, when training agents with imitation learning (IL), by88

virtue of discovering semantically meaning subgoals, our policies can compositionally generalize to89

OOD task sequences unseen during training; this capability greatly reduces the burden of manual90

data collection for every desired task. Finally, in IND evaluation, we also demonstrate performance91

improvement on several real-world multi-stage tasks that stretch over several hundred timesteps and92

exhibit sequential dependency among the subtasks.93
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In summary, our contributions include:94

1. Universal Visual Decomposer (UVD), an off-the-shelf visual decomposition method for95

long-horizon manipulation using pre-trained visual representations.96

2. A reward shaping method for long-horizon visual reinforcement learning using UVD-97

discovered subgoals.98

3. Extensive experiments demonstrating UVD’s effectiveness in improving policy performance99

on IND and OOD evaluations across several simulation and real-robot tasks.100

2 Related Work101

Learning long-horizon skills has been a long standing challenge in robotic manipulation [22, 3, 23,102

24]. Hierarchical reinforcement learning [25, 8, 26–30, 22, 31–34] enables temporally extended103

exploration by discovering subskills and planning over them. However, these algorithms learn104

subskills and overall policies from scratch, which is computationally expensive and less suitable for105

real-world robotics use cases.106

When provided with task demonstrations, there are many prior efforts on using subgoal decomposition107

as a means to break up the long task in order to provide intermediate learning signals and to mitigate108

compounding action errors. These prior decomposition strategies, however, require task-specific109

knowledge and cannot be easily applied to new tasks. For example, several approaches use the110

robot’s proprioceptive data within the task demonstrations [9–12] or explicit knowledge about subtask111

structure [6, 7] to guide decomposition; this limits the types of tasks that can be solved and precludes112

learning from observed videos. Other works learn latent generative models over subgoals [35, 1–5],113

but demand compute-intensive training on large datasets that cover diverse behavior.114

To the best of our knowledge, Universal Visual Decomposer is the first “off-the-shelf” visual task115

decomposition method that does not require any task-specific knowledge or training. In addition, it116

demonstrates a novel use case of pre-trained visual representations. While some prior works have117

considered using pre-trained visual representations to generate rewards [36, 17], we are the first to118

demonstrate that they can also be re-purposed to perform hierarchical decomposition; furthermore,119

this capability can be combined with the reward specification capability to solve long-horizon tasks120

using visual reinforcement learning.121

3 Problem Setting122

Unsupervised Subgoal Discovery (USD). Our goal is to derive a general-purpose subgoal decompo-123

sition method that can operate purely from visual inputs on a per-trajectory basis. That is, given a124

full-task demonstration τ = (o0, ..., oT ),125

USD((o0, ..., oT )) → τgoal := (g0, ..., gm), (1)

where (g0, ..., gm) are the subset of τ that are selected as subgoals; m may vary across trajectories.126

Policy Learning. We provide demonstrations D := {τ}ni=1 for the learning tasks; in the reinforce-127

ment learning setting, we assume that there is one task and have n = 1 to specify the overall task to128

be achieved. The evaluation tasks can be both in-domain (IND), the ground-truth sequences of tasks129

captured in D, or out-of-domain (OOD), consisting of unseen combinations of the subtasks in D.130

We assume access to a pre-trained visual representation ϕ : RH×W×3 → RK that maps RGB131

images to a K-dimensional embedding space. Given ϕ and D, our goal is to learn a goal-conditioned132

policy π : RK×RK→∆(A) that outputs an action based on the embedded observation and goal,133

a ∼ π(ϕ(o), ϕ(g)). In the RL setting, the agent is not provided with reward information, so the agent134

must also construct rewards using ϕ and D.135

Policy Evaluation. For OOD eval., we provide one demonstration τ specifying the subtask sequence136

to be performed.137
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4 Method138

We first present Universal Visual Decomposer, the core algorithm that powers our off-the-shelf139

subgoal discovery approach. Then, we discuss various ways we perform policy training as well as140

goal selection during policy inference.141

4.1 Universal Visual Decomposer142

Given an unlabeled video demonstration τ = (o0, ..., oT ), how might we discover useful subgoals?143

The key intuition of Universal Visual Decomposer is that, conditioned on a goal frame ot, some n144

frames (ot−n, ..., ot−1) preceding it must visually approach the goal frame; once we discover the145

first frame (ot−n) in this goal-reaching sequence, the frame that precedes it (ot−n−1) is then another146

subgoal. From ot−n−1, the same procedure can be carried out recursively until we reach o0. There147

are two central questions to address: (1) how to discover the first subgoal (last in terms of timestamp),148

and (2) how to determine the stopping point for the current subgoal and declare a new frame as the149

new subgoal.150

The first question is simple to resolve by observing that in a demonstration, the last frame oT is151

naturally a goal. Now, conditioned on a subgoal ot, we attempt to extract the first frame ot−n152

in the sub-sequence of frames that depicts visual task progression to ot. To discover this first153

frame, we exploit the fact that several state-of-the-art pre-trained visual representations for robot154

control [14, 17, 19] are trained to capture temporal progress within short videos depicting a single155

solved task; these representations can effectively produce embedding distances that exhibit monotone156

trend over a short goal-reaching video sequence τ = (ot−n, ..., ot):157

dϕ(os; ot) ≥ dϕ(os+1; ot),∀s ∈ {t− n, . . . , t− 1}, (2)

where dϕ is a distance function in the ϕ-representation space; in this work, we set dϕ(o; o′) :=158

∥ϕ(o)− ϕ(o′)∥2 because several state-of-the-art pre-trained representations use the L2 distance as159

their embedding metric for learning. Given this, we set the previous subgoal to be the temporally160

closest observation to ot for which this monotonicity condition fails:161

ot−n−1 := argmax
oh

dϕ(oh; ot) < dϕ(oh+1; ot), h < t . (3)

The intuition is that a preceding frame that belongs to the same subtask (i.e., visually apparent that162

it is progressing towards ot) should have a higher embedding distance than the succeeding frame163

if the embedding distance indeed captures temporal progression. As a result, a deviation from the164

monotonicity indicates that the preceding frame may not exhibit a clear relation to the current subgoal,165

and instead be a subgoal itself. Now, ot−n−1 becomes the new subgoal, and we apply (3) recursively166

until the full sequence τ is exhausted. For instance, in Figure 1, conditioned on the last frame, g3167

is the first preceding frame that produces an inflection point in the embedding distances and hence168

selected as a subgoal; then, conditioned on g3, g2 is selected, and so on; see Alg. 1 for pseudocode.169

In practice, (2) may not hold for every step due to noise in the embedding space, and we find that170

a simple low pass filter procedure to first smoothen the embedding distances make the subgoal171

criterion (3) effective; see the supplementary website for details.172

Algorithm 1: Universal Visual Decomposer
Init: frozen visual encoder ϕ, τ = {o0, · · · , oT }
Init: set of subgoals τgoal = {}, t = T
while t not small enough do

τgoal = τgoal ∪ {ot}
Find ot−n−1 from Eq. 3
t = t− n− 1

end

Computational Efficiency. We highlight that our entire algorithm does not require any additional173

neural network training or forward computations on top of the one forward pass required to encode174

all observations for policy learning.175
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4.2 UVD-Guided Policy Learning176

Now, we discuss several ways UVD-discovered subgoals can be used to supplement policy learning.177

Goal Relabeling. As UVD is performed on a trajectory basis, we can relabel all observations in178

a trajectory with the closest subgoals that appear later in time. In particular, for an action-labeled179

trajectory τ = (o0, a0, ..., oT , aT ) and UVD-discovered subgoals τgoal = (g0, ..., gm), we have that180

Label(ot) = gk where gk is the first subgoal occurring after time t. This procedure leads to an181

augmented, goal-relabeled trajectory τaug = {(o0, a0, g0), ..., (oT , aT , gm)}. Now, as all transitions182

are goal-conditioned, we can learn policies using any goal-conditioned imitation learning algorithm;183

for simplicity, we use goal-conditioned behavior cloning (GCBC) [37, 38].184

Reward Shaping. The above goal relabeling strategy applies to the imitation learning (IL) setting.185

Collecting the demonstrations needed for IL is, however, expensive. Instead, a reinforcement learning186

paradigm is feasible with much fewer demonstrations and comes with other ancillary benefits such187

as learned error recovery. This raises the question of how UVD-subgoals might be used with an RL188

paradigm. In particular, how can UVD help overcome the exploration challenge in long-horizon RL?189

Given that UVD selects subgoals so that the embedding distances in-between any two consecutive190

subgoals exhibit monotone trends, we define the UVD reward to be the goal-embedding distance191

difference computed using UVD goals:192

R(ot, ot+1;ϕ, gi) := dϕ(ot; gi)− dϕ(ot+1; gi) . (4)
where gi ∈ τgoal, and gi will be switched to gi+1 automatically during training when dϕ(ot+1; gi)193

is small enough. More details can be found on the supplementary website. This choice of reward194

encourages making consistent progress towards the goal and has been found in prior work [39–41, 17]195

to be particularly effective when deployed with suitable visual representations.196

4.3 UVD Goal Inference197

When deploying our trained subgoal-conditioned policies at inference time, we must determine what198

subgoals to instruct the policy to follow at each observation step. We study two simple strategies that199

work well in practice; we describe the high-level approaches here, and include more details on the200

supplementary website.201

Nearest Neighbor. First, when there is only one fixed sequence of subtasks to be learned (i.e., IND),202

we employ a simple nearest neighbor goal selection strategy. That is, for a new observation, we203

compute the observation in the training set that has the closest embedding (judged by dϕ) and use204

its associated sub-goal. This can be interpreted as a non-parameteric high-level policy that outputs205

observation-conditioned goal for the low level policy, π(ϕ(o), ϕ(g)).206

Goal Relaying. When performing OOD or multi-task IND evaluation, the agent must complete a207

user-instructed task. In these settings, the above nearest neighbor approach may no longer apply as208

the subgoals seen in training may not be valid for the current, potentially unseen, task. Instead, we209

propose to relay the currently instructed goals based on embedding distance. Specifically, given a210

sequence of instructed subgoals g = (g0, ..., gm), the policy will condition on the first remaining211

subgoal until the embedding distance between the current observation and the subgoal is below a212

certain threshold, at which point the policy will be conditioned on the next subgoal in the sequence.213

5 Experiments214

We study the following research questions:215

1. Does UVD enable compositional generalization in multi-stage and multi-task imitation216

learning?217

2. Can UVD subgoals enable reward-shaping for long-horizon reinforcement learning?218

3. Can UVD be deployed on real-robot tasks?219

5.1 Simulation Experiments220

FrankaKitchen Environment. We use the FrankaKitchen Environment [22] for simulation experi-221

ments. In the environment, a Franka robot with a 9-DoF torque-controlled action space can interact222
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with seven objects: a microwave, a kettle, two stove burners, a light switch, a hinge cabinet, and a223

sliding cabinet. We refined the dataset from [22] to include only successful trajectories, yielding a224

total of 513 episodes gathered from humans using VR headsets. For each episode, four out of the225

seven objects are manipulated in an arbitrary sequence, leading to 24 unique completion orders; see226

Fig. 2.227
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Figure 2: Frank Kitchen environment and an example of random
training-evaluation partition. In each demonstration episode, 4 out of
7 objects are manipulated in an arbitrary order. We show an example of
16 completion orders for training and IND evaluation chosen randomly,
while the rest of 8 are for OOD generalizations.

Visual and Policy Back-228

bones. As UVD is designed229

to utilize pre-trained visual230

representations that cap-231

ture visual task progress,232

we adopt R3M [14],233

VIP [17], and LIV [19],234

three Resnet50-based235

representations trained with236

temporal objectives on237

video data; in particular,238

VIP and LIV are trained to239

explicitly encode smooth240

temporal task progress in241

their embedding distances.242

We also consider general243

vision models trained on244

static image datasets such245

as CLIP (ResNet50) [42]246

and DINO-v2 (ViT-large) [43] to assess the importance of training on temporal data. As our goal is247

to study the merit of the pretrained representations, as in prior works [14, 17], we keep the policy248

architecture simple and employ a multi-layer perception (MLP) as the policy architecture; More249

details are on the supplementary website.250

Baselines. We compare with goal-conditioned behavior cloning (GCBC) baselines to demonstrate251

the value of UVD. Fixing a choice of visual representation, the only difference of GCBC to ours is252

the how the goals are labeled at training time. For each observation, GCBC labels the final frame in253

the same trajectory as its goal.254

IL Evaluation Protocol. Our training and evaluation design for FrankaKitchen is structured as255

follows: we train on n combinations of object sequences with IND evaluation, reserving the remaining256

24− n task sequences for evaluation of unseen OOD scenarios. We use n = 16 by default unless257

otherwise mentioned. For a fair comparison, we utilize the same 3 random seen-unseen partitions,258

generated by 3 unique pre-defined seeds, for every set of runs.259

To evaluate policy performance, we consider both the success rate on the overall task (success) as260

well as the number of subtasks accomplished (completion). The success criterion for each subtask261

is determined by the simulation ground-truth state; this is used solely during evaluations and is not262

provided to the agent during training. Results are presented in Fig. 3263

Results. Remarkably, by using UVD, all pre-trained visual representation show significant264

improvement in OOD sequential generalization, despite their varying IND performances. VIP and265

LIV, the two representations explicitly trained to learn monotone embedding distances, demonstrate266

higher comparative gains compared to the other representations, despite similar or even lower267

performances when the representations are not used to decompose subgoals (i.e., GCBC-MLP); this268

validates our hypothesis that representations capturing visual task progress information are more269

suited for off-the-shelf subgoal discovery.270

271

InD success OoD success InD completion OoD completion
0.0

0.5

1.0

S
co
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UVD UVD (5 demos) UVD (8 seen - 16 unseen)

Figure 4: Ablations on dataset size and composition.

Ablations. We present several abla-272

tions studying whether UVD remains273

effective when varying training set-274

tings. As VIP stands out as the most275

promising candidate for UVD-based276

imitation learning, we perform all ab-277

lations using VIP as the backbone rep-278

resentation. First, we ablate the MLP279
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Figure 3: Example Sub-Sampled Rollouts on Real-World OOD Tasks. The initial frame in each
sequence is a representative OOD initial observation. The inset image in each frame is the conditioned
UVD-discovered goal for that frame.

Figure 6: Example Sub-Sampled Rollouts on Real-World OOD Tasks. The initial frame in each
sequence is a representative OOD initial observation. The inset image in each frame is the conditioned
UVD-discovered goal for that frame.

policy architecture with a GPT-like causal transformer policy [44]. As shown in the last row of Fig.3,280

this more powerful, history-aware, policy is insufficient to achieve the same level of generalization;281

UVD again provides sizable generalization improvement.282

Beyond policy architecture, we also study the effect of dataset size and diversity. To this end, we283

consider (1) reducing the training dataset size to 5 demonstrations per training task, and (2) reducing284

the number of training tasks to 8 but keeping the full number of demonstrations per task. Both IND285

and OOD performance remains similar, confirming that UVD enables OOD generalization that is286

robust to the varying sizes and diversity of the training data.287

InD success OoD success InD completion OoD completion
0.0

0.5

1.0

S
co

re

UVD Uniform Random

Figure 5: Comparison with heuristic goal-labeling meth-
ods.

Finally, we study whether UVD is nec-288

essary to achieve strong OOD gen-289

eralization and investigate alternative290

ways of generating subgoals. We con-291

sider Uniform and Random; Uni-292

form randomly selects a frame within293

a fixed size window after the observa-294

tion; this strategy has been employed295

in many prior works [22, 45]. Ran-296

dom randomly selects 3 to 5 frames297

within the demonstration as subgoal298

frames. As shown in Fig. 5, the alter-299

natives uniformly hurt performance on all settings and metrics. This is to be expected as these300

alternatives introduce redundant and less semantically meaningful subgoals; as a result, they may301

perform comparably IND, but their OOD generalization suffers.302

UVD-Guided Reinforcement Learning. We investigate whether UVD can also enhance rein-303

forcement learning by providing goal-based shaped rewards for subtasks (4). Recall that in this304

setting, only a single video demonstration (without action labels) is given to the agent to specify305

the learning task. Within the FrankaKitchen environment, we examine a specific task sequence:306
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Method Success Completion
GCRL-VIP 0.0 / 0.0 0.09 / 0.25
GCRL-VIP + Ours 0.65 / 1.0 0.75 / 1.0
GCRL-R3M 0.0 / 0.0 0.09 / 0.25
GCRL-R3M + Ours 0.649 / 1.0 0.82 / 1.0

Table 1: RL results on FrankaKitchen. Full-stage success rate and the percentage of full-stage
completion are reported in the format of (average performance with 3 random seeds) / (max perfor-
mance).

Task Method IND S. IND C. OOD S. OOD C.

Apple-in-Oven
GCBC 0.50 0.438 0.0 0.500

GCBC + Ours 0.60 0.750 0.25 0.625

Fries-and-Rack
GCBC 0.30 0.567 0.0 0.0

GCBC + Ours 0.35 0.750 0.25 0.500

Fold-Cloth
GCBC 0.05 0.100 0.0 0.0

GCBC + Ours 0.15 0.483 0.15 0.425
Table 2: IND and OOD Results on Real-World Tasks. S-success, C-completion.

open microwave, move kettle, toggle light switch, and slide cabinet. We307

select VIP and R3M as candidate representations as they performed best for IL IND evaluations. We308

consider a goal-conditioned RL baseline, which constructs goal-based rewards by uniformly using309

the last demonstration frame as goal in (4). We use PPO [46] as the RL algorithm and report the310

average and the max success rate and percentage of completion over 3 random seeds in Table 1; see311

the supplementary website for more experimental details.312

We see baselines fail to make non-trivial task progress with either visual backbone, confirming that313

goal-based rewards with respect to a distant final goal are not well-shaped to guide exploration. In314

contrast, UVD-rewards consistently accelerate RL training and achieve high overall success on the315

task, validating UVD’s utility in not only task generalization but also in task learning.316

5.2 Real-World Experiments317
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We introduce 3 real-world multi-stage318

tasks on a real Franka robot. These319

tasks contain daily household manip-320

ulation skills, such as picking, pour-321

ing, folding, and manipulating artic-322

ulated objects. See Fig. 7 for a de-323

tailed breakdown of the subtasks in324

each task. For each task, we have325

collected about 100 demonstrations326

via teleoperation; for each trajectory,327

the positions of relevant objects in the328

scene are randomized within a fixed329

distribution. The policies are learned330

via GCBC with MLP architecture as331

in simulation; see the supplementary332

website for details.333

OOD Evaluation. On our real-world334

tasks, the subtasks are sequentially de-335

pendent and cannot be performed in336

arbitrary orders. To test compositional337

generalization, we evaluate whether the policies can skip intermediate tasks when their effects in338

the environment are already achieved. For example, on the Fries-and-Rack task, we evaluate339
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on initial states in which the fries are already placed on the plate. In this case, a policy trained with340

semantically meaningful subgoals should be able to directly proceed from picking up the bowl to341

racking the bowl. This is because the post-condition of pouring the fries is semantically identical to342

the pre-condition of racking the bowl – both have the bowl picked up mid air and the fries on the plate.343

Similarly, on the Apple-in-Oven task, we test generalization by having the apple directly placed344

on the plastic plate, and on the Fold-Cloth task, we have the cloth folded diagonally already; see345

Figure 6 for an illustration of these OOD initial observations. While these OOD tasks are shorter than346

the training tasks, the exact sequences are still unseen during training and they contain unseen initial347

state configurations. As before, we test these OOD as well as IND task sequences; for each task348

sequence, we evaluate on 20 rollouts using the same set of object configurations for every compared349

method.350

Results are presented in Table 2. As shown, on all tasks, UVD methods can solve OOD tasks whereas351

the baseline completely fails, despite their comparable performance on IND tasks. These results352

corroborate our findings in simulation and make a strong case for the effectiveness of UVD’s subgoals353

and its applicability to challenging real-world tasks.354

In Figure 6, we visualize UVD policy rollouts by displaying sub-sampled frames and their conditioned355

subgoals (the inset frame) on the OOD tasks. In all cases, UVD retrieves meaningful subgoals from356

the training set and the policy can successfully match the depicted semantic subtask.357

6 Conclusion358

We have presented Universal Visual Decomposer, an off-the-shelf task decomposition method for359

long-horizon visual manipulation tasks using pre-trained visual representations. UVD does not require360

any task-specific knowledge or training and effectively produces semantically meaning subgoals361

across both simulated and real-robot environments. UVD-discovered subgoals enable effective reward362

shaping for solving challenging multi-stage tasks using RL, and policies trained with IL exhibit363

significantly superior compositional generalization at test time.364
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