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ABSTRACT

Retrieval Augmented Generation (RAG) frameworks have shown significant
promise in leveraging external knowledge to enhance the performance of large
language models (LLMs). However, conventional RAG methods often retrieve
documents based solely on surface-level relevance, leading to many issues: they
may overlook deeply buried information within individual documents, miss rele-
vant insights spanning multiple documents, and struggle to support tasks beyond
traditional question answering without significant additional customization. In
this paper, we propose Insight-RAG, a novel framework designed to address these
issues. In the initial stage of Insight-RAG, instead of using traditional retrieval
methods, we employ an LLM to analyze the input query and task, extracting
the underlying informational requirements. In the subsequent stage, a special-
ized LLM—trained on the document database—is queried to mine content that
directly addresses these identified insights. Finally, by integrating the original
query with the retrieved insights, similar to conventional RAG approaches, we
employ a final LLM to generate a contextually enriched and accurate response.
Using two scientific paper datasets, we created evaluation benchmarks targeting
each of the mentioned issues and assessed Insight-RAG against traditional RAG
pipeline. Our results demonstrate that the Insight-RAG pipeline successfully ad-
dresses these challenges, outperforming existing methods by up to 60 percentage
points. Supported by our comprehensive ablation studies—including the perfor-
mance of each component and the quality of the identified insights—these find-
ings suggest that integrating insight-driven retrieval within the RAG framework
not only enhances performance but also broadens its applicability to tasks beyond
conventional question answering. We will release our dataset and code.

1 INTRODUCTION

Recent advancements in large language models (LLMs) have spurred renewed interest in Retrieval
Augmented Generation (RAG) frameworks (Gao et al., 2023; Fan et al., 2024). RAG has emerged
as a powerful solution for mitigating inherent challenges in LLMs—such as hallucination and the
lack of recent information—by integrating external document repositories with retrieval models to
produce contextually enriched responses. However, conventional RAG pipelines typically rely on
surface-level relevance metrics for document retrieval, which can result in several limitations: they
may overlook deeply buried information within individual documents and miss relevant insights
distributed across multiple documents. These shortcomings are especially detrimental in domain-
specific scenarios, where the internal knowledge of LLMs is limited and accurate retrieval is critical.
Moreover, traditional RAG frameworks often struggle with tasks beyond standard QA without ex-
tensive adaptation.

Traditional retrieval mechanisms often fail to capture the nuanced insights required for complex
tasks (Barnett et al., 2024; Agrawal et al., 2024; Wang et al., 2024a). For example, they may over-
look deeply buried details within a single document—such as subtle contractual clauses in a legal
agreement or hidden trends in a business report—and may neglect relevant insights dispersed across
multiple documents, like complementary perspectives from various news articles or customer re-
views. Moreover, these methods may struggle with tasks beyond simple question answering, such
as selecting the best job candidate from resume databases or extracting strategic recommendations
from qualitative survey and review data, without significant customization.
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Figure 1: In conventional RAG, using a retriever
model, we first retrieve relevant documents to an-
swer a question. In contrast, in Insight-RAG,
we first identify necessary insights to solve the
task (e.g., answering a question), and then feed
the identified insights to an LLM continually pre-
trained over the documents to extract the neces-
sary insights before feeding them to the final LLM
to solve the task.

In this paper, we propose Insight-RAG—a
novel framework that refines the retrieval pro-
cess by incorporating an intermediary insight
extraction step (see Figure 1). In the first stage,
an LLM analyzes the input query and extracts
the essential informational requirements, effec-
tively acting as an intelligent filter that isolates
critical insights from the query context. This
targeted extraction enables the system to focus
on deeper, task-specific context. Subsequently,
a specialized LLM continually pre-trained (Ke
et al., 2023) with LoRA (Hu et al., 2021; Zhao
et al., 2024a; Biderman et al., 2024) (CPT-
LoRA) on the target domain-specific corpus
leverages these identified insights to retrieve
highly relevant information from the document
database. Finally, the original input—now
augmented with these carefully retrieved in-
sights—is processed by a final LLM to generate
a context-aware response. It is important to em-
phasize that the novelty of Insight-RAG lies not
only in using LLMs to identify insights or in in-
troducing a specialized Insight Retriever LLM
for retrieval, but rather in the tight coupling
between the Insight Identifier and the Insight Retriever to extract task-relevant, contextually
grounded insights that lead to substantial performance gains.

To evaluate Insight-RAG, we use two scientific paper datasets—AAN (Radev et al., 2013) and OC
(Bhagavatula et al., 2018)—and create tailored datasets to address each RAG aforementioned chal-
lenge. We sample 5,000 papers from each dataset using a Breadth-First Search strategy and extract
triples with GPT-4o mini (Hurst et al., 2024), followed by manual/rule-based filtering and normal-
ization. For the deeply buried information challenge, we focus on subject-relation pairs that yield a
single object, selecting only those triples where both the subject and object appear only once in each
document. For the multi-document challenge, we use pairs that yield multiple objects from different
documents. We then, manually filter the samples after translating each triple into a question using
GPT-4o mini. Finally, for the non-QA task challenge, we use the matching labels between papers,
capturing the citation recommendation task, provided by Zhou et al. (2020).

By adopting five state-of-the-art LLMs to compare Insight-RAG with the conventional RAG ap-
proach, we observe that Insight-RAG can achieve up to 60 percentage points improvement in
accuracy with much less contextual information, for both deeply buried and multi-document ques-
tions. Even against more advanced RAG variants such as Self-RAG, Insight-RAG still achieves
substantial gains—outperforming it by up to 46 percentage points. Moreover, we observe that for
non-QA tasks such as paper matching, Insight-RAG consistently helps improve performance by up
to 5.4 percentage points in accuracy, while traditional RAG shows mixed results, sometimes increas-
ing and sometimes decreasing the performance. Then, through various ablation studies—examining
the accuracy of the Insight Retriever, Insight Identifier, and the retriever in RAG baselines, as well
as evaluating the quality of identified insights—we connect model behavior to the performance of
different pipeline components, thereby paving the way for future applications of Insight-RAG.

2 INSIGHT-RAG

In this section, we detail our proposed Insight-RAG framework, which consists of three key units
designed to overcome the limitations of conventional RAG approaches (see Figure 1). We define
an insight as a task-relevant unit of information—such as a factual statement, relational triple, or
data pattern—that directly addresses the informational needs of a query. Unlike surface-level textual
similarity, insights capture deeper semantic connections, whether deeply embedded in a document,
distributed across multiple documents, or reflected in latent patterns. Building on this definition, our
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framework incorporates an intermediary insight extraction stage to capture nuanced, task-specific
information that traditional methods often miss. The pipeline comprises the following units:

Insight Identifier: The Insight Identifier unit processes the input to extract its essential informa-
tional requirements. Serving as an intelligent filter, it isolates critical insights from both the input and
the task context, ensuring that subsequent stages concentrate on deeper, necessary content. To facili-
tate this process, we employ LLMs guided by a carefully designed prompt (provided in Appendix A).

Figure 2: We create our benchmark in several steps:
1) extracting triples from domain-specific documents
using GPT-4o mini and then manually normalizing/-
filtering them, 2) filtering the triples for each differ-
ent type of issue, 3) using GPT-4o mini to translate
the sampled triples to question format, asking about
the object of the triple.

Insight Retriever: Inspired by prior work
on insight learning (Pezeshkpour & Hr-
uschka, 2025), the Insight Retriever serves
as a specialized parametric retriever that
leverages an LLM continually pre-trained
on the target corpus. Unlike common
non-parametric retrievers that rely solely on
embeddings, this unit internalizes domain
knowledge through continual pretraining,
enabling it to surface contextually grounded
insights more effectively. Specifically, we
adopt Llama-3.2 3B (Grattafiori et al., 2024)
as our Insight Retriever and continually pre-
train it with LoRA (Zhao et al., 2024a; Bi-
derman et al., 2024) over our scientific pa-
per datasets. Following Pezeshkpour & Hr-
uschka (2025), we continually pre-train the
model on both the original papers and the
extracted triples from them (see Section 3).
This continual pre-training enables the In-
sight Retriever to retrieve highly relevant information that is contextually aligned with the identified
requirements to solve the task.

Response Generator: The final unit, response generator, integrates the original query with the
retrieved insights and employs a final LLM to generate a comprehensive, context-aware response.
Following the RAG approach, this augmented input allows the model to produce outputs that are
both accurate and enriched by the additional insights. The prompt for this stage is provided in
Appendix A.

3 BENCHMARKING

To evaluate the performance of our Insight-RAG framework, we employ two scientific paper’s ab-
stract datasets—AAN and OC (provided by Zhou et al. (2020))—to create tailored evaluation bench-
marks that address specific challenges encountered in conventional RAG pipelines. Figure 2 pro-
vides an overview of our process for creating the benchmarks. Below, we outline our benchmarking
process for each identified issue. Data statistics are shown in Table 1, and the prompts used are
provided in Appendix A.

Deeply Buried Insight: In here, our focus is on the challenge of capturing deeply buried infor-
mation within individual documents. We begin by sampling 5,000 papers from each dataset using a
Breadth-First Search (BFS) strategy. From these papers, following previous works (Papaluca et al.,
2023; Wadhwa et al., 2023), we use GPT-4o mini to extract triples (we used the same prompt pro-
vided in Pezeshkpour & Hruschka (2025)), followed by manual/rule-based filtering and normalizing
the relations. Then, we select subject-relation pairs that yield a single object and ensure that both the
subject and the object appear only once in the paper’s abstract. This constraint guarantees that the
extracted information is deeply buried and not overly prominent, thereby testing the framework’s
ability to capture subtle details. We then convert the curated triples into question formats using
GPT-4o mini—which generates questions about the object based on the subject-relation pair—and
manually filtered them for quality.

3
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Multi-Document Insight: To assess the capability of Insight-RAG in synthesizing information
from multiple documents, we incorporate the extracted triples from the papers. More specifically,
we focus on subject-relation pairs that yield multiple objects drawn from different papers, thereby
simulating scenarios where relevant insights are distributed across various documents. Once the
multi-document triples are curated, we convert them into question formats using GPT-4o mini. Fi-
nally, to remove noisy and vague questions, we manually filter them to ensure quality.

Non-QA Task: The third benchmark addresses tasks beyond traditional question answering,
specifically evaluating the framework’s applicability for citation recommendation. For this bench-
mark, we leverage the matching labels between papers provided by Zhou et al. (2020), which capture
the citation recommendation task. Our goal is to determine if the insights extracted from a document
database can effectively support solving arbitrary tasks on inputs that share similarities with the
documents, thereby extending the RAG framework’s utility to a variety of real-world applications.

AAN OC

# Docs 5,000 5,000
# Triples 21,526 23,662
# Deep-Insight Samples 318 403
# Multi-document Samples 173 90
# Matching Samples 500 500

Table 1: Data statistics of the created benchmark.

There are two important considerations in our
benchmarking: domain scope and dataset
scale. Regarding domain, although our eval-
uation is conducted on scientific paper datasets,
the findings are broadly applicable to many
domain-specific, in-domain settings. Scientific
documents share structural and content char-
acteristics—such as dense information, formal
language, hierarchical organization, and in-
terlinked references—with domains like legal
documents, resumes, job descriptions, technical reports, financial disclosures, and medical case sum-
maries. These similarities suggest that the challenges Insight-RAG addresses—extracting deeply
buried insights, aggregating information across documents, and handling non-QA tasks—are also
prevalent in many other applications. Therefore, while our benchmarks are grounded in scientific
corpora, the design principles and improvements of Insight-RAG are highly generalizable. As for
scalability, it’s worth noting that only the Insight Retriever component is affected by corpus size.
Prior work on LoRA-based continual pretraining (Zhao et al., 2024a; Biderman et al., 2024) has
demonstrated that such approaches scale effectively to larger corpora. This supports the potential
generalizability of our method beyond the size of our current datasets.

4 EXPERIMENTAL DETAILS

We employ several state-of-the-art LLMs as integral components of the Insight-RAG pipeline: GPT-
4o, GPT-4o mini (Hurst et al., 2024), o3-mini (OpenAI, 2025), Llama3.3 70B (Grattafiori et al.,
2024), and DeepSeek-R1 (Guo et al., 2025). For the Insight Retriever unit, we adopt Llama-3.2 3B
as our Insight Retriever, continually pre-trained with LoRA on domain-specific scientific papers and
extracted triples. We hyperparameter-tuned the Llama-3.2 3B model based on loss, with additional
training and datasets details provided in Appendix B. Moreover, in the Insight-RAG pipeline, we use
the same LLM for both the Insight Identifier and Response Generator. For RAG Baselines, we used
LlamaIndex (Liu, 2022) and the embedding model gte-Qwen2-7B-instruct (Li et al., 2023), which is
the open-sourced state-of-the-art model based on the MTEB leaderboard (Muennighoff et al., 2022)
(ColBERT-based RAG results are provided in Appendix C.3). To provide a stronger baseline for
comparison with Insight-RAG, we also include Self-RAG (Asai et al., 2023) as an extra baseline.

For fair comparison, we limit the Insight Retriever’s maximum generated token length to 100 to-
kens for both datasets, which is less than the average document token length of 134.6 and 226.4
for AAN and OC, respectively. We observe that further increasing the maximum generated token
length does not significantly change the performance. We evaluate LLM performance using accu-
racy, exact match accuracy (calculated by determining if the gold response exactly appears in the
generated response), and F1 Score (standard QA metrics). We also employ Recall@K, which mea-
sures the proportion of correct predictions in the top-k results. We provide a detailed breakdown
of the computational complexity, along with an in-depth discussion of the cost implications and
prompt sensitivity of Insight-RAG, in Appendix B.
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Figure 3: We compare RAG and Insight-RAG on the AAN and OC datasets for questions based on
deeply buried information, using exact match. DeepSeek-R1 performs best, followed by Llama-3.3
70B. Insight-RAG, even with a single generated insight, consistently outperforms RAG by a wide
margin, and while retrieving more documents reduces the gap, it still retains a clear advantage.

5 EXPERIMENTS

This section investigates the impact of Insight-RAG in addressing the aforementioned challenges:
deeply buried insights, multi-document information, and non-QA tasks. We first evaluate LLMs on
our benchmarks, then analyze model behavior by examining each Insight-RAG component and the
quality of identified insights.

5.1 ANSWERING QUESTIONS USING DEEPLY BURIED INSIGHTS

Figure 3 presents the exact match accuracy of Insight-RAG versus conventional RAG using various
LLMs for answering questions based on deeply buried information. First, the zero-shot performance
of all LLMs—i.e., without any context or documents—is very low. This is primarily due to the
domain-specific nature of the questions, which leaves the LLMs without the necessary information
to solve the task. Additionally, the questions themselves may be ambiguous or even erroneous when
isolated; however, providing the associated document context alleviates these issues.

As observed, Insight-RAG, even with only one generated insight from the Insight Retriever,
achieves significantly higher performance compared to the conventional RAG approach. Although
increasing the number of retrieved documents improves the performance of RAG, it still falls consid-
erably short of Insight-RAG. We suspect that the shortcomings of the RAG-based solution are due
to retrieval errors (see Section 5.4) and discrepancies in phrasing between the generated questions
and the original text, which negatively impact performance (Modarressi et al., 2025). DeepSeek-
R1 performs best, followed by Llama-3.3, both outperforming the OpenAI models. In contrast, o3
mini demonstrates the worst performance, primarily because it tends to overthink the task, which is
reflected in its Insight Identifier performance (see Section 5.4).

As discussed in the Related Works section, advanced RAG variants are not directly comparable to
Insight-RAG, since many of them could in principle be applied on top of it. Nevertheless, to provide
a stronger baseline, we also evaluated Self-RAG on our benchmark (results in Appendix C.2). The
results show that, while Self-RAG substantially improves standard RAG—particularly when fewer
documents are retrieved—it is still consistently and significantly (by up to 46 percentage points)
outperformed by Insight-RAG. This demonstrates that even sophisticated RAG frameworks such
as Self-RAG continue to suffer from the fundamental challenges we target, underscoring superiority
of Insight-RAG in addressing these issues.

We also report F1 scores of models in Appendix C.1. Surprisingly, despite the superior performance
of DeepSeek in Exact Match, its performance drops significantly in F1. Upon further investigation,
we observe that this is mostly due to DeepSeek’s tendency to generate unnecessary content and occa-
sional hallucinations, especially when the right document is not retrieved (we removed the thinking
part of DeepSeek-generated answers to calculate the F1). Other models show similar behavior as in
Exact Match, with Llama-3.3 70B emerging as the best-performing model.
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Figure 4: We compare RAG and Insight-RAG on the AAN and OC datasets for multi-document
questions, using averaged exact match. DeepSeek-R1 performs best, followed by Llama-3.3 70B.
Insight-RAG achieves much higher performance with just a few insights, with improvements slow-
ing as more are added.

Model AAN OC

Vanilla RAG (1 doc) Insight-RAG Vanilla RAG (1 doc) Insight-RAG

GPT-4o mini 80.8 81.6 (+0.8) 82.8 (+2.0) 74.4 70.0 (-4.4) 78.0 (+3.6)
GPT-4o 84.0 80.4 (-3.6) 84.0 (0.0) 71.6 73.6 (+2.0) 74.0 (+2.4)
o3 mini 85.4 85.6 (+0.2) 85.6 (+0.2) 77.0 74.2 (-2.8) 82.0 (+5.0)
Llama 3.3 70B 83.8 79.2 (-4.6) 84.4 (+0.6) 79.0 77.8 (-1.2) 81.4 (+2.4)
DeepSeek-R1 70.4 74.0 (+3.6) 73.8 (+3.4) 66.6 71.4 (+4.8) 72.0 (+5.4)

Table 2: The performance comparison of RAG versus Insight-RAG across the AAN and OC datasets
in the paper matching task, measured in terms of accuracy. As demonstrated, o3 mini performs
the best while DeepSeek-R1 shows the lowest performance. Moreover, we observe that Insight-
RAG consistently improves performance across all models, while RAG-based solutions show mixed
impacts on model performance.

Finally, the results using ColBERT as the retriever (provided in Appendix C.3) closely follow the
performance trends observed with the GTE model, further reinforcing our core findings on the lim-
itations of surface-level retrieval and the advantages of insight-driven retrieval. Moreover, focusing
on DeepSeek-R1 because of its superior performance, we report its RAG-based performance when,
instead of retrieving documents, we retrieve triples from the set of all extracted triples for each
dataset (see Appendix C.4). We observe that the model shows similar behavior to document-based
RAG, but with much less context—since a triple is much shorter than a document—and still falls
significantly short compared to Insight-RAG performance. This further highlights the shortcomings
of conventional retrieval approaches and the complexity of resolving them.

5.2 MULTI-DOCUMENT INFORMATION AGGREGATION

We present the averaged exact match accuracy (calculated over gold answers for each sample) of
Insight-RAG versus conventional RAG using various LLMs for answering questions based on infor-
mation from multiple documents in Figure 4. While using the same number of retrieved documents
and generated insights, Insight-RAG consistently and significantly outperforms the conventional
RAG approach. Moreover, Insight-RAG performance increases rapidly with only a few generated
insights, and then its rate of improvement slows down as more generated insights are added. While
more retrieved documents improve RAG, it still lags behind Insight-RAG, though the gap narrows.
Overall performance is lower in the multi-document setting than in the deeply buried case, but
Insight-RAG remains clearly superior. DeepSeek-R1 leads, followed by Llama, both outperforming
OpenAI models. We also report the Self-RAG performance, average F1 scores, ColBERT-based
RAG results, and triple-based RAG performance for DeepSeek-R1 in Appendix C. Notably, the
performance trends mirror those observed for questions on deeply buried information. For triple-
based RAG, we observe a degradation in performance—it yields results similar to document-based
RAG but when using similar number of tokens in the context.
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5.3 RAG IN NON-QA TASKS

We evaluate RAG-based solutions on a non-qa task—the matching task of citation recommendation.
For the RAG baseline, we retrieve only one document because the matching task is not well-defined
for traditional RAG approaches, and our experiments did not show any improvement when retrieving
additional documents.

Our results, presented in Table 2, show that Insight-RAG outperforms the conventional RAG base-
line in nearly all settings (we report F1 results in Appendix C.1). This improvement is more pro-
nounced on the OC dataset, likely due to the lower zero-shot performance of the LLMs on that
dataset. The subjective nature of the matching task (particularly in the AAN dataset) constrains the
potential for improvement, resulting in a modest performance gain. Furthermore, the RAG baseline
demonstrates mixed impacts—yielding both positive and negative effects on model performance
across different configurations. Notably, the o3 mini achieves the best overall performance, whereas
DeepSeek-R1 performs the worst. Upon further investigation, we found that DeepSeek-R1 tends to
unnecessarily overthink the task, which negatively impacts its performance. These findings under-
score the effectiveness of the insight-driven approach in extending RAG to tasks beyond question
answering and highlight the need for tailored retrieval strategies in non-QA contexts.

5.4 COMPONENTS ANALYSIS

In this section, we analyze the performance of the two key components of the Insight-RAG frame-
work—Insight Identifier and Insight Retriever—in addition to the retriever performance of RAG
baselines, and discuss how their individual contributions drive the overall success of the systems.

AAN-Dee
p

AAN-M
ult

i

OC-Dee
p

OC-M
ult

i

GPT-4o mini

GPT-4o

o3 mini

Llama-3.3 70B

DeepSeek-R1

97.7 91.8 96.4 93.1

97.0 90.6 96.5 87.3

95.9 91.2 95.4 88.5

96.6 94.7 95.7 95.9

97.0 95.0 97.8 93.6
88

90

92

94

96

Figure 5: Insight Identifier performance: We
ask GPT-4o mini to score the identified insights
compared to the gold insights using a three-point
scale: 0 (not similar), 0.5 (partially similar), and 1
(completely similar).

Insight Identifier: The Insight Identifier
plays a crucial role by processing the input
query and distilling the essential informational
requirements. To measure the accuracy of the
Insight Identifier for deeply buried and multi-
document questions, we compare the identified
insights with the gold insights (which are con-
catenations of the subject and relation used to
generate the questions). We ask GPT-4o mini to
score their similarity using a three-point scale:
0 (not similar), 0.5 (partially similar), and 1
(completely similar). We provide the prompt
in Appendix A.

As shown in Figure 5, all models perform
well in identifying insights for simple ques-
tions. o3 mini performs the worst, likely due
to its tendency to overthink—consistent with
its observed lower overall accuracy. Moreover,
all models show lower performance in multi-
document questions compared to deeply buried
questions, which is due to the fact that when
GPT-4o mini translates triples into question format, it tends to add more unnecessary words in
multi-document questions (to capture the fact that there is more than one answer).

Insight Retriever: We calculate the accuracy of the Insight Retriever in predicting the object given
the concatenation of subject and relation used to create questions in both deeply buried and multi-
document questions. Table 3 summarizes the Insight Retriever’s performance based on exact match
accuracy for deeply buried questions and recall@10 for multi-document questions, respectively.

Our results show that continual pre-training of Llama3.2 3B using LoRA on both the original papers
and the extracted triples leads to a reasonably well-performing Insight Retriever, with higher perfor-
mance on deeply buried questions versus multi-document questions. This difference is probably due
to the fact that it is easier for the model to learn information about the pair of subject and relation
with one object compared to cases when there are multiple objects for a given subject-relation pair.
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Task Type AAN OC

Deep-Insight 92.1 96.5
Multi-Document 72.1 74.8

Table 3: The Insight Retriever perfor-
mance: We report exact match for deeply
buried questions and Recall@10 for multi-
ple document questions.

Data Deep-Insight Multi-Document

Hits@50 MRR A-Hits@50 A-MRR

AAN 39.3 0.13 46.8 0.16
OC 56.1 0.24 49.5 0.20

Table 4: The retriever performance: We report
Hits@50 and MRR for deeply buried questions, and
their averages for multi-document questions.

Retriever: Given our knowledge of each question’s source paper, we can evaluate the accuracy
of the RAG baselines’ retriever models in fetching relevant documents for both deeply buried and
multi-document questions. Table 4 presents the retriever performance using Hits@50 and MRR
metrics, along with their averaged values for multi-document questions. As shown, retriever per-
formance is consistently low across all settings, explaining the poor performance of the RAG base-
lines. We attribute this low performance to two primary factors: first, embedding-based representa-
tions struggle to capture deeply buried concepts within documents; second, our question generation
method produces phrasing that differs from the original text, making it harder for the retriever to
find the correct document (Modarressi et al., 2025). Additionally, similar retrieval performance is
observed across both settings.

5.5 IDENTIFIED INSIGHTS IN NON-QA TASKS

To better understand the identified insights and their impact on the matching task, we first extract
the insights generated by the Insight Identifier module for each model and dataset. We then assign a
binary label (0 or 1) to each sample, indicating whether augmenting the sample with these insights
changes the model’s prediction from correct to incorrect or vice versa, respectively. Next, we iden-
tify words with positive or negative impact by calculating the Z-score—a metric introduced to detect
artifacts in textual datasets by measuring the correlation between the occurrence of each word and
the corresponding sample label (Gardner et al., 2021). Figure 6 shows the Z-score results for the
LLMs. Although in the prompt we clearly asked the models to identify insights independent of the
input identifiers (i.e., Paper A and Paper B), we observe that “paper” appears as an influential token
in insights identified by GPT-4o mini and o3 mini, mostly as a negative factor except for o3 mini in
the OC dataset.

Overall, OpenAI models appear to benefit from relation words that indicate direct application or
description (e.g., “used”, “based”, and “describes”), while they are hindered by more discursive
or predictive terms (e.g., “presents”, “discuss”, “relates”, and “predict”). In contrast, open LLMs
perform better when relations emphasize analytical or connective processes (e.g., “analyzed”, “con-
nected”, “enhance”, and “involve”), with generic or usage-based terms impairing their performance
(e.g., “include”, “based”, “used”, and “applied”). This indicates that the same relation word can
affect different models in opposite ways, highlighting the significant role of model architecture and
training history in interpreting relational cues. Finally, we observe that for GPT-4o, most of iden-
tified insights did not result in changes to model predictions, suggesting that the Z-scores for this
model may not be very trustworthy.

6 RELATED WORKS

RAG has emerged as a prominent strategy for enhancing LLMs by grounding their responses in
external document repositories. Early works focused on improving accuracy and contextual rele-
vance for tasks like open-domain QA and summarization by integrating retrieval mechanisms with
language models (Lewis et al., 2020; Karpukhin et al., 2020; Guu et al., 2020). RAG also has been
adapted for various non-QA tasks, including code generation (Wang et al., 2024b), math reasoning
(Levonian et al., 2023; Yang et al., 2024), and commonsense inference (Geva et al., 2021). While
these works demonstrate RAG’s applicability beyond QA, they often rely on extensive customization
through task-specific retrievers, dataset engineering, or other significant modifications. In contrast,
Insight-RAG provides a more general-purpose solution that can be applied to diverse task–dataset
pairs, requiring only the pre-training of the Insight Retriever on the target corpus (requiring no la-
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Figure 6: The quality of identified insights in the matching task: We identified the top-5 most
positively and negatively influential words in the identified insights using Z-score metric.

beled data). Also, more advanced variants, such as Iter-RetGen (Shao et al., 2023) and Self-RAG
(Asai et al., 2023), were proposed to handle multi-step and decomposable reasoning tasks (Zhao
et al., 2024b). While not applicable to our setting of atomic, non-decomposable questions, these
methods can complement Insight-RAG in more complex tasks by being applied on top of it, which
we leave as future work. Moreover, recent work has explored fine-tuning LLMs to enhance specific
aspects of RAG—Zhang et al. (2024) focus on domain relevance, Song et al. (2024) on hallucination
suppression, and Wu et al. (2025) on dynamic retrieval routing.

In parallel to these developments, research on insight extraction has shown the value of identify-
ing critical, often overlooked details within documents. Transformer-based methods like OpenIE6
(Kolluru et al., 2020) have advanced Open Information Extraction by using pre-training to capture
nuanced relational data from unstructured text. LLMs have also emerged as powerful tools for
keyphrase extraction (Muhammad et al., 2024), and in recent years, they have been increasingly
adopted to mine insights from documents across various domains (Ma et al., 2023; Zhang et al.,
2023; Schilling-Wilhelmi et al., 2024).

7 CONCLUSION AND FUTURE WORK

We introduced Insight-RAG, a novel framework that enhances traditional RAG by incorporating
an intermediary insight extraction process. Our approach specifically addresses key challenges in
conventional RAG pipelines—capturing deeply buried information, aggregating multi-document in-
sights, and solving tasks beyond QA. Evaluation on our developed benchmarks from AAN and
OC datasets shows that insight-driven retrieval consistently boosts performance. Moreover, through
detailed ablation studies, we further identified both the reasoning behind Insight-RAG’s superior
performance and the shortcomings of standard RAG.

Looking ahead, Insight-RAG opens several promising research directions: (1) extending beyond
citation recommendation to domains such as legal analysis, medical research, business intelligence,
and creative content generation; (2) developing hierarchical insight extraction methods that catego-
rize insights by importance, abstraction level, and relevance, to support more nuanced retrieval; (3)
enabling multimodal insight extraction from text, images, audio, and video, to create a more com-
prehensive understanding of complex information ecosystems; (4) incorporating expert feedback
loops to guide extraction in specialized fields; and (5) exploring the transferability of insights across
domains to reduce the need for domain-specific training while maintaining high performance.
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REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. The design principles,
methodology, and evaluation setup for Insight-RAG are detailed in Sections 2, 3, 4, and Appendix
B. All models used in the experiments are well-documented, and the corresponding prompt tem-
plates are provided in Appendix A. Upon acceptance, we will release the benchmark, codebase, and
full documentation covering both the experimental setup and benchmark construction to facilitate
replication.

ETHICS STATEMENT

We made use of AI tools, such as ChatGPT, to support coding tasks and assist in refining the writing
of this paper. All outputs produced with AI assistance were carefully reviewed, revised, and edited
by us to ensure accuracy, consistency, and alignment with our research objectives. The final content
of the paper reflects our own intellectual contributions, with AI tools serving only as supportive aids
in the coding and writing process.
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ing imperfect retrieval augmentation and knowledge conflicts for large language models. arXiv
preprint arXiv:2410.07176, 2024a.

Zora Zhiruo Wang, Akari Asai, Xinyan Velocity Yu, Frank F Xu, Yiqing Xie, Graham Neubig,
and Daniel Fried. Coderag-bench: Can retrieval augment code generation? arXiv preprint
arXiv:2406.14497, 2024b.

Di Wu, Jia-Chen Gu, Kai-Wei Chang, and Nanyun Peng. Self-routing rag: Binding selective retrieval
with knowledge verbalization. arXiv preprint arXiv:2504.01018, 2025.

Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao, Minkai Xu, Wentao Zhang, Joseph E Gonzalez,
and Bin Cui. Buffer of thoughts: Thought-augmented reasoning with large language models.
Advances in Neural Information Processing Systems, 37:113519–113544, 2024.

Tianjun Zhang, Shishir G Patil, Naman Jain, Sheng Shen, Matei Zaharia, Ion Stoica, and Joseph E
Gonzalez. Raft: Adapting language model to domain specific rag. In First Conference on Lan-
guage Modeling, 2024.

Yunkai Zhang, Yawen Zhang, Ming Zheng, Kezhen Chen, Chongyang Gao, Ruian Ge, Siyuan Teng,
Amine Jelloul, Jinmeng Rao, Xiaoyuan Guo, et al. Insight miner: A large-scale multimodal model
for insight mining from time series. In NeurIPS 2023 AI for Science Workshop, 2023.

Justin Zhao, Timothy Wang, Wael Abid, Geoffrey Angus, Arnav Garg, Jeffery Kinnison, Alex Sher-
stinsky, Piero Molino, Travis Addair, and Devvret Rishi. Lora land: 310 fine-tuned llms that rival
gpt-4, a technical report. arXiv preprint arXiv:2405.00732, 2024a.

Siyun Zhao, Yuqing Yang, Zilong Wang, Zhiyuan He, Luna K Qiu, and Lili Qiu. Retrieval aug-
mented generation (rag) and beyond: A comprehensive survey on how to make your llms use
external data more wisely. arXiv preprint arXiv:2409.14924, 2024b.

Xuhui Zhou, Nikolaos Pappas, and Noah A Smith. Multilevel text alignment with cross-document
attention. arXiv preprint arXiv:2010.01263, 2020.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PROMPTS

The prompts used for the Insight Identifier, question answering with and without augmentation,
matching with and without augmentation, and evaluating the identified insights are provided in
prompts A.1, A.2, A.3, A.4, A.5, and A.6, respectively.

Insight Identifier

You are given a question or task along with its required input. Your
goal is to extract the necessary insight that will allow another
autoregressive LLM|pretrained on a dataset of scientific papers|to
complete the answer. The insight must be expressed as a sentence
fragment (i.e., a sentence that is meant to be completed).

Instructions:

Extract the Insight:
Identify the key information needed from the dataset to solve the task
or answer the question.
Format the insight as a sentence fragment that can be completed by the
LLM trained on the dataset.
For example, if the task is to find the birthplace of Person X, your
insight should be: "Person X was born in".

Determine Answer Multiplicity:
Determine whether the answer should be singular or plural based solely
on the plurality of the nouns in the question. Do not use common
sense or external context|rely exclusively on grammatical cues in the
question.
For instance, if the question uses plural nouns (e.g., "What are the
cities in California?"), set Multi-answer to True. Conversely, if the
question uses singular nouns (e.g., "What does pizza contain?"), set it
to False.

Relevance Check:
Only include insights that are directly answerable from the dataset.
If an insight does not relate to the available dataset, ignore it.

Output Format:
Return the result as a list of dictionaries.
Each dictionary must have two keys:
"Insight": The sentence fragment containing the key insight.
"Multi-answer": A Boolean (True or False) indicating whether multiple
answers are required.
Example Output for follwing questions, Where was Person X born in?
what does pizza contain? What are the Cities in California?:

[
{"Insight": "Person X was born in", "Multi-answer": false},
{"Insight": "Pizza contains", "Multi-answer": false},
{"Insight": "The cities in California are", "Multi-answer": true}
]

Please provide your final answer in this JSON-like list-of-dictionaries
format with no additional commentary.
Also, make sure to NOT add any extra word to the insights other than
the word present in the input.
Remove all unnecessary words and provide the insight in its simplest
form. For example, if the query asks "what are the components that X
uses?", the insight should be "X uses". Similarly, if the query asks
"what are all the components/techniques/features/applications included
in Z?", the insight should be "Z include".
If a non-question task is given, possible insights might involve asking
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about how two concepts are connected or a definition of a concept.
Only identify the insight you believe will help solve the task, and
provide it as a short sentence fragment to be completed. Do not add
any unnecessary content or summaries of the input.
Additionally, for non-question tasks, the insight should NOT refer to
the specific input or include any input-specific identifiers. Instead,
it should be a STAND-ALONE statement focusing on the underlying
concepts, entities, and their relationships from the inputs. If you
cannot find any such insights, return a list of EMPTY dictionary.

Task:
{}

QA

Answer the question. Do not include any extra explanation.
Question: {}

Augmented QA

Answer the question using the context. Do not include any extra
explanation.
Question: {}
Context: {}

Matching

You are provided with two research papers, Paper-A and Paper-B. Your
task is to determine if the papers are relevant enough to be cited by
the other. Your response must be provided in a JSON format with two
keys:
"explanation": A detailed explanation of your reasoning and analysis.
"answer": The final determination ("Yes" or "No").

Paper-A:
{}

Paper-B:
{}

Augmented Matching

You are provided with two research papers, Paper-A and Paper-B, and
some useful insights. Your task is to determine if the papers are
relevant enough to be cited by the other. You may use the insights to
better predict whether the papers are relevant or not. The insights
should only serve as supportive evidence; do not rely on them blindly.
Your response must be provided in a JSON format with two keys:
"explanation": A detailed explanation of your reasoning and analysis.
"answer": The final determination ("Yes" or "No").

Paper-A:
{}

Paper-B:
{}

Useful insights:
{}
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Identified Insights Evaluation

You are given two incomplete sentences: a target sentence and a
generated sentence. Your task is to evaluate how similar these two
incomplete sentences are in terms of meaning and content. Please
follow these instructions:

Similarity Criteria:

0: The sentences are not similar at all.
0.5: The sentences share some elements or meaning, but are only
partially similar.
1: The sentences are very similar or essentially equivalent in
meaning.

Output Requirement:

Provide only the similarity score (0, 0.5, or 1) as your output.
Do not include any additional text or explanation. The output format
should be as follownig:

Score: <0, 0.5, or 1)>

Target Sentence: {}
Generated Sentence: {}

B EXPERIMENTAL DETAILS

Benchmarking: We use the processed abstracts from the AAN dataset (Radev et al., 2013) and the
OC dataset (Bhagavatula et al., 2018), as provided by Zhou et al. (2020). This curated set includes
approximately 13,000 paper abstracts from AAN and 567,000 abstracts from OC, offering a rich
and diverse corpus of academic content. Specifically, the AAN dataset comprises computational
linguistics papers published in the ACL Anthology from 2001 to 2014, along with their associated
metadata, while the OC dataset encompasses approximately 7.1 million papers covering topics in
computer science and neuroscience.

Modeling: For Insight Retriever, we perform continual pre-training on Llama-3.2 3B with LoRA
and optimize hyperparameters through grid search based on training loss. Specifically, following
Pezeshkpour & Hruschka (2025), we tuned learning rate α = [3× 10−3, 10−3, 3× 10−4, 10−4, 3×
10−5, 10−5]; the LoRA rank r = [4, 8, 16]; the LoRA-alpha ∈ {8, 16, 32}; and the LoRA-dropout
∈ {0.05, 0.1}. We trained the Llama model for 30 epochs.

Cost and Complexity Considerations: Continual pre-training of the Insight Retriever using
LoRA on 8 NVIDIA A100 SXM GPUs for 30 epochs per dataset takes approximately 7 hours. Since
Insight-RAG is intended for domain-specific settings, we argue that the initial pre-training phase
constitutes the most computationally intensive step of the pipeline. While periodic updates to the
Insight Retriever may be needed to accommodate newly added documents, in many real-world sce-
narios these updates can be performed infrequently, especially in relatively stable domains. In more
dynamic environments, an online learning-based solution (Hoi et al., 2021; Liang et al., 2024) can
be adopted to update the model incrementally without necessitating a full retraining cycle, thereby
mitigating the associated cost.

Regarding prompting costs, while the multi-stage design of Insight-RAG introduces additional
computational complexity and potential latency, which may limit its applicability in real-time or
resource-constrained settings, it also enables significantly higher performance using much shorter
context lengths, ultimately reducing overall API costs compared to conventional RAG. Furthermore,
although the framework relies on carefully crafted prompts for the Insight Identifier, our prompt
development experiments showed that downstream performance was only marginally sensitive to
prompt wording, particularly with stronger LLMs. More importantly, model behavior was driven by
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Figure 7: The performance comparison of RAG versus Insight-RAG across the AAN and OC
datasets based on F1 metric for deeply buried information. As demonstrated, Llama-3.3 performed
the best, while DeepSeek-R1 performed the worst.

0 10 20 30 40 50
# Documents/Generated Insights

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

F1

(a) AAN

0 10 20 30 40 50
# Documents/Generated Insights

0.00

0.05

0.10

0.15

0.20

0.25

F1

GPT-4o mini + RAG
GPT-4o mini + Insight-RAG
GPT-4o + RAG
GPT-4o + Insight-RAG
o3-mini + RAG
o3-mini + Insight-RAG
Llama-3.3 70B + RAG
Llama-3.3 70B + Insight-RAG
DeepSeek-R1 + RAG
DeepSeek-R1 + Insight-RAG

(b) OC

Figure 8: The performance comparison of RAG versus Insight-RAG across the AAN and OC
datasets based on averaged F1 metric for multi-document questions. As demonstrated, Llama-3.3
performed the best, while DeepSeek-R1 performed the worst.

the clarity and structure of the instructions rather than specific phrasings. When instructions were
explicit and well-scoped, the models consistently demonstrated robustness to superficial prompt
variations.

C EXPERIMNETS

C.1 F1 SCORE EVALUATION RESULTS

We report F1 and averaged F1 performance for all models for deeply buried and multi-document
questions in Figure 7 and 8, respectively. Interestingly, despite DeepSeek’s superior performance
in Exact Match metrics, its F1 scores show a significant decline. Upon closer examination, we
discovered this discrepancy stems primarily from DeepSeek’s tendency to generate excessive content
and occasional hallucinations, particularly when the correct document isn’t retrieved. This poor F1
performances occur despite our removal of DeepSeek’s “thinking” sections when calculating F1
scores. The other evaluated models demonstrate performance patterns similar to their Exact Match
results, with Llama-3.3 70B consistently emerging as the top-performing model across both setting.
Moreover, Table 5 presents the F1 scores for the paper matching task. While these results follow
similar trends as the accuracy metric, the F1 scores reveal that both the positive and negative impacts
of conventional RAG as well as the benefits of Insight-RAG, are even more amplified compared to
accuracy.
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Model AAN OC

Vanilla RAG (1 doc) Insight-RAG Vanilla RAG (1 doc) Insight-RAG

GPT-4o mini 78.8 79.9 (+1.1) 82.2 (+3.4) 66.0 57.9 (-8.1) 72.5 (+6.5)
GPT-4o 82.4 77.6 (-4.8) 82.8 (+0.4) 61.2 66.3 (+5.1) 65.6 (+4.4)
o3 mini 85.0 85.1 (+0.1) 85.4 (+0.4) 70.4 65.4 (-5.0) 78.9 (+8.5)
Llama 3.3 70B 83.8 80.0 (-3.8) 84.8 (+1.0) 73.8 71.8 (-2.0) 77.8 (+4.0)
DeepSeek-R1 59.3 66.7 (+7.4) 68.6 (+9.3) 50.4 60.6 (+10.2) 62.2 (+11.8)

Table 5: The F1 performance comparison of RAG versus Insight-RAG across the AAN and OC
datasets in the paper matching task. As demonstrated, o3 mini performs the best while DeepSeek-
R1 shows the lowest performance. Moreover, we observe that Insight-RAG consistently improves
performance across all models, while RAG-based solutions show mixed impacts on model perfor-
mance.

Model AAN OC

1 3 10 50 1 3 10 50

GPT-4o (Deep) 24.8 30.8 31.3 33.4 23.6 29.0 32.1 33.9
DeepSeek-R1 (Deep) 27.9 34.8 36.5 39.9 25.3 33.9 39.2 40.9

GPT-4o (Multi) 25.6 32.9 38.1 39.1 26.3 30.6 33.7 34.5
DeepSeek-R1 (Multi) 27.0 34.2 40.4 41.8 26.4 34.4 37.9 39.6

Table 6: Self-RAG exact match and averaged exact match performance on deeply buried and multi-
document questions. We report results using the top 1, 3, 10, and 50 retrieved documents.

C.2 SELF-RAG PERFORMANCE

To provide a stronger baseline, we evaluated Self-RAG on our benchmark. We adopt a training-free
Self-RAG implementation that replaces learned reflection tokens with prompt-based LLM decisions
for retrieval and verification, a strategy shown to be effective in previous works (Li et al., 2024;
Chang et al., 2024). Since GPT-4o and DeepSeek-R1 achieved the strongest performance among
proprietary and open LLMs in the standard RAG setting, we focus on these two models. The results
for Self-RAG—reported in terms of exact match and averaged exact match for the deeply buried
and multi-document tasks, respectively—are shown in Table 6. While Self-RAG substantially im-
proves standard RAG, particularly when fewer documents are retrieved, it is still consistently and
significantly outperformed by Insight-RAG. This highlights that even sophisticated frameworks like
Self-RAG continue to suffer from the fundamental challenges we target, underscoring superiority of
Insight-RAG in addressing these issues.

C.3 COLBERT-BASED RAG PERFORMANCE

We report RAG-based exact match and averaged exact match performance using ColBERT as the
retriever in Figures 9 and 10. The results closely mirror the performance trends observed with the
GTE model, further reinforcing our core findings on the limitations of surface-level retrieval and the
advantages of insight-driven retrieval.

C.4 TRIPLE-BASED RAG PERFORMANCE

Focusing on DeepSeek-R1 due to its superior performance, we report its RAG-based results when,
instead of retrieving documents, we retrieve triples from the set of all extracted triples for each
dataset. Table 7 provides the exact match accuracy for the deeply buried information setting, along
with the averaged exact match accuracy for the multi-document setting. We observe that while the
model shows similar behavior to document-based RAG, using much less context—since a triple is
much shorter than a document—it still falls significantly short compared to Insight-RAG perfor-
mance. The overall gap between triple-based RAG and Insight-RAG underscores the shortcomings
of conventional retrieval approaches and the complexity of resolving them.
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Figure 9: We compare RAG and Insight-RAG on the AAN and OC datasets for questions based on
deeply buried information using ColBERT as the retriever. DeepSeek-R1 performs best, followed
by Llama-3.3 70B. Insight-RAG, even with a single generated insight, consistently outperforms
RAG by a wide margin. Although retrieving more documents narrows the gap, Insight-RAG still
maintains a clear advantage.

0 10 20 30 40 50
# Documents/Generated Insights

0

10

20

30

40

50

60

AV
G-

Ac
cu

ra
cy

 (%
)

(a) AAN

0 10 20 30 40 50
# Documents/Generated Insights

10

20

30

40

50

AV
G-

Ac
cu

ra
cy

 (%
)

GPT-4o mini + RAG
GPT-4o mini + Insight-RAG
GPT-4o + RAG
GPT-4o + Insight-RAG
o3-mini + RAG
o3-mini + Insight-RAG
Llama-3.3 70B + RAG
Llama-3.3 70B + Insight-RAG
DeepSeek-R1 + RAG
DeepSeek-R1 + Insight-RAG

(b) OC

Figure 10: We compare RAG and Insight-RAG on the AAN and OC datasets for multi-document
questions using ColBERT as the retriever. DeepSeek-R1 performs best, followed by Llama-3.3
70B. Insight-RAG achieves much higher performance with just a few insights, with improvements
slowing as more are added.

Model AAN OC

1 3 10 50 1 3 10 50

DeepSeek-R1 (Deep) 13.8 18.9 25.8 35.2 20.1 27.0 33.0 42.2
DeepSeek-R1 (Multi) 12.1 14.0 14.7 25.2 10.6 13.9 17.9 22.7

Table 7: RAG-based exact match and averaged exact match accuracy of DeepSeek-R1 for deeply
buried and multi-document questions. Instead of retrieving documents, we retrieve triples—using
the set of extracted triples. We report results using the top 1, 3, 10, and 50 retrieved triples.

18


	Introduction
	Insight-RAG
	Benchmarking
	Experimental Details
	Experiments
	Answering Questions using Deeply Buried Insights
	Multi-Document Information Aggregation
	RAG in Non-QA Tasks
	Components Analysis
	Identified Insights in Non-QA Tasks

	Related Works
	Conclusion and Future Work
	Prompts
	Experimental Details
	Experimnets
	F1 Score Evaluation Results
	Self-RAG Performance
	ColBERT-Based RAG Performance
	Triple-Based RAG Performance


