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Abstract
Collaborative machine learning (ML) is widely used to enable institutions to learn
better models from distributed data. While collaborative approaches to learning
intuitively protect user data, they remain vulnerable to either the server, the clients,
or both, deviating from the protocol. Indeed, because the protocol is asymmetric, a
malicious server can abuse its power to reconstruct client data points. Conversely,
malicious clients can corrupt learning with malicious updates. Thus, both clients
and servers require a guarantee when the other cannot be trusted to fully cooperate.
In this work, we propose a peer-to-peer (P2P) learning scheme that is secure against
malicious servers and robust to malicious clients. Our core contribution is a generic
framework that transforms any (compatible) algorithm for robust aggregation of
model updates to the setting where servers and clients can act maliciously. Finally,
we demonstrate the computational efficiency of our approach even with 1-million
parameter models trained by 100s of peers on standard datasets.

1 Introduction

To leverage data that is located across different clients, service providers increasingly resort to
collaborative forms of distributed machine learning. Rather than centralize the data on a single server,
data remains on the owner’s (client’s) device(s), which could be a consumer’s phone or bank/hospital’s
local data center. Take the canonical example of federated learning (FL) [34]. Rather than share data,
clients instead send model updates to the server. Our work caters to settings where neither clients nor
servers can be entirely trusted to faithfully participate in the Collaborative Learning (CL) protocol.

For example, consider if a group of banks wished to learn a better fraud detection model. Banks may
not be able to directly share data [15] and further because banking is a competitive industry, it must
be assumed that banks will deviate from the protocol if it serves their interest. On one hand, malicious
server banks may breach the intuitive confidentiality of CL. A long line of work [9, 10, 24, 37, 43,
49, 50, 52] has shown that when the server acts maliciously, it can, for instance, construct model
parameter values that exactly extract client data from (even aggregated) model updates. To protect
client data from servers acting maliciously, it is thus paramount to design approaches to CL where no
single server can have full control over the orchestration of the protocol. On the other hand, malicious
client banks may entirely prevent learning by submitting poor updates. This may be intentional as
in model poisoning attacks [2, 6, 45, 46] or unintentional if their dataset contained malformed data.
Though a separate line of work [25, 26, 29, 30, 32, 38, 48] has studied how to robustly learn in the face
of malicious updates (or data), there are none that have studied how to integrate such robust learning
algorithms within a protocol that is secure to malicious servers. In this work, we design the first
scheme that is robust to the harms of both malicious server(s) and clients, which are shown in Figure 1.
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Figure 1: Motivation for P2P Learn-
ing. Current collaborative learning ap-
proaches are vulnerable to both client
(denoted as C with data D) and server at-
tack vectors. Our framework tackles all
of these vulnerabilities simultaneously.

We observe that asymmetric power is the fundamental re-
quirement for malicious servers to breach user data privacy.
Thus, we design a fully-decentralized peer-to-peer (P2P)
learning protocol where each participant (e.g., bank), or
peer herein, can equally contribute to the role of the server
aggregating updates (and of a client computing updates).
Further, we ensure that no single peer has the power to
orchestrate the protocol—instead, we elect a committee
of peers to perform the aggregation at any given train-
ing round in a way that requires no central or trusted third
party (see Section 3 for the full threat model). On the other
hand, there is now a greater need for protection against
malicious clients as the distributed nature may increase
the chances of intentional poisoning or bad data quality interfering with learning (e.g., due to fewer
resources among some banks and/or competitive advantages). Thus, we ensure that our protocol
can efficiently integrate with classical approaches for robustness against malicious clients, such as
RSA [32], FL Trust (FLT) [14], or Centered Clipping (CC) [29]. Importantly, our work generalizes the
setups of these works and introduces the general framework that adapts any (compatible) algorithm
for robust aggregation of model updates to settings where servers and clients may behave maliciously.

To achieve this, our approach builds on cryptographic multi-party computation (MPC) protocols.
This allows peers to collectively emulate the server’s role while being robust against the collusion of
a subset of these peers that may act maliciously. However, naively combining these with (insecure)
robust aggregation techniques incurs prohibitive overhead because the server computation for robust
aggregation, which must be securely computed in MPC, is almost always of a complexity that leads
to a high multiplicative slowdown. We design a framework that modularizes the processing steps of
robust aggregation so as to select the most suitable cryptographic building blocks for each one, leading
to significant computational improvements. One such improvement is our proposed computational
surjectivity. We show that aggregation algorithms with component functions satisfying this property
can efficiently obtain security while still guaranteeing robustness against malicious peers; we also
show that existing robustness algorithms satisfy this property, or can be tailored to do so.

To summarize, our contributions are the following:

1. We design the first collaborative learning protocol that operates under the malicious threat model
and is robust to both malicious clients and servers. We provide a simulation-based proof of its
cryptographic security.

2. We design our protocol as a generic compiler that can convert broad categories of robust aggre-
gation algorithms to our improved security model efficiently. This modular approach enables
practitioners obtain rigorous security guarantees while selecting the most appropriate model
poisoning defense for their use case. To demonstrate our framework’s flexibility, we generate
malicious-secure protocols for three existing robust aggregation algorithms. We show empirically
that the generated protocols retain their robustness guarantees.

3. We demonstrate the computational efficiency of our protocols. We benchmark our protocols up to 1
million parameter models, and thousands of peers. For example, we show that the aggregation step
of our malicious-secure implementation of robust aggregation with RSA [32] obtains a per-round
CPU time of roughly 46 seconds with 105 parameters when trained by 1000 peers.

2 Related Work

Federated learning is perhaps the most studied collaborative learning framework [28, 35]. Most
related to ours are variants based on Secure Aggregation (SecAgg) [11] that provide confidentiality
of gradient transmission. However, existing work does not provide robust aggregation within SecAgg
and is focused on the single-server setting, or additionally on their use for tighter differential privacy
guarantees [16, 27, 41, 47]. In contrast, we focus solely on confidentiality in the distributed server
setting with robust aggregation. Other works include CaPC [17] but this requires a trusted third
party to reduce the computational overhead. We make no such assumptions. In Swarm Peer-2-Peer
learning [44], participants can dynamically join or leave the collaboration and are enrolled via a
Blockchain smart contract. There is no central party and each per-round server is dynamically elected
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METHOD

PROPERTY

PREVENTED
ATTACKS

UPDATE
CONFIDENTIALITY

MALICIOUS
CLIENTS

MALICIOUS
SERVER

AGGREGATION
COMMITTEE

ROBUST
AGGREGATION

PLAINTEXT
INSPECTION

POISONING OR
BACKDOORING
[2, 6, 45, 46]

GRADIENT
INVERSION
[23, 50, 37]
[43, 49, 50]

DATA
RECONSTRUCTION

[9, 10] OR
DEGRADE UTILITY

MALFORMED
DATA

SECAGG V1 [11] ✓ ✗ ✗ ✗ ✗
SECAGG V2 [5] ✓ ✗ ✗ ✗ ✗

CAPC [17] ✓ ✗ ✗ ✓ ✗
SWARM P2P LEARNING [44] ✗ ✗ ✗ ✓ ✗

BISCOTTI [39] ✓ ✗ ✗ ✓ **
EIFFEL MS [20] ✓ ✓ ✓ ✗ *
ACORN MS [4] ✓ ✓ ✓ ✗ *

RS-P2P SHS (OURS) ✓ ✗ ✗ ✓ ✓
RS-P2P MS (OURS) ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of Security Models between Aggregation Protocols. Robust aggregation
provides protection against data poisoning by clients in the collaboration protocol. Update confiden-
tiality guarantees that an individual updated from a client is not revealed. SHS denotes Semi-Honest
Security while MS is Malicious Security. *Guarantees data integregity, not robust aggregation of
updates. **Only under a single robust aggregation protocol.

via Blockchain smart contracts. Crucially, Swarm Learning supports neither secure (confidentiality-
preserving) nor robust aggregation—it uses standard parameter averaging.

Biscotti [39] incorporates robustness to poisoning by combining Multi-Krum [7] and secure aggre-
gation through Shamir secret-sharing. Its core parts are a verification committee that runs robust
update selection, and aggregation committee that computes the final model update. However, Biscotti
only guarantees security in the semi-honest setting and is solely compatible with Multi-Krum, which
is not always the preferable robustness algorithm [29]. Blockchain is also used as an alternative to
the centralized aggregator in FL to deal with malicious participants or servers in [51]. The initial
model is uploaded on the blockchain following which the participants train local models, then sign on
hashes with their private keys, and upload the locally trained models to the blockchain. The validity
of the uploaded models is verified with digital signatures and Multi-Krum. Algorand is used as the
consensus algorithm in the blockchain system to update the global model. However, it uses a single
leader for each training round and is compatible only with Multi-Krum.

Konstantinov and Lampert [31] present a distributed robust learning procedure that allows for robust
learning from untrusted sources. Distributed Robust Learning (DRL) [22] is another approach to
robust learning which uses a divide and conquer strategy. However, none of the papers achieves the
two notions of robustness at the same time. Closest to our work are those that look to combine data
integrity and confidentiality (security) [4, 20]. However, these works are crucially different from
ours in that they perform checks on the underlying data of each client, not the update—then, these
protocols drop clients with poor data. Because these approaches operate over a different input, they
may be used simultaneously with ours.

3 Threat Model

Collaborative learning is conducted among a set of parties (herein, peers) performing one of two
roles: a client (or worker) who performs learning on a local dataset, or a server that aggregates the
many client updates. Our protocol differs in two main ways: first, it is conducted among a set of peers
(parties) which can perform either role, and second, the role of the server is performed by a subset
of peers termed the aggregation committee. To align with prior literature, we sometimes refer to
peers as clients or servers when they are performing those respective roles. We consider a malicious
threat model where clients and servers may perform arbitrary adversarial actions to interfere with the
protocol. Malicious behavior in the two roles may include, but is not limited to the following.

1. Malicious Clients may attempt to (1) lower the quality of the trained model by sending distorted
model updates. This may take the form of both (a) intentional model poisoning attacks, and (b)
unintentional problems such as errors in computation, and skewed or incorrect local data sets. They
may also attempt to (2) steal information about the other peers’ data, i.e. break confidentiality, e.g.
by colluding with other malicious peers and sharing transcripts of the protocol execution.
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2. Malicious Servers / Committee Members may attempt to (1) reconstruct individual data points
from the clients’ updates, thus breaking data confidentiality, which can be achieved by arbitrarily
modifying model parameters or colluding with other parties (Committee Members or Clients), (2)
inappropriately change the shared model by e.g. omitting updates from selected clients, adding in
bogus updates, or otherwise altering the global model updates.

We compose multiple cryptographic primitives, including secure committee election, verified secret
sharing, distributed zero knowledge proofs, and secure multiparty computation. The assumptions and
guarantees of the individual primitives are in Appendix B.2. Importantly, their composition is secure
under universal composability [13]. Our overall protocol operates under the standard assumptions of
authenticated point-to-point secure channels between peers and a bounded proportion of adversarial
peers (see Appendix B.1 for details). The following are the formal guarantees of our protocol.

• Correctness of aggregation. Given a publicly known update aggregation function FR and
that clients submit local updates x1, x2, . . . , xn, the returned global update will be equal to
FR(x1, x2, . . . , xn). See the following Section 4 for details.

• Confidentiality of client updates. During protocol execution, no peers gain information about any
other’s update xi beyond what is implicitly revealed by the aggregate result FR(x1, x2, . . . , xn).

• Robustness to poisoning. An accurate model will be trained even if some subset of clients submit
arbitrary poisonous updates. Our framework compiles existing robust aggregation algorithms into a
stronger security model. Thus, the details of this guarantee depend on the underlying algorithm.

• Malicious (active) security. The above conditions hold even when a subset of parties actively
perform arbitrary malicious behavior, including but not limited to: collusion between malicious
peers, attempts to deviate from any part of the protocol, and submission of poisonous local updates.

Problem Setup. To construct a collaborative learning protocol that is robust against both malicious
clients and servers, we must decentralize the task of update aggregation. Accordingly, P2P learning
is conducted among a set of peers, who may be assigned the role of client or server.

4 Robust and Actively Secure Framework

Our framework efficiently lifts the robust aggregation algorithms (e.g., the aforementioned RSA, FLT,
or CC) to the P2P learning setting with guaranteed malicious-secure (or, actively-secure) protocol
fidelity. This security model guarantees both confidentiality and protocol fidelity against peers that
may take arbitrary actions to disrupt the P2P learning protocol execution—fidelity is maintained by
retaining the model fidelity guarantees of an underlying robust aggregation algorithm. Indeed, we
previously mentioned that many algorithms provide model fidelity against poisonous adversaries
in the single-server setting [7, 25, 29, 30, 32, 38]. Each algorithm makes different assumptions
about the threat model, e.g., how many times a given malicious client can participate, what sort of
malicious update they send, what the underlying data distribution is, etc. Thus, rather than pinning
our framework on a single robustness algorithm, we propose a modular design that encompasses a
broad class of such robust aggregation algorithms designed for the single-server setting.

4.1 Framework Design

In order to strengthen the security models of a broad class of robust aggregation algorithms, we design
a modular template (Figure 2), which organizes aggregation algorithms in terms of three functions:

FC : D × S × Ω→ U FP : U → V FR : V m → Ω

The first function, FC , represents the computation of client updates based on local data, state, and
global model parameters; accordingly,D is the space of possible client datasets, S is the space of local
states, Ω is the space of global model parameters, and U is the space of client updates. In the trusted
single-server setting, each client computes FC and sends their update ui ∈ U to the server. Next
comes the server’s computation. We break the server’s work into two parts: a preprocessing function
FP and an aggregation function FR. The former transforms each client update to a preprocessed
domain V , and the latter combines the preprocessed local updates into a global model update w ∈ Ω.
Our primary contribution is the design of a protocol that lifts any robust aggregation algorithm
described in terms of these functions to a stronger security model. The security model in question
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Trusted Single-Server Robust Aggregation
Public Functions: Single-server robust aggregation algorithms are defined by three functions:
• FC(·) – client-side update computation
• FP (·) – server-side update preprocessing
• FR(·) – server-side update aggregation.
Input: Global parameters w from the previous round. Each client Pi has input data; all
participants have local state st.
Client update:
1. Each client Pi computes ui ← FC(data, st,w) and sends update ui to the server.
Server preprocessing:
2. For each i ∈ [m], the server obtains vj for all j ∈ Si and computes vi ← FP ({uj}j∈Si).
Server update:
3. Server computes w ← FR({vi}i∈[m]) and sends w to all clients.

Figure 2: Template for single-server robust aggregation.

is secure against malicious/active clients without relying on a trusted server, all while retaining the
protection against poisoning attacks offered by the original algorithm.

Protocol Description. Peers carrying out a P2P Learning protocol (Figure 3) begin by randomly
selecting an aggregation committee, the size of which is parameterized to guarantee an honest
majority with all but negligible probability (see Appendix B for details). Since the committee is
honest-majority, it can use secure MPC (secure Multi-Party Computation) and VSS (Verifiable Secret
Sharing) schemes later in the protocol. All clients then compute local updates via FC and preprocess
those updates via FP . Peers secret share their updates with VSS and pass shares to the aggregation
committee. Each member of the committee receives a share of a local update from every peer.
The committee uses distributed zero knowledge proofs to ensure that all updates are well-formed
outputs of FP —Section 4.2 discusses in detail how to do so with practical efficiency. Finally, FR

is computed by the aggregation committee by using the shares as input to a malicious-secure MPC
protocol, and committee members send the resulting global model update to all peers. This protocol
relies on users remaining online throughout, an assumption that may not always be practical. In
Section 4.3, we discuss how to relax this.

Strengthened Security Model. In the single-server setting, the computation of FR is handled
by a single party. This makes it vulnerable to tampering – a malicious server may breach client
confidentiality, omit updates from certain clients, modify updates, or simply make arbitrary changes
to the global model. Our framework lifts aggregation algorithms to a security model where none
of that is possible. Distributing the computation of FR to an honest-majority committee equipped
with malicious-secure MPC means that FR is computed with guaranteed correctness and that no
information about the local updates is leaked in the process. Further, using VSS guarantees that no
committee member can breach the confidentiality of client updates before the computation of FR,
and that it is (with high probability) impossible to modify client updates before the computation of
FR without being caught. Further, since the committee is majority-honest, all peers can guarantee the
received global update is correct by taking the majority result received from the committee members.

Obtaining Practical Efficiency. It is possible to strengthen the security model of almost any
distributed computation by simply running it inside of a generalized MPC protocol, but doing so
usually results in unbearable computational overhead since MPC substantially amplifies the cost of
most operations. A key challenge that we surmount is strengthening security whilst maintaining the
efficiency necessary to scale to real-world collaborative learning scenarios. The design choices we
employ while formulating our protocol make this possible. For example, in applications of robust
aggregation with a trusted single-server, the role of the server is typically executed by a data center
with high compute capabilities. In such a setting it is beneficial to minimize client-side computation
and shift the compute responsibility to the server wherever possible.

In contrast, collaborative learning with no trusted parties requires a committee to aggregate client
updates, and operations performed in MPC by the committee are especially costly. Thus it becomes
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Secure P2P Learning Against Malicious and Poisonous Adversaries
Protocol:
1. The clients randomly select an aggregation committee C ⊂ {Pi}i∈[m].

2. Each client Pi applies local computation ui ← FC(data, st,w).

3. For each client Pi, compute vi ← FP (ui).
4. Pi secret shares vi to obtain [vi] and sends one share to each Pj ∈ C.

5. If FP is not computationally surjective, Pi uses Distributed Zero Knowledge (DZK) to prove
to the committee C that vi is correctly computed from some ui of Pi’s choice. Otherwise,
Pi uses DZK to prove that vi ∈ V .

6. If Domain(FR) ̸= Image(FP ), Pi uses DZK to prove to the committee C that vi ∈
Image(FP ).

7. All committee members Pj ∈ C input shares [vi] for all i ∈ [n] to a |C|-party computation
protocol in order to compute w ← FR({vi}i∈[n]). Committee members send w to all
clients.

Figure 3: Main protocol outline for the malicious setting.

beneficial to offload as much of the computation as possible to the client-side. Our template (Figure 2)
and protocol (Figure 3) do this by separating the trusted server’s work into two parts, FP and FR,
and shifting the work of computing FP to the clients. This dramatically reduces the computational
burden of the aggregation committee, but introduces potential concerns about the correctness of
the underlying aggregation algorithm. Namely, in the trusted server setting FP is guaranteed to
be computed correctly since it is executed by a trusted party, but a malicious client may introduce
arbitrary faults into the computation of FP . To prevent this while maintaining confidentiality, one
could use a zero-knowledge proof to guarantee that FP was computed correctly, however this would
introduce substantial computational overhead. We achieve a much more efficient result by instead
verifying that each peer’s local update is well-formed—that it properly falls within the preprocessed
domain V . We observe that if FP has a certain property, which we call computational surjectivity,
verifying that the update is within V is just as good as verifying correct computation of FP , even
though the former comes at substantially lower cost.

4.2 Computational Surjectivity

Our key insight is that by leveraging the properties of robust aggregation, we can relax certain
requirements on the correctness of FP . These relaxed requirements allow us to offload computation
of FP to the client-side, while also avoiding the computational overhead of a full zero-knowledge
proof that FP was computed correctly.

A robust aggregation algorithm guarantees that even when adversaries provide arbitrary values as
the output of FC , a satisfactory output of FR will be computed. Accordingly, we observe that as
long as some valid output of FC maps to each client’s output of FP , the final global update will be
computed properly. Thus if FP is a surjective function (i.e. if ∀v ∈ V,∃u ∈ U : v = FP (u)), it
is only necessary to verify that vi ∈ V for all client updates vi in order to correctly compute FR.
Below we specify a computational analogue of surjectivity—we require the preimage can be found in
polynomial time so the whole protocol can achieve simulation security (Appendix B.3 has details).

Definition 1 A function f : U → V is computationally surjective if there is a probabilistic
polynomial-time algorithm A : V → U such that for any v ∈ V , we have f(A(v)) = v.

In general, we have no guarantees on the structure of FP and so peers must prove in zero knowledge
that vi is the result of a valid computation of FP (Figure 3, step 5). But if FP is computationally
surjective, then all possible vi ∈ V are implicitly the output of some computation of FP . Thus, it
only becomes necessary to prove that the shares of each peers’ input reconstructs a point within V .

Theorem 1 (proof in Appendix B.3) states the security of this protocol in the malicious setting.
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Theorem 1 For any single-server robust aggregation algorithm described in (FC , FP , FR) as
in Figure 2, the protocol described in Figure 3 is a secure P2P learning protocol against malicious
clients and servers when the underlying MPC scheme is secure.

4.3 Tolerating Peers Disconnecting

Peers cannot always be assumed to remain connected throughout an entire protocol execution, e.g.,
when peers are mobile devices [11]. Further, it is also common to subsample a small portion of peers
as clients to avoid high computation/communication costs [47]. We show how to account for both of
these practical settings with minimal modifications to our protocol.

Tolerance to Users Dropping. Our protocol includes two areas where peers must collaborate on the
cryptographic protocol: the (client) work of computing updates and the (server / committee) work of
aggregating updates. Our protocol already gracefully tolerates any number of clients dropping so
long as the the pool of remaining clients meets the assumptions of the underlying robust aggregation
algorithm. In this case our protocol’s output would be just as if those peers did not participate. Our
protocol can also tolerate committee member dropout with no impact on the output of the protocol
by proportionally increasing the committee size (due to the reconstruction guarantees of VSS). We
find that this increase is often small even for substantial drop out rates. For example, to tolerate a
10% drop rate of honest committee members we need only increase the committee size from 46 to 60
(though this number depends on the algorithm, see Appendix B.1.1 for detailed analysis).

Subsampling Clients. This setting inherits the security of our original protocol as long as all honest
peers agree on the selected subsample of clients in each round. This can be accomplished efficiently
via secure coin flipping [8], e.g., before the protocol commences. Then, our protocol’s computation
is reduced proportionally to that of execution on the subsample.

5 Lifting Robust-Aggregation Algorithms to a Malicious-Security Model

Having discussed how a single-server robust aggregation with a computationally surjective FP can
be lifted to the malicious P2P setting with high efficiency, we apply this principle to the design
of malicious-secure versions of three popular robust aggregation algorithms: robust stochastic
aggregation (RSA) [32], centered clipping (CC) [29], and FLTrust (FLT) [14] in the P2P setting.

5.1 Instantiating Robust Stochastic Aggregation (RSA) in our malicious-secure framework.

RSA is a lightweight algorithm for Byzantine-robust convex optimization [32] (see Appendix B.4.1
for a summary). We observe that it can be lifted to the malicious security model with high efficiency
with very few modifications to the algorithm because it is computationally surjective (which we show
formally in Appendix B) and the underlying MPC can be efficiently instantiated.

In RSA peer updates are the sign of the difference between each parameter of the local and global
models. In other words, the FP of RSA gives V = {−1, 1}d, where d is the number of parameters in
the model. Thus, it is sufficient for peers to prove in zero-knowledge that their updates are in the set
V = {−1, 1}d. This can be accomplished efficiently by having each peer represent their update as d
shares of binary values. The committee can perform a distributed zero knowledge (DZK) proof that
a shared x is binary-valued by constructing shares of x · (1− x) and revealing it to be zero. These
proofs can be batched together for a substantial improvement in efficiency. In particular, for every
shared value xi, parties uniformly sample a random value ri, and locally construct shares of the sum∑

ri · (xi · (1− xi)). The parties then reconstruct the sum—if it is 0, then each of the (xi · (1− xi))
components must have been 0 with all but negligible probability. For a more detailed treatment of
this technique, see [12].

During the computation of FR, the committee needs only to sum the shares and send out the
reconstructed sum. The actual value of the summed updates in {−1, 1} is implicitly given by the sum
of the binary values (if the sum of the binary values is x, simply take 2x−m).

5.2 Instantiating Centered Clipping (CC) in our malicious-secure framework.

CC with momentum is a robust aggregation algorithm that ensures protection against time-coupled
poisoning attacks [29] (see Appendix B for a summary). To lift it to our improved security model with
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practical efficiency, we construct a computationally surjective variant of the CC algorithm. Namely,
while canonical CC clips local updates using the ℓ2 norm, we use the ℓ∞ norm.4 In other words,
we clip the gradients to a τ -box rather than a τ -ball. This modification admits a computationally
surjective FP with an efficient DZK proof that a client update is within the valid domain. In particular,
we take V = [0, 2θ−1]d. Then in FP we scale, round, and map clipped gradient updates to be within
this domain. Here θ is a public constant large enough to limit discretization error of local updates
during scaling—in experiments with CC we set θ to 32 in order to align with 32-bit fixed-point
numbers. Smaller values of θ will increase protocol efficiency, at the expense of higher discretization
error during rounding and mapping in FP step 3. The computational surjectivity of this FP follows
from a similar argument to Lemma 2 (see Appendix B).

DZK Proof of Valid Update. We specify that local updates vi are submitted as vectors of the
individual component bits of the processed gradient update. This means that each bit will be
individually secret shared, which allows the committee to verify whether each one is binary-valued
(using the same DZK technique described above for the RSA protocol). Since we scaled each update
to fit within a 2θ-sized d-dimensional box, the d sets of θ binary values in the update trivially encode
a point within the box. Thus, a proof that each component of the bitwise update is binary-valued
equates to a proof that the update is in V .

The global update is aggregated by summing the bits at each position of the client update vectors.
The sums are reconstructed and sent directly to all clients. They implicitly encode the updated global
parameters w′, which are recovered via client-side computation in order to keep the computation of
FR light-weight. Details of our malicious-secure Centered Box Clipping protocol can be found in
Figure 8 (in Appendix).

5.3 Instantiating FLTrust in Malicious-Secure Framework

FLTrust (FLT) is a robust aggregation algorithm that uses a trusted dataset to filter out poisoned
updates [14] (see Appendix B for a summary). As with CC, we construct a tailored variant of FLT
that admits a computationally surjective FP to improve efficiency. In particular we rotate and scale
the “root” update g0 to be a unit vector aligned with the x-axis. This allows us to take V to be the
set of unit vectors in the half-space defined by a non-negative x-coordinate. As such, FP involves
scaling and rotating client updates so that the angle between them and g0 is preserved. Similarly to
CC, we encode client updates as θ-bit fixed point numbers. In our benchmarks for FLT, we set θ to
16 to compensate for the increased memory demands of this protocol. We use a committee size of
121 in order to enable multiplication of secret shared values (see Appendix B for details).

DZK Proof of Valid Update. As in CC, the magnitudes of local updates vi are submitted as shares
of each bit in the binary representation of each fixed-point number. Clients additionally submit shares
encoding sign for each parameter, with the exception of the x-coordinate, which is assumed to be
always non-negative. We use the previously described technique to verify that the shares encoding
magnitude are binary-valued. We use a similar technique to verify that shares encoding sign are in
the set {−1, 1} (i.e. we reveal (b + 1)(b − 1) to be zero using a batch check). Further, we verify
that submitted updates are unit length by constructing shares of ⟨ḡi, ḡi⟩ − C, where C is the squared
length of a unit vector represented as a θ-bit fixed-point number. Revealing this quantity to be zero
verifies in zero-knowledge that ḡi was indeed unit length.

6 Verifying Empirical Efficacy and Efficiency

Our empirical evaluation focuses on exploring three major axes: (1) the Byzantine robustness of our
implementations due to modifications we introduced, (2) the computational efficiency of our protocol,
and (3) the tradeoff between computational efficiency and Byzantine robustness. To this end, we
center our comparisons on robust stochastic aggregation (RSA), Centered Clipping (CC), and FLTrust
(FLT) but remark that our framework is compatible with other (potentially future) Byzantine robust
algorithms as well. We demonstrate the practical efficiency of our case studies in the P2P Learning
framework while maintaining the same robustness of the algorithms as in their clear versions.

4 Karimireddy et al. [29] proved CC is robust under clipping for the ℓp norm for arbitrary choice of real
numbers p ≥ 1, which do not extend to the ℓ∞ norm. We show empirically that centered clipping with the ℓ∞
norm achieves similar model fidelity against known attacks in Appendix B.

8



10^3 10^4 10^5 10^6
Number of parameters

10
0

10
1

10
2

10
3

10
4

R
un

tim
e 

(s
ec

on
ds

)

RSA
FLT
CC

(a) Runtime vs Number of Parameters.

50 100 500 1000 2500 5000
Number of peers

10
2

10
3

10
4

R
un

tim
e 

(s
ec

on
ds

)

RSA
FLT
CC
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Figure 5: Computational Efficiency vs Number of Parameters and Peers. We report CPU wall-
clock time for the execution of the aggregation step of our protocol – the computation of FR in a
single training round. The runtime performance of the algorithms (RSA, FLT, and CC) scales linearly
with the number of parameters and peers. When modifying parameters we use a total of 100 peers
(left subfigure) and 105 parameters set when changing the number of peers (right subfigure). For
RSA and CC, the aggregation committee size is set to 46, and for FLT it is set to 121 in order to
accommodate the secret share multiplications of the protocol (see Appendix B for details).

6.1 Security Does not Impact Robustness
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numerical precision for CC.

We verify if the properties of the robust aggregation algorithms
hold after the required modifications to lift them to the malicious
setting, e.g., switching to fixed point numerical precision. In
Figure 4, we use the IID MNIST dataset and 20 peers, of which
there are 10 malicious workers5. We compare the robustness of
CC against the ALIE (A Little Is Enough) attack [2] before and
after lowering CC’s numerical precision. We observe that the
algorithm preserves its robustness despite the required changes.
We also present corresponding additional studies (e.g. com-
parison between ℓ2 and ℓ∞ norm for CC) in Appendix B. We
observe that all the modified algorithms, namely CC, FLT, and
RSA exhibit comparable performance to the original algorithms.

6.2 Scaling of Computational Efficiency

Because P2P learning algorithms typically require upwards of 1000 rounds of the protocol to converge,
it is a necessity to have an efficient protocol. In Figure 5, we analyze the two major factors influencing
this: the size of the vector (ML model) being aggregated (denoted as the number of parameters), and
the number of peers participating in the collaborative learning. We observe much better performance
for RSA than other algorithms per training round. This results from a more concise form of the
information exchanged between peers in the case of RSA, where local updates from each peer are
represented as an array of bits. In contrast, model updates sent between peers in FLT or CC are always
encoded as fixed points, 16 for FLT vs 32 for CC. The more efficient encoding in RSA provides a
speedup of around ∼30X in comparison to CC and ∼6X over FLT. Our framework scales efficiently
to even 5000 participants; we observe a linear growth in terms of the elapsed time per training round.
Similarly, the computation time scales linearly for RSA, FLT, and CC, with the number of parameters.
We further compare the communication cost between frameworks in Appendix B.

6.3 End-to-end Protocol Evaluation in Presence of Attacks

We estimate the accuracy and runtime of the modified algorithms in the presence of different types of
attacks in Figure 6. We compute the number of rounds to convergence, and use the per-round CPU

5Note, this is a higher adversarial proportion than can be tolerated by our end-to-end framework due to the
crytographic elements of our framework. We include this evaluation because the Byzantine robustness literature
commonly considers this regime. This evaluation ensures that our underlying aggregation algorithms meet
these standards (even when modified for efficiency). Thus, we also benchmark accuracy and robustness of the
aggregation algorithms outside of the cryptographic elements, finding that the robustness guarantees are retained.
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Figure 6: Byzantine Robustness of P2P Learning Protocols for iid EMNIST. We compare RSA,
FLT, and CC after their instantiations in our framework. A cohort size of 50 peers is used, of which
there are 10 malicious workers. We consider four attacks and have a baseline without any malicious
workers. We run each algorithm until its completion. CC achieves the highest final accuracy. FLT
and CC converge much faster than RSA.

time for computation of FR in each algorithm, to estimate overall training runtime and accuracy
for EMNIST (and similar results for MNIST in Appendix B). We plot the test accuracy (%) on the
y-axis and the x-axis represents the estimated CPU time (measured in seconds, note that this is in
the logarithmic scale) of the P2P training. We observe that in all cases, CC and FLT algorithms
outperform RSA in terms of convergence speed and achieve higher final accuracy. Note that the
overall convergence speed is decided by both the number of iterations of training and the cost of each
iteration. Although RSA is faster to compute for one iteration due to reduced information exchanged
in each iteration, it requires much more iterations than CC and FLT, and hence slower to converge.
When considering only utility, CC also outperforms FLT consistently; however, under computation
constraints, it is often the case that FLT is more efficient than CC. This is primarily because we use a
fixed-point length (θ) of 16 bits in the experiments for FLT, but 32 bits for CC.

7 Limitations

We provided a reference implementation of our protocol for three popular robust aggregation algo-
rithms, namely RSA, FTL, and CC. We hope that our framework will be easy to extend to future
robust aggregation methods. We acknowledge that operating in the malicious threat model also
increases the cost of computation, communication, and storage, in comparison to the fully trusted
environment or an honest-but-curious threat model.

Our protocol is focused on confidentiality and security of the training protocol when combined
with robustness. This is one component of privacy-preserving machine learning that is critical to
preventing many attacks (as outlined in Table 1 and Section 2). However, this does not prevent the
privacy leakage obtained via interactions with the final trained model. For this, differential privacy
(DP) [21], in particular DP machine learning techniques [1, 3, 18, 19] are required. Incorporating
these techniques within our framework is of interesting future work.

8 Conclusions

The benefits of collaborative learning make it an attractive new paradigm that is increasingly adopted
in many domains, such as the financial sector to enable collaboration between banks. However, there
are many risks associated with collaboration due to clients or server(s) being actively malicious.
Malicious clients can submit corrupted updates which leads to the failure of creating a useful shared
model. Conversely, the leakage of the client’s local data when contributing model updates has been
demonstrated to be particularly strong when a central party cannot be trusted to orchestrate the
collaborative learning protocol. To mitigate these issues, we propose a Peer-to-Peer Learning protocol
that is robust against malicious clients and server(s) to train a shared model without a central party.
We prove the cryptographic security of our protocol, providing the necessary security guarantees.
Our novel framework is designed as a generic compiler that can efficiently convert robust aggregation
algorithms to the P2P learning setting with the guaranteed malicious-secure protocol. We show
empirically that the generated protocols retain their robustness guarantees. This generic approach can
be applied to many (possibly future) aggregation algorithms.
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A Broader Impacts

The goal of our work is to provide a protocol that enables collaborative learning with guaranteed
confidentiality of client data and fidelity of the trained model, even when both clients and server(s)
can act maliciously. A potential positive impact of this work is increased privacy and accountability in
machine learning systems. One potentially negative impact could be the degradation of performance
(in terms of compute time, communication overhead, or additional storage) for legitimate users.
However, as shown in our experimental results, we are still able to cater to 100s of users with a model
size of 1 mln parameters.

B Additional Information

We further present additional information, experimental results, as well as a comparison between
RSA, Centered Clipping with Momentum, and FL Trust.

B.1 Committee Size

The main protocol proceeds by first selecting a subset from the pool of peers which will be responsible
for aggregating the updates of all the peers. This subset is termed the aggregation committee. To
guarantee security, the size of the committee m has to be adjusted based on the number of corrupted
parties. Let us denote the set of corrupted parties as B with |B| = b. If the committee members are
selected randomly, then with probability p = b/n, a given committee member is an adversary. To
ensure security in the malicious case, we need the aggregation committee to have an honest majority
except with negligible probability (i.e. occurring with probability less than 2−40 as in [33, 42]). We
can assess the probability of this event by modeling the number of corrupted peers in a uniform
sample as a binomial random variable X with bias p = b

n and m trials. In particular, we are interested
in values of p and m for which Pr[X ≥ n/2] < 2−40. These values can be computed from the
cumulative density function of the binomial distribution. Assuming a 10% adversarial corruption
threshold (i.e. setting p = 1/10), we obtain a committee size of 46. We use this committee size for
experiments with RSA and CC. With FLTrust, in order to accommodate secret share multiplications
with Shamir secret sharing, we guarantee Pr[X ≥ n/3] < 2−40, which gives a committee size of
121.

B.1.1 Tolerance of Committee Members Dropping

In general, our protocol requires that the number of adversaries in the aggregation committee be
kept below a certain proportion in order to guarantee security. The committee size is chosen as the
smallest number of parties such that (except with negligible probability) a random sample from the
pool of clients has less than 1/2 adversarial proportion (in the case of RSA, CC), or less than 1/3 (in
the case of FLT). To tolerate drop out of honest committee members, we simply need to select an
increased committee size such that the proportion of adversaries in the committee stays beneath these
thresholds even if some number of the honest parties drop out. In particular, if we choose a committee
size which guarantees (except with negligible probability) that a random sample from the pool of
clients has less than 1

2 −
q
2 ) adversarial proportion, where q is the proportion of tolerated dropouts

from honest parties, we will guarantee that the adversarial proportion with reference to the number
of committee members that stay online is at most 1/2. We can find the necessary committee sizes
by reasoning with the binomial distribution similarly to our original analysis of committee size. For
example, to tolerate 5%, 10%, and 15% dropout of honest committee members, RSA and CC would
require committee sizes of 53, 60, and 69 respectively (compared to 46 with no dropout tolerance),
and FLT would require 157, 218, and 326 respectively (compared to 121 with no dropout tolerance).

B.2 Building Blocks

Byzantine Robust Aggregation. In collaborative learning (e.g., federated learning), many clients
submit model updates based on their local data. These local updates are aggregated to update the
global model. In settings where clients are untrusted, some Byzantine or malicious clients may submit
poisonous updates (which may take arbitrary values) with the aim of degrading the quality of the
global model. Broadly speaking, Byzantine robust aggregation algorithms (often abbreviated to
“robust aggregation”), guarantee that an accurate global model is trained as long as the proportion of
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malicious clients is bounded by a certain threshold (e.g., the theoretical analysis in CC assumes a
maximum of 15% malicious clients). Further formalization of this idea occurs in a variety of ways
across different works of literature – our framework is intentionally modular, inheriting the guarantees
of a given underlying algorithm. Our main contribution is augmenting robustness to malicious clients
with the additional guarantee that aggregation is computed correctly and confidentially even in the
presence of malicious servers / aggregation committee members. We use the cryptographic primitives
reviewed below to achieve this guarantee.

Committee Election. Uniform election of committee members can be efficiently instantiated using
coin-flipping [8]. A classical way to accomplish this is to have all peers generate a string of random
bits locally. The peers then make a cryptographic commitment to their random bits and distribute it
to all other peers. After all peers have made their commitments, the random bits are all revealed. The
concatenation of all the random bits can then be used as input to a random oracle, whose outputs can
be used to select the committee members uniformly at random. This method for uniform random
committee election is secure as long as at least one peer behaves honestly during the commitment
process. We leverage this to guarantee that the aggregation committee has an honest majority (or is
2/3 honest in the case of FLT) (see Appendix B.1 for details).

Verifiable Secret Sharing. To make our protocols secure in the presence of malicious adversaries,
we require Verifiable Secret Sharing (VSS). A VSS scheme allows the secret owner with a secret
s, to distribute shares of s among n parties with a threshold t such that (a) any group of t parties
can reveal no information about s and (b) any t + 1 parties can recover the correct value of s. In
this work, we use Shamir secret sharing to instantiate VSS. Secrets are shared among members of
the aggregation committee C. We make guarantees on the adversarial composition of C, and set t
such that honest parties may perform computations necessary during DZKP and MPC protocols (see
below), yet adversarial parties never gain access to enough shares to reveal or modify s.

Distributed Zero Knowledge Proofs. A malicious-secure zero knowledge proof protocol enables
a prover in possession of a witness w to prove to a verifier that for some publicly known function
f , f(w) takes a particular value. It is guaranteed that the verifier learns no additional information
about w other than what is implicitly revealed by f(w), and that no malicious prover can convince
the verifier that f(w) takes an incorrect value. A distributed zero-knowledge proof (DZKP) is a
variation on this primitive, wherein the prover distributes secret shares of w among a set of verifiers.
Leveraging the linear operations on secret shares enabled by this setting can admit particularly
efficient zero-knowledge proofs (see e.g. [12]). In our implementations, we use DZKP protocols
which assume that the set of verifiers has an honest majority.

Secure Multiparty Computation. A malicious-secure multiparty computation (MPC) protocol
enables a group of parties P1, P2, . . . , Pn, with respective private inputs x1, x2, . . . , xn to securely
compute a function f and obtain output f(x1, x2, . . . , xn). In particular, it is guaranteed that no party
learns any additional information about the inputs beyond what is implicit in the output, and it is
guaranteed that f is computed correctly, even in the presence of parties that behave in arbitrarily
malicious ways. In our implementations, we use MPC protocols which assume that the set of parties
has an honest majority (2/3 honest in the case of FLT).

Composition. All of the building blocks listed above are secure under universal composability [13]
and thus their compositions (i.e., using them together, either in sequence or in parallel) are secure.
They can all be implemented under information theoretic security, although we used a pseudorandom
generator to minimize the communication. That is, using these primitives together in concert in our
protocol preserves the security guarantees afforded by the individual building blocks.

To provide a concrete sense of how the security guarantees and trust assumptions of the building
blocks work together in the full protocol, we provide a step-by-step elaboration on the protocol below.

1. Committee Election All clients use the method described above to randomly select the aggregation
committee C with malicious security. The analysis in Appendix B.1 guarantees that C has honest
majority.

2. Client Local Computation. Each client computes FC and FP to obtain a preprocessed local
model update given their data, and the global model parameters.

3. Verifiable Secret Sharing of Updates. Each client secret shares their update with threshold |C|/2
(|C|/3 for FLT), and sends a share to each committee member. Since C has honest majority, this
guarantees that adversaries cannot alter or reveal the client updates.
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4. DZKP of valid update. Clients prove to the committee that their updates are valid using a
DZKP protocol that takes the secret shares as input. E.g. in P2P RSA, client updates must be
binary-valued, so committee members create shares of a check value which is guaranteed to be 0
if the update was binary-valued, while leaking no further information (see Appendix B.4.1 for
details). Here security follows from the security of the DZKP and the VSS schemes.

5. MPC for computing global updates. Committee members compute FR in MPC, using client
shares as input, to obtain a global model update. E.g. in P2P RSA, committee members sum the
shares of all client updates using the standard secure addition protocol on Shamir secret shares.
The committee members then reconstruct the shared sum to obtain the global update (correct
reconstruction is guaranteed by VSS). Security follows from the security of the MPC and VSS
schemes.

6. Global updates sent to clients. All committee members send the recovered value to all clients.
Since C has an honest majority, the clients are guaranteed to recover the correct global update by
accepting the majority result.

B.3 Security Proof

We provide a proof of Theorem 1 (malicious security of Figure 3) below.

Proof: We prove the security of the protocol by constructing a simulator interacting with the
adversaries controlling a subset of the parties.

1 The simulator plays the role of coin flipping and return a uniform aggregation committee. If the
committee contains more adversary than the allowed threshold, the simulator aborts.
The probability of simulator aborts in this step is negligible given the committee size and threshold.

2-4 The simulator obtains shares of vi from the adversary and sends them random shares on behalf of
the honest parties.

5 If FP is not computationally surjective, The simulator plays the role of DZK to obtain the
adversary’s input ui. If FP is computationally surjective, the simulator use vi to compute some
ui.
The simulator’s running time is always polynomial in this step either because efficient extraction
from DZK or because of the definition of computational surjectivity.

6 The simulator plays the role of DZK and check if vi is in the image of FP and aborts if it is not
the case.

7 The simulator sends ui to FP2PL and gets back the new updates; it then plays the role of FMPC

and sends back the new updates to the adversary.

□

B.4 Instantiating Our Malicious Framework

B.4.1 Malicious-Secure P2P RSA.

Overview of Single-Server RSA. Single-server Byzantine-robust stochastic aggregation (RSA) [32]
is a set of subgradient based algorithms for robust aggregation. The key component of the method
is a regularization term incorporated into the objective function to make learning robust. To enable
graceful handling of heterogeneous worker datasets, each client i maintains a local set of model
parameters xk

i whilst working together to optimize the global model parameters wk at a step k. At
each step, clients compute a parameter update which takes into account their local data, their prior
local model, as well as the global model parameters. The server receives the local client updates
and uses the regularized objective to obtain a robust aggregate update. Client and server updates,
respectively, are given by the equations:

xk+1
i = xk

i − ηk
(
∇F (xk

i , ξ
k
i ) + λsign(xk

i −wk)
)

(1)

wk+1 = wk − ηk

∇f0(wk) + λ

∑
i∈[n]

sign(wk − xk
i )

 (2)
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where η is a decaying learning rate hyper parameter, ξ is a sampling of the local client dataset, F (·, ·)
is the loss function, f(·, ·) is the robust (ℓ2) regularization term, λ is a hyper parameter controlling
the weighting of the robustness term, the sign is performed element-wise, and [n] is the set of clients.

Lifting RSA to the P2P setting. To cast RSA into our framework, we first observe that∑
i∈[n] sign(wk − xk

i ) is the only term of the server’s update that requires input from the clients.
Thus we limit the work of the committee solely to computing this term, and the rest of the work is
done locally. We instantiate RSA for our framework in Figure 7.

In the FC (client update computation) part of the RSA protocol, each peer receives the global model
parameters wk. It computes local parameter update xk+1

i based on the global model, the local
model xk

i , and the local gradient ∇F . In the FP (update preprocessing) part of the protocol, peers
compute the sign of the difference between their local parameters and the global model parameters
sign(wk − ui), resulting in a bit vector vi (one bit per model parameter). In the FR (aggregation)
part of the protocol, the committee members receive secret shares of sign(wk − xk

i ) from each
participant. We observe that RSA can be lifted to the malicious security model with high efficiency:
it is provably computational surjective and the underlying MPC can be efficiently instantiated.

Computational Surjectivity. Recall that in RSA peer updates are the sign of the difference between
each parameter of the local and global models (Figure 7). In other words, the FP of RSA gives
V = {−1, 1}d, where d is the number of parameters in the model. In the single-server model of
RSA [32] and in Figure 7, poisonous peers can choose arbitrary ui before FP is computed, which
gives vi = sign(wk − ui). Now we are ready to show the computational surjectivity of this FP .

Lemma 1 FP described in Figure 7 is a computationally surjective function.

Proof: Fix an arbitrary point v = (v1, · · · , vd) ∈ V = {−1, 1}d. We can construct u ∈ U that FP

maps to v by first fixing some arbitrary wk = (w1, · · · , wd), and letting u = (u1, · · · , ud) such that
uj = wj − vj for each j ∈ [d].

Clearly the FP of RSA vi = sign(wk − ui) maps u to the arbitrary v. So FP is computationally
surjective. □

Details of the cryptographic protocol. Thus, following Figure 3, it is sufficient for peers to prove in
zero knowledge that their updates are in the set V = {−1, 1}d. This can be accomplished efficiently
by having each peer represent their update as d shares of binary values.

The committee can verify that a shared x is binary-valued by constructing shares of x · (1− x) and
revealing it to be zero. We implement this step efficiently by batching the binary-value DZK proofs
together. That is, for every shared value xi, parties uniformly sample a random value ri, and locally
construct shares of the sum

∑
ri · (xi · (1− xi)). The parties then reconstruct the sum – if it is 0,

then each of the (xi · (1− xi)) components must have been 0 with all but negligible probability. For
a more detailed treatment of this technique, see [12].

During the computation of FR, the committee needs only to sum the shares and send out the
reconstructed sum. The actual value of the summed updates in {−1, 1} is implicitly given by the sum
of the binary values (if the sum of the binary values is x, simply take 2x−m). The updated global
model parameters can then be obtained via local computation of Equation 2.

Computational Surjectivity. In RSA, peer updates are the sign of the difference between each
parameter of the local and global models (Figure 7). The FP of RSA gives V = {−1, 1}d, where d
is the number of parameters in the model. In the single-server model of RSA [32] and in Figure 7,
poisonous peers can choose arbitrary ui before FP is computed, which gives vi = sign(wk − ui).
Now we are ready to show the computational surjectivity of this FP .

Lemma 2 FP described in Figure 7 is a computationally surjective function.

Proof: Fix an arbitrary point v = (v1, · · · , vd) ∈ V = {−1, 1}d. We can construct u ∈ U that FP

maps to v by first fixing some arbitrary wk = (w1, · · · , wd), and letting u = (u1, · · · , ud) such that
uj = wj − vj for each j ∈ [d].

Clearly the FP of RSA vi = sign(wk − ui) maps u to the arbitrary v. So FP is computationally
surjective. □
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ui ← FC(data, st,w)

1. (k,xk
i )← st

2. Sample ξki from local data Di

3. xk+1
i = xk

i − ηk
(
∇F (xk

i , ξ
k
i ) + λsign(xk

i −wk)
)

4. ui = xk
i

5. st← (k + 1,xk+1
i )

vi ← FP (ui)

1. Set vi = sign(wk − ui)

w ← FR({vi}i∈[n])

1. Set wk+1 = wk − ηk
(
∇f0(wk) + λ(

∑
i∈[n] vi)

)
Figure 7: P2P Learning with RSA. FR can be computed efficiently by performing only

∑
i∈[n] vi

on the committee side. The rest of the terms are public, so the remainder of the update can be
computed locally.

B.4.2 Malicious Secure P2P CC

Overview of Single-Server Centered Clipping. Centered Clipping [29] is a recent robust aggrega-
tion that ensures a high level robustness even when the noise distribution is not uni-modal (which is
assumed in many prior works.) It also provides better robustness when corrupted updates at different
rounds are correlated. Below we first discuss details of the algorithm and then how to express it in
our framework.

Centered Clipping (no momentum): Given the training iteration k, globally shared model
parameters wk, local model parameters xk+1

i in client i, and a radius τ , CC using the ℓ2-norm
computes an updated weight vector as follows:

xk+1
i = (xk+1

i − wk)min

(
1,

τ

||xk+1
i − wk||2

)
(3)

wk+1 = wk +
1

n

n∑
i=1

xk+1
i (4)

In Equation (3), we clip the parameters for each client i, and then aggregate them in Equation (4).

Centered Clipping with Momentum: In addition to the above, each non-Byzantine client i first
computes a gradient update ∇F based on their mini-batch ξki and the current global weights wk.
Then, using the momentum parameter β, each client computes a momentum vector as shown in
Equation 5 (executed before Equation (3) and Equation (4)):

xk+1
i = (1− β)∇F (wk, ξki ) + βxk

i (5)

Lifting CC to the P2P setting. We bring CC into the P2P setting by placing the momentum
computation inside FC , the clipping operation inside FP , and the aggregation of clipped updates in
FR. The clipping operation is performed on individual client updates, and thus can be performed on
the client side. Further, as in RSA we note that FR is a linear function, and thus can be computed
efficiently using the homomorphic addition and scalar multiplication properties of Shamir secret
sharing.

Centered Clipping does not naturally give us a surjective FP . Of note, if a corrupted peer supplies
a value of vi that is outside of the τ -ball surrounding w, the global update will be computed
incorrectly and the model fidelity guarantees will be broken. To avoid this possibility, we make a
slight modification to the CC algorithm. Namely, we clip local updates using the ℓ∞ norm rather than
the ℓ2 norm. In other words, we clip the gradients to a τ -box rather than a τ -ball. The computation of
the global update thus becomes
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wk+1 = wk +
1

m

m∑
i=1

min(τ,max(−τ, xi −wk)) (6)

This modification admits a computationally surjective FP with an efficient DZK proof that a client
update is within the valid domain. In particular, we take V = [0, 2θ − 1]d. Then in FP we scale,
round, and map clipped gradient updates to be within this domain. Here θ is a public constant large
enough to limit discretization error of local updates during scaling – in the present study we set θ
to 32 in order to align with 32-bit fixed-point numbers. Smaller values of θ will increase protocol
efficiency, at the expense of higher discretization error during rounding and mapping in FP step 3.
Computational surjectivity of this FP follows from a similar argument to Lemma 2.

DZK Proof of Valid Update. We specify that local updates vi are submitted as vectors of the
individual component bits of the processed gradient update. This means that each bit will be
individually secret shared, which allows the committee to verify whether each one is binary-valued
(using the same DZK technique described above for the RSA protocol). Since we scaled each update
to fit within a 2θ-sized d-dimensional box, the d sets of θ binary values in the update trivially encode
a point within the box. Thus, a proof that each component of the bitwise update is binary-valued
equates to a proof that the update is in V .

The global update is aggregated by summing the bits at each position of the client update vectors.
The sums are reconstructed and sent directly to all clients. They implicitly encode the updated global
parameters w′, which are recovered via client-side computation in order to keep the computation of
FR light-weight. Details of our malicious-secure Centered Box Clipping protocol can be found in
Figure 8.

B.4.3 Malicious Secure P2P FLTrust

Overview of Single-Server FLTrust. Single-server FLTrust (abbreviated FLT) [14] is a robust
aggregation algorithm that bootstraps trust using a clean “root” dataset maintained by the server.
During each iteration, the server compares client gradients against the gradient computed from the
root dataset. Specifically, the server computes a ‘trust score’ (TS) for each client gradient i ∈ [m],
which it uses to compute a weighted sum of normalized gradients which makes up the final aggregate.
The trust score and update aggregation are given by the following equations:

TSi = ReLU

(
⟨gi, g0⟩
||gi||||g0||

)
(7)

g =
1∑m

j=1 TSi

m∑
i=1

TSi · ḡi (8)

w = w + α · g (9)

Where TSi is the trust score for client i, gi is the local gradient for client i, g0 is the gradient
computed from the root dataset, and ḡi is the gradient of client i normalized to have the same length
as g0. As a brief explanation of the framework, the trust score acts as a clipped version of the cosine
similarity – the greater the angle between gi and g0, the smaller the scaling factor that weights ḡi in
the weighted sum. The ReLU ensures that any gi with a negative cosine similarity is clipped to 0, and
thus contributes no weight to the sum.

Lifting FLT to the P2P setting. We begin by assuming that the root dataset D0 is publicly accessible,
so that all clients may compute the root update g0 locally, in addition to their local update gi inside of
FC . In FP we perform normalization and rotation to simplify the computation of Equations 7 and 8
in FR (explained in more detail below). In FR, we securely compute the trust score of each client
and the corresponding weighted sum of gradients. This weighted sum is submitted as the global
update – computation of the updated model parameters is left to the clients as a post-processing step.

The representation of vi is chosen to enable efficient computation of FR and of DZK proofs of
update validity. In detail, we perform a rotation of gi and g0 such that g0 is aligned with the x-
axis (and the angle between g0 and gi is preserved). We also normalize such that g0 and gi are
unit-length. Further, when submitting client updates we use a representation that can only encode a
non-negative x-coordinate (by decomposing each entry of ḡ′i into a sign and magnitude, and only
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ui ← FC(data, st,w)

1. (k,mk
i )← st

2. Parse w =
{
bwj
}
j∈[d·θ] into d sets of θ values each, corresponding to the d parameters

of the model. Index them as pih where i ∈ [θ] and h ∈ [d]. // Parse and index the bitwise
global update to align with parameters of the model

3. For h ∈ [d], sh ←
∑

i∈[θ] pih · 2i // intermediate value of global update reconstruction

4. wk
h ← wk−1

h − η( 1
m · sh) for h ∈ [d]. Call w′ ←

{
wk

h

}
h∈[d]

// reconstruct global model
parameters

5. Sample ξki from local data Di

6. Compute ui = (1− βk)(∇F (w′, ξki )) + βkmk
i

7. st← (k + 1,ui)

vi ← FP (ui,w)

1. Compute v′′′
i ← min(τ,max(−τ,ui −w)) + τ

2. Compute v′′
i ←

(v′′
i −w)
τ · 2θ−1 // scale the clipped value and center it to the origin

3. Round and map entries of v′′
i to unsigned θ-bit integers values ∈ [0, 2θ − 1]. Call the

result v′
i.

4. Decompose v′
i into the component bits used to represent each value in the vector, indexed

as bij for j ∈ [d · θ]. Submit a vector of the individual bits as vi.

w ← FR({vi}i∈[n],w)

1. (k)← st

2. For j ∈ [d · θ], compute bwj ←
∑

i∈[m] bij . // sum each bit across client updates

3. w ←
{
bwj
}
j∈[d·θ]

4. st← (k + 1)

Figure 8: Centered Box Clipping. By clipping to a box and scaling that box to size 2θ, this
modification of Centered Clipping achieves computational surjectivity and an efficient proof to verify
that shared peer updates are inside V .

accepting a magnitude – and not a sign bit – for the x-coordinate). This canonical representation
simplifies computation of the trust score. In particular, since g0 and gi are normalized to unit vectors,
computation of the cosine similarity ⟨gi,g0⟩

||gi||||g0|| simplifies to ⟨gi, g0⟩, and since g0 is aligned with the
x-axis, this further simplifies to selecting the x-coordinate of gi. Further, we avoid taking the ReLU
within FR by choosing a representation of vi that cannot represent a gi with negative x-coordinate,
and specifying that any honest party whose local gradient has negative x-coordinate supplies an
update that will have 0 weight during the computation of Equation 8 (we use the symbol ⊥ as a
placeholder for such an update – in practice, this can be any arbitrary unit vector with 0 in the
x-coordinate). Thus computation of the trust score during FR is simplified to taking the x-coordinate
of ḡ′i.

The chosen representation of vi constrains the image of FP to the set of unit vectors with non-
negative x-coordinates. If we restrict the codomain of FP to this set, we achieve computational
surjectivity. This follows from a simple argument:

Proof: Fix an arbitrary point v in the set of unit vectors with non-negative x-coordinates. Fix an
arbitrary g0. Let M be a rotation matrix that rotates g0 to the x-axis. Consider a client update u such
that Mu is on the line extending from the origin to v. By definition, FP maps u to v. □

Finally, we construct DZK proofs to verify that vi falls inside the set of unit vectors with non-negative
x-coordinates.
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Inputs / Public Constants:
• Assume all client states S contain a public root dataset D0 (in addition to their private dataset Di)

ui ← FC(data, st,w)

1. g0 ← ModelUpdate(w, D0) // compute update from root dataset, save in client state
2. gi ← ModelUpdate(w, Di) // compute local update from client dataset
3. ui ← gi

vi ← FP (ui,w)

1. ḡ0 ← g0
∥g0∥ // normalize to unit length

2. ḡi ← ui

∥ui∥ // normalize to unit length
3. M ← rotation matrix aligning ḡ0 with the x-axis.
4. ḡ0 ←Mḡ0
5. ḡi ←Mḡi // rotate client update by the same angle
6. Represent ḡi and ḡ0 as θ-bit fixed-point numbers with a designated sign bit, call this

representation ḡ′i and ḡ′0.
7. If the x-coordinate of ḡ′i is negative, submit ⊥ as vi.
8. Otherwise, submit a vector of the individual bits of ḡ′i as vi. Each coordinate should

be submitted as a sign bit and a binary-encoded magnitude, except for the x-coordinate
which should only have a magnitude since it is non-negative.

w ← FR({vi}i∈[n],w)

1. Parse vi appropriately as ḡ′i
2. TSi ← magnitude of x-coordinate of ḡ′i // since g0 is aligned with x-axis
3. Submit ḡ ←

∑
i∈[n] ḡ

′
i · TSi as global update. Denormalization, rotation, and computa-

tion of global model parameters via w ← w + α · g is performed as post-processing on
the client side.

Figure 9: FLTrust.

DZK Proof of Valid Update. As in RSA and CC, we perform a batch check that all submitted shares
are binary-valued (see previous sections for details). We additionally perform a DZK proof that all
updates are unit length, by constructing shares of ⟨ḡ′i, ḡ′i⟩ −C and revealing them to be 0, where C is
a constant which encodes the square of a θ-bit fixed point number with unit magnitude. We batch
check these proofs by obtaining shared random field elements ri and constructing shares of the sum∑

ri · (⟨ḡ′i, ḡ′i⟩ −C), and finally revealing them to be 0 (i.e. using the same technique as described in
the binary-value batch check for RSA). We also perform a DZK proof to ensure that the sign bits are
in {−1, 1} by computing shares of (b− 1)(b+ 1) and revealing them to be 0 – this check is batched
in the same way as the previous checks.

B.5 Experimental Design

While lifting robust aggregation algorithms to the malicious-secure P2P Learning security model,
we make small changes to the algorithms to tailor them for efficiency in the setting. Thus, in order
to evaluate P2P Learning, we design experiments to test (1) the effectiveness (in terms of accuracy
and robustness) of these tailored algorithms, as well as (2) the efficiency of their implementation as
cryptographic protocols. These goals are performed using distinct code bases: we used PyTorch to
benchmark accuracy and robustness, and we used the NTL package [40] in C++ to implement the
local computation for the aggregation steps of our malicious-secure framework.

B.5.1 Accuracy and Robustness Experiments

To benchmark the robustness of the different aggregation protocols evaluated in the paper, we ran
experiments under each to train a central model in a collaborative machine learning setting with a
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Figure 10: Byzantine Robustness of Doubly Robust Protocols for iid EMNIST. We compare RSA
and CC after their instantiations in our framework. A cohort size of 50 peers is used. f is the number
of malicious workers. We run each algorithm until its completion.
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Figure 11: Byzantine Robustness of Doubly Robust Protocols for iid MNIST. We compare RSA
and CC after their instantiations in our framework. A cohort size of 50 peers is used. f is the number
of malicious workers. We run each algorithm until its completion.
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Figure 12: ℓ2 vs ℓ∞ norm for CC for iid EMNIST.

Dataset Type No attack sf attack lf attack ipm attack alie attack
EMNIST IID 91.68 91.09 90.83 91.20 91.43
EMNIST nonIID 91.69 91.07 90.88 91.19 87.20
CIFAR100 IID 48.04 33.77 44.94 45.64 32.77

Table 2: Maximum accuracy achieved by CC in a given setting.

cohort size of 50 participants and varying numbers of malicious workers (0, 10, 23). 4 attacks, namely
bit flip (bf) [45], label flip (lf) [6], inner product manipulation (ipm) [46], and "a little is enough"
(alie) [2], were evaluated. In all cases, we computed the testing accuracy as a function of the number
of rounds of training.

MNIST (Digits) and EMNIST (Letters) datasets were used as the datasets with the data being evenly
divided among the peers. The model architecture from [30] (with 1.2M parameters) was used for
MNIST and this architecture was modified to have 26 neurons in the last layer for EMNIST. During
training, each client uses a local mini-batch of size 32 at each round and a learning-rate of 0.01.

The training experiments were repeated over two random seeds. The PyTorch [36] framework was
used for all experiments.

B.5.2 Computational Efficiency Experiments

To benchmark the efficiency of our framework, we wrote code to perform all local computation
steps necessary to run the aggregation step for a single committee member (FR) of malicious-
secure P2P RSA, CC, and FLT. We used an m5.metal instance on Amazon EC2 to obtain the
benchmarks reported in Figure 5. Each benchmark reports the mean runtime of 3 trials – trials were
run concurrently in separate threads.

B.6 Accuracy of CC vs Attacks

Our approaches directly leverage robust aggregation algorithms, which perform as well in our case as
in the FL setting. We include an additional experiments with CC on iid EMNIST, non-iid EMNIST,
and iid CIFAR100 finding that it performs as well as in the FL setting. We present the results in
Table 2 and Figure 13.
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(b) non-iid EMNIST
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Figure 13: The accuracy achieved by CC in a given setting. A cohort size of 50 peers was used,
with 10 malicious workers. Each algorithm was run for 1000 rounds, with 0.9 momentum, 1000.0 τ ,
and for 3 different seeds.
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