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Figure 1: Visualization of LiDAR scenes and their semantic labels jointly generated by SPIRAL,
exhibiting high geometric fidelity and semantic—geometric consistency.

Abstract

Leveraging recent diffusion models, LIDAR-based large-scale 3D scene generation
has achieved great success. While recent voxel-based approaches can generate both
geometric structures and semantic labels, existing range-view methods are limited
to producing unlabeled LiDAR scenes. Relying on pretrained segmentation models
to predict the semantic maps often results in suboptimal cross-modal consistency.
To address this limitation while preserving the advantages of range-view representa-
tions, such as computational efficiency and simplified network design, we propose
SPIRAL, a novel range-view LiDAR diffusion model that simultaneously generates
depth, reflectance images, and semantic maps. Furthermore, we introduce novel
semantic-aware metrics to evaluate the quality of the generated labeled range-view
data. Experiments on the SemanticKITTI and nuScenes datasets demonstrate that
SPIRAL achieves state-of-the-art performance with the smallest parameter size,
outperforming two-step methods that combine the generative and segmentation
models. Additionally, we validate that range images generated by SPIRAL can be
effectively used for synthetic data augmentation in the downstream segmentation
training, significantly reducing the labeling effort on LiDAR data.

1 Introduction

By providing accurate distance measurements regardless of ambient illumination, LiDAR plays a
crucial role in scene understanding and navigation for robotics and autonomous driving [1 1, 60, 10, 13,
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Figure 2: (a) Two-step methods: Existing range-view LiDAR generative models typically generate
only depth and reflectance images, requiring an additional pre-trained segmentation model to predict
semantic labels. (b) SPIRAL: In contrast, Spiral jointly generates depth, reflectance, and semantic
maps. A closed-loop inference mechanism (highlighted in the dash arrow) further improves cross-
modal consistency. (c) Results: Spiral achieves state-of-the-art performance with the smallest
parameter size (61M) among the related methods.

32,26, 27, 58]. However, collecting and annotating large-scale LiDAR datasets is both expensive and
time-consuming [12, 64, 41, 38, 63]. To address this issue, recent research has increasingly focused
on using denoising diffusion probabilistic models (DDPMs) [14] for LIDAR generative modeling,
aiming to create tools capable of generating unlimited LiDAR scenes [73, 48, 16, 42, 43, 37, 34].

Existing generative approaches can be categorized into voxel-based methods [43, 29, 49, 4] and range-
view-based methods [73, 42, 48, 16]. The former divides the 3D space into regular volumetric grids
(i.e., voxels) and captures detailed geometric structures with 3D convolutional networks [8]. However,
they often suffer from high memory consumption and computational overhead [52]. Methods based
on range-view, on the other hand, project LIDAR point clouds onto a 2D cylindrical image plane using
the sensor azimuth and elevation angles [73, 48, 16, 33]. This leads to compact 2D representations of
depth and reflectance, allowing for efficient processing via 2D convolutional networks [1, 23]. These
methods are significantly more memory-efficient and computationally lightweight [62, 61].

In this work, we aim to address two limitations in existing range-view generative methods:

1. While recent models such as LIDARGen [73] and R2DM [42] generate high-fidelity LiDAR scenes,
their outputs are restricted to depth and reflectance images, without producing semantic labels.

2. Existing evaluations extract global features for each scene from three perspectives (range-view
image, Cartesian point cloud, and BEV projection) to assess the distributional similarity between
generated and real scenes. However, none of these evaluation methods consider semantic labels.

For the first limitation, a straightforward solution is to adopt a two-step pipeline: first, produce
unlabeled LiDAR scenes using generative models [73, 42, 48], and then apply a pretrained segmen-
tation model (e.g., RangeNet++ [40]) to predict the corresponding semantic labels, as depicted in
Figure 2 (a). However, this approach often results in suboptimal performance due to two key issues:
(1) The generative and segmentation models are trained independently, which hinders shared represen-
tations between the two tasks and reduces training efficiency. (2) The semantic maps, being predicted
post hoc, cannot serve as conditional guidance during generation, leading to limited consistency
between semantics and other modalities, including depth and reflectance.

Therefore, we propose a novel semantic-aware range-view LiDAR diffusion model, named SPIRAL,
as depicted in Figure 2 (b), with the following key features:

e Semantic-aware generation: Our framework aims to jointly generate depth, reflectance, and
semantic maps from the Gaussian noise, different from existing models that lack semantic awareness
and require separate segmentation models to obtain semantic labels.

e Progressive semantic prediction: At each denoising step, SPIRAL outputs an intermediate
semantic map which is aggregated via exponential moving averaging (EMA) to suppress noise and
produce stable, per-pixel confidence scores. The EMA trace serves as both the final semantic output
and the basis for the closed-loop inference.



o Closed-loop inference: Once the prediction confidence exceeds a threshold, the semantic map
is fed back into the model as the condition to guide the generation of both depth and reflectance.
By alternating between conditional and unconditional steps, SPIRAL enables joint refinement of
geometry and semantics, thereby enhancing cross-modal consistency.

For the second limitation, we extend all three types of metrics with semantic awareness, enabling
a comprehensive assessment of geometric, physical, and semantic quality in the generated LiDAR
scenes. (1) For the evaluation in range-view image and Cartesian point cloud perspectives that rely
on pretrained models such as RangeNet++ [40] and PointNet [47] to extract learning-based global
features, we integrate the semantic map conditional module from LiDM [48], which is originally
designed for semantic-to-LiDAR generation, to encode semantic labels. The encoded semantic
features are then concatenated with the original global features to form semantic-aware global features.
(2) For the evaluation in BEV projection perspective that produces rule-based global features using
2D histograms over the xy-plane, we compute 2D histograms for each semantic category individually
and then concatenate them into a unified semantic-aware histogram representation.

Experiments on the SemanticKITTI [3] and nuScenes [5] datasets demonstrate that Spiral achieves
state-of-the-art performance in labeled LiDAR scene generation with the smallest parameter size, as
depicted in and Fig. | and Fig. 2 (c). Moreover, we demonstrate that Spiral-generated samples can be
effectively used as synthetic data to augment downstream training, which is particularly valuable for
autonomous driving tasks that require large-scale training data [39, 70, 71]. To summarize, the key
contributions of this work are as follows:

* We propose a novel state-of-the-art semantic-aware range-view LiDAR diffusion model,
SPIRAL, which jointly produces depth and reflectance images along with semantic labels.

* We introduce unified evaluation metrics that comprehensively evaluate the geometric, physi-
cal, and semantic quality of generated labeled LiDAR scenes.

* We demonstrate the effectiveness of the generated LiDAR scenes for training segmentation
models, highlighting Spiral’s potential for generative data augmentation.

2 Related Works

LiDAR Generation from Range Images. LiDARGen [73] pioneers diffusion-based LiDAR genera-
tion by learning a score function [ 18] that models the log-likelihood gradient in range-view image
space. Building on this foundation, LiDM [48] advances conditional generative modeling, enabling
synthesis from multiple input modalities. R2DM [42] enhances unconditional LiDAR scene genera-
tion through diffusion models and provides in-depth analysis of crucial components that improve
generation fidelity. Rangel.LDM [16] optimizes the computational efficiency to achieve real-time
generation, while Text2LiDAR [59] develops text-guided generation capabilities for semantic control.
However, for semantic segmentation applications, these methods still require additional dedicated
models, increasing computational cost.

LiDAR Generation from Voxel Grids. Several studies investigate the generation of complete LiDAR
scenes in Cartesian space, aiming to preserve geometric reconstruction accuracy [29, 43, 4, 49, 30,
57, 67, 54, 56, 45]. SemCity [29] leverages a triplane representation to model outdoor LiDAR scenes
by projecting the 3D space into three orthogonal 2D planes. XCube [49] utilizes a hierarchical voxel
latent diffusion model to generate large-scale scenes. [43] proposes to generate semantic LIDAR
scenes using the latent DDPM without relying on intermediate image projections or coarse-to-fine
multi-resolution modeling. DynamicCity [4] utilizes a VAE [22] model and a DiT-based [44] DDPM
to generate large-scale, high-quality dynamic 4D scenes.

LiDAR Semantic Segmentation. Various approaches are proposed for LiDAR scene segmentation
from different representations, including range-view [40, 1, 23, 62, 25, 7], BEV [65], voxel [8, 72,
24, 15], and multi-view fusion [19, 20, 36, 6, 46, 39, 31, 35, 17]. As a representative range-view
segmentation model, RangeNet++ [40] offers a real-time and efficient solution for LIDAR semantic
segmentation. Cylinder3D [72] proposes a cylindrical representation that is particularly well-suited
for outdoor scenes, addressing the irregularity and sparsity issues in LiDAR point clouds. SPVCNN
[55] serves as a point-voxel fusion framework that integrates point cloud and voxel representations to
leverage their complementary advantages for improved segmentation performance.
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(c) Open-/Closed-Loop Mode Switch

Figure 3: (a) Unconditional Step: Spiral takes noisy LiDAR scenes z; as input and predicts both the
semantic map ¢; and the noise é;, where the switch A is off and B is on. (b) Conditional Step: Spiral
predicts é; conditioned on the given semantic map y, where A is on and B is off. (¢) During inference,
Spiral begins in an open-loop mode with unconditional steps. Once the predicted semantic map
smoothed by the progressive filter reaches high confidence, Spiral switches to a closed-loop mode
that alternates between unconditional and conditional steps, enhancing cross—modal consistency.

3 Methodology

3.1 Preliminaries of Diffusion Models for Range-View LiDAR Generation

The diffusion models [14] generate data by simulating a stochastic process. Starting from a real
sample xg ~ ¢(zp), a forward process gradually adds Gaussian noise over T steps, such that the
final sample approximates a standard normal distribution, ie q(zr) =~ N(0,I). For range-view
LiDAR generation, the sample is represented as 2o € R *Wxd \where H and W denote the height
and width of the range image, and d denotes the number of modalities. In LiDARGen [73] and
R2DM [42], d = 2 as both depth and reflectance images are generated, while d = 1 in LiDM [48]
since it only generates depth images. The model €y with parameters € is trained to predict the noise €
added at an intermediate step ¢ € {1,...,7T}, by minimizing the following objective:

L= Et,zo,e [HEG(Itvt?a) - €H§i| i (1)

where ¢ ~ N(0,I) is the random noise added during the forward process, and a denotes the
conditional input, such as textual description or semantic maps y € RZ*WXC where C denotes the
number of categories. During inference, the model starts from a random noise sample z7 ~ N (0, I)
and iteratively denoises it to generate a novel sample z{,. At each step, an additional noise  ~ N (0, I)
is added on z; to diversify the final results. Building upon the vanilla DDPM, a more flexible diffusion
framework [50] is proposed by introducing a continuous time variable ¢ € [0, 1], which enables
flexible control over the number of sampling steps during inference, allowing a trade-off between
generation speed and quality.

3.2 SPIRAL: Semantic-Aware Pregressive LIDAR Generation

As previously discussed, although existing range-view LiDAR generative models [73, 48, 42] have
demonstrated impressive performance, they are limited to producing only depth and reflectance
modalities. While LiDM [48] generates LiDAR scenes conditioned on semantic maps, it requires the
semantic maps to be provided beforehand. Alternatively, two-step pipelines that first generate LiDAR
scenes and then predict semantic labels suffer from low training efficiency and limited cross-modal
consistency. Inspired by the insight that diffusion models can serve as powerful representation
learners for various tasks such as classification and segmentation [2, 68, 28, 69], we propose a novel
semantic-aware progressive range-view LiDAR diffusion model, named SPIRAL, as illustrated in
Figure 2 (b), to address these limitations. Spiral contains three major innovations:

Complete Semantic Awareness. The semantic awareness of Spiral contains two aspects: (1) In
addition to generating depth and reflectance images, Spiral also predicts the corresponding semantic
maps; (2) Spiral enables conditional generation of depth and reflectance images guided by a given
semantic map. It alternates between two types of steps: unconditional and conditional. To control
the switching between them, we introduce two control switches, A and B, as illustrated in Figure 3.



Switches A and B follow an exclusive-or (XOR) relationship. Their on/off states are as follows:

{A =0, B=1; for the unconditional step, )

A=1, B=0; forthe conditional step,

where O denotes the off state and 1 denotes the on state. During training, in the unconditional step,
the Spiral with learnable parameters 6, €y, simultaneously predicts both the semantic map ¢, and the
noise €; on the noisy LiDAR scene x4, i.e.,

éta gt — Ea(xt)v (3)
and the corresponding training loss £,, is calculated as:
Eu = £noise + ['sem = MSE(éta ét) + H(gta y)> 4

where MSE(+) denotes the mean squared error, and H (-) represents the cross-entropy loss. In the
conditional step, €y takes the semantic map y as conditional input and only predicts the denoising
residual:

€ < ep(z1,Y), )

with the training loss £, calculated as:
Le = Luoise = MSE(QM ét) (6)
We use a random variable ¢) ~ Uniform(0, 1) to determine the mode for each training step. Therefore,

where [(+) is the indicator function and .. is the ratio of training the conditional step. Empirically,
we set . as 0.5 to balance the training of these two step types.

Progressive Semantic Predictions. During inference, Spiral predicts the semantic map ¢, at each
unconditional step. To mitigate the inherent stochasticity of the diffusion process and improve stability,
we apply an exponential moving average (EMA) to obtain the smoothed predictions i € R *Wx¢,
The EMA is initialized as ¢ = ¢, and updated recursively for ¢ = T'—1 to 0 as:

Ur < a- G+ (1 —a) - Gy, ()

where o denotes the EMA smoothing factor. At the end of inference, Spiral outputs not only the
depth and reflectance images, but also the final smoothed semantic prediction .

Closed-Loop Inference. Two-step methods suffer from limited cross-modality consistency, since
the predicted semantic map post hoc cannot guide the previous generation. To address this issue,
Spiral introduces a novel closed-loop inference mechanism, where the semantic predictions ¥, are
continuously fed back into the model as conditional inputs during inference. Notably, to alleviate the
potential artifacts in ¢, that could degrade the generation quality, Spiral employs a confidence-based
filtering strategy to select the reliable predictions as conditions. Specifically, during inference from
step t = T to 0, Spiral starts with an open-loop mode by default. However, if more than the proportion
o0 of the pixels in 4; have confidence scores exceeding J, it switches to the closed-loop mode, as
depicted in Figure 3 (c). For instance, setting J to 0.8 requires that over 80% of the pixels in 7; have
prediction confidence scores exceeding 0.8. Once this condition is met, Spiral enters an alternating
loop between unconditional and conditional steps: (1) In the unconditional step, Spiral predicts both
€; and g;. (2) In the conditional step, Spiral predicts é; conditioned on 7, thereby improving the
consistency between ¢y and x( eventually. A quantitative study on the benefits of the closed-loop
mode and the effect of the confidence threshold § is presented in the experimental section.

Overall Architecture. Spiral adopts a 4-layer Efficient U-Net [50] as the backbone and follows
the default continuous DDPM framework. Spiral takes as input the perturbed depth and reflectance
images x¢, along with semantic maps y encoded as RGB images. Notably, in unconditional step,
the semantic maps are replaced with zero padding to disable semantic guidance. On the output side,
Spiral utilizes two heads to separately predict the diffusion residuals é; and the segmentation labels
4. Each output branch consists of a 2D convolutional layer followed by a sequential MLP layer.
More details about the architecture of Spiral are provided in the appendix.
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Figure 4: (a) Range-view based semantic-aware feature f° is constructed by concatenating the
features extracted by the RangeNet++ [3] encoder and the LiDM [48] semantic encoder from the
LiDAR scene x and the semantic map y, respectively. (b) BEV-based semantic-aware feature h?® is
constructed by aggregating per-category 2D histograms.

3.3 Semantic-Aware Metrics for Better LIDAR Generation Evaluations

Recent range-view LiDAR studies [73, 42, 48] assess the quality of generated scenes from three
perspectives: range-view images, Cartesian point clouds, and BEV projections. (1) For the range
image- and point cloud-based evaluations, they rely on pretrained models such as RangeNet++ [40]
and PointNet [47] to extract learning-based features f for each scene. The extracted features
from the real and generated sets are then used to compute the Fréchet Range Distance (FRD) [73],
Fréchet Point Cloud Distance (FPD) [42], and Maximum Mean Discrepancy (MMD), which quantify
the distributional similarity between these two sets. (2) For the BEV-based evaluation, rule-based
descriptions h are computed for each scene using 2D histograms over the xy-plane. These fea-
tures, extracted from both the real and generated sets, are then used to calculate the MMD and
Jensen—Shannon Divergence (JSD). However, none of these evaluation methods take semantic labels
into account. Since the “ground truth” for semantic labels on the generated scene is unavailable,
standard metrics like mloU cannot be directly applied. Thereby, we propose to assess the quality of
the generated labeled LiDAR scenes based on semantic-aware features f® and h®.

Learning-based Semantic Features. For the range-view based evaluation, following LiDAR-
Gen [73], we use the RangeNet++ [40] as encoder £. Additionally, we propose to use a semantic
map encoder G to extract the semantic latent features. For G, we use the semantic conditional module
in LiDM [48]. Given a LiDAR scene = with semantic labels y, the semantic-aware features f*° are
obtained by the concatenation of these two features, as depicted in Figure 4 (a):

[P &) e G(y). ©))

The extracted features from the real and generated sets, {f*}, and {f°},, are ultimately used to
compute the semantic-aware Fréchet Range Distance (S-FRD) and semantic-aware Maximum Mean
Discrepancy (S-MMD), extending FRD and MMD to incorporate semantic information. For the
Cartesian-based evaluation, we adopt the same procedure to extract f°, while the only difference is
that the RangeNet++ [40] is replaced with PointNet [47]. Similarly, { f*}, and {f°}, are used to
compute the semantic-aware Fréchet Point Cloud Distance (S-FPD) and S-MMD.

Rule-based Semantic Features. The BEV-based evaluation in [73, 42] divides the xy-plane into
a grid of BxB bins and computes a 2D BEV histogram as the rule-based feature h € RE*B,
However, the spatial distribution of points belonging to different categories is obviously distinct. For
instance, “road” points are typically concentrated near the region along the x-axis, while “building”
and “vegetation” points tend to appear farther away. The distribution of points across different
categories within a scene encodes rich semantic information and effectively reflects the overall
semantic structure of the scene. Thereby, we propose to compute histograms for each category
individually and aggregate them into a semantic-aware histogram h® € RE*B*B ag depicted in
Figure 4 (b). Hence, only when a generated and a real scene share both similar point distributions and
semantic classifications can their histograms be similar. The extracted descriptions from the real and
generated sets, {h°}, and {h°},, are used to compute the semantic-aware JSD (S-JSD) and S-MMD.



4 Experiments

4.1 Experimental Setup

Datasets. We conduct an extensive experimental study on SemanticKITTI [3] and nuScenes [5]
datasets and follow their official data splits. SemanticKITTI contains 23k annotated LiDAR scenes
with 19 semantic classes, while nuScenes contains 28k LiDAR scenes with 16 semantic classes.
During pre-processing, the LiDAR scenes are projected into range-view images of spatial resolutions
64x1024 and 32x1024, respectively. To further assess robustness, we also evaluate Spiral-based
generative data augmentation on the fog and wet-ground subsets of Robo3D [24], which simulate
adverse weather conditions for out-of-distribution testing.

Details on Training & Inference. We train SPIRAL on NVIDIA A6000 GPUs with 48 GB VRAM
for 300k steps using the Adam optimizer [21] with a learning rate of le-4. The training process
takes ~ 36 hours. For the generative models in two-step baseline methods, including LIDARGen [73],
LiDM [48], and R2DM [42], we follow the official training settings. To obtain semantic labels for
the generated unlabeled LiDAR scenes, we use RangeNet++ [40] with official pretrained weights and
SPVCNN++ [36], an improved implementation of SPVCNN [55] provided in UniSeg [36] codebase.
During inference, the number of function evaluations (NFE) [42], i.e., the number of sampling steps,
is set to 256 for both Spiral and R2DM. We also run LiDM using the DDIM [51] sampling method
with 256 steps for fair comparison. LIDARGen models the denoising process with 232 noise levels
and requires 5 steps per level by default, resulting in a total NFE of 1160. Following [73], we generate
10k samples per method for evaluation.

Evaluation Metrics. We follow previous works [73, 42] to assess the quality of generated LiDAR
scenes from the perspectives of range images, point clouds, and BEV projections. Importantly, we
report the evaluation of the generated labeled LiDAR scenes using our newly proposed semantic-
aware metrics introduced in Section 3.3, including S-FRD, S-FPD, S-MMD, and S-JSD. For all the
metrics, lower values indicate better generative quality. Note that the samples generated by LiDM
[48] contain only depth images, which prevents their evaluation in range-view-based benchmarks
where the RangeNet++ [16] encoder requires the reflectance channel as input.

4.2 Experimental Results

Evaluation on SemanticKITTI. We report the experimental results on the SemanticKITTI [3]
dataset in Table 1. Despite having the smallest parameter size of only 61M, Spiral achieves the best
performance across all semantic-aware metrics, outperforming the two-step method, R2DM [42] &
SPVCNN++ [36], by 31.03%, 56.33%, and 50.94% on S-FRD, S-FPD, and S-JSD, respectively.
For the previous metrics that evaluate only the unlabeled LiDAR scenes, Spiral outperforms R2DM
on most metrics, indicating that the additional semantic prediction task does not compromise the
generation quality of depth and reflectance images. Surprisingly, the more advanced segmentation
model SPVCNN++ performs worse than RangeNet++ on the unlabeled scenes generated by LiDAR-
Gen [73] and LiDM [48], resulting in inferior performance on semantic-aware metrics. We attribute
this drop to the higher sensitivity of larger models to noise, compounded by the greater noise present
in the LiDAR scenes generated by LIDARGen and LiDM. Although the performance of SPVCNN++
improves after jittering-based fine-tuning, it still lags behind RangeNet++. Further discussion of
this issue is provided in the appendix. The generated labeled LiDAR scenes from Spiral and other
baseline methods, as shown in Figure 5, demonstrate the superior performance of Spiral in both
geometric and semantic aspects.

Evaluation on nuScenes. We report the experimental results on the nuScenes [5] dataset in Table 2.
Spiral consistently outperforms the other baseline methods on all metrics with the smallest parameter
size. Compared with the second best method (R2DM [42] & RangeNet++ [40]), Spiral achieves
improvements of 49.03%, 67.84%, and 46.79 % on S-FRD, S-FPD, and S-JSD, respectively. Figure 6
presents the generated scenes from Spiral and the baseline methods for qualitative comparison,
showing the superior performance of Spiral in both geometric and semantic aspects.

Generative data augmentation. We evaluate the effectiveness of using Spiral’s generated samples to
augment the training set for segmentation learning on SemanticKITTI [3]. Using SPVCNN++ [36] as
the segmentation backbone, we compare Spiral with R2DM [42] & RangeNet++ [40] under different
ratios of available real labeled data. As shown in the first row of Table 3, the generated samples



Table 1: Comparisons with state-of-the-art LiDAR generation models on the SemanticKITTI [3]
dataset. We evaluate methods using the Range View, Cartesian, and BEV representations. Symbols
1 and I denote the RangeNet++ [40] backbone and the SPVCNN++ [36] backbone, respectively.
The parameter size includes both the generative and segmentation models. The best and second best
scores under each metric are highlighted in bold and underline.

Param Range View Cartesian BEV
Method o NFE | FRD) MMD| S-FRD| S-MMD| | FPD, MMD| S-FPD| S-MMD/ | JSD, MMD| S-JSD, S-MMD/|
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Figure 5: Visualizations of generated LiDAR scenes on SemanticKITTI [3]. For two-step methods,
we use the labels produced by RangeNet++ [40] due to its superior performance over SPVCNN++ [36].
Artifacts are highlighted with dashed boxes. Examples of semantic artifacts are shown in 7), ®), (9),
and (1), while geometric artifacts such as local distortion and large noise are illustrated in {0 and @.

from Spiral consistently improve the performance of SPVCNN++ and outperform those from R2DM.
Detailed per-category results are provided in the appendix. Additionally, we evaluate SPVCNN++
under the same settings on out-of-distribution subsets, fog and wet-ground, from Robo3D [24]. As
shown in the second and third rows of Table 3, although Spiral is not fine-tuned for such extreme
weather conditions, its generated data still enriches the training set and improves performance under
these challenging scenarios.

4.3 Experimental Analysis

Impact of the NFE. Intuitively, increasing the number of function evaluations (NFE) improves
the quality of the generated samples but results in a linear increase of inference cost. We eval-
uate the performance of Spiral under different NFE settings in {32, 64,128, 256,512,1024} on
SemanticKITTTI [3]. The results shown in Figure 7 indicate that Spiral’s performance improves
significantly when NFE < 256, while further increases in NFE yield only marginal gains on most
metrics. Therefore, we set NFE = 256 as the default configuration. On an A6000 GPU, Spiral
achieves an average inference speed of 5.7 seconds per sample.

Closed-Loop vs. Open-Loop Inference. Closed-loop inference is a key innovation in Spiral that
enhances cross-modality consistency. To quantify the impact of closed-loop inference, we disable the
feedback of the predicted semantic map to Spiral as conditional input, maintaining the open-loop
inference throughout the whole generative process. The experimental results on SemanticKITTT [3],
as listed in the first row of Table 4, show that adopting the open-loop setting leads to a performance
drop of Spiral on all metrics, e.g., a drop of 3.34% and 8.68% on S-FRD and S-FPD, respectively.



Table 2: Comparisons with state-of-the-art LIDAR generation models on the nuScenes [5] dataset.
We evaluate methods using the Range View, Cartesian, and BEV representations. Symbols { and
I denote the RangeNet++ [40] backbone and the SPVCNN++ [36] backbone, respectively. The
parameter size includes both the generative and segmentation models. The best and second best
scores under each metric are highlighted in bold and underline.

Param Range View Cartesian BEV
Method o NFE | FRD| MMD| S-FRD, S-MMD| | FPD, MMD, S-FPD, S-MMD/| | JSD, MMDJ) S-JSD| S-MMD}
(x)  (x107h) (x1) (x107") (x1)  (x107Y) (x1) (x107Y) | (x107%)  (x107%) (x107%)  (x107%)
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Figure 6: Visualizations of generated LiDAR scenes on nuScenes [5]. For two-step methods, we
use the labels produced by RangeNet++ [40] due to its superior performance over SPVCNN++ [36].
Artifacts are highlighted with dashed boxes. Examples of semantic artifacts are shown in (8), (1), and
(2, while geometric artifacts such as local distortion and large noise are illustrated in (7), (9), and (0.

Impact of the Confidence Threshold in Closed-loop Inference. In the closed-loop mode, Spiral
adopts a confidence-based filtering strategy to exclude unreliable semantic maps that frequently occur
during the early stages of the denoising process. To quantify the effect of the confidence threshold 9,
we evaluate the performance of Spiral under different ¢ settings in {0.3, 0.5, 0.6, 0.7, 0.8, 0.9}. The
results listed in Table 4 indicate that Spiral performs well when § € {0.7, 0.8, 0.9} and achieves
slightly best performance at 6 = 0.8. Therefore, we set § = 0.8 as the default configuration of
Spiral. However, the performance of Spiral starts to deteriorate when § < 0.6. With § = 0.3, the
performance of the closed-loop inference even falls behind that of the open-loop inference.

Table 3: Generative Data Augmentation (GDA) for segmentation training. We assess GDA
using synthetic samples from R2DM [42] and Spiral, under different ratios (1%, 10%, 20%) of real
labeled data from SemanticKITTI [3], as well as fog and wet-ground scenes from Robo3D [24].
Symbol t denotes using RangeNet++ as the segmentation model. Results are reported in mloU (%).

Setting \ 1% \ 10% \ 20%

GDA | wio R2DMT[42] SPIRAL | wio R2DM'[42] SPIRAL | wio R2DM'[42] SPIRAL
SemanticKITTI 37.76 44.16 4741 | 59.07 60.62 61.14 | 61.16 61.21 62.35
Robo3D (fog) 32.07 36.82 44.06 | 53.93 54.20 58.61 | 55.89 56.07 61.24

Robo3D (wet-ground) | 34.26 37.96 4419 | 54.70 55.92 59.31 | 56.81 57.53 62.02
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Figure 7: Impact of the number of function evaluations (NFE). Increasing the NFE (32, 64, 128,
256, 512, and 1024) improves the performance across all metrics. With fewer sampling steps, Spiral
outperforms R2DM [42] using its default setting of NFE = 256, indicated by the dashed line. Note:
The x-axis denotes NFE, and the y-axis denotes the evaluation metric (lower is better).

Table 4: Impact of the closed-loop inference and confidence threshold. The best and second best
scores under each metric are highlighted in bold and underline. The highlighted row indicates the
default configuration of Spiral.

Confidence Range View Cartesian BEV
Close-loop Threshold § FRD, MMD, S-FRD| S-MMD| | FPD, MMD, S-FPD|, S-MMDJ} | JSD| MMD| S-JSD| S-MMD|

(x1) (x10%)  (x1) (x10%) (x1)  (x10)  (x1) (x10) (x10%)  (x10%) (x10%) (x103)
X | 17393 498 39564 435 | 1061 182 16695 441 | 380 016  9.29 1.44
y 0.3 190.03 5.56 444.31 6.06 47.67 1797 265.79 17.65 4.68 0.19 11.31 2.51
y 0.5 174.04 5.15 396.71 4.67 22.31 6.81 187.90 8.51 3.96 0.16 9.55 1.71
y 0.6 173.25 5.02 392.36 4.24 11.14 2.59 174.25 5.12 3.87 0.15 9.40 1.59
y 0.7 170.93 4.87 385.05 4.17 8.32 1.60 161.47 3.77 3.89 0.15 9.22 1.50
y 0.8 170.18 4.81 382.87 4.10 8.06 1.10 153.61 3.20 3.76 0.15 9.16 1.41
y 0.9 170.72 5.00 384.42 4.16 8.36 1.22 155.28 3.27 3.89 0.16 9.18 1.42

Open-/Closed-Loop Mode Switching Point. We performed a statistical analysis on 1,000 samples
each from SemanticKITTI and nuScenes. With the default 256 denoising steps, closed-loop inference
is activated (i.e., once > 80% of semantic predictions exceed the confidence threshold) at an average
step of 180436 on SemanticKITTI and 189+ 39 on nuScenes. This indicates that switching typically
occurs during the last ~ 30% of the generation process, when semantic predictions have stabilized,
thereby avoiding early-stage noise and ensuring reliable semantic—geometric alignment.

Inference Efficiency. We report the average sam-
pling time per sample for LiDARGen [73], LiDM [48], Table 5: Average sampling time per
R2DM [42], and SPIRAL on an A6000 GPU in Ta- sample of LIDARGen [73], LiDM [48],
ble 5. Additionally, the inference times per sample for R2DM [42], and Spiral on an Nvidia
RangeNet++ [40] and SPVCNN++ [36] are 0.08s and  A6000 GPU.

0.05s respectively on the same hardware. Unlike the

two-step methods, Spiral does not require a segmentation Method NFE Average Time (s)
model to generate semantic labels. Spiral demonstrates LiDARGen [73] 1160 72.0
superior inference efficiency compared to LiDM and Li- LiDM [48] 256 72
DARGen. Although it is approximately 2.05 s slower than R2DM [42] 256 3.6
R2DM combined with SPVCNN++ when using the same SPIRAL 256 5.7
number of generation steps, Spiral remains 0.75 s faster SPIRAL 128 2.9

with 128 steps and achieves higher generative quality.

5 Conclusion

We present SPIRAL, the first semantic-aware range-view LiDAR diffusion model that jointly generates
depth, reflectance, and semantic labels in a unified framework. We further introduce novel semantic-
aware evaluation metrics, enabling a holistic assessment of generative quality. Through extensive
evaluations on SemanticKITTI and nuScenes, Spiral achieves state-of-the-art performance across
multiple geometric and semantic-aware metrics with minimal model size. Additionally, Spiral
demonstrates strong utility in downstream segmentation via generative data augmentation, reducing
the reliance on manual annotations. We believe Spiral offers a new perspective on multi-modal LIDAR
scene generation and opens up promising directions for scalable, label-efficient 3D perception.
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* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This is an empirical study that excludes theory assumptions and proofs.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims and/or
conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All information needed to reproduce the experimental results have been
disclosed. To ensure reproducibility, code and data are committed to be publicly available.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The detailed implementation procedures have been included in the appendix.
To ensure reproducibility, code and data are committed to be publicly available.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All training and test details have been discussed in either main body or
appendix. To ensure reproducibility, code and data are committed to be publicly available.

Guidelines:

» The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Sufficient information about experiment settings have been discussed.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?

Answer: [Yes]
Justification: The details on computing resources have been discussed.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This research follows the NeurIPS Code of Ethics properly.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The discussion on societal impacts has been included in the appendix.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: The discussion on safeguards has been included in the appendix.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The acknowledgments on licenses have been included in the appendix.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
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* The answer NA means that the paper does not release new assets.
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* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the
paper include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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6 Evaluation Metrics

In the main paper, we evaluate the generative quality of Spiral for the LiDAR scene x with semantic
map y from three perspectives: range-view images, Cartesian point clouds, and BEV projections.
Here, we elaborate on the details of evaluations on each representation.

6.1 Evaluation on Range View and Cartesian Point Clouds

For range-view image-based and point cloud-based evaluations, we extract a unified semantic-
aware feature [ by concatenating the geometric feature £ (z), extracted by RangeNet++ [40] or
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PointNet [47], with the semantic feature G(y) from the conditional module in LiDM [48]:
[P E(x) @ G(y). (10)

The features from real and generated sets, { f*}, and {f*},, are used to compute S-FRD, S-FPD,
and S-MMD. The calculation formula for S-FRD is as follows:

S-FRD = ||ty — pigll3 + Tr (3, + 3 - 2(5,5,)?) (1)

where y, and ps are the mean of { f*}, and {f°},, ¥, and X, are the covariance matrices, and Tr(-)
is the matrix trace. The calculation of S-FPD follows the same formula. For S-MMD, it can be
measured through the kernel trick:

M M

1 N N 9 N M 1
S-MMD = ZZk( 5 - s ZZJ)k( ARy ij;k( 50, a2

?

where N and M are the number of samples in the real and generated sets, respectively. Following [42],
we use 3rd-order polynomial kernel function:
s\T ., s/
R(f5 ) = ((f)dff+1>3, (13)

where d is the dimension of f*.

6.2 Evaluation on Bird’s Eye View

For the BEV-based evaluation, we first compute the semantic-aware histogram for the real and gener-
ated sets, {h°}, and {h*},, and then compute the BEV-based S-JSD and S-MMD. The calculation of
S-JSD is as follows: ) )

ISD(P||Q) = §DKL(PHM) + §DKL(QHM)7 (14)
where P and () are the approximation of Gausian distribution on {h*}, and {h°},, and M is the
mean of them: M = (P + Q).

7 Data Preprocessing

In this section, we provide more details regarding data preprocessing. For both SemanticKITTI [3]
and nuScenes [5], we first project the raw point cloud to range-view images including the depth,
reflectance remission, and semantic channels. Then we rescale the depth and reflectance remission
channels and encode the semantic maps to RGB images.

7.1 Rescaling of the Depth and Reflectance Remission Channels

d

For the depth channel, we first convert the range-view depth images x¢ to log-scale representation Tiog

as follows:
¢ log(z?+1) (15)
T og(af 1)
where x¢,, is the maximum depth value. Then we linearly rescale the reflectance remission and
log-scale depth images to [—1, 1].

7.2 Semantic Encoding

For the semantic channels, we use the official color scheme to convert the one-hot semantic map
y € REXWXC into 2D RGB images, where C is the number of categories. Notably, Spiral is trained
in both conditional and unconditional modes, where RGB images in the unconditional mode are
replaced with zero padding. To distinguish between zero-padded images from the unconditional
mode and the black regions in semantic images from the conditional mode, we add an additional
channel to indicate whether a semantic map is provided.
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8 Model Architecture Details

8.1 Spatial Feature Encoding

We adopt a 4-layer Efficient U-Net [50] as the backbone of Spiral, with intermediate feature di-
mensions of 128, 256, 384, and 640, respectively. Each layer consists of three residual blocks and
downsamples the spatial resolution by a factor of two along both the row and column dimensions. The
prediction heads for generative residual and semantic predictions are composed of a 2D convolutional
layer followed by a two-layer MLP.

8.2 Temporal Feature Encoding

For temporal and coordinate encoding, we follow the same strategy as R2DM [42]. For coordinate
encoding, we map the per-pixel azimuth and elevation angles to 32-dimensional Fourier features [53],
which are then concatenated with the input data. Specifically, the diffusion timestep is encoded to a
256-dimensional sinusoidal positional embedding, which is then integrated by the adaptive group
normalization (AdaGN) [9] modules in each layer.

9 Discussions of SOTA Segmentation Models in Two-Step LiDAR Generation

In the two-step methods, we report results using both RangeNet++ [40] and SPVCNN++ [36] as
segmentation backbones in the main paper. Although SPVCNN++ outperforms RangeNet++ on
real-world datasets, it performs worse on the generated LiDAR scenes of LiDARGen [73] and
LiDM [48]. In this section, we further present the performance of RangeNet++, SPVCNN++, and a
state-of-the-art segmentation model, RangeViT [1], on the generated LiDAR scenes of LIDARGen.
As we observe that larger-scale jittering can improve SPVCNN++’s robustness, we train all models
with both the default jittering and an increased jittering scale.

9.1 Experimental Setup

We use the official implementation of all models. In the default setting, RangeNet++ and RangeViT
are trained without jittering augmentation, while SPVCNN++ is trained with the Gaussian noise
jittering, where o = 0.1. In the setting of larger-scale jittering, we increase the o of jittering to 0.3
across all models.

9.2 Observations and Analyses

Detailed results of RangeNet++, SPVCNN++, and RangeViT under different jittering scales are
presented in Table 6. Although fine-tuning SPVCNN++ and RangeViT with stronger jittering
(o0 = 0.3) improves its performance, they still lag behind RangeNet++, while RangeNet++ presents
the best robustness on the generated samples. These experimental results indicate that segmentation
models achieving high performance on "clean" real-world scenes do not necessarily perform well on
generated scenes. This highlights the limitation of using predictions from state-of-the-art segmentation
models as pseudo "ground truth" for evaluating generated scenes. Instead, measuring the distributional
similarity of semantic-aware features between real and generated scenes provides a more reliable
assessment of the quality of predicted semantic maps, as proposed in this work.

10 Additional Qualitative Results

In this section, we present additional visualizations of the generated reflectance remission images,
along with more examples of generated LiDAR scenes and the corresponding semantic maps.

10.1 Visualizations of Reflectance Remission Images

We visualize the generated reflectance remission images on SemanticKITTI [3] in Figure 8. Since
LiDM does not produce reflectance remission images, we only present results from Spiral, Li-
DARGen [73], and R2DM [42]. Among these, Spiral demonstrates strong cross-modal consistency
across depth, reflectance intensity, and semantic labels. In contrast, scenes generated by LIDARGen
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Table 6: Performance of RangeNet++ [40], SPVCNN++ [36], and RangeViT [1] trained with
different jittering scales on the SemanticKITTI [3] dataset.

Generative Segmentation Jitterin; Range View Cartesian BEV
g £ | S-FRDJ S-MMD| | S-FPD| S-MMD| | S-ISD| S-MMD/
Model Backbone Scale B B B .
(x1) (x1072) (x1) (x107Y | (x1072)  (x107%)

default | 1216.61 35.65 710.79 52.71 28.65 10.96
large 1202.45 34.97 702.38 50.03 28.49 10.85
default | 1978.13 70.33 1826.54  210.67 56.40 68.97
large 1708.05 61.42 1366.17 103.12 54.84 68.16
default | 2034.15 72.09 1726.54 195.44 55.20 67.47
large 1891.42 70.17 1625.27 187.02 54.13 65.09

RangeNet++ [40]

LiDARGen [73] | SPVCNN++ [36]

RangeViT [1]

and R2DM often exhibit artifacts and inconsistencies across modalities, as highlighted by the red
bounding boxes.

10.2 Visualizations of Generated LiDAR Scenes

We demonstrate more generated LiDAR scenes in SemanticKITTI [3] and nuScenes [5] in Figure 9
and Figure 10, respectively. The geometric and semantic artifacts of the generated LiDAR scenes are
highlighted by dashed boxes.

11 Generative Data Augmentation

11.1 Full-supervision Setup

In Table 7, we report the experimental results of using the samples generated by a two-step method
(RangeNet++ [40] & R2DM [42]) and Spiral for generative data augmentation in the segmentation
training of SPVCNN++ [36] on SemanticKITTI [3] dataset. We train SPVCNN++ using full-
supervision method. Besides different ratios (1%, 10%, 20%) of available real labeled data, we extend
the real data subsets with the generated samples (10k). The results show that the generated samples
from Spiral consistently improve the performance of SPVCNN++ and outperform those from R2DM.

11.2 Semi-supervision Setup

Two switches in Spiral, A and B3, provide high flexibility to alternate between the unconditional and
conditional modes. In fully-supervised training, where all input samples have semantic labels, .4 and
BB operate in an exclusive-or (X-OR) manner: (1) in the unconditional mode, A is off and B is on;
(2) in the conditional mode, A is on and B is off. When both switches are turned off (A = 0 and
B = 0), Spiral degenerates into a normal unconditional LiDAR generative model, i.e., non-labeled
mode. This design enables Spiral to support semi-supervised training. Specifically, when only a
small fraction of training samples are labeled (e.g., 10%), Spiral is trained under labeled data using
the conditional or unconditional modes described in the main paper and is trained with the remaining
unlabeled samples under the non-labeled mode.

We train Spiral on a training set where only 10% of the samples are labeled, with the remaining
samples unlabeled. For the two-step baseline methods, the generative model is trained on the full
training set, while the segmentation models are trained solely on the labeled 10% subset. The results
presented in Table 8 show that the generative performance of Spiral consistently outperforms other
baseline two-step methods in this case.

Additionally, we leverage the samples generated by Spiral, trained under the semi-supervised setting,
to augment the labeled training set within the state-of-the-art semi-supervised LiDAR segmentation
framework, LaserMix [25]. We adopt MinkUNet [8] and FIDNet [66] as the segmentation backbones.
The experimental results in Table 9 demonstrate that incorporating Spiral’s generated samples further
improves the performance of both MinkUNet and FIDNet within the LaserMix framework.
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Figure 8: Visualizations of generated depth, reflectance remission, and semantic labels in range-
view perspective on SemanticKITTI [3]. Generation artifacts and cross-modal inconsistencies are
highlighted by the bounding boxes.
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Figure 9: Visualizations of generated LiDAR scenes on SemanticKITTTI [3].
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Figure 10: Visualizations of generated LiDAR scenes on nuScenes [5].
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Table 7: Generative Data Augmentation (GDA) for segmentation training. We evaluate the
effectiveness of GDA using synthetic samples generated by R2DM [42] & RangeNet++ [40] and
Spiral, under different ratios (1%, 10%, 20%) of available real labeled data. Symbol T indicates that
RangeNet++ [40] is used as the segmentation backbone.

Setting 1% 10% 20%

(GDA) None R2DM! SPIRAL | None R2DM' SpPIRAL | None R2DM' SpPIRAL

mloU 37.76 44.16 47.41 59.07 60.62 61.14 61.16 61.21 62.35
car 89.82 87.65 92.87 94.52 94.53 95.13 95.78 94.52 96.03

bicycle 0.00 0.00 12.67 25.04 4323 31.57 2592  42.62 34.07
motorcycle | 13.98  23.36 25.68 62.78 5599 55.47 66.22 5898 58.50
truck 24.15 7.93 4792 | 52.89  49.40 60.19 | 50.53  48.44 57.82
other-vehicle | 15.50  29.60 33.71 42.06  52.30 53.58 5585 51.19 55.44
person 25.82  28.56 26.18 68.32  60.25 61.87 69.48  65.98 73.85
bicyclist 0.00 53.54 0.00 82.72  77.55 86.07 88.02  83.32 85.20

motorcyclist | 1.97 0.00 0.20 0.00 0.26 0.00 0.00 1.52 0.00

per-class road 78.37  86.14 92.79 | 91.59  92.55 93.23 9295 92.64 93.42
mIoU parking 15.41 18.99 51.05 38.99  43.49 4773 | 43.61  43.03 47.94
sidewalk 60.78  70.56 79.61 77.87  79.90 80.62 | 7996  79.72 80.52
other-ground | 0.01 0.25 0.67 4.21 2.09 1.30 2.11 3.31 1.40

building 7920  86.93 88.38 88.58  90.40 90.52 89.87  90.13 90.03

fence 3262 52.14 53.14 | 56.13  62.22 61.82 | 59.80  60.77 60.45

vegetation 83.62  86.28 88.07 87.97  89.49 89.82 88.35 89.21 88.69

trunk 5278  46.19 61.62 | 66.11 66.58 68.27 66.29  66.69 68.51

terrain 69.38  72.84 71.67 7497  78.36 78.28 75.63  71.74 75.34

pole 5432 44.96 5426 | 63.03 61.80 62.81 64.27  62.12 63.85

traffic-sign | 19.77  43.12 14.21 4461 5144 43.44 | 4739 51.01 53.66

Table 8: Semi-supervised training of Spiral and the baseline two-step methods on the Se-
manticKITTI [3] dataset. We evaluate methods using the Range View, Cartesian, and BEV represen-
tations. Symbols | denotes the RangeNet++ [40] trained with 10% labeled samples. The parameter
size includes both the generative and segmentation models.

Param Range View Cartesian BEV
Method o) NFE | S-FRD| S-MMD, | S-FPD| S-MMD| | S-JISD] S-MMD|]
x1 x1072 x1 x1071 x1072 x1073

LiDARGen' [73] | 30+50 | 1160 | 1285.55 47.56 750.68 58.26 34.49 12.66
LiDM!t [48] | 275+50 | 256 - - 486.22 29.78 16.91 6.33
R2DM' [42] | 31450 | 256 | 528.82 7.82 281.96 8.95 16.13 2.99

SPIRAL 61 256 | 508.86 5.77 211.97 4.79 11.47 2.65

12 Broader Impact & Limitations

In this section, we elaborate on the broader impact, societal influence, and potential limitations of the
proposed approach.

12.1 Broader Impact

This work presents several significant implications for both academic research and practical ap-
plications in autonomous driving and computer vision. SPIRAL advances the field of LiDAR
scene generation by introducing a unified framework for joint depth, reflectance, and semantic label
generation. This breakthrough could substantially impact:

1. Research Community
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Table 9: Generative Data Augmentation (GDA) for semi-supervised training in the Laser-
Mix [25] framework. We evaluate the effectiveness of GDA using synthetic samples generated by
Spiral in the semi-supervised training framework LaserMix.

Backbone MinkUNet [8] FIDNet [66]
Method | sup. only LaserMix [25] LaserMix sup. only LaserMix [25] LaserMix
+SPIRAL +SPIRAL
mloU 64.0 66.6 67.2 52.2 60.1 60.3

* Establishes new benchmarks for semantic-aware LiDAR generation
* Provides a novel framework for multi-modal scene understanding

* Opens new research directions in 3D scene generation and understanding
2. Industry Applications

* Reduces the dependency on expensive and time-consuming manual data annotation
* Enables more efficient development of autonomous driving systems

* Provides a cost-effective solution for synthetic data generation

12.2 Societal Influence

The development of SPIRAL could lead to several positive societal outcomes:

1. Transportation Safety

* Enhanced autonomous vehicle perception capabilities through better training data

* Potential reduction in traffic accidents through improved scene understanding
2. Economic Impact

* Reduced development costs for data collection

* Accelerated deployment of self-driving vehicles

12.3 Potential Limitations

While SPIRAL demonstrates promising results, several limitations and challenges should be acknowl-
edged:

1. Technical Constraints: The quality of generated scenes may still have room for improvement.
2. Methodological Limitations: Generated data may not fully capture all real-world complexities.
3. Implementation Challenges: Real-time performance considerations for practical applications.

This work represents a significant step forward in semantic-aware LiDAR scene generation while
acknowledging the need for continued research to address these limitations and challenges. Future
work could focus on enhancing the model’s capabilities in handling complex scenarios and improving
computational efficiency while maintaining generation quality.

13 Public Resource Used

In this section, we acknowledge the use of the public resources, during the course of this work:

13.1 Public Datasets Used
O DUSCENES” e ettt e e e e e CC BY-NC-SA 4.0

Zhttps://www.nuscenes.org/nuscenes.
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https://www.nuscenes.org/nuscenes

 nuScenes-DevKit® ....... .. ... ... Apache License 2.0

o SemanticKIT T .ottt e CC BY-NC-SA 4.0
o SemanticKITTI-APD ..ot e i MIT License
e RODOBD . CCBY-NC-SA 4.0

13.2 Public Implementations Used

o MMDEeCtion” .. ..........iiuiiriiit e Apache License 2.0
e MMDetection3D® ... .. ... .. i Apache License 2.0
o RangeNet++7 ..ot MIT License
e OpenPCSeg'’ ... . . . Apache License 2.0
o RangeViT!! ... . .. . Apache License 2.0
o LIDARGEN ... MIT License
o LiDM MIT License
o R2DM MIT License

*https://github.com/nutonomy/nuscenes-devkit
*nttp://semantic-kitti.org
Shttps://github.com/PRBonn/semantic-kitti-api.
Shttps://github.com/worldbench/robo3d
"https://github.com/open-mmlab/mmdetection.
$https://github.com/open-mmlab/mmdetection3d
*https://github.com/PRBonn/lidar-bonnetal.
https://github.com/PJLab-ADG/OpenPCSeg
"https://github.com/valeoai/rangevit
Phttps://github.com/vzyrianov/lidargen.
Bhttps://github.com/hancyran/LiDAR-Diffusion.
Y“https://github.com/kazuto1011/r2dm.
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