
Mastering Zero-Shot Interactions in
Cooperative and Competitive Simultaneous Games

Yannik Mahlau 1 Frederik Schubert 1 Bodo Rosenhahn 1

Abstract
The combination of self-play and planning has
achieved great successes in sequential games, for
instance in Chess and Go. However, adapting
algorithms such as AlphaZero to simultaneous
games poses a new challenge. In these games,
missing information about concurrent actions of
other agents is a limiting factor as they may se-
lect different Nash equilibria or do not play op-
timally at all. Thus, it is vital to model the
behavior of the other agents when interacting
with them in simultaneous games. To this end,
we propose Albatross: AlphaZero for Learning
Bounded-rational Agents and Temperature-based
Response Optimization using Simulated Self-
play. Albatross learns to play the novel equilib-
rium concept of a Smooth Best Response Logit
Equilibrium (SBRLE), which enables coopera-
tion and competition with agents of any playing
strength. We perform an extensive evaluation of
Albatross on a set of cooperative and competi-
tive simultaneous perfect-information games. In
contrast to AlphaZero, Albatross is able to ex-
ploit weak agents in the competitive game of Bat-
tlesnake. Additionally, it yields an improvement
of 37.6% compared to previous state of the art in
the cooperative Overcooked benchmark.

1. Introduction
Games have been played by humans for centuries, some
of the earliest dating back more than 4000 years (Sebbane,
2001). They enable us to measure skill, either in coopera-
tion or competition with other agents. When facing unseen
agents, one has to adapt to their playing style, which is
called zero-shot interaction (Hu et al., 2020). In sequen-
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Figure 1. TrueSkill scores (Herbrich et al., 2006) of a tourna-
ment consisting of an Albatross agent, Monte-Carlo-Tree-Search
(MCTS) baseline agents and an AlphaZero baseline. Each game
takes place in a free for all setting of four agents in the stochastic
simultaneous game of Battlesnake. Albatross estimates the temper-
ature, i.e. rationality, of the baseline agents online using only data
from the current game. A temperature of 0 corresponds to random
play and 10 to optimal play if all other agents play optimally as
well. AlphaZero achieves optimal play given that all other agents
play optimally (temperature of 10), but fails to adapt to subrational
agents. In contrast, Albatross is able to respond optimally against
any combination of weak and strong agents due to its rationality
estimation, resulting in a higher TrueSkill tournament score.

tial games, this only entails finding the best response after
observing the action of the other agent. However, in simulta-
neous games, where all agents make their move at the same
time, it is also necessary predict the next concurrent move.
Therefore, opponent modelling is an important factor for
zero-shot interactions in simultaneous games. Most existing
methods learn a policy that performs well with or against as
many agents as possible (Strouse et al., 2021; Lupu et al.,
2021; Zhao et al., 2023; Dockhorn & Kruse, 2017). How-
ever, a more scalable approach is the prediction of the other
agent’s behavior, based on the immediate interactions within
a single episode. Lou et al. (2023) apply this idea and clas-
sify other agents into groups of low, medium or high skill.

1



Mastering Zero-Shot Interactions in Cooperative and Competitive Simultaneous Games

In contrast, we model their strength as a continuous scalar
temperature parameter. The continuous parametrization
is able to accurately model any playing strength. Addi-
tionally, its sparsity enables efficient maximum likelihood
estimation (MLE) using only interactions from the current
episode. For this continuous opponent model, we develop
the novel concept of a Smooth Best Response Logit equi-
librium (SBRLE). Since the SBRLE is intractable in all
but very small games, our method Albatross (AlphaZero
for Learning Bounded-rational Agents and Temperature-
based Response Optimization using Simulated Self-play)
learns the equilibrium through a combination of self-play
and planning akin to AlphaZero (Silver et al., 2018).

The adaptive behavior of Albatross allows cooperation with
unknown agents, which might not act optimally. To this end,
we evaluate our method in the game of Overcooked (Car-
roll et al., 2019), where Albatross is paired with a human
behavior cloning agent. Encoding the estimated rationality
via a scalar enables us to dissect the different strategies of
Albatross when acting with agents of different strengths.
In competitive games, the opponent modelling allows Al-
batross to exploit weaker agents as well as compete with
strong agents. In Figure 1, we demonstrate these capabili-
ties in a tournament of Battlesnake (Chung et al., 2020), for
which we publish an efficient implementation. Battlesnake
is an extension of the well-studied game Tron (Samothrakis
et al., 2010; Saverino, 2011; Lanctot et al., 2013; Knegt
et al., 2018; Jeon et al., 2022), offering additional stochas-
tic environment dynamics for either two or four agents. In
summary, our contributions are the following:

• We introduce the novel equilibrium concept of a
Smooth Best Response Logit equilibrium for modeling
asymmetric bounded rationality with a single rational
and an arbitrary number of weak agents.

• Our method Albatross learns to approximate an
SBRLE using a mixture of self-play and planning,
adapting AlphaZero in a principled way based on game
theory to zero-shot interactions of simultaneous games.

• We empirically evaluate Albatross in several cooper-
ative and competitive games and perform an exten-
sive hyperparameter analysis. Additionally, we qualita-
tively demonstrate the adaptive behavior of Albatross.

• To support reproducibility, all of our code as well as
the trained models are open source1.

2. Related Work
AlphaGo (Silver et al., 2016) was one of the first successful
applications of deep reinforcement learning to a complex

1https://github.com/ymahlau/albatross

multi-agent game, namely Go. It used an actor-critic neu-
ral network, which was pre-trained on human games and
fine-tuned using self-play. The pre-training phase was elim-
inated in its successor AlphaGoZero (Silver et al., 2016) to
avoid learning a suboptimal bias from human play. Inde-
pendently of AlphaGoZero, a similar system named Expert
Iteration was developed for the game of Hex (Anthony et al.,
2017). Both AlphaGo and AlphaGoZero exploited knowl-
edge about symmetries of the games, which prevented its
application to other games. AlphaZero (Silver et al., 2018)
excludes all game-specific knowledge and therefore is ap-
plicable to other games, e.g. Go, Chess and Shogi. MuZero
(Schrittwieser et al., 2020) did not only learn perfect play,
but also the environment dynamics through self-play, which
makes it suitable for environments with unknown dynamics.
However, for that purpose, MuZero requires much larger
compute resources than AlphaZero.

While the mentioned methods are state of the art in sequen-
tial competitive games, they do not necessarily work well
in zero-shot coordination tasks. That is, because they do
not perform well on all game situations, but rather only
on game situations that would arise through self-play (Lan
et al., 2022). To achieve good coordination capabilities with
a lot of different teammates, Fictitious Co-Play (Strouse
et al., 2021) trains against past training checkpoints taken at
different time points from multiple self-play agents. In con-
trast, Trajectory Diversity (Lupu et al., 2021) also aims to
train a diverse population of agents by regularizing the loss
function with Jensen-Shannon Divergence (Lin, 1991). Sim-
ilarly, Maximum Entropy Population-Based training (MEP)
(Zhao et al., 2023) uses population entropy as regularization.
Lou et al. (2023) extend MEP in their framework called
Policy Ensemble for Context-Aware Zero-Shot Human-AI
Coordination (PECAN) by using a randomly weighted pol-
icy ensemble given three groups of agents, ranked based on
their self-play performance. Hidden-Utility Self-Play (HSP)
(Yu et al., 2023) trains with agents maximizing a hidden re-
ward function and achieves population diversity by filtering
with an event-based metric. All of the mentioned techniques
rely on the idea of training a diverse population to learn
to cooperate with as many agents as possible. However,
we believe that explicit opponent modelling based on game
theory can produce better cooperation capabilities.

Substantial research regarding opponent modeling is con-
ducted in the field of security games and adversarial do-
mains (Nashed & Zilberstein, 2022). Some approaches are
based on Variational Autoencoders (Papoudakis & Albrecht,
2020), Switching tables (Everett & Roberts, 2018), model-
based approaches using neural networks (Knegt et al., 2018),
recursive reasoning (Yu et al., 2022) or expert imitation
(Dockhorn et al., 2017). Applications of opponent modeling
include real-world situations like wildlife protection against
poachers (Fang et al., 2017) or protection of security re-
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Figure 2. Visualization of equilibria in a zero-sum NFG. Assuming
that player 2 plays a best response (BR) to the policy of player
1, the expected utility is lower than under the assumption of a
subrational smooth best response SBR(·, τ = 0.3). The dotted
gray lines denote the expected utility of playing actions a or b
against an SBR respectively. The NE maximizes the expected
utility assuming player 2 plays a BR, while the QSE maximizes
under the assumption of an SBR. The SBRLE starts with response
temperature τR at a uniform distribution over actions a and b, and
ends with τR → ∞ at the BRLE. The SBRLE is equal to the Logit
equilibrium (LE) if the response temperature τR is equal to the
temperature τ of the LE.

sources (Yang et al., 2012). However, these methods fail to
accurately model behavior in zero-shot interactions, because
they require a lot of data to train the opponent model.

3. Game-Theoretic Background
For the game theoretic background, we adapt the notation
of Leyton-Brown and Shoham (2008) as well as Milec
et al. (2021). A Normal-form game (NFG) is a tuple
(n,A, u), where n ∈ N denotes the number of agents,
A = A1×· · ·×An the joint action set and u = (u1, . . . , un)
the utility functions. We call a = (a1, . . . , an) ∈ A a joint
action and ai is the action of agent i. Agents are indexed by
i ∈ {1, . . . , n} and −i denotes the set of all agents except i.
We abuse notation and use−i as notation for the other agent
in games of two players and the set of all agents except i
otherwise. A game of two agents is called zero-sum, if the
utility function has the property ui(a) = −u−i(a)∀a ∈ A.
Similarly, a game is fully cooperative if all agents have the
same utility function. The set of policies ∆i (also called
mixed strategies) is the set of probability distributions over
the action space Ai. A joint policy (also called strategy
profile) is a tuple of policies π = (π1, . . . , πN ), πi ∈ ∆i.
Its utility for agent i is defined as the expected outcome
ui(π) =

∑
a∈A ui(a)

∏n
j=1 πj(aj). The best response

(BR) of agent i to the policies of other agents π−i is a
policy πi ∈ BR(π−i), where the best response function is

defined as the set of policies achieving maximum utility:
BR(π−i) = {π∗

i |ui(π∗
i , π−i) ≥ ui(πi, π−i)∀πi ∈ ∆i}.

If all agents play a BR, then their joint policy is called a
Nash equilibrium (Nash, 1951).

Nash equilibria inhibit the assumption that all players act
rational, which is not realistic in most real-world sce-
narios. Following Hofbauer and Sandholm (2002), one
can incorporate an error probability by transforming the
utility functions ũi(π) = ui(π) +

1
τ ψ(πi) using Shan-

non Entropy as a concave smoothing function ψ(πi) =∑
ai∈Ai

πi(ai) log(πi(ai)). The temperature parameter τ
controls the inverse strength of regularization, i.e. the
bounded rationality. Agents can maximize the transformed
utilities by playing a smooth best response (SBR), which
is a softmax over the original utilities SBR(π−i, τ) ∝
exp(τ ui( · , π−i)). To exemplify the effect of the tempera-
ture, a temperature of τ = 0 corresponds to uniform random
play and the SBR approaches a BR with τ →∞. Akin to
BR and Nash equilibria, if all agents play an SBR, then their
joint policy is called a Logit equilibrium (LE), which is a
subset of the more general Quantal Response equilibrium
(McKelvey & Palfrey, 1995). In some literature, the Logit
equilibrium is also called Stochastic equilibrium (Maher,
1998; Akamatsu, 1996). We compute the LE by Stochastic
Fictitious Play (Hofbauer & Sandholm, 2002). In detail,
each agent starts from a random policy and iteratively com-
putes the SBR to the other policies. This process is repeated
with a step size annealing according to Nagurney and Zhang
(1996) until a fixed point is reached (see Appendix B.2 for
details).

In the LE, both players play with the same rationality. But,
it is also useful to model asymmetric rationality, i.e. one
rational agent playing with one or multiple other imperfect
agents. An equilibrium that models such asymmetry is the
Quantal Stackelberg Equilibrium (QSE) (Milec et al., 2021),
which is restricted to games of two agents. One rational
agent maximizes their reward given that the other weak
agent plays an SBR: πi = argmaxui(πi,SBR(πi, τ)).
However, the weak agent can only play an SBR if they know
the optimal policy of the rational agent. This assumption is
true in repeated interactions as one can observe the policy
of the other agent, but violated in zero-shot interactions.

4. Method
In contrast to existing methods, we do not use an ensemble
to train with diverse agents, but rather focus on training
against agents of different playing strengths. This strength
is parameterized by a scalar temperature τ . We consider
the following setup: a perfectly rational agent i plays a
game with one or multiple weak agents, who only inherit
a bounded rationality. Therefore, each of the weak agents
j ∈ −i is modeled by a scalar τj .

3
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(a) The proxy model evaluates the leaf nodes of its fixed-depth
search tree using a learned value function vθP . It approximates
a Logit equilibrium (LE) given the temperature τ with its policy
πθP . The backup operator is a solver for the LE of a Normal-
form game constructed from sibling nodes. The temperature τ
is sampled uniformly transformed by a cosine (Appendix I.1).
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(b) The response model evaluates the leaf nodes of its fixed-
depth search tree using a learned value function vθR . It com-
putes the action utilities ui(·, π−i) induced by the trained proxy
policy πθP given temperatures τ1, τ2, . . . , τN . The policy πθR

approximates a Smooth Best Response (SBR) with fixed re-
sponse temperature τR to the action utilities.

Figure 3. Training architecture of the proxy and response models of Albatross. Both models are trained via planning-augmented self-play
using fixed-depth search and are conditioned on one (proxy model) or multiple (response model) temperatures τ that are drawn from a
distribution p(τ). The response model uses the trained proxy model to compute the Smooth Best Response Logit Equilibrium (SBRLE).

4.1. Smooth Best Response Logit Equilibrium (SBRLE)

Existing concepts of asymmetric equilibria, i.e. QNE and
QSE, are a model for the interaction of a single weak agent
and a perfectly rational agent. In detail, the weak agent plays
an SBR to the respective optimal policy of the rational agent.
However, this implies that the optimal policy of the rational
agent is known to the weak agent. In other words, their
bounded rationality only prevents them from computing
their own optimal strategy, but not of the rational player.
This assumption is valid in repeated interactions where the
other agents policy can simply be observed, but violated in
our setup of zero-shot interactions.

To model the symmetric bounded rationality in a setup with
multiple weak agents, we utilize Logit equilibria (LE). The
LE does not need to be the same for all bounded rational
agents, i.e. they could play according to different LE with
different temperatures. Given the weak agents play accord-
ing LEs, we can compute a (smooth) best response to their
policies. We call the joint policy of LE and the rational
agents response a Smooth Best Response Logit Equilibrium
(SBRLE): (SBR(π−i, τR), π−i) is a SBLRE, iff ∀ j ∈ −i
πj is a LE policy with temperature τj , where τR is the re-
sponse temperature of the rational player. If τR =∞, then
the rational player plays a best response to the weak agents
and we call the corresponding joint policy a Best Response
Logit equilibrium (BRLE).

To highlight the difference between QSE and SBRLE: In
the QSE, the weak agent plays an SBR to the optimal policy
of the rational agent, but in the SBRLE to the LE policy,

if the rational agent were to play according to LE. The
different equilibria are visualized in Figure 2 for a zero-
sum NFG. Even though the NE achieves maximal utility
against perfectly rational opponents, it does not gain any
utility from playing a weak opponent (in the example, NE
lies on the intersection of BR and SBR). Depending on
the NFG and rationality of agents, the quantal equilibria
yield higher expected utility. In the SBRLE, the rational
agent can freely choose the response temperature τR. A
high response temperature directly corresponds to higher
utility, but a response temperature of τR =∞ may impair
the training process, since a BR is not necessarily unique.
Consequently, the SBRLE is preferable to BRLE as it yields
a unique learning target. For a detailed discussion on the
effect of a unique learning target, see Appendix D.

4.2. Albatross

The computation of an SBRLE requires a full traversal of
the game tree for every agent, initially to compute all Logit
equilibria and afterwards the BR of the rational player. Ad-
ditionally, a complete re-computation is required for every
new temperature estimate of the weak agents. Since this
is infeasible for most games, we present Albatross, which
approximates an SBRLE using neural networks. The train-
ing of Albatross consists of two stages. Firstly, a proxy
model approximates Logit equilibria at different temper-
atures. Then, a response model is trained to exploit the
proxy model. Both models are trained using an adaptation
of AlphaZero. We briefly outline the original AlphaZero
algorithm, but refer to Appendix A and the original paper
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(Silver et al., 2018; 2017) for a detailed explanation. Using
AlphaZero, an actor-critic network predicting policy πθ(oi)
and value vθ(oi) of agent i is trained, where oi is an ob-
servation of the current game state from the perspective of
agent i. During training, Monte-Carlo tree search (MCTS)
(Metropolis & Ulam, 1949) is used as policy improvement
operator, i.e. the policy of the root node is used as target
for gradient updates. Targets for the gradient updates of
the value function are the cumulative rewards of an episode,
i.e. the result of a Monte-Carlo policy evaluation. During
MCTS, the value function is used as an evaluation heuristic
in the leaf nodes and the policy as guidance for exploration.

Similar to the original AlphaZero algorithm, the proxy
model predicts policy πθP (oi, τ) and value vθP (oi, τ) of
agent i based on observation oi, but is also conditioned on
the temperature τ . This conditioning allows the prediction
of policy and value for LE of any temperature in the training
distribution. During training, the temperature τ is sampled
at the beginning of an episode from a distribution p(τ) in
the interval [τmin , τmax ] (see Appendix I.1 for details re-
garding the training distribution). For the policy- and value
improvement operator, we utilize fixed depth search instead
of MCTS. In detail, we start at the leaf nodes and construct
an NFG from sibling nodes. Then, we use a solver to com-
pute the Logit equilibrium of the NFG and propagate the
expected utility of the equilibrium to the parent node. This
process is repeated until the LE at the root node is known.
Then, the policy and value at the root node are used as
targets for the gradient updates.

After the proxy model is trained, we start training of the
response model. In contrast to the single scalar temperature
τ of the proxy model, the response model is conditioned
on the temperature of every agent except itself, which we
define as τ−i = (τ1, . . . , τi−1, τi+1, . . . , τN ). Therefore,
the response model predicts policy πθR(oi, τ−i) and value
vθR(oi, τ−i). Again, we utilize fixed depth search and an
adapted backup function for training. During backup, we
approximate the policies π−i of other agents with the policy
πθP of the proxy model. Given the proxy policies, we com-
pute the smooth best response SBR(π−i,θP , τR), where the
response temperature τR is a fixed hyperparameter. The
policy at the root node as well as its expected utility are
used as targets for gradient updates. The policy πθR of the
response model is used for evaluation. We visualize the
training scheme of proxy and response model in Figure 3.
Detailed pseudocode for training AlphaZero and Albatross
can be found in Appendix A.

4.3. Online Temperature Estimation

The previous two sections presented the methodology for
training a policy conditioned on the temperature of other
agents. At test-time, the rational agent has to estimate the

temperature of the weak agents to input these temperatures
into the response model. As a first option, the tempera-
ture can originate from insights about the agent. For ex-
ample, a uniformly random agent always plays with tem-
perature of τ = 0. In zero-shot interactions, no previ-
ous knowledge about the other agent exists, but it is pos-
sible to estimate their temperature online using Maximum
Likelihood Estimation (MLE). We consider the following
setup: a rational agent i intents to estimate the tempera-
tures τj of weak agents j ∈ −i. Given K observations
of actions (a1j , . . . , a

K
j ) and corresponding optimal poli-

cies (π1
−j , . . . , π

K
−j) of the other agents, one can estimate

the temperature τj of weak agent j. The log-likelihood
l(τj) of player j exhibiting temperature τj can be computed
(Reverdy & Leonard, 2015) as

l(τj) =

K∑
k=1

[
τj u

k
j (a

k
j , π

k
−j)−ln

∑
aj∈Aj

exp
(
τj u

k
j (aj , π

k
−j)

)]
,

∂l

∂τj
=

K∑
k=1

[
ukj (a

k
j , π

k
−j)

−
∑

aj∈Aj
ukj (aj , π

k
−j) exp

(
τj u

k
j (aj , π

k
−j)

)∑
aj∈Aj

exp
(
τj ukj (aj , π

k
−j)

) ]
.

In order to find the maximum likelihood, one can utilize
the gradient of the likelihood function ∂l

∂τj
. The global

optimum can be computed using simple line search over the
temperature τj , because the likelihood function is concave,
which we prove in Appendix F. Note that globally optimal
policies are not well defined if multiple Nash equilibria exist
due to the equilibrium selection problem (Punniyamoorthy
et al., 2023). Therefore, we define optimal play in relation
to the learned equilibrium of the proxy model. Specifically,
we use the policy πθP (·, τmax ) of the proxy model with the
highest temperature τmax .

5. Empirical Evaluation
In our experiments, we want to research the following ques-
tions: (Q1) How does Albatross cooperate with unknown
agents and adapt its behavior? (Q2) What effect has the tem-
perature on its behavior? (Q3) Is Albatross able to estimate
rationality within a single episode? (Q4) Can Albatross ex-
ploit weak enemies in the competitive domain? We answer
these questions in the cooperative game of Overcooked (Car-
roll et al., 2019) and the competitive game of Battlesnake
(Chung et al., 2020). In all experiments, we evaluate on five
different seeds.

5.1. Cooperative Overcooked

For cooperative tasks, we evaluate Albatross in the Over-
cooked benchmark. In this game, two agents are placed in a
kitchen and tasked with cooking as many soups as possible

5



Mastering Zero-Shot Interactions in Cooperative and Competitive Simultaneous Games

1

2 3

4

5

Figure 4. Albatross agent (right) and a possibly weak agent (left)
in the Asymmetric Advantage layout of Overcooked. If the left
agent plays rationally, they should realize that they have a shorter
path to their serving location (gray tile). They would move down,
retrieve a dish and deliver the soup. Having a strong estimation of
rationality (e.g. τ = 10), Albatross trusts them to deliver the soup
and moves up to pick up an onion 1 and prepare the next soup in
the other pot 2 . If Albatross has an estimation of weak rationality
for the left agent (e.g. τ = 0), then Albatross moves down to
retrieve a dish 3 , collects the soup 4 and serves it themselves 5 .

in a given time frame. The agents may perform six actions:
move up, down, left, right, stay in place or interact with the
environment. To cook a soup, an agent firstly needs to fetch
and place an onion in a pot three times. Then, they have to
start the cooking process, wait for 20 steps and retrieve a
dish from a dish dispenser. Lastly, they have to put the soup
on the dish and serve the soup at a counter. There exist five
different kitchen layouts (see Appendix G).

To answer (Q1) qualitatively, we show an example of the
adaptive behavior of Albatross in Figure 4. Albatross per-
forms different action sequences depending on the rational-
ity estimation of the other agent. For a quantitative answer,
we simulate the cooperation with humans by evaluating with
a behavior cloning agent trained on human data. We com-
pare Albatross to Proximal Policy-Optimization (Schulman
et al., 2017), Population-based Training (Jaderberg et al.,
2017), Fictitious Co-Play (Strouse et al., 2021), Trajectory
Diversity (Lupu et al., 2021), Maximum Entropy Population-
Based training (Zhao et al., 2023) and PECAN (Lou et al.,
2023). In Figure 5, the reward in cooperation with the be-
havior cloning agent is displayed. In all layouts, except
Forced Coordination, Albatross yields higher cooperation
rewards than all baseline methods. On average, Albatross
outperforms PECAN by 37.6%. In the Forced Coordination
layout, good behavior is difficult to learn as rewards highly
depend on the actions of the other agents.

Additionally, we evaluate the zero-shot cooperation per-
formance of Albatross with different scripted agents, that
exhibit specific behavioral pattern (Yu et al., 2023). For
example, we pair the learned policy with agents that only

Cramped Rm. Asym. Adv. Coord. Ring Forced Coord. Counter Circ.
0

50

100

150

200

250

300
Albatross
PECAN
MEP
TrajeDi
FCP
PBT
PPO

Figure 5. Cooperation performance with a behavior cloning agent
trained on a dataset of human play (Carroll et al., 2019) in all five
layouts of Overcooked. Episodes last 400 time steps and agents
receive a common reward of 20 for delivering a soup.

place onions in a pot, or place dishes everywhere in the
kitchen. Results of the evaluation are displayed in Table 1.
The scripted policies are out-of-distribution regarding the
training of Albatross, since they exhibit specific irrational
behavior regardless of the reward. In contrast, Albatross
only trained with Logit equilibrium policies, which exhibit
an error probability proportional to the expected reward per
action. Nevertheless, in most settings Albatross achieves
cooperation performance greater or equal to Hidden-Utility
Self-Play (HSP) (Yu et al., 2023), whose event-based train-
ing models such biased policies. This indicates that Alba-
tross learns best responses which are robust against viola-
tions of the modelling assumptions.

To analyze the effect of temperature on the behavior of Al-
batross (Q2), we firstly analyze proxy and response model
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Figure 6. Effects of temperature on the behavior of Albatross in
the Counter Circuit layout. (a) The entropy of the proxy model
decreases with rising temperature and (b) the mutual information
between response and proxy policy increases.
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Table 1. Cooperation performance with scripted agents exhibiting specific behaviors, e.g. always placing onions in the cooking pot. None
of the behavior patterns were used during training, such that the learned policy has to adapt in zero-shot coordination.

ENVIRONMENT SCRIPT FCP MEP TRAJDIV HSP ALBATROSS

ASYM. ADV. ONION PLACEMENT 334.8±13.0 330.5±14.2 323.6±17.0 376.8±9.9 342.5±11.3
ASYM. ADV. ONION PLAC.+DELIVERY 297.7±3.4 298.5±3.4 290.0±4.7 300.1±4.1 309.2±11.1
COORD. RING ONION EVERYWHERE 109.1±7.9 124.0±3.4 116.9±8.9 121.2±12.6 143.9±2.4
COORD. RING DISH EVERYWHERE 94.4±3.8 100.2±5.3 107.3±5.3 115.4±7.4 117.4±0.7
COUNTER CIRC. ONION EVERYWHERE 63.7±9.2 88.9±5.1 82.0±12.8 107.5±3.5 119.6±1.2
COUNTER CIRC. DISH EVERYWHERE 57.0±5.3 53.0±1.8 57.2±2.2 78.5±4.1 78.9±4.3
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Figure 7. Self-play performance of the proxy model as well as cooperation performance between Albatross and the proxy model at
different temperatures. Albatross* denotes the cooperation capability of Albatross without Maximum Likelihood Estimation, i.e. if the the
true fixed temperature of the proxy model is given.

directly. In Figure 6, we show that the entropy of the proxy
policy decreases with rising temperature. This corresponds
to the lower error probability of agents with higher rational-
ity. To further highlight the adaptive behavior of Albatross,
we measure the mutual information (Li et al., 2022; 2023)
between its response- and proxy policy:

I(πθR ;πθP ) = H(πθP )−H(πθP | πθR).

With rising temperatures, we observe a drop in the entropy
of the proxy policy with an increase in mutual information,
estimated via the conditional action frequencies. This cap-
tures the level of cooperation between both policies as it
implies a decrease in the conditional entropy H(πθP | πθR).
Consequently, Albatross cooperates with rational agents and
acts self-reliant if the other agent does not cooperate.

Next, we analyze the effect of temperature on the expected
reward in Figure 7. For temperature τ = 0, the proxy model
learned a uniformly random policy and does not achieve any
reward in self-play. At higher temperatures, the achieved
reward directly corresponds to the temperature. Analyzing
Albatross with the proxy model shows the cooperation with
agents of different playing strength. For example, the reward
attainable when cooperating with a uniformly random agent
is visible at τ = 0. Given an exact temperature estimation
(denoted as Albatross*), we expect the reward of Albatross*
with the proxy model to converge to the proxy self-play
performance at high temperatures as both play optimally.

We can observe this effect in all layouts except Asymmetric
Advantage, where the training of the response model did
not perfectly converge.

To show that Albatross is able to estimate rationality within
a single episode (Q3), we can observe the difference in re-
ward between Albatross and Albatross* in Figure 7. At high
temperatures, the reward obtained by Albatross is lower
than the self-play performance of the proxy model due to
the aleatoric uncertainty of the MLE. The extend of this
uncertainty depends on the layout. In Figure 8, we show the
result of MLE at different time steps during an episode in
cooperation with the human behavior cloning agent. After
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Figure 8. Analysis of temperature estimation of Albatross in the
Counter Circuit layout. (a) During an episode, temperature estima-
tion of MLE quickly converges to the true value. (b) We analyze
the the expected reward using a fixed temperature input.
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Figure 9. Evaluation of AlphaZero and Albatross against baseline MCTS (+ value function heuristic) agents with different budgets of
search iterations in the game modes of Battlesnake. Albatross is able to exploit weak agents better than AlphaZero.

only few time steps, MLE converges towards the true tem-
perature estimate. An evaluation of Albatross with a fixed
temperature input reveals that minor estimation errors have
little effect on the achieved reward. However, major overes-
timation of the other agents rationality leads to a significant
drop in performance.

In Figure 8, after only few episode steps in an episode,
the MLE already estimates a temperature close to the true
value. An evaluation of Albatross with a fixed temperature
input reveals that minor estimation errors have little effect
on the achieved reward. However, major overestimation
of the other agents rationality leads to a significant drop in
performance.

5.2. Competitive Battlesnake

To show that Albatross is able to exploit weak agents in the
competitive domain (Q4), we evaluate in the game of Bat-
tlesnake. The game takes place on a grid, where agents have
to survive as long as possible. They die, if they collide either
with a wall or the body of a snake. If two agents collide
head-to-head, the longer snake survives. In the stochastic
extensions, food spawns randomly on the map which agents
have to eat to prevent starving and grow their body. In con-
trast, there exist no food in the game of Tron and the body
of each snake is elongated in every turn. All three game
modes are visualized in Figure 10. Agents receive a reward
of +1 for winning and−1 for dying in the game modes with
two agents. In the mode with four agents, a reward of +1 is
distributed among the living agents if another agent dies.

We compare Albatross against AlphaZero (Silver et al.,
2018). Since AlphaZero was developed for sequential
games, we perform an extensive analysis on the adapta-
tion of AlphaZero to simultaneous games (see Appendix C).
For a fair comparison, Albatross and AlphaZero are trained
on the same time budget and hardware. Since training Alba-
tross is a two-step process, proxy and response model are
trained for half as long as AlphaZero.

In Figure 9, both play against baseline agents, which uti-
lize simultaneous-move MCTS (Bošanský et al., 2016)
with a handcrafted value heuristic adapted from Schier and
Wüstenbecker (2019). Rationality of the baseline agents is
modulated by the compute budget, i.e. the number of tree
search iterations. Albatross consistently outperforms Alp-
haZero and the reward difference is highest against weaker
enemies. That is, because they violate the perfect rationality
assumption of AlphaZero. In contrast, Albatross is able to
identify and exploit their weak rationality. Strong enemies
are not exploitable, which leads to a convergence of the re-
ward achieved by Albatross and AlphaZero. Interestingly, in
the stochastic 2-player mode, the reward difference between
Albatross and AlphaZero is highest for medium rational
agents with about 103 iterations. Those agents are able to
surprise AlphaZero by playing suboptimal, but still good
enough to win some games. This effect does not occur in
the game of Tron as games are shorter and mistakes result
in a quick death.

Additionally, we play a tournament between Albatross, Al-
phaZero and baseline agents of different strengths in the
stochastic mode with four agents. In Figure 1, the results of
this tournament are displayed. We plot the estimated tem-
perature of the agents and the TrueSkill scores achieved in
the tournament. For the rationality of Albatross we use the

(a) Tron (b) Stoch. 2 Player (c) Stoch. 4 Player

Figure 10. Game modes of Battlesnake: the standard game of
Tron as well as the stochastic extensions of Battlesnake for either
two or four agents. Food is visualized by red circles.
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response temperature τR = 10. AlphaZero achieves nearly
maximum temperature of τ = 9.99, which corresponds to
optimal play assuming all other agents play optimal as well.
However, the baseline agents do not play optimally, which
Albatross is able to detect and exploit. Consequently, it
achieves a higher TrueSkill score than AlphaZero.

5.3. Cooperative Battlesnake

Lastly, we evaluate the capabilities of Albatross to cooperate
with more than two agents. To this end, we devise a game
variant of Tron with cooperative rewards, i.e. the objective
of all agents is to stay alive as a group for as long as possible.
Since the previously used board size of 7×7 is too small for
four players in the deterministic game mode of Tron, we
increase the board size to 11×11. The results are shown
in Figure 11. Due to the deterministic game dynamics,
the board fills up quickly and games are short. Therefore,
the possible variation in discounted reward is also small.
However, Albatross still outperforms AlphaZero by a small
margin when playing with weak partners, i.e. few search
iterations. Again, this difference diminishes with partners
of higher rationality since AlphaZero assumes optimal play.
These results verify that Albatross is able to cooperate well
with more than two agents of different rationality.

6. Limitations and Future Work
To accurately estimate the rationality of an agent, Albatross
requires observations of their behavior. In Figure 8, we
demonstrate that this estimation quickly converges within
20 to 30 time steps. This is exemplified in the game of
Tron, which has a maximum game length of 24. However,
Albatross may not be applicable to games with even shorter
episodes. In future work, Albatross could incorporate a prior
temperature likelihood and perform maximum a posteriori
estimation to be applicable to very short interactions. For
example, a prior likelihood could be obtained from an online
leaderboard or other sparse knowledge about the other agent.
Additionally, Unsupervised Reinforcement Learning could
be used to obtain a prior policy (Schubert et al., 2023).
Another current limitation of Albatross is the dependency on
planning in the joint action space of all agents. The size of
the joint action space grows exponentially with the number
of agents and number of actions per agent. Therefore, the
tree search becomes a weak improvement operator if only
a fraction of nodes can be evaluated. This prevents the
application in domains with large joint action spaces or
domains where the environment dynamics are unknown.
For example, Albatross is not applicable to the MeltingPot
environment (Agapiou et al., 2022) as it does not allow for
planning. In future work, Albatross can be enhanced with a
learned environment model akin to MuZero (Schrittwieser
et al., 2020) to address these limitations.
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Figure 11. Evaluation of AlphaZero and Albatross n a four player
cooperative game variant of Tron with baseline MCTS (+ value
function heuristic) agents that have different budgets of search
iterations i.

7. Conclusion
We developed the novel equilibrium concept of an SBRLE
for modeling the interaction between a single rational and
multiple weak agents in zero-shot interactions. Since the
SBRLE is infeasible in most games, we proposed Albatross,
which is capable of learning the SBRLE through a combina-
tion of self-play and planning. Using Albatross, we are able
to reach state of the art in the Overcooked benchmark for
cooperative tasks. We showed that Albatross is able to esti-
mate rationality of unknown agents within a single episode
and cooperate with them by adapting its behavior. Analyz-
ing the effect of temperature estimation, we find Albatross
cooperates with rational partners and behaves self-reliant
with weak partners. Moreover, we showed that Albatross is
able to exploit weak enemies in the competitive domain.

Impact Statement
This paper represents work contributing to the advancement
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increasing quality of life on the human side. However, we
are aware that rationality is an intricate concept, which can-
not completely be modeled using a scalar value. For real-
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must be examined. Moreover, for a given application, eth-
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the rationality of a human is appropriate.
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Matyas, J., Mao, Y., Sunehag, P., Koster, R., Madhushani,
U., Kopparapu, K., Comanescu, R., Strouse, D., Johanson,
M. B., Singh, S., Haas, J., Mordatch, I., Mobbs, D., and
Leibo, J. Z. Melting Pot 2.0. ArXiv, abs/2211.13746,
2022.

Akamatsu, T. Cyclic flows, Markov process and stochas-
tic traffic assignment. Transportation Research Part B:
Methodological, 30(5):369–386, October 1996.

Anthony, T., Tian, Z., and Barber, D. Thinking Fast and
Slow with Deep Learning and Tree Search. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R.,
Vishwanathan, S., and Garnett, R. (eds.), Advances in
Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. E.
The Nonstochastic Multiarmed Bandit Problem. SIAM J.
Comput., 32:48–77, 2002.
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Winands, M. H. Algorithms for computing strategies
in two-player simultaneous move games. Artificial Intel-
ligence, 237:1–40, 2016.

Brown, N., Lerer, A., Gross, S., and Sandholm, T. Deep
Counterfactual Regret Minimization. In Chaudhuri, K.
and Salakhutdinov, R. (eds.), Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pp. 793–
802. PMLR, 09–15 Jun 2019.

Carroll, M., Shah, R., Ho, M. K., Griffiths, T. L., Seshia,
S. A., Abbeel, P., and Dragan, A. On the Utility of
Learning about Humans for Human-AI Coordination. In
Proceedings of the 33rd International Conference on Neu-
ral Information Processing Systems, pp. 5174–5185, Red
Hook, NY, USA, 2019. Curran Associates Inc.
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A. Training Procedures of AlphaZero and Albatross
In this section, we outline the training procedure of Albatross and highlight the differences to the original AlphaZero
algorithm. As an intuition, the proxy model learns to play like agents of different rationality, but only through self-play
without external supervision (e.g. imitation learning). Afterwards, the response model learns to play optimally against the
proxy model at all rationalities. In contrast, AlphaZero only performs self-play, only learning to play optimally against the
own highly rational policy.

Therefore, the training of AlphaZero is very similar to the training of the proxy model, but the neural networks are not
conditioned on the temperature. The main differences in the algorithms are highlighted in bold.

A.1. AlphaZero

In the original AlphaZero algorithm (Silver et al., 2018), Monte-Carlo tree search (MCTS) is used as a policy improvement
operator. For sequential games this is a good choice as it allows for deep searches by only focusing on promising regions in
the search space. However, in simultaneous games, the best action is highly dependent on the actions of the other players,
which nullifies this advantage. This is reflected in our hyperparameter search (see Appendix C), where we found that
replacing the standard MCTS with fixed depth search and Logit equilibrium backup yields the best performance.

Algorithm 1 Training of AlphaZero for simultaneous games
1: Input: Observation space o ∈ O, maximum rationality τmax

2: Output: Trained models πθ(oi) and vθ(oi)
3: Initialize models πθ and vθ with random weights
4: Initialize replay buffer B
5: for each training episode do
6: for each step of the episode do
7: Perform fixed depth search to construct NFGs and compute LEs:
8: 1. At each leaf node, evaluate states via vθ(oleaf,i) and construct NFG from sibling nodes.
9: 2. Use a solver to compute the Logit equilibrium with temperature τmax for the NFG

10: 3. Propagate the expected utility of the LE to the parent node
11: 4. Repeat until the LE at the root node is computed
12: Let oi be the state observation and πLE(oi), vLE(oi) be policy and value of the LE at the root node for each player i
13: Collect experiences (oi, πLE(oi), vLE(oi)) at this step and add to B
14: Perform environment step by sampling actions ai from πLE(oi) for each player i
15: end for
16: for each minibatch sampled from B do
17: Update πθ and vθ via CrossEntropy and MSE respectively
18: end for
19: end for

The detailed training procedure is given in Algorithm 1. During each training step, a complete search tree is constructed up to
a fixed depth. Then, the leaf nodes are evaluated by the critic network vθ, which represent the utilities of Normal-form games
(NFG) constructed from the direct sibling nodes. The Logit equilibrium of these NFGs is computed using an equilibrium
solver (for details see Appendix B). The equilibria yield expected utilities for each player in the parent nodes, which again
are used to create NFGs from sibling nodes. This process is repeated until the root node is reached. The Logit equilibrium
at the root node yields an improved policy and value estimate for each player i at the current game state compared to the
original policy and value prediction at this game state. These target values are added to the replay buffer and used later for
gradient updates.

A.2. Albatross

The training of Albatross is a two-stage process. Firstly, a proxy model learns to imitate the behavior of agents at different
rationality. Afterwards, a response model learns to play a smooth best response to the proxy model. The training process of
the proxy model is very similar to the training of AlphaZero outlined above. This procedure is visualized in Algorithm 2.
The major distinction is that policy and value networks are conditioned on a scalar temperature parameter, which controls
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the rationality of the proxy model. To train the proxy model on a range of different temperatures, a temperature is sampled
at the beginning of each training episode. During each step in the episode, again Logit equilibria are computed during fixed
depth search for policy and value improvement. In contrast to the training of AlphaZero, the temperature sampled at the
beginning of the episode is used for computing the Logit equilibria. Additionally, the temperature is also added to the replay
buffer as they are necessary for the gradient updates.

Algorithm 2 Training of Proxy Model in Albatross (Differences to AlphaZero are highlighted in blue)
1: Input: Observation space o ∈ O, temperature range [τmin, τmax, temperature distribution p(τ)
2: Output: Trained proxy models πθP (oi, τ) and vθP (oi, τ)
3: Initialize proxy models πθP and vθP with random weights
4: Initialize replay buffer B
5: for each training episode do
6: Sample temperature τ from p(τ) within [τmin, τmax]
7: for each step of the episode do
8: Perform fixed depth search to construct NFGs and compute LEs:
9: 1. At each leaf node, evaluate states via vθP (oleaf,i, τ) and construct NFG from sibling nodes.

10: 2. Use a solver to compute the Logit equilibrium with temperature τ for the NFG
11: 3. Propagate the expected utility of the LE to the parent node
12: 4. Repeat until the LE at the root node is computed
13: Let oi be the state observation and πLE(oi, τ), vLE(oi, τ) be policy and value of the LE at the root node for each

player i
14: Collect experiences (oi, πLE(oi, τ), vLE(oi, τ), temperature τ) at this step and add to B
15: Perform environment step by sampling actions ai from πLE(oi, τ) for each player i
16: end for
17: for each minibatch sampled from B do
18: Update πθP and vθP via CrossEntropy and MSE respectively
19: end for
20: end for

After training the proxy model, the response model is trained using the policy of the proxy model. The policy and value
network of the response model are not only conditioned on a single temperature, but a temperature for every player except
itself. Therefore, in a game with n players, the response model is conditioned on n− 1 scalar temperatures. The response
model approximates the Smooth Best Response (SBR) to the policy of the proxy model. Since the response model should
be trained on all combination of rationalities for the other agent, n − 1 temperatures are sampled at the beginning of an
episode. At each training step, a policy and value improvement is achieved by computing the SBRLE with tree search up to
a fixed depth. At first, the leaf nodes of the search tree are evaluated using the value network vθR , which form NFGs. The
policy of the weak players in the NFG can be computed by using the proxy policy πθP in the parent node with the respective
temperature sampled at the beginning of the episode. Then, the SBR is computed by a softmax transformation with fixed
response temperature τR on the expected utilities for player i. Similar to the training of AlphaZero and the Proxy model, the
SBRLE is propagated to the root node and used for gradient updates. In contrast to the training of the proxy model, all n− 1
temperatures are added to the replay buffer. Another difference to AlphaZero and the proxy model is the policy used for
advancing the environment state between training steps. Only the action for the agent controlled by the response model is
sampled from the SBRLE computed at the root node. All other actions are sampled from the proxy policy to accurately
represent the state distribution when playing weak agents.

B. Algorithms for equilibrium computation
There exist a number of algorithms for computing the equilibria presented. We give a brief overview of the algorithms used
in this work. All algorithms are implemented in C++ and available open source along with our code. To the best of our
knowledge, this is the first open-source implementation of solvers for Quantal Stackelberg equilibria.
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Algorithm 3 Training of Response Model in Albatross (Differences to Proxy are highlighted in blue)
1: Input: Observation space o ∈ O, temperature range [τmin, τmax], temperature distribution p(τ), fixed response

temperature τR, proxy policy πθP (oi, τ)
2: Output: Trained response models πθR(oi, τ−i) and vθR(oi, τ−i)
3: Initialize response models πθR and vθR with random weights
4: Initialize replay buffer B
5: for each training episode do
6: Sample temperatures τ−i from p(τ) within [τmin, τmax] for each player except i
7: for each step of the episode do
8: Perform fixed depth search to approximate an SBRLE:
9: 1. At each leaf node, evaluate states via vθR(oleaf,i, τ−i) and construct NFG from sibling nodes.

10: 2. At the parent node evaluate the proxy policy for every other agent j as πθP (oparent,j , τj)
11: 3. Compute the Smooth Best Response (SBR) to LE policies with response temperature τR
12: 4. Repeat until the SBR to the LE of the other player at the root node is computed
13: Let oi be the state observation and πSBRLE(oi, τ−i), vSBRLE(oi, τ−i) be policy and value of the SBRLE at the root

node for player i
14: Collect experiences (oi, πSBRLE(oi, τ−i), vSBRLE(oi, τ−i), temperatures τ−i) at this step and add to B
15: Perform environment step by sampling actions ai from πSBRLE(oi, τ) for player i and from the proxy policy

πθP (oj , τj) for every other agent j
16: end for
17: for each minibatch sampled from B do
18: Update πθR and vθR via CrossEntropy and MSE respectively
19: end for
20: end for

B.1. Nash Equilibrium

For the computation of Nash equilibria, we use the algorithm of Porter et al. (2008), which is based on support enumeration.
A support is the set of actions receiving a non-zero probability in the Nash equilibrium. Until an equilibrium is found,
the supports are iterated and a linear program is solved to determine if a Nash equilibrium exists for the current support.
Supports are ordered based on a heuristic prioritizing small and balanced supports. For games of more than two players, a
non-linear program is solved. For details regarding the formulation of the (non-) linear program, we refer to the original
work.

B.2. Logit Equilibrium

A Logit equilibrium can be computed by using the smooth best response dynamics. In detail, starting from a uniform
policy, all players compute the smooth best response given the other players policy. These new policies are the basis for the
computation of smooth best responses in the next iteration. This process is called Stochastic Fictitious Play (SFP) (Hofbauer
& Sandholm, 2002) (sometimes also titled Smooth Fictitious Play (Fudenberg & Levine, 1998)). Simply following the
dynamics yields a fixed point in two-player zero-sum games, but can form a cycle in other games (Shapley, 1964). Therefore,
one has to anneal the step size for updating the policy of each player. Formally, in iteration t the policies are updated as
πt+1
i = πt

i +αt(SBR(πt
−i, τ)−πt

i). Robbins and Monro (1951) proved that SFP converges almost surely to the equilibrium
point for the step sizes (α1, α2, . . .) if the conditions limt→∞ αt = 0 and

∑∞
t=1 αt =∞ hold. We compare multiple step

size schedules, which all fulfill the two mentioned conditions.

• The method of successive averages (MSA) (Robbins & Monro, 1951) updates the policy as an average of all previous
policies, which is equivalent to using a step size of αt = 1/t.

• Polyak (1990) proposed to use a step size of αt = t−2/3.

• Nagurney and Zhang (1996) proposed a schedule of learning rates which converges to zero at a slow rate:
(1, 12 ,

1
2 ,

1
3 ,

1
3 ,

1
3 , . . . , t times 1

t ).

• Self-regulating average (SRA) (Liu et al., 2009) is a case-based schedule accelerating the decay if learning diverges
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and decelerating the decay when converging. The learning rate factors are αt =
1
βt

with

βt =

{
βt−1 + γ

∥∥πt
i − SBR(πt

−i, τ)
∥∥ ≥ ∥∥πt−1

i − SBR(πt−1
−i , τ)

∥∥
βt−1 + Γ else

,

where γ < 1 and Γ > 1. For our experiments, we adopted the hyperparameters γ = 0.3 and Γ = 1.8 from Liu et al.
(2009).
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Figure 12. Mean policy and value error of stochastic fictitious play using different learning rate schedules in 105 randomly generated
NFGs with different game theoretic properties. For the value error, ground truth values are computed using MSA with 107 iterations.
Temperatures of the Logit equilibria are randomly sampled in the interval [0, 10].

In Figure 12, we test the different learning rate schedules in randomly generated NFGs. For the random generation, we
uniformly sample utilities of a 2-player NFG with 6 actions per agent. To test different game theoretic properties, we
additionally perform experiments with normalized utilities according to the fully cooperative or zero-sum property. Then,
we approximate the Logit equilibrium using a different budget of solver iterations. The policy error is calculated as the
absolute difference in policy between two steps of SFP, i.e |SBR(πt

−i, τ)− πt
i |. Additionally, we compute the value error in

the zero-sum games, as they always have a unique Logit equilibrium (Hofbauer & Sandholm, 2002). In all experiments, the
learning rate schedule of Nagurney and Zhang (1996) performed best.
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Figure 13. Examples of the smooth best response dynamics at different temperatures for the matching pennies game. Both player have
two actions and get a reward of +1 if they choose the same action and -1 otherwise. The Logit equilibria are marked in red.

In Figure 13, an example of the smooth best response dynamics is visualized at different temperatures for the matching
pennies game. In the matching pennies game, both player have two actions and get a reward of +1 if they choose the same
action and -1 otherwise. The Logit equilibrium is always unique for sufficiently small temperatures, but does not have to be
for larger temperatures if multiple Nash equilibria exist (McKelvey & Palfrey, 1995). In this example, at τ = 0 and τ = 1,
the LE is unique, but at τ = 10 multiple LE exist, which approximate the three Nash equilibria of the game. Note that
depending on the initialization, SFP will converge to different LE.
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B.3. Quantal Stackelberg equilibrium

The computation requires finding a global optimum. We utilize a Dinkelbach-Type algorithm2 (Cerny et al., 2020), which
relies on fractional programming (Dinkelbach, 1967). The definition of a QSE can be reformulated as:

πi = argmax
π̃i∈∆i

∑
a∈A−i

ui(π̃i, a) exp(τ ui(π̃i, a))∑
a∈A−i

exp(τ ui(π̃i, a))
.

The primary notion of fractional programming is the transformation of the problem maxx f(x)/g(x) into a different problem
F (p) = maxx f(x) − pg(x), maximizing the original problem at the root F (p∗) = 0. Since p is a scalar and F convex,
one can find the global optimum using simple binary search. In each iteration, the binary search solves the Dinkelbach
subproblem

max
π̃i∈∆i

∑
a∈A−i

[
ui(π̃i, a)− p

]
exp(τ ui(π̃i, a)).

Solving the subproblem requires finding a global optimum of a simpler problem than the original formulation, but the
solution is still difficult to compute. In our games with small action spaces, it was sufficient to approximate the global
optimum using grid search. Notably, there exist other methods using piece-wise linear approximation or gradient descent
(Cerny et al., 2020).

C. AlphaZero in Competitive Simultaneous Games
The only component requiring change when adapting AlphaZero to simultaneous games is the tree search algorithm.
We evaluate three different tree search variants, namely Monte-Carlo Tree Search (MCTS) (Metropolis & Ulam, 1949),
Counterfactual Regret Minimization (CFR) and fixed depth search. MCTS is intended for sequential games, but there also
exists an adaptation for simultaneous games, namely Simultaneous-Move Monte-Carlo Tree Search (SM-MCTS) (Bošanský
et al., 2016). We refer to it simply as MCTS since only considering simultaneous games renders the distinction redundant.
For MCTS, we evaluate three different selection functions.

The Decoupled Upper Confidence bound for Trees (DUCT) uses the standard Upper Confidence bound for trees like
AlphaZero (Silver et al., 2018), but every player keeps an independent statistic of action-values and action-visits. Specifically,
each agent selects a move according to

a∗ = argmax
ai∈Ai

wai

nai

+ c πθ(oi, ai)

√
N

nai

,

where wa is the sum of values propagated through the current node in the backup phase and nai the number of times agent
i selected action ai. N denotes the total number of visits in the current node and c is a parameter balancing exploration
and exploitation. The policy πθ(oi, ai) is used to guide the exploration of the tree search. This adaptation is simple to
implement and has been shown to work well in a variety of games (Lanctot et al., 2013; Tak et al., 2014). However, it has
also been shown that DUCT does not always converge to a Nash equilibrium (Shafiei et al., 2009). This is, because the
action selection is deterministic and independently of the other agents. As a result, it is possible that all agents select the
same actions over and over, leading to a cycle around the true Nash equilibrium. This problem can be alleviated by using a
random tie break between actions with the same upper confidence bound. However, even with this extension, convergence
cannot be guaranteed.

In contrast to DUCT, the Exponential Weight Algorithm for Exploration and Exploitation (EXP3) (Auer et al., 2002) is a
stochastic selection algorithm. Again, all players select their action independently from each other, but they sample their
action from the following distribution

σ(ai) =
(1− γ) exp(ηwai

)∑
ãi∈Ai

exp(ηwãi
)
+

γ

|Ai|

=
(1− γ)∑

ãi∈Ai
exp(η(wai

− wãi
))

+
γ

|Ai|
,

2There are two errors in the original paper. In Algorithm 1, line 4 the subtraction needs to be an addition, and in line 7, the if and else
cases need to be swapped.
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where η = γ/|A| and γ is an exploration parameter. The second formula is numerically more stable, because it avoids the
computation of large exponential terms. In addition to the selection function, EXP3 also slightly alters the computation of
the backup function:

wai
← wai

+
w̃

σ(ai)
.

The outcome of the current evaluation is scaled by the probability that an action is taken to account for very unlikely events.
The final resulting policy of EXP3 is the average of the sample probabilities over all iterations. In contrast to DUCT, EXP3
has been proven to converge to a Nash equilibrium in Normal-form two-player zero-sum games (Auer et al., 2002).

In contrast to DUCT and EXP3, using Regret Matching an action is not selected according to the expected outcome of that
action, but proportional to the expected regret of not choosing that action. Similar to EXP3, Regret Matching is a stochastic
algorithm which samples an action from the distribution

σ(a) =

{
r+a /R

+ R+ > 0

1/|A| else
, R+ =

∑
ã∈A

r+ã ,

where (·)+ = max(0, ·). The regret values ra are computed during the backward pass for all actions that are not selected.
To compute the regret, the algorithm needs to keep track of the average outcome of all joint actions a, not just the individual
actions ai like DUCT and EXP3. Like Exp3, Regret Matching always converges to a Nash equilibrium in Normal-form
two-player zero-sum games (Lisy et al., 2013).

Counterfactual Regret Minimization (CFR) (Brown et al., 2019) is a tree search for games with imperfect-information. Since
games with imperfect information are a superset of simultaneous perfect-information games, CFR can be applied. However,
CFR is unnecessarily complicated and inefficient, because the only imperfect information arises from the simultaneous move
selection. Specifically, a simultaneous perfect-information game can also be modeled as a sequential imperfect-information
game, where agents do not know the selected move of the other agents. This leads to the property, that the value of a node
in the search tree only depends on the subtree below, but not on the previous game dynamics. An algorithm exploiting
this property is Simultaneous Move Online Outcome Sampling (SM-OOS) (Bošanský et al., 2016). Because CFR relies on
Regret Matching, SM-OOS is very similar to MCTS with Regret Matching as a selection function. However, there are a few
important differences. In SM-OOS, only one player updates their regret values in each iteration, while in MCTS with Regret
Matching all players update their regrets. The updating agent explores the state space by choosing a random action with
probability ϵ or playing on policy with probability 1− ϵ. The non-updating agents play on policy to ensure that the regret
calculation of the updating player is correct. Additionally, the updating agent keeps track of its tail and sampling probability.
The tail probability is the product of the policy action probabilities of all nodes from the current node to the leaf node on
the path taken during action selection. The sampling probability is very similar, but uses the action probabilities including
exploration instead of the plain policy. By weighting the regret updates with the ratio of tail and sampling probability, one
can ensure that the computed regret accurately reflects the regret that would occur when the agent plays on policy. Lastly,
only the non-updating player adds their current policy estimates to the cumulative policy sum at each node to prevent a
mixture with the exploration probability. Even though the calculation with a single updating agent is more accurate than the
computation in MCTS, it is also less efficient as less updates happen in the same computation time.

Fixed depth search, also called Backward induction (Rust, 2018), is an algorithm originally intended for solving a complete
game tree, but it is also possible to use the algorithm on a truncated game tree with a heuristic evaluation in the leaf nodes
(Bošanský et al., 2016). Firstly, the game tree is built up to a specific depth. Then, all leaf nodes are evaluated. Lastly,
the values of the leaf nodes are propagated upward the game tree to the root node using a backup function. We test two
backup functions, which are based on the idea of solving for an equilibrium. Using the game theoretic algorithms presented
in Appendix B, we test a backup function based on the Nash equilibrium as a Logit equilibrium with fixed temperature
(τ = 10).

C.1. Baseline Agent

In Battlesnake, area control is a standard heuristic for evaluating a game state (Schier & Wüstenbecker, 2019). In the
stochastic game modes, area control implicitly incentivizes a snake to eat more food than the enemy, because it can reach
more squares if it is able to win a head-to-head collision. We compute area control using a flood-fill algorithm (Pavlidis,
1982), which fills the board starting from the heads of all living snakes. If two snakes are able to reach a grid square at the
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same time, we use the length as a tie break according to the head-to-head collision rule. In the stochastic game modes,
our variant of flood fill also dynamically deletes the current tail of all snakes in every iteration. This simulates the game
dynamics as every snake would move forward and leave the square occupied by its tail. The only exception is a situation,
where a snake has just eaten a food in the last turn. Then, the tail of this snake stays on its square in the first iteration of
flood fill and is only deleted in the second iteration.

As an additional improvement, we combine the area control of each snake with their relative health score to prevent them
from starving. Let b2 be the total number of grid squares, Ñ the current agents alive, hmax the maximum health, hi the
health of agent i and αi their area control computed as described above. Then, we evaluate a board position for player i as

w̃i =
1

2
(α̃i + h̃i −

1

|Ñ |
∑
j∈Ñ

h̃j),

where α̃i is the area control advantage of agent i relative to the board size and h̃i their relative health. Specifically, these
values are computed as

α̃i =
1

b2
(
αi −

1

|Ñ |
∑
j∈Ñ

αj

)
, h̃i =

hi
hmax

.

For Tron, we omit the terms using a health score and simply evaluate a game state using α̃i. To compute a policy from the
heuristic value function, we utilize MCTS with DUCT as a selection function. For DUCT, we use the standard exploration
bonus of c =

√
2. Since the baseline agent does not have a trained policy model to guide the search, we omit the policy

guidance term in DUCT.

C.2. Evaluation

We evaluate the different tree search variants in the three game modes of Battlesnake against the baseline agent using 2e3
search iterations. For all game modes, we train AlphaZero with the adapted tree search on five seeds. The game of Tron has
short episodes and a smaller state space, such that we limit training time to a single day. In contrast, for the stochastic game
modes, we train AlphaZero for two days.
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Figure 14. Evaluation of AlphaZero with different Search variants in sim. games. Mean and standard deviation are computed over five
seeds.

In Figure 14, the evaluation results are displayed. Note that we excluded the worst performing variants, namely MCTS
with Exp3 selection function and fixed depth search with Nash equilibrium backup, from the experiments of the stochastic
modes to save resources. In Tron, RM and SM-OOS perform best. However, in the stochastic mode with two players,
LE outperforms all other methods by a large margin. In the mode with four players, LE achieves the best results as well,
but closely followed by DUCT. Overall, we conclude that fixed depth search with Logit equilibrium backup is the best
adaptation of AlphaZero to simultaneous perfect-information games.
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D. Stability of a Unique Learning Target
Even though the Logit equilibrium inherently includes an error probability, it may be preferable to a Nash equilibrium as it
is more stable. As an example, consider a situation where an agent has two possible actions. If both actions have the same
expected utility, selecting either action or any probability distribution over both actions is a Nash equilibrium. However, if
one of those actions has a marginally higher expected utility, this action is assigned a probability of one. As a result, a Nash
equilibrium may be sensitive to small approximation errors in the utility function. Those errors, however, are always present
when using neural networks as value function approximations.
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(c) Logit Equilibrium

Figure 15. Comparison of equilibria in a single game situation using multiple training checkpoints. The policy of the Nash- and Logit
equilibrium for an NFG generated by the value function of a neural network at different training time is compared.

We empirically investigate this property in the non-deterministic mode of Battlesnake with a board of size 5× 5. Using
AlphaZero with DUCT, we train a neural network for 15 hours on a single RTX3090 GPU and 15 Intel Xeon Gold 6258R
CPU cores. During training, we save checkpoints of the model weights in regular time intervals. Afterwards, we compute
the Nash equilibrium and Logit equilibrium for a single fixed board position, which is displayed in Figure 15. This board
position has the property of inhibiting multiple actions with equal expected utility, i.e. the actions up and right for the
black agent. For the Logit equilibrium, we use a temperature of τ = 5. We plot the probability of the black agent playing
action up in the Nash- or Logit equilibrium. Additionally, we compute the histogram of probabilities for this action over the
training time. Evidently, the value function of the neural network changes during training, such that the probability oscillates
between zero and one for the Nash equilibrium. However, the action probabilities of a Logit equilibrium for the same neural
network are much more stable. This is due to the entropy based smoothing, which prevents a strong oscillation. We believe
this to be an indication Logit equilibria are a better target for updating a neural network than Nash equilibria.

Alb. (SBRLE) Alb. (BRLE)

166

168

170

172

174

176

178

Re
wa

rd

Figure 16. Comparison of Albatross trained with SBRLE and BRLE with the behavior cloning agent in the Cramped Room layout.
Starting from the same proxy model, we trained response models using BRLE and SBRLE on five different seeds.

This stability of Logit equilibria also translates to a greater stability of SBRLE than BRLE. As an ablation study, we train

21



Mastering Zero-Shot Interactions in Cooperative and Competitive Simultaneous Games

the response model of Albatross using BRLE in the Cramped Room layout of Overcooked. Event though there is only a
small difference, Albatross with a SBRLE performs better than with BRLE and has less variation in the results.

E. Maximization of Transformed Utilities with Shannon Entropy
We present a mathematical proof that the softmax function maximizes smooth best responses with entropy regularization.
This is a well known fact in literature and easy to verify, but to the best of our knowledge the proof has never been published.

Theorem E.1. The transformed utilities ũi(π) defined as ũi(π) = ui(π) +
1
τ ψ(πi) using Shannon entropy ψ(πi) =∑

ai∈Ai
πi(ai) log(πi(ai)) as a smoothing function are maximized by the softmax function πi = SBR(π−i, τ) ∝

exp(τ ui( · , π−i)).

Proof. We define the theorem as a maximization problem and solve it with the method of Lagrange multipliers. The
objective function f is

f(πi) = ui(πi, π−i) +
1

τ
ψ(πi)

=

[ ∑
ai∈Ai

πi(ai)ui(ai, π−i)

]
− 1

τ

∑
ai∈Ai

πi(ai) log(πi(ai)),

where the policy π−i of the other agents is fixed. We use ui(ai, π−i) as a shorthand for ui(π̂ai , π−i) with π̂ai being the
policy that assigns probability one to action ai and zero otherwise. The policy πi has to be a valid probability distribution,
which yields the constraint

g(πi) = −1 +
∑

ai∈Ai

πi(ai) = 0.

The resulting Lagrangian function is defined as L(πi, λ) = f(πi)+λg(πi). Setting the derivative of the Lagrangian function
L with regards to the policy of an action πi(ai) to zero results in

0 =
∂L

∂ πi(ai)

=
∂f

∂ πi(ai)
+ λ

∂g

∂ πi(ai)

= ui(ai, π−i)−
1

τ

(
1 + log

(
πi(ai)

))
− λ.

We can directly solve this equation for the policy πi(ai), which yields

πi(ai) = exp
(
τ ui(ai)− τλ− 1

)
= C exp

(
τ ui(ai, π−i)

)
.

Therefore, it holds that πi(ai) ∝ exp
(
τ ui(ai, π−i)

)
, since C = exp(−τλ− 1) is a constant.

F. Concavity of Likelihood Function
We prove the concavity of the likelihood function by showing that the second derivative is always less or equal to zero. For
an alternative proof, we refer to the work of McFadden (1973).

Theorem F.1. Given K observations of actions (a1i , . . . , a
K
i ) and corresponding optimal policies (π1

−j , . . . , π
K
−j) of the

other agents, the log-likelihood function l for the temperature τ of agent i is concave.

Proof. The second derivative of the likelihood function is:
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∂2l

∂2τ
= −

K∑
k=1

[(∑
ai∈Ai

(
uki (ai, π

k
−i)

)2
exp

(
τ uki (ai, π

k
−i)

))(∑
ai∈Ai

exp
(
τ uki (ai, π

k
−i)

))
(∑

ai∈Ai
exp

(
τ uki (ai, π

k
−i)

))2

−

(∑
ai∈Ai

uki (ai, π
k
−i) exp

(
τ uki (ai, π

k
−i)

))2

(∑
ai∈Ai

exp
(
τ uki (ai, π

k
−i)

))2

]
.

We continue to show that the term in square brackets is greater equal zero for all k ∈ {1, . . . ,K}. The denominator of the
term is always positive and can therefore be ignored in our analysis.

0 ≤
( ∑

ai∈Ai

(
uki (ai, π

k
−i)

)2
exp

(
τ uki (ai, π

k
−i)

))( ∑
ai∈Ai

exp
(
τ uki (ai, π

k
−i)

))
−
( ∑

ai∈Ai

uki (ai, π
k
−i) exp

(
τ uki (ai, π

k
−i)

))2

⇔ 0 ≤
∑

ai∈Ai

∑
b∈Ai

(
uki (ai, π

k
−i)

)2
exp

(
τ uki (ai, π

k
−i)

)
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(
τ uki (bi, π

k
−i)

)
−

∑
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∑
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uki (ai, π
k
−i)u

k
i (bi, π

k
−i) exp

(
τ uki (ai, π

k
−i)

)
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(
τ uki (bi, π

k
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)
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∑
ai∈Ai

∑
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(
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∑
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(
uki (ai, π
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∑
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∑
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∑
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(
uki (ai, π

k
−i)− uki (bi, πk

−i)
)2
.

As all terms of the sum are greater equal zero, the sum itself is greater equal zero. Therefore, the second derivative of the
log-likelihood function is negative. Consequently, the log-likelihood function is concave.

The line search algorithm for computing the maximum likelihood for the temperature of weak agent j is displayed in
Algorithm 4.

Algorithm 4 Maximum Likelihood Estimation of Temperature τj
Input: Observations (a1j , . . . , a

K
j ), ground truth policies (π1

−j , . . . , π
K
−j), valid temperature interval [τmax , τmin ], itera-

tion number m
for i = 0 to m− 1 do
τ ← 1

2 (τmax + τmin)

if ∂l
∂τ > 0 then
τmin ← τ

else
τmax ← τ

end if
end for
Output: τj = 1

2 (τmax + τmin)
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The algorithm iteratively reduces the interval of possible temperature estimations by computing the sign of the gradient at
the midpoint of the interval. If the gradient is positive, the maximum likelihood estimate has to be in the upper half of the
interval, otherwise the lower half.

For Algorithm 4, we assume that optimal ground truth policies (π1
−j , . . . , π

K
−j) for agents −j are given. If there exists a

unique Nash equilibrium, then the optimal policies are well defined as the equilibrium policies. However, computing a Nash
equilibrium in games with many agents is difficult and most games do not have a unique Nash equilibrium. As a solution,
one can substitute the ground truth policies with the policy of the Logit equilibrium of temperature τmax learned by the
proxy model, i.e πθP (oi, τmax ). Consequently, the bounded rationality of the weak agents is no longer modeled according
to globally optimal play, but rather relative to the rationality acquired during training. Additionally, this implicitly solves the
equilibrium selection process, because rationality is modeled relative to the learned equilibrium during training.

G. The Game of Overcooked
Cooperation performance in the game of Overcooked is evaluated in five different layouts, introduced by Carrol et al.
(2019). The layouts are displayed in Figure 17. In the cramped room layout, agents have little space to move around and
need to focus on good movement coordination. In the asymmetric advantage layout, one agent has a much shorter path
between onion dispenser and cooking pot, while the other agent has a shorter path between serving location and cooking pot.
Therefore, agents should distribute tasks in a way that takes into account these advantages. The distribution of tasks can be
seen as high-level coordination, while the coordination of movement in the cramped room layout is low-level coordination.
In the coordination ring layout, agents have a single circle of free squares available. They have to coordinate the direction of
movement, such that they do no block each others way. In the forced coordination layout, only one agent has access to onion
and dish dispenser, while the other agent has access to cooking pots and serving locations. Consequently, the first agent has
to pass onions and dishes over a counter to the second agent. This makes training much more difficult, because the first
agent only receives a reward signal if the second agent is sufficiently trained to use the tools or ingredients received. But, to
train the second agent, the first agent needs to pass them ingredients and tools, which rarely happens through random play.
In the counter circuit layout, the agents have a single circuit available for movement, similar to the coordination ring layout.
However, the circle is longer, which forces the agents to pass onions over the middle counter to achieve a perfect score. All
layouts have a fixed starting position, which are displayed in Figure 17. For evaluation, we swap starting positions every
other episode.

(a) Cramped Room (b) Asymmetric Advantage (c) Coord. Ring (d) Forced Coord. (e) Counter Circuit

Figure 17. Different kitchen layouts in the cooperative game of Overcooked as introduced by Carrol et al. (2019). The Cramped Room
and Coordination Ring layout test low-level coordination since the agents should not block each other. In the Asymmetric Advantage
and Counter Circuit layout high-level coordination, i.e. distribution of tasks, is tested. In the Forced Coordination layout, cooperation
performance is limited by the weakest of the two agents since both need to perform distinct tasks.

In Overcooked, multiple implementations or versions with vastly different levels of difficulty exists. For example, as of
January 2024, the newest version of the implementation of Carrol et al. (2019) allows agents to start cooking a soup even if
not all ingredients are present in the soup. This produces a soup, which does not yield any rewards when serving. However,
previous versions did not allow this behavior, which made solving the environment vastly easier. Additionally, very early
versions of Overcooked had an option to use a dense shaped reward based on the distance to pots or dispensers. Newer
versions still allow to specify these rewards, but this specification is internally ignored. Since these versions developed over
time, it is difficult to determine which version was used in the experiments of different researchers. For our experiments,
we opted to use the game dynamics used by Lou et al. (2023) as their training scheme PECAN was previously state of the
art in Overcooked. That is, we disallowed the premature cooking of a soup with missing ingredients and did not use any
distance-based rewards. To increase the training speed, we reimplemented the game of Overcooked in C++, which also
provides an environment with fixed game dynamics for reproducibility in future work.
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Another challenge when comparing results is the usage of a behavior cloning agent as a proxy for human behavior. These
agents are trained on a small dataset of human play. However, we hypothesize that during recording the human actions, the
time between environment steps was too short for the human contestants to react. That is, because most actions (58%) in the
human dataset are the ”do nothing” action. Consequently, the trained behavior cloning agents exhibit a behavior of staying
at a single point most of the time. In literature, different workarounds for this issue were used. Carrol et al. (2019) used the
agents as is, but implemented a dynamic into the game of Overcooked which forces agents to take a random action if they
have been stuck at one position for more than three time steps. This dynamic intends to free agents if they are stuck at a
position and block each other. In addition to this dynamic, Lou et al. (2023) filtered the probability distribution predicted by
the trained agent, completely removing the stay action. In our implementation, we again used the same setup as Lou et al.
(2023). To facilitate reproduction of our results, we publish our trained human behavior cloning agents.

H. Hyperparameters
To support reproducibility of our results, we report all hyperparameters used in our experiments. In this section, we list
common hyperparameters used across all experiments. Hyperparameters, which differ between experiments are listed in
Table 2. For gradient updates, we use the AdamW optimizer (Loshchilov & Hutter, 2017) with a weight decay factor of
1e−5. We anneal the learning rate using a cosine decay from 1e−3 to 1e−6. The loss function consists of a value and policy
term, which are summed. The value term is the mean squared error between prediction and target, while the policy term
is the cross entropy between predicted and target policy. For the neural network, we use the MobileNetV3 architecture
(Howard et al., 2019). During backup of tree search, a Logit equilibrium is solved at every non-leaf node. To solve the
Logit equilibrium, we perform 150 iterations of Stochastic Fictitious Play (Hofbauer & Sandholm, 2002) with the step
size annealing of Nagurney and Zhang (1996), as discussed in Appendix B.2. During training, we balance exploration and
exploitation using Boltzmann-Exploration (Cesa-Bianchi et al., 2017) with a probability of 0.5 or sample from the LE-policy
at the root node with equal probability of 0.5. In all experiments, we trained our models on five seeds. Unless specified
otherwise, we used Nvidia RTX3090 GPU and 14 Intel Xeon Gold 6258R CPU for each GPU. Those numbers were chosen
to optimally saturate the compute cluster used.

Table 2. Hyperparameters of Albatross in Overcooked and the different game modes of Battlesnake. Only hyperparameters that differ
between modes are listed here.

HYPERPARAMETER OVERCOOKED TRON STOCH. 2P. BS STOCH. 4P. BS 4P. COOP. TRON

BUFFER SIZE 5e5 1e5 2e6 2e6 2e6
NUMBER GPU (RTX 3090) 2 3 3 2 1
SEARCH DEPTH 1 3 3 1 1
TOTAL TRAINING TIME 48H 24H 96H 48H 24H
DISCOUNT FACTOR 0.9 0.99 0.99 0.99 0.97
BATCH SIZE 15000 2000 2000 2000 12000

I. Additional Analysis of Albatross
We perform additional experiments to analyze the behavior and hyperparameters of Albatross. Firstly, we test the effect of
different temperature distributions during training. Then, we perform additional analysis on the effect of the temperature
when cooperating with different opponents.

I.1. Temperature Training Distribution

During training, we randomly sample a temperature from a fixed interval [τmin , τmax ]. This sampling has the effect that
the entire range of temperatures are learned, as well as all combinations of different temperatures. However, when using a
neural network for function approximation, its predictions may degrade at the boundary of the input space, i.e. the interval
of temperatures. Therefore, we bias the random sampling toward the upper and lower boundary of the interval of valid
temperatures. Specifically, we use a cosine function to sample more often near the boundaries.

We compare the cosine based sampling against the uniform (linear) sampling in the deterministic zero-sum Battlesnake
game mode with a board of size 5 × 5. Using this smaller board size, it is possible to compute the ground truth Logit
equilibrium. This ground truth Logit equilibrium is unique for all temperatures, since the game is a two-player zero-sum
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Figure 18. Mean squared error of the policy and value function of the proxy model in deterministic 2-player Battlesnake with a board size
of 5× 5. Since the game is zero-sum, it has a unique Logit equilibrium for all temperatures, which can be computed exactly due to the
small state space.

game. In Figure 18, the mean squared error of the policy and value function is displayed. For most parts of the temperature
input space, the cosine sampling produces a lower error than the linear sampling. Especially for small temperatures near
zero, the linear sampling produces larger error spikes than cosine sampling. Consequently, we use the cosine function in all
of our experiments.

I.2. Temperature Estimation

Following the experiments presented in Section 5, we present the full experimental data on all layouts of Overcooked and in
all game modes of Battlesnake.
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(c) Coord. Ring
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Figure 19. Entropy of the proxy model policy at different temperatures for all five layouts in the game of Overcooked.

In Figure 19, the entropy of the proxy policy at different temperatures in displayed for the different layouts in Overcooked.
In all layouts, for temperature τ = 0, the entropy starts at about log2(6) = 2.58, which is the entropy of a uniformly random
policy with six discrete actions. The entropy decreases at higher temperatures and converges to the entropy of the learned
Logit equilibrium at highest temperature τ = 10, which may be different for every layout.
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Figure 20. Mutual information between Albatross response and proxy model at different temperatures for all five layouts in the game of
Overcooked.
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In Figure 20, the mutual information between proxy and response model at different temperatures are displayed. For a
temperature of τ = 0, the mutual information in all game modes is close to zero, indicating that the agents do not cooperate.
This is expected, since the proxy model at this temperature only plays a uniformly random policy. At high temperatures,
the mutual information between the agents rises as they start to cooperate. The mutual information can also be seen as a
measure of trust from the response model, that the proxy model fulfills their expected task in cooperation.
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Figure 21. Temperature estimation of Albatross for the human behavior cloning agent per time step in the different layouts of Overcooked.

In Figure 21, we display the result of the Maximum Likelihood estimation of Albatross when playing the human behavior
cloning agent. For details regarding the MLE, we refer to Algorithm 4. In all layouts, after only a few episode steps, the
temperature estimation converges toward the true temperature. This indicates, that it is possible to estimate the rationality of
an agent within a single episode of Overcooked. However, as discussed in Section 6, we see that the MLE needs between 10
and 30 episode steps to reach a stable estimation, which may not be feasible in very short games.
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Figure 22. Analysis of the robustness of Albatross to a wrong temperature estimation in all layouts of Overcooked.

In Figure 22, we test the robustness of Albatross to wrong temperature estimations in the different layouts of Overcooked.
To this end, we evaluate Albatross with a fixed temperature input against the human behavior cloning agent. For all layouts,
except Forced Coordination, the highest reward is achieved when using a temperature close to the true temperature. In those
layouts, the achieved reward drops when using temperature estimations far from the ground truth temperature. In the Forced
Coordination layout, the training process at low temperatures is much more difficult, because only sparse rewards resulting
from the nearly random proxy policy are observed. Therefore, Albatross performs better at higher temperature estimations.
Note that the reported reward does not necessarily align perfectly with the reward achieved by MLE, because in some
situations the adaptive estimation of MLE may be advantageous. For example, the human behavior cloning agent performs
better in some parts of the state space and as a consequence the best temperature estimation differs between episodes.

In Figure 23, we test the performance of Albatross against the proxy model in the game of Battlesnake at different
temperatures, akin to Figure 7. At low temperatures, the proxy model plays nearly random and consequently the response
model wins nearly all games. In contrast, at high temperatures the proxy model plays rationally and the reward achieved by
the response model drops. We denote Albatross with fixed ground truth temperature input as Albatross*, and compare its
performance to standard Albatross with MLE. In the game of Battlesnake, the reward difference between MLE and given
ground truth is small, indicating that MLE is able to accurately estimate rationality.

I.3. Behavior of Albatross in Repeated Matrix Games

The behavior of Albatross and (S)BRLE as well as the temperature estimation can be explained using simple repeated matrix
games. For simplicity we use the BRLE, because SBRLE would require the computation of a softmax that only obfuscates
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Figure 23. Evaluation of Albatross versus the proxy model at different temperatures.

the explanation. Depending on the response temperature used, the results may vary, but the main points of this explanations
are also applicable to the SBRLE. Let’s suppose we have the matrix of a Normal form game, which is given in Table 3.

Table 3. Example Normal form game.

P2, A1 P2, A2

P1, A1 4, 4 0, 0
P1, A2 1, 1 2, 2

Pareto optimal play would be the Nash equilibrium at (A1, A1) with utility of 4 for both players. Suppose P1 plays according
to a BRLE and estimates the temperature of P2, who plays according to some specific pattern. For example, if P2 always
plays A1, then their rationality is estimated as positive infinity (which we clip to some maximum temperature), since they
always play the best action. Hence, the best response to a Logit equilibrium of maximum temperature would be A1 for P1.
This dynamic is illustrated in the left part of Table 4.

Table 4. Behavior of Albatross with Pareto optimal player (left) and Tit-for-Tat agent (right)

TIME STEP 1 2 3 ... 1 2 3 4 5 ... K

P1, ACTION 1 1 1 ... 1 2 2 2 2 ... 2
P2, ACTION 1 1 1 ... 2 1 2 2 2 ... 2
TEMP. ESTIMATE - MAX MAX ... - MIN 0 0.17 0.27 ... MAX
UTILITY 4 4 4 ... 0 1 4 4 4 ... 4

In contrast, if P2 always plays A2, then the temperature estimate is negative infinite (clipped to some minimum temperature).
Therefore, both players would continue to play A2, which is the other pure Nash equilibrium (A2, A2) of the game.

Now suppose P2 plays an adaptive ”Tit for Tat” strategy, which always copies the last action of P1. Depending on the initial
actions chosen by both players, different behaviors emerge. We use an optimistic initialization for BRLE, choosing A1
(corresponding to high rationality estimation of P2) at first. If P2 also plays A1 at first, then both players will continue to
play A1 forever (see first table). In contrast, if P2 starts with A2, then the initial rationality estimate would be the minimum
clipped temperature. Then, P2 copies A1 from the first turn. Having played A1 and A2 both once, the rationality estimate is
zero as it corresponds to uniform random play. Then, both agents continue to play A2 and the temperature estimate rises to
the maximum clipped temperature. This behavior can be seen in the right part of Table 4. We should note, that Albatross
was not designed to play adaptive agents. Instead, we make the standard assumption of opponent modelling that the other
agents play a static strategy only depending on the environment state.
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