
Published as a conference paper at ICLR 2023

LOGICAL MESSAGE PASSING NETWORKS WITH
ONE-HOP INFERENCE ON ATOMIC FORMULAS

Zihao Wang & Yangqiu Song
CSE, HKUST
Hong Kong SAR
{zwanggc,yqsong}@cse.ust.hk

Ginny Y. Wong & Simon See
NVIDIA AI Technology Center (NVATIC), NVIDIA
Santa Clara, USA
{gwong,ssee}@nvidia.com

ABSTRACT

Complex Query Answering (CQA) over Knowledge Graphs (KGs) has attracted
a lot of attention to potentially support many applications. Given that KGs are
usually incomplete, neural models are proposed to answer the logical queries by
parameterizing set operators with complex neural networks. However, such meth-
ods usually train neural set operators with a large number of entity and relation
embeddings from the zero, where whether and how the embeddings or the neural
set operators contribute to the performance remains not clear. In this paper, we
propose a simple framework for complex query answering that decomposes the
KG embeddings from neural set operators. We propose to represent the complex
queries into the query graph. On top of the query graph, we propose the Logi-
cal Message Passing Neural Network (LMPNN) that connects the local one-hop
inferences on atomic formulas to the global logical reasoning for complex query
answering. We leverage existing effective KG embeddings to conduct one-hop
inferences on atomic formulas, the results of which are regarded as the messages
passed in LMPNN. The reasoning process over the overall logical formulas is
turned into the forward pass of LMPNN that incrementally aggregates local in-
formation to finally predict the answers’ embeddings. The complex logical infer-
ence across different types of queries will then be learned from training examples
based on the LMPNN architecture. Theoretically, our query-graph representation
is more general than the prevailing operator-tree formulation, so our approach
applies to a broader range of complex KG queries. Empirically, our approach
yields a new state-of-the-art neural CQA model. Our research bridges the gap
between complex KG query answering tasks and the long-standing achievements
of knowledge graph representation learning. Our implementation can be found at
https://github.com/HKUST-KnowComp/LMPNN.

1 INTRODUCTION

Knowledge Graphs (KG) are essential sources of factual knowledge supporting downstream tasks
such as question answering (Zhang et al., 2018; Sun et al., 2020; Ren et al., 2021). Answering logi-
cal queries is a complex but important task to utilize the given knowledge (Ren & Leskovec, 2020;
Ren et al., 2021). Modern Knowledge Graphs (KG) (Bollacker et al., 2008; Suchanek et al., 2007;
Carlson et al., 2010), though on a great scale, is usually considered incomplete. This issue is well
known as the Open World Assumption (OWA) (Ji et al., 2021). Representation learning methods
are employed to mitigate the incompleteness issue by learning representations from the observed
KG triples and generalizing them to unseen triples (Bordes et al., 2013; Trouillon et al., 2016; Sun
et al., 2018; Zhang et al., 2019; Chami et al., 2020). When considering logical queries over incom-
plete knowledge graphs, the query answering models are required to not only predict the unseen
knowledge but also execute logical operators, such as conjunction, disjunction, and negation (Ren
& Leskovec, 2020; Wang et al., 2021b).

Recently, neural models for Complex Query Answering (CQA) have been proposed to complete
the unobserved knowledge graph and answer the complex query simultaneously. These models aim
to address complex queries that belong to an important subset of the first-order queries. Formally
speaking, the complex queries are Existentially quantified First Order queries and has a single free

1

https://github.com/HKUST-KnowComp/LMPNN


Published as a conference paper at ICLR 2023

variable (EFO-1) (Wang et al., 2021b) containing logical conjunction, disjunction, and negation (Ren
& Leskovec, 2020). The EFO-1 queries are transformed in the forms of operator trees, e.g., relational
set projection, set intersection, set union, and set complement (Wang et al., 2021b). The key idea
of these approaches is to represent the entity set into specific embedding spaces (Ren & Leskovec,
2020; Zhang et al., 2021; Chen et al., 2022). Then, the set operators are parameterized by neural
networks (Ren & Leskovec, 2020; Amayuelas et al., 2022; Bai et al., 2022). The strict execution of
the set operations can be approximated by learning and conducting continuous mappings over the
embedding spaces.

It is observed by experiments that classic KG representation (Trouillon et al., 2016) can easily out-
perform the neural CQA models in one-hop queries even though the neural CQA models model the
one-hop projection with complex neural networks (Ren & Leskovec, 2020; Amayuelas et al., 2022;
Bai et al., 2022). One possible reason is that the neural set projection is sub-optimal in modeling the
inherent relational properties, such as symmetry, asymmetry, inversion, composition, etc, which are
sufficiently discussed in KG completion tasks and addressed by KG representations (Trouillon et al.,
2016; Sun et al., 2018). On the other hand, Continuous Query Decomposition (CQD) (Arakelyan
et al., 2021) method searches for the best answers with a pretrained KG representation. The log-
ical inference step is modeled as an optimization problem where the continuous truth value of an
Existential Positive First Order (EPFO) query is maximized by altering the variable embeddings.
However, the speed and the performance of inference heavily rely on the optimization algorithm. It
also assumes that the embeddings of entities and relations can reflect higher-order logical relations,
which is not generally assumed in existing knowledge graph representation models. Moreover, it is
unclear whether CQD can achieve good performance on complex queries with negation operators 1.

In this paper, we aim to answer complex EFO-1 queries by equipping pretrained KG representations
with logical inference power. First, we formulate the EFO-1 KG queries as Disjunctive Normal Form
(DNF) formulas and propose to represent the conjunctive queries in the form of query graphs. In
the query graph, each edge is an atomic formula that contains a predicate with a (possible) negation
operator. For each one-hop atomic formula, we use the pretrained KG representation to infer the
intermediate embeddings given the neighboring entity embedding, relation embedding, direction
information, and negation information. We show that the inference can be analytically derived for
the KG representation formulation. The results of one-hop atomic formula inference are interpreted
as the logical messages passed from one node to another. Based on this mechanism, we propose
a Logical Message Passing Neural Network (LMPNN), where node embeddings are updated by
one Multi-Layer Perceptron (MLP) based on aggregated logical messages. LMPNN coordinates
the local logical message by pretrained knowledge graph representations and predicts the answer
embedding for a complex EFO-1 query. Instead of performing on-the-fly optimization over the
query graph as CQD (Arakelyan et al., 2021), we parameterize the query answering process as the
forward pass of LMPNN which is trained from the observed KG query samples.

Extensive experiments show that our approach is a new state-of-the-art neural CQA model, in which
only one MLP network and two embedding vectors are trained. Interestingly, we show that the
optimal number of layers of the LMPNN is the largest distance between the free variable node and
the constant entity nodes. This makes it easy to generalize our approach to complex queries of
arbitrary complexity. Hence, our approach bridges the gap between complex KG query answering
tasks and the long-standing achievements of knowledge graph representation learning.

2 RELATED WORKS

Knowledge graph representation. Representing relational knowledge is one of the long-standing
topics in representation learning. Knowledge graph representations aim to predict unseen relational
triples by representing the discrete symbols in continuous spaces. Various algebraic structures (Bor-
des et al., 2013; Trouillon et al., 2016; Sun et al., 2018; Ebisu & Ichise, 2018; Zhang et al., 2019) are
applied to represent the relational patterns (Sun et al., 2018) and different geometric spaces (Chami
et al., 2020; Cao et al., 2022) are explored to capture the hierarchical structures in knowledge graphs.
Therefore, entities and relations in large knowledge graphs can be efficiently represented in a con-
tinuous space.

1Existing empirical evaluations are all conducted on queries without negation (Arakelyan et al., 2021)

2



Published as a conference paper at ICLR 2023

Neural complex query answering. Most existing works treat the complex queries as operator
trees (Ren et al., 2020; Ren & Leskovec, 2020; Wang et al., 2021b). The query types that can
be answered are extended from existential positive first-order (EPFO) queries (Ren et al., 2020;
Choudhary et al., 2021; Arakelyan et al., 2021) to the existential first-order (Ren & Leskovec, 2020;
Zhang et al., 2021; Bai et al., 2022), or more specifically EFO-1 queries (Wang et al., 2021b). In a
neural CQA model, the entity sets are represented by various forms, including probabilistic distri-
butions (Ren & Leskovec, 2020; Choudhary et al., 2021; Bai et al., 2022), geometric shapes (Ren
et al., 2020; Zhang et al., 2021), and fuzzy-logic-inspired representations (Chen et al., 2022). In
contrast to knowledge graph representations, the relation projections between sets are usually mod-
eled by complex neural networks, including multi-layer perceptron (Ren & Leskovec, 2020), MLP-
mixer (Amayuelas et al., 2022), or even transformers (Bai et al., 2022). However, their performances
on one-hop queries are shown to be worse than the state-of-the-art but simple knowledge graph rep-
resentation (Trouillon et al., 2016). Other works compiled the queries into the graphs and then solve
queries with graph neural networks (Daza & Cochez, 2020; Liu et al., 2022). In contrast to this
work, existing investigations only focused on EPFO queries and require to train the entire GNN
from zero. Notably, knowledge graph representations also provide effective signals when answering
complex queries. Specifically, CQD (Arakelyan et al., 2021) uses the KG representation to calculate
the continuous truth value of an EPFO logical formula with the logical t-norms. Then, the embed-
dings are optimized to maximize the continuous truth value. The optimization can be applied in the
embedding space as well as the symbolic space. Our experiments show that this method performs
badly on complex queries with logical negation, see Section 4.3.

3 PRELIMINARIES

In this section, we formally introduce the knowledge graph and related model-theoretic concepts.
These concepts are helpful when we define the DNF formulation of EFO-1 queries in Section 4.
Then, we introduce the abstract interface of knowledge graph representation, which is useful in
defining one-hop inference in Section 5.

Model-theoretic concepts for knowledge graphs. A first-order language L is specified by a triple
(F ,R, C) where F , R, and C are sets of symbols for functions, relations, and constants, respectively.
A knowledge graph is specified under the language LKG , where function symbol set F = ∅ and
relation symbols in R denote binary relations. A knowledge graph KG is an LKG-structure given
the entity set V , where each constant c ∈ C = V is also an entity and each relation r ∈ R is a set
r ⊆ V×V . We say r(t1, t2) = True when (t1, t2) ∈ r. A knowledge graph is usually defined by the
relation triple set E = {(h, r, t)}, where h and t are entities such that (h, t) ∈ r. The Open World
Assumption (OWA) means only a subset of E can be observed. The observed knowledge graph is
denoted by KGobs. A term is either a constant or a variable. And an atomic formula is either r(t1, t2)
or ¬r(t1, t2) where t1 and t2 are terms and r is a relation. In the following parts, we use a· to denote
an atomic formula. Then the first order formula can be inductively defined by adding connectives
(conjunction ∧, disjunction ∨, and negation ¬) to atomic formulas and quantifiers (existential ∃
and universal ∀) to variables. The formal definition of first-order formulas can be found in Marker
(2006). A variable is bounded when associated with a quantifier, otherwise, it is free.

3.1 KNOWLEDGE GRAPH REPRESENTATIONS

Our approach relies upon the following abstract interface of knowledge graphs. Given the head entity
embedding h, relation embedding r, and tail entity embedding t, a knowledge graph representation
is able to produce a continuous truth value ψ(h, r, t) in [0, 1] of the embedding triple (h, r, t). In
the symbolic space, whether (h, t) ∈ r is indicated by the {0, 1} truth value of r(h, t). In the
embedding space, ψ(h, r, t) indicates the “probability” that (h, t) ∈ r. Hence, this definition is a
continuous relaxation of the {0, 1} truth value.

Each knowledge graph representation has a scoring function ϕ(h, r, t), which can be based on a
similarity function or a distance function. It is easy to convert such functions into ψ by applying
the Sigmoid function with necessary scaling and shift. For example, the scoring function of Com-
plEx (Trouillon et al., 2016) embedding is.

ϕ(h, r, t) = Re(⟨h⊗ r, t̄⟩), (1)

3



Published as a conference paper at ICLR 2023

	𝑒!

	𝑒" 	𝑛

	𝑖 	𝑝# 	𝑐!

	𝑐"

	𝑥 	𝑦

(a) Operator Tree (b) Query Graph

	𝑝"

	𝑝! 𝑟!
¬𝑟"

𝑟#

Figure 1: The operator tree representation (a) and query graph representation (b) of an examplar
complex query in Ren & Leskovec (2020). The logical formula of this query is given by r1(x, c1)∧
¬r2(c2, x) ∧ r3(y, x). For shorthand, this query is denoted as INP. The symbols about relations and
terms are consistent in the query graph representation. In the operator tree representation, c1 and c2
are represented by anchor node operators e1 and e2. Relation r1 and r3 are represented by projection
node p1 and p3. Relation r2 is jointly represented by projection node p2 and negation node pn. The
fact that x is connected to all other nodes is represented by intersection operator i.

where ⊗ denotes the element-wise complex number multiplication and ⟨x, y⟩ is the complex inner
product. Re extracts the real part of a complex number. Then, the truth value of which can be
computed by

ψ(h, r, t) = σ(ϕ(h, r, t)), (2)

where σ is the sigmoid function. This truth value function is used in Arakelyan et al. (2021) with
logic t-norms. In the context of knowledge graph representation learning, the entity embeddings
h, t are usually related to specific entity symbols in a look-up table. In this work, we assume the
embedding vector is related to not only specific entities but also variables.

4 EFO-1 QUERIES AND QUERY GRAPHS

Without loss of generality, we consider the logical formulas under the disjunctive normal form.
Then, we define the Existential First Order queries with a single free variable (EFO-1).
Definition 1. Given a knowledge graph KG, an EFO-1 query Q is formulated as the first-order
formula in the following disjunctive normal form,

Q(y, x1, ..., xm) = ∃x1, ...,∃xm [a11 ∧ a12 ∧ · · · ∧ a1n1
] ∨ · · · ∨

[
ap1 ∧ ap2 ∧ · · · ∧ apnp

]
, (3)

where y is the only free variable and xi, 1 ≤ i ≤ m are m existential variables. aij , 1 ≤ i ≤ p, 1 ≤
j ≤ np are atomic formulas with constants and variables y, x1, . . . , xm. aij can be either negated
or not.

To answer the EFO-1 queries, one is expected to identify the answer set A[Q,KG]. A[Q,KG] is the
set of entities such that a ∈ A[q,KG] if and only if Q(y = a, x1, ..., xm) = True.

Moreover, since Q is given in the disjunctive normal form, let us consider

Q(y, x1, ..., xm) = CQ1(y, x1, ..., xm) ∨ · · · ∨ CQp(y, x1, ..., xm), (4)

where CQi = ∃x1, ...∃xmai1 ∧ ai2 ∧ · · · ∧ aini is a conjunctive query. It is easy to see that
A[Q,KG] = ∪p

i=1A[CQi,KG]. Therefore, solving A[Q,KG] is equivalent to solving the answer
sets for all conjunctive queries.

4.1 QUERY GRAPH FOR CONJUNCTIVE QUERIES

For each conjunctive query, the constant entities and variables are closely related by the atomic
formulas. To emphasize the dependencies between entities and variables, we propose to use the
query graph where the terms are nodes connected by the atomic formulas. Each node in the query
graph is either a constant symbol or a free or existential variable. Each edge in the query graph
represents an atomic formula containing both relation and negation information.

Figure 1 shows our query graph representation and the operator tree representation (Wang et al.,
2021b) for a typical query type defined in Ren & Leskovec (2020). We see that the query graph
is more concise than the operator tree. First, we can see that the nodes and edges have different
meanings in operator trees and query graphs. In the operator trees representation, each node is an
operator denoting a set operation, whose output can be fed into other set operators. When using the
complex query answering models with the operator tree, the information flows from leaf to root,

4



Published as a conference paper at ICLR 2023

which is unidirectional. However, for the query graph, the messages are passed bi-directionally
through each edge as we will show in Section 6. In Figure 1, the central node x receives messages
from all neighbor nodes.

4.2 EXPRESSIVENESS OF DEFINITION 1

Our definition is theoretically broader than all existing discussions. The definition in (Wang et al.,
2021b), though widely adapted and discussed in the existing literature, has implicit assumptions
because they are proposed to predict the answers by neural operators. It is assumed that (1) the
Skolemization process can always convert the query into a tree of set operators, and (2) all leaves
of the operator tree are entities rather than variables. A counterexample that can be expressed by
Definition 1 but cannot be represented by operator trees is shown in Appendix A.

4.3 LIMITATION OF OPTIMIZATION-BASED METHODS FOR NEGATED QUERIES

Our definition accepts the atomic formulas with negation operation. Therefore, It can be seen as a
natural extension of the definitions in CQD (Arakelyan et al., 2021). Moreover, we extended CQD
to negation queries with the continuous truth value with fuzzy logical negator (see Appendix B).
The extended method is named CQD(E), and the results are compared in Table 1. We could see
that the performance of CQD(E) is much less effective on negation queries. We conjecture that the
landscape of the objective function, i.e., the continuous truth values of the complex formula with
negation, can be non-convex. So the optimization problem is inherently harder. The non-convexity
objective function is discussed in Appendix B.1.

5 ONE-HOP INFERENCE ON ATOMIC FORMULAS

As shown in Figure 1, each edge in a query graph is an atomic formula containing the information of
neighboring entities, relation, and logical negation, which are all crucial for predicting the answers.
We propose to encode such entity, relation, and logical negation information by one-hop inference
that maximizes the continuous truth value of the (negated) atomic formula. Let ρ be the logical mes-
sage encoding function of four input parameters, including neighboring entity embedding, relation
embedding, direction information (h2t or t2h), and logical negation information (0 for no negation
and 1 for with negation). The goal of this section is to properly define ρ.

Moreover, inference on one-hop atomic formula is much easier compared to that on the entire com-
plex EFO-1 query graph, as discussed in Section 4.3. We also provide the closed-form expression
of ρ for the knowledge graph embedding we used in this paper.

5.1 ONE-HOP INFERENCE IN NON-NEGATED ATOMIC FORMULAS

The first situation is to infer the head embedding ĥ given the tail embedding t and relation embed-
ding r on a non-negated atomic formula. We formulate the inference task in the form of continuous
truth value maximization:

ĥ = ρ(t, r, t2h, 0) := argmax
x∈D

ψ(x, r, t), (5)

where D is the search domain for the embedding. Similarly, the tail embedding t̂ can be infered
given head embedding h and relation embedding r, that is,

t̂ = ρ(h, r, h2t, 0) := argmax
x∈D

ψ(h, r,x). (6)

5.2 ONE-HOP INFERENCE IN NEGATED ATOMIC FORMULAS

To extend the definition for non-negated atomic formulas to negated formulas, one only need to
compute the continuous truth value of a negated atomic formula by the fuzzy logic negator (Hájek,

5



Published as a conference paper at ICLR 2023

	𝑐!

	𝑐"

	𝑥 	𝑦

𝑟!

¬𝑟"

𝑟#

𝜌 𝑦, 𝑟#, ℎ2𝑡, 0
𝜌 𝑐", 𝑟", ℎ2𝑡, 1

𝜌 𝑐!, 𝑟!, 𝑡2ℎ, 0

(a) Logical Message Passing with One Hop Inference
(Query Graph View)

𝜌 𝑥, 𝑟!, ℎ2𝑡, 0

𝜌 𝑥, 𝑟", 𝑡2ℎ, 1

𝜌 𝑥, 𝑟#, 𝑡2ℎ, 0
	𝑧(%) 	𝑧(%'!)

(b) Logical Message Passing Networks
(Node Embedding View)

Aggregate Logical Messages

MLP

Update with Equation (9)

Figure 2: An illustration of the two-stage procedures of logical message passing neural networks: (a)
passing the logical messages across the graph; (b) updating the node embedding with the aggregated
information with an MLP network.

2013), that is, ψ(h,¬r, t) = 1 − ψ(h, r, t). Then the estimation of head and tail embeddings is
related to the following inference problems

ĥ = ρ(t, r, t2h, 1) := argmax
x∈D

ψ(x,¬r, t) = argmax
x∈D

[1− ψ(x, r, t)] , (7)

t̂ = ρ(h, r, h2t, 1) := argmax
x∈D

ψ(h,¬r,x) = argmax
x∈D

[1− ψ(h, r,x)] . (8)

This optimization-based approach is similar to CQD discussed in Section 4.3, but it is more reliable
since atomic formulas are what we used to train the knowledge graph representation. Specifically,
the objectives in Eq. (5) and Eq. (6) are eventually the likelihood of positive samples and those in
Eq. (7) and Eq. (8) are the likelihood of negative samples. These objectives are widely used to learn
the representations with negative sampling.

Closed-form message encoding function ρ with pretrained KG representation. We have already
defined ρ with optimization problems. Moreover, the closed-form expression of ρ can be (approx-
imately) derived in many cases given two facts about the knowledge graph representations: (1) the
scoring function of knowledge graph representation is usually as simple as the inner product or dis-
tance. More details about constructing closed-form ρ for these two types of scoring functions are
discussed in Appendix D.1; (2) the sigmoid function outside the scoring function ϕ makes the final
truth value zero or one only if the output of the scoring function is sufficiently small or large. We
identify the closed-form approximation of ρ for ComplEx (Trouillon et al., 2016) and other five
different KG representations in Appendix C and D, which allows fast computation logical messages
used in Section 6.

6 LOGICAL MESSAGE PASSING NEURAL NETWORKS

In this section, we propose a Logical Message Passing Neural Network (LMPNN) to bridge the
one-hop inference proposed in Section 5 and complex query answering defined in Section 4. As
a variation of the message-passing neural network (Gilmer et al., 2017; Xu et al., 2018), LMPNN
has two stages: (1) each node passes a message to all its neighbors; (2) each node aggregates the
received messages and updates its latent embedding. Figure 2 illustrates how those two stages work.
Then the final layer embedding for the free variable node can be used to predict the answer entities.

6.1 LOGICAL MESSAGE PASSING OVER THE QUERY GRAPH

We use the message encoding function ρ to compute the messages passed from node to node. Fig-
ure 2 (a) demonstrates the logical message passing with blue arrows. Each node receives the message
from all its neighboring nodes.

6.2 NODE EMBEDDINGS IN QUERY GRAPH AND UPDATING SCHEME

Let n be a node and z
(l)
n be the embedding of n at the l-th layer. We discuss how to compute the z(l)

n

from the input layer l = 0 to latent layers l > 0. When l = 0, z(0)
n falls into one of three situations.

6



Published as a conference paper at ICLR 2023

(1) For an entity node e, z(0)
e is looked up from the pretrained knowledge graph representation.

(2) For an existential variable node xi, we assign an learnable embedding z
(0)
xi = vx. (3) For a

free variable node y, we assign another learnable embedding z
(0)
y = vy . We set that all existential

variables xi share one vx, for simplicity.

At the l-th layer, z(l)
n can be computed by updating the aggregated information from the (l − 1)-th

layer. Specifically, let N (n) be the neighbor set of node n in the query graph. For each neighbor
node v ∈ N (n), one can obtain its embedding z

(l−1)
v ∈ D, the relation rv→n ∈ R, the direction

Dv→n ∈ {h2t, t2h}, and the negation indicator Negv→n ∈ {0, 1}. Then, the embedding z
(l)
n , l ≥ 1

is computed by an MLP network after the summation of the aggregated information, that is,

z(l)
n = MLP(l)

ϵz(l−1)
n +

∑
v∈N (n)

ρ
(
z(l−1)
v , rv→n,Dv→n,Negv→n

) , (9)

where ϵ is a hyperparameter. To feed the complex vector of ComplEx (Trouillon et al., 2016) into
the MLP network, the real and imaginary vectors of one complex embedding are concatenated and
regarded as one feature vector. The formulation in Eq. (9) is similar to the Graph Isomorphic Net-
works (Xu et al., 2018) except that the logical messages passed are encoded by ρ from the pretrained
KG representation. Trainable vx and vy are unrelated to any specific entity.

6.3 LEARNING LMPNN FOR COMPLEX QUERY ANSWERING

To train the neural network, we apply the Noisy Contrastive Estimation (NCE) loss for ranking
tasks proposed in (Ma & Collins, 2018). Let {(ai, qi)}ni=1 be the positive data samples, where
ai ∈ A[qi,KG]. Our optimization involves K uniformly sampled noisy answers from the entity set.
The NCE objective is:

LNCE =
1

n

n∑
i=1

log

[
exp [cos(ai, z(qi))/T ]

exp [cos(ai, z(qi))/T ] +
∑K

k=1 exp [cos(zk, z(qi))/T ]

]
, (10)

where ai is the embedding of positive answer ai and zk is the embedding of the noisy entity sam-
ples. z(qi) indicates the embedding of the free variable in qi at the final layer of LMPNN. T is a
hyperparameter. This objective is optimized by stochastic gradient descent.

6.4 ANSWERING COMPLEX QUERIES WITH LMPNN

We discuss two ways to retrieve answers for general DNF queries in Definition 1: (a) A two-step
approach as the previous works (Ren et al., 2020; Ren & Leskovec, 2020), where the free variable
embedding for each sub conjunctive query are estimated, the answer entities are then ranked by
the minimal distance (or maximal similarity) against free variable embeddings from multiple sub
conjunctive queries. (2) We transform all disjunctions in the formula to conjunctions, then one
query graph is sufficient for solving the transformed query. The answer set of a transformed query
is a strict subset of the originanl answer. For simplicity, we use the second way to solve disjunctive
queries in this paper, though it may lead to sub-optimal performance. Then, we discuss how to
answer conjunctive queries with LMPNN.

Conjunctive query graph of arbitrary size. We apply LMPNN to the query graph of a given
conjunctive query Q. A sufficient condition to produce a correct answer is that the free variable
node has received messages from all the entity nodes after the forward passing through LMPNN
layers. Let the largest distance between entity nodes and the free variable node be L. Then, we
apply the LMPNN layers L times to ensure all messages from entity nodes are successfully received
by the free variable node. The prediction of answer embedding z(Q) is given by the free variable
embedding at the final layer, i.e., z(Q) = z

(L)
y . We propose to use the cosine similarity between

z(Q) and the pretrained entity embeddings to rank the entities and then retrieve answers.

Since L is not determined, we assume all L layers share the same MLP layer. Hence, the only
trainable parameter in LMPNN is one MLP network and two embeddings for existential and free
variables. Our experiments on different query types show that the single MLP network has strong
generalizability to LMPNN of different depths.

7



Published as a conference paper at ICLR 2023

Table 1: MRR results of different CQA models on three KGs. AP represents the average score of
EPFO queries and AN represents the average score of queries with negation. The boldface indicates
the best results for each KG.

KG Model 1P 2P 3P 2I 3I PI IP 2U UP 2IN 3IN INP PIN PNI AP AN

FB15K

BetaE 65.1 25.7 24.7 55.8 66.5 43.9 28.1 40.1 25.2 14.3 14.7 11.5 6.5 12.4 41.6 11.8
ConE 73.3 33.8 29.2 64.4 73.7 50.9 35.7 55.7 31.4 17.9 18.7 12.5 9.8 15.1 49.8 14.8
Q2P 82.6 30.8 25.5 65.1 74.7 49.5 34.9 32.1 26.2 21.9 20.8 12.5 8.9 17.1 46.8 16.4

(Using pretrained KG representation)
CQD(E) 89.4 27.6 15.1 63.0 65.5 46.0 35.2 42.9 23.2 0.2 0.2 4.0 0.1 18.4 45.3 4.6
LMPNN 85.0 39.3 28.6 68.2 76.5 46.7 43.0 36.7 31.4 29.1 29.4 14.9 10.2 16.4 50.6 20.0

FB15K
-237

BetaE 39.0 10.9 10.0 28.8 42.5 22.4 12.6 12.4 9.7 5.1 7.9 7.4 3.6 3.4 20.9 5.4
ConE 41.8 12.8 11.0 32.6 47.3 25.5 14.0 14.5 10.8 5.4 8.6 7.8 4.0 3.6 23.4 5.9
Q2P 39.1 11.4 10.1 32.3 47.7 24.0 14.3 8.7 9.1 4.4 9.7 7.5 4.6 3.8 21.9 6.0

(Using pretrained KG representation)
CQD(E) 46.7 10.3 6.5 23.1 29.8 22.1 16.3 14.2 8.9 0.2 0.2 2.1 0.1 6.1 19.8 1.7
LMPNN 45.9 13.1 10.3 34.8 48.9 22.7 17.6 13.5 10.3 8.7 12.9 7.7 4.6 5.2 24.1 7.8

NELL

BetaE 53.0 13.0 11.4 37.6 47.5 24.1 14.3 12.2 8.5 5.1 7.8 10.0 3.1 3.5 24.6 5.9
ConE 53.1 16.1 13.9 40.0 50.8 26.3 17.5 15.3 11.3 5.7 8.1 10.8 3.5 3.9 27.2 6.4
Q2P 56.5 15.2 12.5 35.8 48.7 22.6 16.1 11.1 10.4 5.1 7.4 10.2 3.3 3.4 25.5 6.0

(Using pretrained KG representation)
CQD(E) 60.8 18.3 13.2 36.5 43.0 30.0 22.5 17.6 13.7 0.1 0.1 4.0 0.0 5.2 28.4 1.9
LMPNN 60.6 22.1 17.5 40.1 50.3 28.4 24.9 17.2 15.7 8.5 10.8 12.2 3.9 4.8 30.7 8.0

7 EXPERIMENTS

In this section, we compare LMPNN with existing neural CQA methods and justify the important
features of LMPNN with ablation studies. Our results show that LMPNN is a very strong method
for answering complex queries.

7.1 EXPERIMENTAL SETTINGS

Baselines. We consider the neural complex query answering models for EFO-1 queries in recent
three years, including BetaE (Ren & Leskovec, 2020), ConE (Zhang et al., 2021), and Q2P (Bai
et al., 2022). The baseline results are obtained by training models with the code released by the
authors under the suggested hyperparameters. Neural-symbolic ensemble models are implemented
with the negation. Moreover, we also implement and report CQD (Arakelyan et al., 2021) with the
same pretrained knowledge graph representation. We also compare more neural CQA models in
Appendix E.

Datasets. We consider the widely used training and evaluation dataset in (Ren & Leskovec, 2020).
It allows us to compare our results with existing methods directly. We compare the results on
FB15k (Bordes et al., 2013), FB15k-237 (Toutanova et al., 2015), and NELL (Carlson et al., 2010).

Evaluations. The evaluation metric follows the previous works (Ren & Leskovec, 2020). For each
query instance, we first rank all entities except those observed as easy answers based on their cosine
similarity with the free variable embedding estimated by LMPNN. The rankings of hard answers are
used to compute MRR for the given query instance. Then, we average the metrics from all query
instances. In this paper, MRR is reported and compared.

LMPNN Setting. We use the ComplEx (Trouillon et al., 2016) checkpoints released by Arakelyan
et al. (2021) in LMPNN to make a fair comparison to CQD (Arakelyan et al., 2021). More results
about LMPNN with other six kinds of pretrained KG representations are also presented in the Ap-
pendix D. The rank of ComplEx is 1,000, and the epoch for the checkpoint is 100. For LMPNN,
we use AdamW to train the MLP network. The learning rate is 1e-4, and the weight decay is 1e-4.
The batch size is 1,024, and the negative sample size is 128, selected from {32, 128, 512}. The
MLP network has one hidden layer whose dimension is 8,192 for NELL and FB15k, and 4,096 for
FB15k-237. T in the training objective is chosen as 0.05 for FB15k-237 and FB15k and 0.1 for
NELL. ϵ in Eq (9) is chosen to be 0.1. Reported results are averaged from 3 random experimental
trials. All experiments of LMPNN are conducted on a single V100 GPU (16GB).

7.2 MAJOR RESULTS

Table 1 presents the MRR results of LMPNN and neural CQA baselines on answering EFO-1 queries
over three KGs. It is found that LMPNN reaches the best performance on average for both EPFO and

8



Published as a conference paper at ICLR 2023

Table 2: MRR results of different hyperparameter settings compared to the best combination.
Model 1P 2P 3P 2I 3I PI IP 2U UP 2IN 3IN INP PIN PNI AP AN

KGE CAT 30.5 6.8 6.9 7.8 7.8 6.2 6.4 8.4 6.3 3.0 2.8 5.6 2.3 1.7 9.7 3.1

ϵ = 0 45.5 12.6 9.7 33.6 47.1 11.1 17.1 14.0 10.0 8.8 11.6 7.3 3.5 2.7 22.3 6.8
ϵ = 0.5 43.9 11.9 9.7 30.5 42.3 18.2 14.8 13.8 9.6 7.3 10.3 7.0 3.8 5.4 21.6 6.7

L − 1 45.5 6.8 7.8 34.1 47.5 11.6 6.3 13.9 6.1 8.6 11.7 5.6 2.9 3.9 20.0 6.5
L + 1 45.3 12.6 10.1 33.1 46.4 20.4 16.3 13.7 10.0 8.0 10.9 7.5 4.3 5.2 23.1 7.2
L + 2 45.6 13.0 10.1 32.9 45.8 21.3 17.7 13.4 10.0 7.9 10.9 7.7 4.2 5.2 23.3 7.2
L + 3 45.4 13.0 10.1 32.4 45.2 22.1 17.4 13.3 10.0 7.7 10.9 7.7 4.2 5.2 23.2 7.1

T = 0.01 43.9 12.1 9.7 31.9 46.5 18.3 15.2 13.5 10.2 6.9 11.2 7.2 4.6 4.3 22.4 6.8
T = 0.1 45.6 12.7 9.9 33.7 47.1 22.0 17.1 14.0 10.0 8.8 11.5 7.3 4.4 5.4 23.6 7.5

BEST CHOICE 45.9 13.1 10.3 34.8 48.9 22.7 17.6 13.5 10.3 8.7 12.9 7.7 4.6 5.2 24.1 7.8

negation queries. Our results on negation queries indicate that the embedding estimation formulation
with negated atomic formula proposed in Section 6.1 produces meaningful features.

Interestingly, LMPNN performs much better than the CQD on both EPFO and negation queries
with the same pretrained knowledge graph representation. Our results show that the LMPNN is
stronger than CQD in more complex queries, especially those with logical negation. Notably, our
approach does not require any optimization in the inference time as in Arakelyan et al. (2021). It
confirms again that LMPNN successfully leverages the representation power of knowledge graph
representation simply by training an MLP.

7.3 ABLATION STUDY

In the ablation study, we conduct extensive experiments to justify the effects of four key factors of
LMPNN, including (1) the logical message passing by one-hop inference; (2) the hyperparameter ϵ
at each LMPNN layer; (3) the depth of LMPNN; (4) the hyperparameter T at the noisy contrastive
learning loss. All experiments of the ablation study are conducted on queries at FB15K-237.

To justify the effect of one-hop inference, we compare a baseline with logical messages computed
by a linear transformation of the concatenation of the entity embedding, the relation embedding, a
binary indicator for h2t and t2h, and a binary indicator for negation. For example, for ComplEx
embedding in 1,000-dimensional complex vector space, there are 2,000 parameters for entity embed-
ding and 2,000 for relation embedding. The concatenation produces a feature of 4,002 dimensions.
Then we use a linear transformation to transform this feature to 2000 dimensions so that the logical
message can be used in Eq. (9). This baseline is denoted as KGE CAT. To justify the effect of the
depth of LMPNN, we alter the depth of LMPNN based on its original depth L into L − 1, L + 1,
L + 2, and L + 3. The value L is computed from the maximal distances between the free variable
node and constant entity nodes in the query graph. Even in the L − 1 case, we keep the depth of
LMPNN at least 1 to ensure the logical message is passed between nodes.

Table 2 shows the results of the ablation study, where the setting reported in Table 1 is indicated
by BEST CHOICE. We note that BEST CHOICE uses one-hop inference on atomic formulas, L
LMPNN layers, ϵ = 0.1, and T = 0.05 for FB15k-237. We find that KGE CAT performs poorly
even though it contains the pretrained KG information, which indicates that one-hop inference is
essential to answer complex queries. Meanwhile, L − 1 performs worse than BEST CHOICE since
the information is not fully passed to the free variable node. And the worse performances of L+ 1,
L + 2, and L + 3 cases indicate that our definition for L is reasonable. Moreover, ϵ and T are also
important to the best performance. Overall, one-hop inference on atomic formula is the most critical
factor in the learning and inference process of LMPNN.

8 CONCLUSION

In this paper, we present LMPNN to answer complex queries, especially EFO-1 queries, over knowl-
edge graphs. LMPNN achieves a strong performance by training one MLP network to aggregate the
logical messages passed over the query graph. In the ablation study, we identify that the one-hop
inference on atomic formulas based on a pretrained knowledge graph is critical to answering com-
plex queries. Our research effectively bridges the gap between EFO-1 query answering tasks and the
long-standing achievements of knowledge graph representation. In future work, our method can be
combined with stronger knowledge graph representation techniques, as well as with neural-symbolic
ensembles.

9



Published as a conference paper at ICLR 2023

9 ACKONWLEDGEMENT

The authors of this paper were supported by the NSFC Fund (U20B2053) from the NSFC of
China, the RIF (R6020-19 and R6021-20) and the GRF (16211520 and 16205322) from RGC
of Hong Kong, the MHKJFS (MHP/001/19) from ITC of Hong Kong and the National Key
R&D Program of China (2019YFE0198200) with special thanks to HKMAAC and CUSBLT,
and the Jiangsu Province Science and Technology Collaboration Fund (BZ2021065). We also
thank the support from NVIDIA AI Technology Center (NVAITC) and the UGC Research Match-
ing Grants (RMGS20EG01-D, RMGS20CR11, RMGS20CR12, RMGS20EG19, RMGS20EG21,
RMGS23CR05, RMGS23EG08).

REFERENCES

Alfonso Amayuelas, Shuai Zhang, Xi Susie Rao, and Ce Zhang. Neural methods for logical reason-
ing over knowledge graphs. In International Conference on Learning Representations, 2022.

Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez. Complex query answering
with neural link predictors. International Conference on Learning Representations, 2021.

Jiaxin Bai, Zihao Wang, Hongming Zhang, and Yangqiu Song. Query2particles: Knowledge graph
reasoning with particle embeddings. Findings of the Association for Computational Linguistics:
NAACL 2022, 2022.

Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge. In Proceedings of the
2008 ACM SIGMOD international conference on Management of data, pp. 1247–1250, 2008.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. Advances in neural information pro-
cessing systems, 26, 2013.

Zongsheng Cao, Qianqian Xu, Zhiyong Yang, Xiaochun Cao, and Qingming Huang. Geometry
interaction knowledge graph embeddings. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2022.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R. Hruschka Jr., and Tom M.
Mitchell. Toward an architecture for never-ending language learning. In Proceedings of the AAAI
conference on artificial intelligence. AAAI Press, 2010.

Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, and Christopher Ré. Low-
dimensional hyperbolic knowledge graph embeddings. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pp. 6901–6914, 2020.

Xuelu Chen, Ziniu Hu, and Yizhou Sun. Fuzzy logic based logical query answering on knowledge
graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 3939–
3948, 2022.

Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian, and Chandan Reddy. Prob-
abilistic entity representation model for reasoning over knowledge graphs. Advances in Neural
Information Processing Systems, 34:23440–23451, 2021.

William Cohen, Fan Yang, and Kathryn Rivard Mazaitis. Tensorlog: A probabilistic database im-
plemented using deep-learning infrastructure. Journal of Artificial Intelligence Research, 67:
285–325, 2020.

Daniel Daza and Michael Cochez. Message passing query embedding. arXiv preprint
arXiv:2002.02406, 2020.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

10



Published as a conference paper at ICLR 2023

Takuma Ebisu and Ryutaro Ichise. Toruse: Knowledge graph embedding on a lie group. In Pro-
ceedings of the AAAI conference on artificial intelligence, 2018.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Petr Hájek. Metamathematics of fuzzy logic, volume 4. Springer Science & Business Media, 2013.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and S Yu Philip. A survey on knowledge
graphs: Representation, acquisition, and applications. IEEE Transactions on Neural Networks
and Learning Systems, 33(2):494–514, 2021.

Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical tensor decomposition for
knowledge base completion. In International Conference on Machine Learning, pp. 2863–2872.
PMLR, 2018.

Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju, Haotang Deng, and Ping Wang. K-bert:
Enabling language representation with knowledge graph. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pp. 2901–2908, 2020.

Xiao Liu, Shiyu Zhao, Kai Su, Yukuo Cen, Jiezhong Qiu, Mengdi Zhang, Wei Wu, Yuxiao Dong,
and Jie Tang. Mask and reason: Pre-training knowledge graph transformers for complex logical
queries. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 1120–1130, 2022.

Zhuang Ma and Michael Collins. Noise contrastive estimation and negative sampling for condi-
tional models: Consistency and statistical efficiency. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, pp. 3698–3707, 2018.

David Marker. Model theory: an introduction, volume 217. Springer Science & Business Media,
2006.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective learning
on multi-relational data. In International Conference on Machine Learning, 2011.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu,
and Alexander Miller. Language models as knowledge bases? In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 2463–2473, 2019.

H Ren, W Hu, and J Leskovec. Query2box: Reasoning over knowledge graphs in vector space using
box embeddings. In International Conference on Learning Representations, 2020.

Hongyu Ren and Jure Leskovec. Beta embeddings for multi-hop logical reasoning in knowledge
graphs. Advances in Neural Information Processing Systems, 33:19716–19726, 2020.

Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Michihiro Yasunaga, Haitian Sun, Dale Schuur-
mans, Jure Leskovec, and Denny Zhou. Lego: Latent execution-guided reasoning for multi-hop
question answering on knowledge graphs. In International Conference on Machine Learning, pp.
8959–8970. PMLR, 2021.

Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Denny Zhou, Jure Leskovec, and Dale Schu-
urmans. Smore: Knowledge graph completion and multi-hop reasoning in massive knowledge
graphs. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 1472–1482, 2022.

Daniel Ruffinelli, Samuel Broscheit, and Rainer Gemulla. You can teach an old dog new tricks! on
training knowledge graph embeddings. In International Conference on Learning Representations,
2020.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European semantic web
conference, pp. 593–607. Springer, 2018.

11



Published as a conference paper at ICLR 2023

Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic knowledge.
In Proceedings of the 16th international conference on World Wide Web, pp. 697–706, 2007.

Haitian Sun, Andrew Arnold, Tania Bedrax Weiss, Fernando Pereira, and William W Cohen. Faith-
ful embeddings for knowledge base queries. volume 33, pp. 22505–22516, 2020.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph embedding by
relational rotation in complex space. In International Conference on Learning Representations,
2018.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoifung Poon, Pallavi Choudhury, and Michael
Gamon. Representing text for joint embedding of text and knowledge bases. In Proceedings of
the 2015 conference on empirical methods in natural language processing, pp. 1499–1509, 2015.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume Bouchard. Com-
plex embeddings for simple link prediction. In International conference on machine learning, pp.
2071–2080. PMLR, 2016.

Hongwei Wang, Hongyu Ren, and Jure Leskovec. Relational message passing for knowledge graph
completion. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery &
Data Mining, pp. 1697–1707, 2021a.

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous
graph attention network. In Proceedings of the 16th international conference on World Wide Web,
pp. 2022–2032, 2019.

Zihao Wang, Hang Yin, and Yangqiu Song. Benchmarking the combinatorial generalizability of
complex query answering on knowledge graphs. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2), 2021b.

Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and Maosong Sun. Representation learning of
knowledge graphs with entity descriptions. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 30, 2016a.

Ruobing Xie, Zhiyuan Liu, Maosong Sun, et al. Representation learning of knowledge graphs with
hierarchical types. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial
Intelligence, volume 2016, pp. 2965–2971, 2016b.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? International Conference on Learning Representations, 2018.

Zezhong Xu, Wen Zhang, Peng Ye, Hui Chen, and Hua zeng Chen. Neural-symbolic entangled
framework for complex query answering. In Advances in Neural Information Processing Systems,
2022.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. International Conference on Learning
Representations, 2014.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. Quaternion knowledge graph embeddings. Advances in
neural information processing systems, 32, 2019.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexander J Smola, and Le Song. Variational rea-
soning for question answering with knowledge graph. In Proceedings of the AAAI conference on
artificial intelligence, 2018.

Zhanqiu Zhang, Jie Wang, Jiajun Chen, Shuiwang Ji, and Feng Wu. Cone: Cone embeddings
for multi-hop reasoning over knowledge graphs. Advances in Neural Information Processing
Systems, 34:19172–19183, 2021.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford net-
works: A general graph neural network framework for link prediction. Advances in Neural Infor-
mation Processing Systems, 34:29476–29490, 2021.

Zhaocheng Zhu, Mikhail Galkin, Zuobai Zhang, and Jian Tang. Neural-symbolic models for logical
queries on knowledge graphs. In International Conference on Machine Learning, 2022.

12



Published as a conference paper at ICLR 2023

A A COUNTEREXAMPLE FOR THE EXPRESIVENESS OF OPERATOR TREE
REPRESENTATION

Example 1. Given a citation network with authors, papers, and conferences, one query wants to
find ICLR authors with at least one collaborator. It can be expressed in the format in Definition 1
as

q(a1, a2, p1, p2) = ∃a2∃p1∃p2IsAuthor(a1, p1) ∧ InConf(p1, ICLR)

∧ IsAuthor(a1, p2) ∧ IsAuthor(a2, p2) ∧ ¬(a1 = a2).

We see that if we take a1 as the answer node. a2 and p2 are leaves but not anchor entities. In this
way, this query cannot be represented by the operator tree anchor nodes. However, this query can be
represented in the query graph, see Figure 3.

ICLR

𝑝!

𝑎!

InConf IsAuthor

𝑝"

𝑎"

IsAuthor

IsAuthor

≠

Figure 3: The query graph for the query in Example 1.

Then we discuss how to answer this query with LMPNN. It is easy to see that LMPNN can be
applied to the query graph in Figure 3 once the ̸= is considered as the combination of predicate eq
(equality) and negation ¬.

To include eq, we only need to define the logical messages ρ(a1, eq, 1) and ρ(a2, eq, 1). According
to the Proposition 2 in Appendix D.1, these two problems boil down to defining ρ(a, eq, 0) =
f(a, eq). By the semantics of “equality”, equal terms shares the equal embedding. Therefore, the
entity embedding which is equal to a given embedding a is just f(a, eq) = a. Then, ρ(a, eq, 0) =
f(a, eq) = a and ρ(a1, eq, 1) = −a1, ρ(a2, eq, 1) = −a2. In this way, LMPNN is the first
actionable approach to address the queries in Example 1.

B A NATURAL EXTENSION OF COMPLEX QUERY DECOMPOSITION (CQD)
TO ANSWER NEGATION QUERIES

In this paper, we compare the optimization-based approach CQD (Arakelyan et al., 2021) by ex-
tending existing CQD with fuzzy logic negator. The extended version is denoted as CQD(E). For
example, consider the logical formula INP query in the Figure 1, we could estimate the continuous
truth value of the given logical formula r1(x, c1) ∧ ¬r2(c2, x) ∧ r3(y, x) as follows

TVCQD(E)(x,y|INP) = ψr1(x, c1)⊤ [1− ψr2(c2,x)]⊤ψr3(y,x), (11)

where ϕ· are the continuous value of relations r1, r2, and r3 and ⊤ is a t-norm. Then CQD(E) max-
imizes the continuous truth value TVCQD(E)(x,y|INP) to obtain the “best” variable embeddings x
and y as Arakelyan et al. (2021).

B.1 NON-CONVEX LANDSCAPE OF NEGATED COMPLEX QUERIES

In this part, we show that the negator in fuzzy logic introduces non-convexity. Let x be an optimiz-
able variable in the 1D interval I and ϕ1(x) and ϕ2(x) be two continuous truth value of two atomic

13



Published as a conference paper at ICLR 2023

formula a1 and a2, respectively. They are convex functions over I . Consider the conjunctive query
a1 ∧ ¬a2. The continuous truth value is

J(x) = ϕ1(x)⊤[1− ϕ2(x)]. (12)

Consider an example with convex ϕ1(x) and ϕ2(x). Let ⊤ is the product t-norm, and ϕ1(x) = 1−x2
and ϕ2(x) = 1− (x− 0.3)2 for x ∈ [0, 1]. Then J(x) turns to be non-convex as shown in Figure 4.

C CLOSED-FORM LOGICAL MESSAGE BY COMPLEX

In this section, we derive the closed-form logical message encoding function for ComplEx embed-
ding (Trouillon et al., 2016). The scoring function of ComplEx is

ϕ(h, r, t) = Re(⟨h⊗ r, t̄⟩). (13)

We expand the complex embeddings to real vectors h = hr + ihi, r = rr + iri, t = tr + iti. Then
the scoring function is

ϕ(h, r, t) = Re(⟨h⊗ r, t̄⟩) (14)
= ⟨rr ⊗ hr − ri ⊗ hi, tr⟩+ ⟨rr ⊗ hi + ri ⊗ hr, ti⟩ (15)
= ⟨rr ⊗ tr + ri ⊗ ti,hr⟩+ ⟨rr ⊗ ti − ri ⊗ tr,hi⟩. (16)

Since −ri = r̄i under the complex conjugate, then,
ϕ(h, r, t) = ⟨rr ⊗ tr − r̄i ⊗ ti,hr⟩+ ⟨rr ⊗ ti + r̄i ⊗ tr,hi⟩ (17)

= Re(⟨t⊗ r̄, h̄⟩). (18)

Then, we optimize the continuous truth value of ComplEx given in Eq. (2) to derive the closed-form
estimation of Eq. (5). We note that the embedding used in ComplEx is not strictly restricted in a
domain set D. Instead, the N3 regularization (Lacroix et al., 2018) is applied to the embedding
as a soft constraint. Therefore, in our derivation of the close form solution, we also employ N3
regularization rather than hard constraint. Our first result is the following proposition.
Proposition 1. For ComplEx embedding, the logical message encoding function has the following
closed form with respect to the complex embedding r and t,

ρ(t, r, t2h, 0) =
r̄ ⊗ t√

3λ∥r ⊗ t̄∥
. (19)

Proof. We expand the optimization problem as follows,
ρ(t, r, t2h, 0) = argmax

x∈Cd

{
Re(⟨r̄ ⊗ t, x̄⟩)− λ∥x∥3

}
(20)

=argmax
x∈Cd

{
⟨rr ⊗ tr − r̄i ⊗ ti,xr⟩+ ⟨rr ⊗ ti + r̄i ⊗ tr,xi⟩ − λ

(√
⟨xr,xr⟩+ ⟨xi,xi⟩

)3
}
.

(21)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.02

0.04

0.06

0.08

J(x
)

Figure 4: The landscape of continuous truth value becomes non-convex after negation.

14



Published as a conference paper at ICLR 2023

Notice that rr ⊗ tr − r̄i ⊗ ti and rr ⊗ ti + r̄i ⊗ tr are the real and imaginary part of r̄ ⊗ t. Let
s = [rr ⊗ tr − r̄i ⊗ ti, rr ⊗ ti + r̄i ⊗ tr] be the real vector concatenated by the real and imageinary
part of r̄ ⊗ t. Also, let x̃ = [xr,xi] be the real vector concatenated by the real and imageinary part
of x. Then the Eq. (21) is equivalent to the following optimization problem in the real space:

max
x̃∈R2d

⟨s, x̃⟩ − λ∥x̃∥32︸ ︷︷ ︸
:=J

. (22)

We note that J is convex function over x̃. To optimize x̃, we optimize the unit direction v and length
η of x̃, with rewriting x̃ = ηv. When η is fixed the second term is also fixed, it is easy to see that
the v∗ = s/∥s∥2 maximizes the first term. Then we find the optimal η by minizing the following
objective for η > 0:

J = ∥s∥2η − λη3. (23)

By letting dJ
dη = ∥s∥2 − 3λη2 = 0, we derive the optimal η∗ =

√
∥s∥2

3λ . Then, we have

x̃∗ = η∗v∗ =
s√

3λ∥s∥2
. (24)

Then, we identify the optimal real and imaginary part of x∗ from x̃∗, and thus recover the optimal
x∗.

Similarly, we derive the optimal closed-form expression of ρ in all other cases:

ρ(h, r, h2t, 0) =
r ⊗ h√

3λ∥r ⊗ h∥
, (25)

ρ(t, r, t2h, 1) =
−r̄ ⊗ t√
3λ∥r̄ ⊗ t∥

, (26)

ρ(h, r, h2t, 1) =
−r ⊗ h√
3λ∥r ⊗ h∥

. (27)

We note that the value of λ is not determined. On the one hand, it can be of course a hyperparameter
to discuss. In LMPNN application, we just let 3λ∥ · ∥ = 1 and then all denominators in the closed-
form expression are 1.

D CLOSED-FORM LOGICAL MESSAGES FOR KG REPRESENTATIONS

We demonstrate two general ways to construct closed-form logical messages function ρ for LMPNN
in the Appendix D.1. Then, we show six examples to illustrate how our approach constructs the
closed form ρ for various KG representations in the Appendix D.2.

Specifically, our constructions apply to two types of KG representations characterized by their scor-
ing functions. The first type of KG representations uses inner-product-based scoring functions while
the second type of KG representations uses distance-based scoring functions. Moreover, we pro-
vide six examples of KG representations, including RESCAL (Nickel et al., 2011), TransE (Bordes
et al., 2013), DistMult (Yang et al., 2014), ComplEx (Trouillon et al., 2016), ConvE (Dettmers et al.,
2018), and RotatE (Sun et al., 2018).

D.1 TWO CONSTRUCTIONS

As discussed in Section 5, the closed-form logical message encoding function ρ is the result of the
closed-form solution of four one-hop inference problems (estimating the head or tail entity embed-
ding with or without logical negation, see Eq. (5-8). This leads to four construction tasks. The major
result of Appendix D.1 is Proposition 2. It shows that, with our constructions of two types of scoring

15



Published as a conference paper at ICLR 2023

functions, closed-form solutions for four one-hop inference problems are actually dependent. Once
one of four one-hop inference problems are approximately solved in the closed form, the other three
one-hop inference problems are also solved approximately in the closed form.

Simplification with reciprocal relations. We simplify the four construction tasks into two tasks
by introducing reciprocal relations. For each relation r ∈ R, the reciprocal relation is r−1 ∈ R−1

but in the reversed direction. By introducing reciprocal relations r−1 and training their embeddings
r−1, the one-hop inference in the tail-to-head direction can be rewritten in the head-to-tail direction.
Specifically, we have

ρ(t, r, t2h, 0) = ρ(t, r−1, h2t, 0), (28)

ρ(t, r, t2h, 1) = ρ(t, r−1, h2t, 1). (29)

Introducing reciprocal relations is shown to improve the performances of the link prediction
tasks (Ruffinelli et al., 2020). We assume that the reciprocal relation embedding can be obtained,
irrespective of being separately trained or analytically derived from the original relation embedding,
such as ComplEx discussed in Appendix C. Then, it suffices to construct the closed-form solution for
ρ(h, r, h2t, 0) and ρ(h, r, h2t, 1), and the rest two types of logical messages are naturally defined
with reciprocal relation embeddings.

Then we construct the closed-form ρ(h, r, h2t, 0) and ρ(h, r, h2t, 1) for two types of KG embed-
dings, characterized by their scoring functions. We emphasize that the derivations below are only
approximate estimations to keep the closed-form expression as simple as possible. However, em-
pirical results show that these simple and approximate closed-form solutions can already be used in
LMPNN.

Type 1: inner-product-based scoring function. The inner-product-based scoring function for a
triple of embeddings (h, r, t) is ⟨f(h, r), t⟩, where f is a binary function of the entity and relation
embeddings and ⟨·, ·⟩ is the inner product. The inner-product ⟨·, ·⟩ can be defined in real or complex
vector spaces. This scoring function is used in RESCAL (Nickel et al., 2011) DistMult (Yang et al.,
2014), ComplEx (Trouillon et al., 2016), ConvE (Dettmers et al., 2018), etc.

When optimizing the embeddings, lq2 regularizations (q = 2, 3) are usually applied (Ruffinelli et al.,
2020). Then we consider the following optimization problem:

ρ(h, r, h2t, 0) = argmax
x

σ (⟨f(h, r),x⟩)− λ∥x∥p2︸ ︷︷ ︸
:=J1

, (30)

where hyperparameter λ > 0 is a regularization coefficient, σ is the sigmoid function.

We note that J1 is just the Lagrangian of the following maximization problem, and the λ is the
Langrangian multiplier

max
∥x∥q

2<δ
σ (⟨f(h, r),x⟩) , (31)

where x is restricted inside a δ
1
q -ball. Then we could conclude that

argmax
∥x∥q

2<δ

σ (⟨f(h, r),x⟩) = argmax
∥x∥q

2<δ

⟨f(h, r),x⟩ = δ
1
q

f(h, r)

∥f(h, r)∥2
. (32)

By altering the hyperparameter δ = ∥f(h, r)∥p2, we could derive a simple result

argmax
x

σ (⟨f(h, r),x⟩)− λ∥x∥p2 ≈ f(h, r). (33)

Therefore, we define

ρ(h, r, h2t, 1) := f(h, r). (34)

Similarly, for the ρ(h, r, h2t, 1), we have

ρ(h, r, h2t, 1) = argmax
x

[1− σ (⟨f(h, r),x⟩)]− λ∥x∥p2 (35)

= argmax
x

σ (⟨−f(h, r),x⟩)− λ∥x∥p2 (36)

≈ argmax
∥x∥p

2<δ

⟨−f(h, r),x⟩. (37)

16



Published as a conference paper at ICLR 2023

We conclude the closed-form solution as
ρ(h, r, h2t, 0) := −f(h, r). (38)

Type 2: distance-based scoring function. Another type of scoring functions for a triple of embed-
dings (h, r, t) is γ − ∥f(h, r) − t∥, where f follows the definition above and γ is a margin. This
scoring function is used in TransE (Bordes et al., 2013), RotatE (Sun et al., 2018), etc. Similarly,
the ∥x∥q2 regularizations can also be considered (Ruffinelli et al., 2020).

ρ(h, r, h2t, 0) can be computed by
ρ(h, r, h2t, 0) = argmax

x
σ (γ − ∥f(h, r)− x∥)− λ∥x∥p2. (39)

With similar tricks, we transform the “soft” regularization into the “hard” constraint.
argmax

x
σ (γ − ∥f(h, r)− x∥)− λ∥x∥q2 ≈ argmax

∥x∥q
2<δ

[γ − ∥f(h, r)− x∥] , (40)

where δ is another hyperparameter. We set δ > ∥f(h, r)∥q2, then the optimal solution is f(h, r),
which summarizes

ρ(h, r, h2t, 0) := f(h, r). (41)

For the negated head-to-tail direction, the one-hop inference problem is
argmax
∥x∥q

2<δ

[1− σ (γ − ∥f(h, r)− x∥)] (42)

=argmax
∥x∥q

2<δ

∥f(h, r)− x∥ = −δ
1
q f(h, r). (43)

For simplicity, we choose
ρ(h, r, h2t, 1) := −f(h, r). (44)

Our constructions for two types of KG representations share a unified closed-form logical message
once the function f(h, r) is given. In the following part f is named as “forward” estimation function
since it estimate the tail embeddings based on head and relation embedding in a forward direction.
Therefore, we summarize the four types of logical messages used in LMPNN in the following propo-
sition:
Proposition 2. For a KG representation of either Type 1 and Type 2, we could define four closed-
form logical encoding functions with (1) relation embedding r and the corresponding reciprocal
relation embedding r−1 and (2) the forward estimation function f as follows:

ρ(h, r, h2t, 0) = f(h, r), (45)
ρ(h, r, h2t, 1) = −f(h, r), (46)

ρ(t, r, t2h, 0) = f(t, r−1), (47)

ρ(t, r, t2h, 1) = −f(t, r−1). (48)

D.2 SIX KG REPRESENTATION EXAMPLES

Now it is ready to apply the Proposition 2 to six KG representations. For each KG representation,
it is important to state its scoring function for triple (h, r, t) and the relation parameterization. We
assume the reciprocal relation embeddings are already trained.

Table 3 summarizes the information for RESCAL (Nickel et al., 2011) TransE (Bordes et al., 2013),
DistMult (Yang et al., 2014), ComplEx (Trouillon et al., 2016), ConvE (Dettmers et al., 2018), and
RotatE (Sun et al., 2018). We list the relation parameter r, the essential one-hop inference function
ρ(h, r, h2t, 0) = f(h, r), and the scoring function for each KG representation.

The scoring function of ComplEx (Trouillon et al., 2016) is not the exact inner-product in the com-
plex vector space, but it can be reduced to the inner product in the real vector space and has already
been discussed in Appendix C. We see that the Proposition 2 and Table 3 covers the results in Ap-
pendix C by letting the reciprocal embedding of r−1 be the complex conjugate r̄ of the original
embedding r.

17



Published as a conference paper at ICLR 2023

Table 3: Closed-form forward estimation function f for six KG representations. Closed-form logical
message encoding function ρ can be easily constructed with the closed-form f .
KG Embedding r parameters f(h, r) Scoring function

RESCAL (Nickel et al., 2011) Wr Wrh ⟨f(h, r), t⟩
TransE (Bordes et al., 2013) r r + h γ − ∥f(h, r)− t∥
DistMult (Yang et al., 2014) r r ⊗ h ⟨f(h, r), t⟩
ComplEx (Trouillon et al., 2016) r r ⊗ h Re⟨f(h, r), t̄⟩
ConvE (Dettmers et al., 2018) ω,W ReLU(vec(ReLU([eh; er] ∗ ω))W ) ⟨f(h, r), t⟩
RotatE (Sun et al., 2018) cos θ + i sin θ (cos θ + i sin θ)⊗ h γ − ∥f(h, r)− t∥

Table 4: Properties of six backbone KG representations on FB15-237. The data is released
by Ruffinelli et al. (2020) on https://github.com/uma-pi1/kge. The dimension of each
KG representation is listed in the bracket. We note that the dimensions for the complex vector em-
beddings indicates the trainable parameters. For example, each ComplEx embedding of 256D is a
complex vector in C128 with 256 trainable parameters.
KG Repr. MRR Hits@1 Hits@3 Hits@10 Config file Checkpoint

RESCAL (128D) 0.356 0.263 0.393 0.541 [download link] [download link]
TransE (128D) 0.313 0.221 0.347 0.497 [download link] [download link]
DistMult (256D) 0.343 0.250 0.378 0.531 [download link] [download link]
ComplEx (256D) 0.348 0.253 0.384 0.536 [download link] [download link]
ConvE (256D) 0.339 0.248 0.369 0.521 [download link] [download link]
RotatE (256D) 0.333 0.240 0.368 0.522 [download link] [download link]

D.3 PERFORMANCES OF LMPNN WITH DIFFERENT BACKBONE KG REPRESENTATIONS

The performances of LMPNN with six backbone KG representations are presented in Table 5. The
LMPNN is trained in the suggested setting in the Section 7.3. The pretrain checkpoints of six
backbone KG representations are obtained from Ruffinelli et al. (2020). The information of the
performances of each KG representation is listed in Table 4.

It could be found that, LMPNN achieves descent performances with simple KG backbones of
relatively low dimensions (128D and 256D). ConvE (256D) (Dettmers et al., 2018), DistMult
(256D) (Yang et al., 2014), and ComplEx (256D) Trouillon et al. (2016) outperform BetaE (800D)
on both EPFO and negation queries. All KG representation except TransE (128D) (Bordes et al.,
2013) could outperform BetaE (800D) (Ren & Leskovec, 2020) on negation queries. We note that
adjust the hyperparameters, i.e., embedding dimensions, to obtain more powerful KG representa-
tions could improve the results. However, this is beyond the scope of this paper.

E NEURAL CQA BENCHMARK

In this section, we show that LMPNN (with ComplEx 2000D pretrained by (Arakelyan et al., 2021))
is the new state-of-the-art method among all neural CQA models. We include the following neural
CQA baselines that can address the EFO-1 queries. Other models that cannot answer EFO-1 queries

Table 5: Comparison of LMPNN with different pretrained backbone KG representations on FB15k-
237 queries.

Model 1P 2P 3P 2I 3I PI IP 2U UP 2IN 3IN INP PIN PNI AP AN

TransE (128D) 39.9 9.2 8.4 23.5 36.2 8.2 10.0 10.1 5.4 3.4 6.9 5.8 3.0 2.2 16.8 4.2
RESCAL (128D) 43.6 11.9 9.9 33.7 48.0 9.8 16.2 12.1 9.9 4.2 10.3 7.0 3.5 2.5 21.7 5.5
ConvE (256D) 42.5 12.3 10.5 30.6 43.8 9.6 13.0 11.8 7.6 5.2 9.8 7.1 3.8 3.5 20.2 5.9
RotatE (256D) 43.8 11.2 8.9 30.4 44.5 11.0 15.0 13.0 8.6 7.0 10.5 6.3 3.7 3.2 20.7 6.2
DistMult (256D) 43.6 11.2 9.5 32.2 46.3 18.1 15.1 13.0 9.3 6.1 10.5 6.6 4.1 4.2 22.0 6.3
ComplEx (256D) 44.4 11.7 9.3 32.4 46.4 18.1 15.7 13.0 9.4 6.0 10.7 6.8 4.1 4.0 22.3 6.4

18

https://github.com/uma-pi1/kge
http://web.informatik.uni-mannheim.de/pi1/iclr2020-models/fb15k-237-rescal.yaml)
http://web.informatik.uni-mannheim.de/pi1/iclr2020-models/fb15k-237-rescal.pt
http://web.informatik.uni-mannheim.de/pi1/iclr2020-models/fb15k-237-transe.yaml)
http://web.informatik.uni-mannheim.de/pi1/iclr2020-models/fb15k-237-transe.pt
http://web.informatik.uni-mannheim.de/pi1/iclr2020-models/fb15k-237-distmult.yaml)
http://web.informatik.uni-mannheim.de/pi1/iclr2020-models/fb15k-237-distmult.pt
http://web.informatik.uni-mannheim.de/pi1/iclr2020-models/fb15k-237-complex.yaml)
http://web.informatik.uni-mannheim.de/pi1/iclr2020-models/fb15k-237-complex.pt
http://web.informatik.uni-mannheim.de/pi1/iclr2020-models/fb15k-237-conve.yaml)
http://web.informatik.uni-mannheim.de/pi1/iclr2020-models/fb15k-237-conve.pt
http://web.informatik.uni-mannheim.de/pi1/libkge-models/fb15k-237-rotate.yaml)
http://web.informatik.uni-mannheim.de/pi1/libkge-models/fb15k-237-rotate.pt


Published as a conference paper at ICLR 2023

Table 6: Benchmark comparison with neural CQA models on FB15k-237 queries.
Model 1P 2P 3P 2I 3I PI IP 2U UP 2IN 3IN INP PIN PNI AP AN

BETAE 39.0 10.9 10.0 28.8 42.5 22.4 12.6 12.4 9.7 5.1 7.9 7.4 3.6 3.4 20.9 5.5
ConE 41.8 12.8 11.0 32.6 47.3 25.5 14.0 14.5 10.8 5.4 8.6 7.8 4.0 3.6 23.4 5.9
MLP-Mix 43.4 12.6 10.4 33.6 47.0 14.9 25.7 14.2 10.2 6.6 10.7 8.1 4.7 4.4 23.6 6.9
Q2P 39.1 11.4 10.1 32.3 47.7 24.0 14.3 8.7 9.1 4.4 9.7 7.5 4.6 3.8 21.9 6.0
CQD 46.7 10.3 6.5 23.1 29.8 22.1 16.3 14.2 8.9 0.2 0.2 2.1 0.1 6.1 19.8 1.7
LMPNN 45.9 13.1 10.3 34.8 48.9 22.7 17.6 13.5 10.3 8.7 12.9 7.7 4.6 5.2 24.1 7.8

Table 7: Benchmark comparison with neural CQA models on FB15k queries.
Model 1P 2P 3P 2I 3I PI IP 2U UP 2IN 3IN INP PIN PNI AP AN

BETAE 65.1 25.7 24.7 55.8 66.5 43.9 28.1 40.1 25.2 14.3 14.7 11.5 6.5 12.4 41.7 11.9
ConE 73.3 33.8 29.2 64.4 73.7 50.9 35.7 55.7 31.4 17.9 18.7 12.5 9.8 15.1 49.8 14.8
MLP-Mix 71.9 32.1 27.1 59.9 70.5 33.7 48.4 40.4 28.4 17.2 17.8 13.5 9.1 15.2 45.8 14.6
Q2P 82.6 30.8 25.5 65.1 74.7 49.5 34.9 32.1 26.2 21.9 20.8 12.5 8.9 17.1 46.8 16.2
CQD 89.4 27.6 15.1 63.0 65.5 46.0 35.2 42.9 23.2 0.2 0.2 4.0 0.1 18.4 45.3 4.6
LMPNN 85.0 39.3 28.6 68.2 76.5 46.7 43.0 36.7 31.4 29.1 29.4 14.9 10.2 16.4 50.6 20.0

are not compared (Ren et al., 2020; Choudhary et al., 2021; Liu et al., 2022). We tried to reproduce
the results reported, and we note that different model applies to different knowledge graphs.

BetaE (Ren & Leskovec, 2020): Results are reproduced for FB15k-237, FB15k, and NELL.
ConE (Zhang et al., 2021): Results are reproduced for FB15k-237, FB15k, and NELL.
MLP-Mix (Amayuelas et al., 2022): Results are reproduced for FB15k-237, FB15k, and NELL.
Q2P (Bai et al., 2022): Results are reproduced for FB15k-237, FB15k, and NELL.
FuzzQE (Chen et al., 2022): Results on FB15k are missing. Results on FB15k-237 are not repro-

ducible with the given code and suggested hyperparameters. Results on NELL are partially
reproduced, so we report the results in the paper and reproduced by us.

CQD (Arakelyan et al., 2021): Results are reproduced on FB15k-237, FB15k, and NELL.

The results of FB15k-237, FB15k, and NELL are shown in Table 6, Table 7, and Table 8, respec-
tively. We can see that LMPNN achieves the best performance among all neural complex query
answering models.

F COMPARE TO SYMBOLIC INTEGRATION METHODS

Contextualized and symbolic information are shown to be effective to improve the neural models for
both knowledge graph representation and complex query answering. For knowledge graph repre-
sentation, neighboring information (Schlichtkrull et al., 2018; Wang et al., 2019; 2021a; Zhu et al.,
2021) aggregated by graph neural networks of KG, external information (Xie et al., 2016a;b) by
annotations, or even information from language models (Petroni et al., 2019; Liu et al., 2020) are
also leveraged to make the knowledge graph representation more informative and effective. For
complex query answering, neural models are enhanced with symbolic resoning (Zhu et al., 2022;
Xu et al., 2022) that heavily search over the original symbolic space (Zhu et al., 2022) or its ap-
proximations (Cohen et al., 2020; Xu et al., 2022). Unlike neural CQA models whose operations
are always in the embedding space of fixed size, the size of the intermediate states for symbolic
reasoning grows with the number of the entity sets, such as the fuzzy sets used in (Zhu et al., 2022;
Xu et al., 2022), and the beam-search variation of CQD (Arakelyan et al., 2021).

We refer to two methods with symbolic integration. We cannot reproduce the results since the codes
for those two methods have not been released. However, since symbolic integration can also be
applied to improve the LMPNN, we also list their results to show the potential.

GNN-QE Zhu et al. (2022): This requires 4 V100 GPU (32G), which is 8 times larger than the
resources required by LMPNN. The official implementation has not been released.

ENeSy (Xu et al., 2022): The official implementation has not been released.

Table 9 shows that LMPNN is also compatible even with the symbolic integrated models at EPFO
queries with only 1% trainable parameters at NELL and 10% trainable parameters at FB15k-237.
For FB15k-237, there are still gaps between the neural CQA models and the models with symbolic

19



Published as a conference paper at ICLR 2023

Table 8: Benchmark comparison with neural CQA models on NELL queries.
Model 1P 2P 3P 2I 3I PI IP 2U UP 2IN 3IN INP PIN PNI AP AN

BETAE 53.0 13.0 11.4 37.6 47.5 24.1 14.3 12.2 8.5 5.1 7.8 10.0 3.1 3.5 24.6 5.9
ConE 53.1 16.1 13.9 40.0 50.8 26.3 17.5 15.3 11.3 5.7 8.1 10.8 3.5 3.9 27.1 6.4
MLP-Mix 55.6 16.3 14.9 38.5 49.5 17.1 23.7 14.6 11.0 5.1 8.0 10.0 3.6 3.6 26.8 6.1
Q2P 56.5 15.2 12.5 35.8 48.7 22.6 16.1 11.1 10.4 5.1 7.4 10.2 3.3 3.4 25.4 5.9
FuzzQE (ours) 55.5 16.8 14.4 37.3 46.9 24.0 19.1 15.0 11.7 7.3 9.1 11.1 4.1 4.9 26.7 7.3
FuzzQE (reported) 58.1 19.3 15.7 39.8 50.3 28.1 21.8 17.3 13.7 8.3 10.2 11.5 4.6 5.4 29.3 8.0
CQD 60.8 18.3 13.2 36.5 43.0 30.0 22.5 17.6 13.7 0.1 0.1 4.0 0.0 5.2 28.4 1.9
LMPNN 60.6 22.1 17.5 40.1 50.3 28.4 24.9 17.2 15.7 8.5 10.8 12.2 3.9 4.8 30.7 8.0

Table 9: Comparison between LMPNN and symbolic integration methods. The number in brackets
indicate the order of trainable parameters.

Model 1P 2P 3P 2I 3I PI IP 2U UP 2IN 3IN INP PIN PNI AP AN

(FB15k-237)
LMPNN (107) 45.9 13.1 10.3 34.8 48.9 22.7 17.6 13.5 10.3 8.7 12.9 7.7 4.6 5.2 24.1 7.8
GNN-QE (108) 42.8 14.7 11.8 38.3 54.1 31.1 18.9 16.2 13.4 10.0 16.8 9.3 7.2 7.8 26.8 10.2
ENeSy (108) 44.7 11.7 8.6 34.8 50.4 27.6 19.7 14.2 8.4 10.1 10.4 7.6 6.1 8.1 24.5 8.5

(NELL)
LMPNN (107) 60.6 22.1 17.5 40.1 50.3 28.4 24.9 17.2 15.7 8.5 10.8 12.2 3.9 4.8 30.7 8.0
GNN-QE (109) 53.3 18.9 14.9 42.4 52.5 30.8 18.9 15.9 12.6 9.9 14.6 11.4 6.3 6.3 28.9 9.7
ENeSy (109) 59.0 18.0 14.0 39.6 49.8 29.8 24.8 16.4 13.1 11.3 8.5 11.6 8.6 8.8 29.4 9.8

integrations. These results suggest that neural models can be potentially improved with symbolic
integration. The additional cost is the larger computational cost.

We noticed that the task of answering logical queries are investigated over larger knowledge
graphs (Ren et al., 2022). When considering larger knowledge graphs, neural CQA methods (dis-
cussed in the Appendix E) and symbolic integrated methods (discussed in this part) have different
scalabilities. For neural CQA models, the intermediate embeddings are of fixed dimensions, while
the sizes of intermediate fuzzy sets used in the symbolic integration methods grow linearly with
the size of the knowledge graph. Such difference makes neural-symbolic methods more resource
demanding and they may suffer from the scalabilities issues.

The differences between NELL and FB15k-237 can be explained by the quality of the ground knowl-
edge graphs. However, integrating the symbolic method into neural CQA models and investigating
the fundamental impact of ground KGs are beyond the scope of this paper. Our work connects the
KG representation and neural CQA, which could also be combined with context and symbolic infor-
mation. These extensions are left for future work and are expected to bring additional improvements.

20


	Introduction
	Related Works
	Preliminaries
	knowledge graph representations

	EFO-1 queries and Query graphs
	Query graph for conjunctive queries
	Expressiveness of Definition 1
	Limitation of optimization-based methods for negated queries

	One-hop inference on atomic formulas
	One-hop inference in non-negated atomic formulas
	One-hop inference in negated atomic formulas

	Logical Message Passing Neural Networks
	Logical message passing over the query graph
	Node embeddings in query graph and updating scheme
	Learning LMPNN for complex query answering
	Answering complex queries with LMPNN

	Experiments
	Experimental Settings
	Major Results
	Ablation Study

	Conclusion
	Ackonwledgement
	A Counterexample for the Expresiveness of Operator Tree Representation
	A Natural Extension of Complex Query Decomposition (CQD) to Answer Negation Queries
	Non-convex landscape of negated complex queries

	Closed-form Logical Message by ComplEx
	Closed-form Logical Messages for KG Representations
	Two constructions
	Six KG representation examples
	Performances of LMPNN with different backbone KG representations

	Neural CQA benchmark
	Compare to symbolic integration methods

