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Abstract

What are the inner workings of large language models? Can they perform prag-
matic inference? This paper attempts to characterize from a mathematical angle the
processes of large language models involved in metaphor understanding. Specifi-
cally, we show that GPT2-XL model’s reasoning mechanisms can be well predicted
within the Rational Speech Act framework for metaphor understanding, which has
already been used to grasp the principles of human pragmatic inference in dealing
with figurative language. Our research contributes to the field of explainability and
interpretability of large language models and highlights the usefulness of adopt-
ing a Bayesian model of human cognition to gain insights into the pragmatics of
conversational agents.

1 Introduction

Large language models (LLMs, e.g., GPT [1], PALM [2], and LLaMA [3]), with their huge number
of parameters and enormous computational power, have exhibited unprecedented skills in tasks such
as language generation, translation, and understanding. Nevertheless, along with their complexity,
comes challenges related to their interpretability, that is, the comprehension of the inner machinery
of these models, their strengths, and limitations. Although the skills of large language models have
been extensively quantified, our understanding of the underlying cognitive mechanisms that enable
these skills remains on the surface.

Gaining insights concerning the cause-and-effect relationship that leads to a particular output in
artificial neural networks, along with providing clear and coherent explanations for their decision, is
the object of study of the field known as explainability, or interpretability. The motivation for this line
of work relates to building trust in AI systems, ensuring ethical use, and enabling humans to assess
and potentially correct model behavior when necessary. Investigations in these areas have shown
that LLMs can be seen as few-shot-learners [1], fully-zero-shot learners [4], zero-shot-reasoners [5],
few-shot table-reasoners [6], or agent models [7]. Nonetheless, none of these insights has helped
in structuring a reliable model of pragmatic reasoning for LLMs able to justify their successful
performance in linguistic assessments [8].
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The only general-purpose cognitive model for LLMs, called bounded pragmatic speaker, has been
recently presented in [9]. In this model, the bounded pragmatic speaker embodies a speech agent that
attempts to communicate pragmatically but is limited by its computational capacity. Consequently,
it develops a base speaker model to opportunely resize the space of utterances under consideration,
and a pragmatic model to predict how a listener would interpret each utterance. As a whole, this
model captures relevant facets of pragmatic reasoning, yet it has several weaknesses. Firstly, it sees
large language models almost-exclusively as speakers bypassing the fact that they are also listeners.
Secondly, no experimental evidence is provided to support the model proposed. Lastly, the ways to
improve LLMs, suggested by that model, demand either important structural changes or re-training,
extremely expensive operations from a computational perspective. Our work partially addresses these
weaknesses.

In particular, here we focus on studying how the processes supporting metaphor comprehension may
take place in LLMs. In humans, the key mechanism underlying metaphorical understanding is that
of pragmatic inference, extensively studied from numerous perspectives such as the pragmatic one
within Relevance Theory [10, 11] and, more recently, also from the statistical and computational angle.
The Rational Speech Act (RSA) framework [12, 13], is perhaps the most significant formal system
able to capture pragmatic reasoning, also in the case of metaphor. RSA is both a game-theoretic and
information-theoretic model that looks upon language use as an instance of a signaling game, and
upon pragmatic inference as an optimization task [14].

In this work, we contribute to the interpretability and explainability of large language models by
showing that the Rational Speech Act framework provides quantitatively accurate explanations for
LLMs’ behavior in metaphor interpretation. In particular, we exhibit how GPT2-XL model reasons
according to a mechanism that can be simulated by the pragmatic listener in the RSA framework.
Moreover, we provide an information-theoretic analysis of the similarity among the interpretations
computed by an RSA model and by GPT2-XL. Based on the insights gained, we wrap-up providing
suggestions on how to improve LLMs without any structural manipulation or re-training.

2 Preliminaries

Metaphor is a loose use of language where some concepts are broadened to emphasize some specific
features of an element [10, 11]. An example is love is a rose: specific features of the rose are
magnified and add further characterization to the concept of love, such as being beautiful, delicate.

For present purposes, we focus on nominal predicative metaphors of the form ("X is Y "), with X
(topic, that is, the subject of the metaphor), and Y (vehicle, that is, the term used metaphorically to
predicate about the topic) being of the category of humans, animals or objects. An example of a
nominal predicative metaphor is workers are ants, where workers is the topic of the metaphor and
ants is its vehicle, which conveys the strength and industriousness of ants.

Metaphors have been recently studied through mathematically-grounded methods within the Rational
Speech Act (RSA) framework. To date, three RSA models for metaphorical understanding of
increasing expressiveness are available, whose predictions largely agree with human ones [15, 16,
17]. In this work, we adopt the one introduced by Carenini and colleagues [17], which improves the
previous models [i.e., 15 and 16] providing an interpretable and scalable framework based on the
notion of feature typicality. Informally, we say that a feature is typical for a person, object, or animal
if it is a property conventionally associated with the latter. A peculiarity of this RSA model lies in the
fact that it exploits feature typicality both with respect to the topic and the vehicle.

Formally, let F be the set of all the features of any topic or vehicle under consideration, and let
f = [f1, . . . , fn] with n = ∥F∥, be a vector whose entries, fi ∈ [0, 1], quantify how much typical
fi is with respect to X . The first speech actor in the RSA model is the literal listener L0, which
interprets the utterance “X is Y ” as meaning that X is literally a member of the category Y and has
corresponding features. Formally, if u is the uttered category:

L0(c, f |u) =
{
P (f |c), if c = u

0 otherwise
(1)

where P (f |c) is the prior probability that a member of category c has a feature vector f . The second
agent of the model is the pragmatic speaker S1. We assume that S1 has the goal of communicating
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about a feature fi, formally gi(f) = fi, and that she chooses what to say according to the following
utility function:

U(u|g, f) = log
∑
c,f ′

δg(f)=g(f ′)L0(c, f
′|u) . (2)

In particular, the pragmatic speaker employs a softmax decision rule to select an utterance:

S1(u|g, f) ∝ eλU(u|g,f) (3)

where λ is the rationality parameter, a quantity that can be learned from data through gradient-based
methods.

The last actor of the RSA model is the pragmatic listener L1, who uses Bayesian reasoning to infer
the intended meaning based on prior knowledge and her understanding of the speaker. Specifically,
L1 considers all possible speaker goals and integrates over them. L1 is defined as:

L1(c, f |u) ∝ P (c)P (f |c)
∑
g

R(g|t)S1(u|g, f) (4)

where c, f , u, and t denote respectively a category, a feature vector, an utterance, and the topic of the
metaphor under discussion, and R is a function expressing the relevance of the goal g to the topic t.

3 Methods

3.1 Overview

Briefly, we reproduced, replacing the human sample with a large language model, two out of the three
behavioral experiments performed in the study by Carenini and colleagues [17]. For this purpose, we
interrogated GPT2-XL, an open-source large language model developed by OpenAI 1.

We proceeded as follows. In Experiment 1, we measured features’ typicality and estimated the value
of conditional probabilities involved in the equation encoding for the behavior of pragmatic listeners
(Equation 4). From the first experiment, we obtained P (f |c) and R(g|t), accounting respectively for
the probability that a member of category c has a fixed feature f and the estimator for the probability
that the communicative goal is g given that the metaphor topic is t. In Experiment 2, we retrieved
the probability distribution over all the possible alternative interpretations for each of the metaphors
in the study. After, we used the values obtained for P (f |c) and R(g|t) to compute the probability
distribution over all the possible interpretations according to L1.

Unlike the pragmatic skills assessment experiments ran in [8], we did not rely upon the responses
provided by the standard GPT user interface [18]; instead, we used prompting-based methods and
directly accessed the probability distribution generated by the model. This drastically improved the
quality of the previous analysis since it allowed us to take into account the entire rank of possible
predictions generated by the model rather than exclusively the one outputted.

3.2 Experimental Pipeline

We based our study on the dataset of 84 nominal predicative metaphors (i.e., in the form "X is Y ")
previously investigated by Roncero & De Almeida [19]. We started by isolating metaphors’ topics
and vehicles. Next, we grouped the properties associated with at least one of the topics or vehicles –
574 in total – into the set F , the features set. For the sake of clarity, we provide explicit explanations
of the entire procedure applied to the example: workers are ants.

Experiment 1: Feature Typicality Materials: 168 nouns (topics and vehicles of the 84 metaphors),
F . Methods: We run a fragment of code that for each noun, z, e.g., workers or ants (a) asks GPT2-XL
to complete the prompt "z is" (or alternatively "z are", coherently with the arity of z), e.g., “workers
are"; (b) extracts the probability distribution over all the possible completion, e.g., the probability
that the model assigns to the completed sentence workers are strong; (c) restricts the latter to the
subset of 574 features considered in the study; and (d) re-normalizes the restriction to re-obtain a
probability distribution. Results: Estimation for P (f |c) (resp. R(g|t)) when the noun is a metaphor
vehicle (resp. a metaphor topic).

1The model is available at https://github.com/openai/gpt-2
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Experiment 2: Metaphor Interpretation Materials: 84 metaphors, 574 features. Methods: We
run a fragment of code that, for each selected metaphor, m: (a) asks GPT2-XL to complete the
sentence " m. This means that t(m) is"(or alternatively "t(m) are", coherently with the arity of t(m))
where t(m) is the topic of m, e.g., “Workers are ants. This means that workers are; (b) extracts the
probability distribution over all the possible completion, e.g., the probability that the model assigns
to the completed sentence Workers are ants. This means that workers are organised.; (c) restricts
the latter to the subset of 574 features considered in the study, and (d) re-normalizes the restriction
to re-obtain a probability distribution. Results: Distribution over the interpretations generated by
GPT2-XL.

Implementation We implemented in Python all the fragments of code needed to perform Ex-
periments 1 and 2, which for the sake of reproducibility will be made available as part of the
supplementary materials in the final version of this work. The implementation relies on the code in
[20].

4 Results

We compared the distributions over all possible interpretations computed through the RSA model
from the data of Experiment 1 with the ones generated by the model, identified in Experiment 2.

To carry out this comparison, we first defined the notion of k-agreement among two probability
distributions to be the number of common features among the k most probable ones, and remarked
that the standard notion of accuracy for a predictive model corresponds to 1−agreement. We obtained
that in 30 out of 84 metaphors (∼35.7%), the most probable feature (metaphor interpretation) was the
same for both the distributions under discussion, resulting in a 1−agreement of .36. Since a metaphor
may admit more than one interpretation, we considered the agreement for increasing values of k. If
k = 3, the k-agreement was ∼ 1.2. In particular, 65 out of 84 metaphors (77.4%) admitted at least a
common feature among the 3 most probable. When k = 5, the k-agreement was ∼ 2.4, in particular,
more than 90.4% of the metaphors admit at least a common feature among the five most probable.

Next, we estimated the global dissimilarity among the two distributions through the measure of the
mean Pearson correlation coefficient, which in r=.47, (SD=.32). We computed the Jensen-Shannon
Divergence (JSD), an information-theoretic measure of dissimilarity. The average JSD .33, (SD=.01).
This index suggests that more than 67% of the information is shared among the two distributions.

5 Discussion

In this work, we showed the usefulness of fostering interdisciplinary connections between cognitive
science – in particular, linguistics and pragmatics – and prompt-based methods to improve the
interpretability of large language models. In particular, we show that GPT2-XL behaves in a way that
can be represented by the RSA pragmatic listener.

More precisely, our results indicated a strong positive correlation between the probability distributions
over the predictions of the RSA model (computed on typicality values extracted from GPT) and the
one obtained directly questioning the model. Similarly, the value of Jensen-Shannon Divergence
was surprisingly positive, and it points out that GPT2-XL might be better approximated by RSA
than humans [17]. Globally, these empirical results exhibit that GPT2-XL is able to perform some
form of pragmatic inference that tightly approximates the one in the Rational Speech Act framework,
consistently with the formalization proposed in [9].

As a consequence, we speculate that, in order to improve the capabilities of LLMs in dealing with
figurative language, it may be helpful to enforce values of typicality closer to the ones measured in
humans, rather than reinforcing pragmatic inference rules, which our results suggest being already
inherent in LLMs, at least in the case of deriving metaphorical meanings. Providing these models
with better estimates for typicality may help them capture finer nuances of non-literal language,
opening the door to new broad-spectrum applications.
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