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Abstract

Given a set of points, clustering consists of finding a partition of a point set into k
clusters such that the center to which a point is assigned is as close as possible. Most
commonly, centers are points themselves, which leads to the famous k-median and
k-means objectives. One may also choose centers to be j dimensional subspaces,
which gives rise to subspace clustering. In this paper, we consider learning bounds
for these problems. That is, given a set of n samples P drawn independently from
some unknown, but fixed distribution D, how quickly does a solution computed on
P converge to the optimal clustering of D? We give several near optimal results.
In particular,

1. For center-based objectives, we show a convergence rate of Õ
(√

k/n
)

. This
matches the known optimal bounds of [Fefferman, Mitter, and Narayanan,
Journal of the Mathematical Society 2016] and [Bartlett, Linder, and Lugosi,
IEEE Trans. Inf. Theory 1998] for k-means and extends it to other important
objectives such as k-median.

2. For subspace clustering with j-dimensional subspaces, we show a convergence
rate of Õ

(√
kj2/n

)
. These are the first provable bounds for most of these

problems. For the specific case of projective clustering, which generalizes
k-means, we show a convergence rate of Ω

(√
kj/n

)
is necessary, thereby

proving that the bounds from [Fefferman, Mitter, and Narayanan, Journal of
the Mathematical Society 2016] are essentially optimal.

1 Introduction

Among the central questions in machine learning is, given a sample of n points P drawn from
some unknown but fixed distribution D, how well does a classifier trained on P generalize to D?
The probably most popular way to formalize this question is, given a loss function L and optimal
solutions SP and SD for sample P and distribution D, respectively, how the empirical excess
risk L(D,SP ) − L(D,SD) decreases as a function of n. This paper focuses on loss functions
associated with the clustering problem. Popular examples include (k, z) clustering, which asks
for a set of k centers S ⊂ Rd minimizing the cost

∑
p∈P mins∈S ∥p − s∥z2 and more generally,

(k, j, z) subspace clustering which asks for a set of k subspaces U := {U1, U2, . . . Uk} minimizing∑
p∈P minUi∈U ∥(I −UiU

T
i )p∥z2. Special cases include (k, 1) clustering, known as k-median, (k, 2)

clustering known as k-means and (k, j, 2) clustering known as projective clustering. Generally, there
seems to be an interest in varying z, as letting z tend towards 1 tends to result in outlier-robust
clusterings. The problem is less widely explored for z > 2, although in particular for subspace

37th Conference on Neural Information Processing Systems (NeurIPS 2023).



approximation there is some recent work [27, 34, 79, 77]. Higher powers give more emphasis on
outliers. For example, centralised moments with respect to the three and four norms are skewness
and kurtosis, respectively, and are extensively employed in statistics, see Cohen-Addad et al. [31]
for previous work on clustering with these measures. Fitting a mixture model with respect to
skewness minimizes asymmetry around the target center. Studing the problems for z → ∞ is
very well motivated, as the (1,∞) clustering is equivalent to the minimum enclosing ball problem.
Unfortunately, one often requires additional assumptions, as the minimum enclosing ball problem
suffers from the curse of dimensionality [2], is very prone to outliers [25, 38].

Despite a huge interest and a substantial amount of research, so far optimal risk bounds Õ
(√

k/n
)

1

for the k-means problem have been established, see the seminal paper by Fefferman et al. [39] for the
upper bound and Bartlett et al. [10] for nearly matching lower bounds. For general (k, z)-clustering
problems, the best known results prove a risk bound of O

(√
kd/n

)
[10]. For (k, j, 2) clustering, the

best known bounds of Õ
(√

kj/n
)

are due to Fefferman et al. [39]. Thus, the following question
naturally arises:

Is it possible to obtain optimal generalization bounds for all (k, j, z)-clustering objectives?

We answer this question in the affirmative whenever j and z are constant, which seems to be the most
relevant case in practise [76]. Specifically, we show

• The excess risk bound for (k, z)-clustering when given n independent samples from an
unknown fixed distribution D is bounded by Õ

(√
k/n

)
, matching the lower bound of [10].

• The excess risk bound for (k, j, z)-clustering when given n independent samples from an
unknown fixed distribution D is bounded by Õ

(√
kj2/n

)
.

• There exists a distribution such that the excess risk for the (k, j, 2)-clustering problem is at
least Ω

(√
kj/n

)
, matching the upper bound of Fefferman et al. [39] up to polylog factors.

We note that we assume z to be a constant, which is the case for projective clustering, k-means and
k-median. For non-constant z, the dependency on z is exponential.

1.1 Related work

The most basic question one could answer is if the empirical estimation performed on P is consistent,
i.e. as n → ∞, whether the excess risk tends to 0. This was shown in a series of works by Pollard
[64, 66], see also Abaya and Wise [1]. Subsequent work then analyzed the convergence rate of the
risk. The first works in this direction proved convergence rates of the order Õ(1/

√
n) without giving

dependencies on other parameters [22, 65]. Linder et al. [55] gave an upper bound of O(d3/2
√

k/n).
Linder [54] improved the upper bound to O(d

√
k/n). Bartlett et al. [8] showed an upper bound

O(
√
kd/n) and gave a lower bound of Ω(

√
k1−4/d/n). Motivated by applications of clustering for

high dimensional kernel spaces [7, 18, 20, 21, 37, 39, 56, 58, 67, 78, 80, 81], research subsequently
turned its efforts towards minimizing the dependency on the dimension. Biau et al. [14] presented
an upper bound of O(k/

√
n), see also the work by Clémençcon [26]. Fefferman et al. [39] gave a

matching upper bound of the order O(
√
k/n), which was later recovered by using techniques from

Foster and Rakhlin [45] and Liu [57]. Further improvements require additional assumptions of the
distribution D, see Antos et al. [5], Levrard [52], Li and Liu [53]. For subspace clustering, there have
only been results published for the case z = 2 [39, 50, 72], for which the state of the art provides
a Õ

(√
kj/n

)
risk bound due to Fefferman et al. [39]. A highly related line of research originated

with the study of coresets for compression. For Euclidean (k, z) clustering, coresets with space
bounds of Õ (k/ε2+z) have been established [30, 32], which roughly corresponds to a error rate of

1Õ hides logarithmic terms, i.e. we consider O
(√

k/n · polylog(k, n)
)
= Õ

(√
k/n

)
.
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Õ
(

2+z
√

k/n
)

as a function of the size of the compression. For the specific case of k-median and

k-means, coresets with space bounds of Õ
(
k(2z+2)/(z+2)

/ε2
)

are known [33], which corresponds to a

error rate of Õ
(√

k(2z+2)/(z+2)
/n

)
. Both results are optimal for certain ranges of ε and k [47] and

while these bounds are worse than what we hope to achieve for generalization, many of the techniques
such as terminal embeddings are relevant for both fields. For (k, j, z) clustering, coresets are only
known to exist under certain assumptions, where the provable size is Õ

(
exp(k, j, ε−1)

)
[40, 44].

2 Preliminaries

We use ∥x∥p := p
√∑

|xi|p to denote the ℓp norm of a vector x. For p → ∞, we define the limiting
norm ∥x∥∞ = maxxi. Further, we refer to the d-dimensional unit Euclidean ball by Bd

2 , i.e. x ∈ Bd
2

is a vector in Rd and ∥x∥2 :=
√∑d

i=1 x
2
i ≤ 1. Let U be a d × j orthogonal matrix, i.e., with

pairwise and orthogonal columns with unit Euclidean norm. We say that UUT is the projection
matrix associated with U . Let z be a positive integer. Given any set S of k points in Bd

2 we denote
the (k, z)-clustering cost for a point set P with respect to solution S as

cost(P,S) :=
∑
p∈P

min
s∈S

∥p− s∥z2.

Special cases include k-means (z = 2) and k-median (z = 1). Similarly, given a collection U of k
orthogonal matrices of rank at most j, we denote the (k, j, z)-clustering cost of a point set P as

cost(P,U) :=
∑
p∈P

min
U∈U

∥(I − UUT )p∥z2.

The specific case (k, j, 2) is often known as projective clustering in literature. The cost vector
vS,P ∈ R|P |, respectively vU,P ∈ R|P | has entries vSp = mins∈S ∥p − s∥z2, respectively vUp =

minU∈U ∥(I −UUT )p∥z2 for p ∈ P . We will omit P from vS,P and vU,P , if P is clear from context.
The overall cost is ∥vS∥1 =

∑
p∈P mins∈S ∥p−s∥z2 and ∥vU∥1 =

∑
p∈P minU∈U ∥(I−UUT )p∥z2.

The set of all cost vectors is denoted by V .

Let D be an unknown but fixed distribution on Bd
2 with probability density function P. For

any solution S, respectively U , we define cost(D,S) :=
∫
p∈Bd

2
mins∈S ∥p − s∥z · P[p]dp and

OPT := minS cost(D,S) and respectively cost(D,U) :=
∫
p∈Bd

2
minU∈U ∥(I −UUT )p∥z · P[p]dp

and OPT := minU cost(D,U). Let P be a set of n points sampled independently from D. We
denote the cost of the empirical risk minimizer on P by OPTP := 1

n minS ∥vS∥1, and respectively,
OPTP := 1

n minU ∥vU∥1. The excess risk of P with respect to a set of cost vectors is denoted by

E|P |(V ) := EP [OPTP ]−OPT.

Finally, we use the notion of a net. Let (V, dist) be a metric space, N (V, dist, ε) is an ε-net of the
set of vectors V , if for all v ∈ V ∃ v′ ∈ N (V, dist, ε) such that dist(v, v′) ≤ ε. We will particularly
focus on nets for cost vectors induced by (k, z)-clustering and (k, j, z)-clustering defined as follows,
prior work has proposed similar nets for coresets and sublinear algorithms for (k, z) clustering [31].
Definition 2.1 (Clustering Nets). A set Nε of |P |-dimensional vectors is an ε-clustering net if for
every cost vector v obtained from a solution S or U , there exists a vector v′ ∈ Nε with ∥v′−v∥∞ ≤ ε

A slightly weaker condition as required by these nets requiring only ∥v′ − v∥2 ≤ ε
√
n would also

be sufficient. Nevertheless, we are not able to show better bounds when relaxing the condition and
having a point-wise guarantee may be of independent interest.

3 Outline and technical contribution

Due to space restrictions, the full proofs are provided in the supplementary material. In this section,
we endeavour to present a complete and accessible overview of the key ideas behind the theorems.
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Let P be a set of n points sampled independently from some unknown but fixed distribution D. To
show that the excessive risk with respect to clustering objectives is in Õ(f(n)) for some function
f , it is sufficient to show two things. First, that for the optimal solution UOPT, the clustering cost
estimated using P is close to the true cost. Second, any solution that is more expensive than UOPT
does not become too cheap when evaluated on P . Both conditions are satisfied if for any solution U∣∣∣∣ 1ncost(P,U)− cost(D,U)

∣∣∣∣ ∈ Õ(f(n)).

Showing
∣∣ 1
ncost(P,UOPT)− cost(D,UOPT)

∣∣ ∈ O(
√

1/n) with good probability is typically a
straightforward application of concentration bounds such as Chernoff’s bound. In fact, these concen-
tration bounds show something even stronger. Given t solutions U1, . . .Ut, we have

EP sup
Ui

∣∣∣∣ 1ncost(P,Ui)− cost(D,Ui)

∣∣∣∣ ∈ O

(√
log t

n

)
. (1)

What remains is to bound the number of solutions t.

Clustering nets and dimension reduction for center based clustering Unfortunately, the total
number of expensive clusterings in Euclidean space is infinite, making a straightforward application of
1 useless. Nets as per Definition 2.1 are now typically used to reduce the infinite number of solutions
to a finite number. Specifically, one has to show that by preserving the costs of all solutions in the
net, the cost of any other solution is also preserved. Using basic techniques from high dimensional
computational geometry, it is readily possible to prove that a ε-net for (k, j, z) clustering of size
exp(k · j · d · log ε−1) exists, where d is the dimension of the ambient space. Plugging this into
Equation 1 and setting ε−1 = n2 then yields a generalization bound of the order O

(√
kjd logn/n

)
.

Unfortunately, this leads to a dependency on d, which is suboptimal. To improve the upper bounds,
we take inspiration from coreset research. For (k, z)-clustering, a number of works have investigated
dimension reduction techniques known as terminal embeddings, see [11, 46]. Given a set of points
P ∈ Rd, a terminal embedding f : Rd → Rm guarantees ∥p− q∥2 = (1± ε) · ∥f(p)− f(q)∥2 for
any p ∈ P and q ∈ Rd. Terminal embeddings are very closely related to the Johnson-Lindenstrauss
lemma, see [16, 28, 60] for applications to clustering, but more powerful in key regard: only one
of the points is required to be in P . The added guarantee extended to arbitrary q ∈ Rd due to
terminal embeddings allows us to capture all possible solutions. There are also even simpler proofs
for k-mean that avoid this machinery entirely, see [39, 45, 57]. Unfortunately, these arguments are
heavily reliant on properties of inner products and are difficult to extend to other values of z. The
terminal embedding technique may be readily adapted to (k, z)-clustering, though some care in the
analysis must be made to avoid the worse dependencies on the sample size necessitated for the corset
guarantee, described as follows.

Improving the union bound via chaining: To illustrate the chaining technique, consider the simple
application of the union bound for a terminal embedding with target dimension m = Θ(ε−2 log n),
see the main result of Narayanan and Nelson [62]. Replacing the dependency on d with an ap-
propriately chosen parameters and plugging the resulting net Nε of size exp(kε−2 log n log ε−1)

yields a generalization bound of O
(

4
√

k log2 n/n
)

for (k, z) clustering. We improve on this using a
chaining analysis, see [30, 32] for its application to coresets for (k, z) clustering and [39] for (k, j, 2)
clusterings. Specifically, we use a nested sequence of nets N1/2, N1/4, N1/8, . . . , N2−2 log n . Note
that for every solution S, we may now write cost(p,S) for any p ∈ P as a telescoping sum

cost(p,S) =
∞∑
h=0

cost(p,S2−(h+1))− cost(p,S2−h)

with ,S2−h ∈ Nh and cost(p,S1) being set to 0. We use this as follows. Suppose
for some solution S, we have solutions S2−h ∈ N2−h and S2−(h+1) ∈ N2−(h+1) . Then
|cost(p,S2−h)− cost(p,S2−(h+1))| ≤ O(2−h) |cost(p,S2−h)− cost(p,S)| for all p ∈ P . Instead of
applying the union bound for a small set of solutions, we apply the union bound along every pair of
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solutions appearing in the telescoping sum. Using arguments similar to Equation 1, we then obtain

EP sup
S
2−h×S

2−(h+1)

∈Nh×Nh+1

∣∣∣∣ 1ncost(P,S2−h)− 1

n
cost(P,S2−(h+1))

∣∣∣∣
= 2−h · Õ

(√
log(|Nh| · |Nh+1|)

n

)
= 2−h · Õ

(√
k · 22h · polylog(k/2h)

n

)
∈ Õ

(√
k

n

)

This is the desired risk bound for (k, z) clustering. To complete the argument in a rigorous fashion,
we must now merely combine the decomposition of cost(P,S) into the telescoping sum with the
learning rate that we just derived. Indeed, this already provides a simple way of obtaining a bound on
the risk of the order Õ

(√
k/n

)
, which turns out to be optimal. In summary, to apply the chaining

technique successfully, the following two properties are sufficient: (i) the dependency on ε in the
net size can be at most exp(Õ(ε−2)), as the increase in net size is then met with a corresponding
decrease between successive estimates along the chain and (ii) the nets have to preserve the cost up
to an additive ε for every sample point p. The second property is captured by Definition 2.1. Both
properties impose restrictions on the dimension reductions that can be successfully integrated into the
chaining analysis.

Dimension reduction for projective clustering: It turns out that extending this analysis (k, j, z)
clustering is a major obstacle. While the chaining method itself uses no particular properties of (k, z)
clustering, the terminal embeddings needed to obtain nets cannot be applied to subspaces. Indeed,
terminal embeddings by the very nature of their guarantee, cannot be linear2, and hence a linear
structure such as a subspace will not be preserved. At this stage, there are a number of initially
promising candidates that can provide alternative dimension reduction methods. For example, the
classic Johnson-Lindenstrauss lemma can be realized via a random embedding matrix and, moreover,
preserves subspaces, see for example [69, 23, 28]. Unfortunately, as remarked by [46], there is an
inherent difficulty in applying Johnson-Lindenstrauss type embeddings even for (k, z) clustering
coresets and the same arguments also apply for generalization bounds.

An alternative dimension reduction method based on principal component analysis was initially
proposed by [44] for (k, j, 2), see also [28] and most notably [74] for a different variant that applies
to arbitrary (k, j, z) objectives. For (k, j, 2) clustering, it states that a dimension reduction on the
first O(D/ε) principal components preserves the projective cost of all subspaces of dimension D.
Since (k, j, 2) clustering is a special case of a k · j dimensional projection, it implies that O(kj/ε)
dimensions are sufficient. Given that these dimension reductions are based on PCA-type methods,
they are linear and therefore seem promising initially. Unfortunately, this technique has serious
drawbacks. It does not satisfy the requirements for Definition 2.1, only preserving the cost on
aggregate rather then per individual point, and thus cannot be combined with the chaining technique3.
Without the chaining technique, the best bound one can hope for is of the order Õ

(
3
√

k2j2/n
)

,
which falls short of what we are aiming for.

Another important technique used to quantify optimal solutions of (k, j, z) clustering initially pro-
posed by [73] and subsequently explored by [43, 35] and has frequently seen use in coreset literature
[40, 46]. Succinctly, it states that a (1 + ε) approximate solution to the (1, j, z) clustering problem
of a point set P is contained in a subspace spanned by Õ(j2/ε) input points of P . While this
result improves over PCA for large values of k, applying it only yields a learning rate of the order
O( 3
√

kj3/n). It turns out that this technique has the exact same limitations as PCA, namely that costs
per point are not preserved, and thus only offers a different tradeoff in parameters.

Our new insight: Given the state of the art, designing a dimension reduction technique that would
enable the application of the chaining technique might seem hopeless, and indeed, we were not able to
prove such. The key insight that allows us to bypass these bottlenecks is to find a dimension reduction

2Consider an embedding matrix S ∈ Rd×m. Clearly, there exists some vector x ∈ Rd that is in the kernel of
S whenever m < d, hence for any vector p, ∥p− (x+ p)∥2 cannot be preserved.

3PCA as well as the other potential alternative dimension reduction techniques also do not satisfy the relaxed
definition that would be sufficient for the analysis to go through.
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that applies not to all solutions U , but only to a certain subset of them. Indeed, we show that for any
point set P contained in the unit ball and any subspace U of dimension j, there exists a subspace S
spanned by O(j/ε2) points of P such that for every point p: |cost(p,U)− cost(pS ,US)| ≤ ε. This
is similar to the guarantee provided by [73] but stronger in that it (i) applies to arbitrary subspaces,
which is required for the chaining analysis, and (ii) applies to each point of P individually, rather
than for the entire point set P on aggregate. We then augment the chaining analysis by applying a
union bound over all

( |P |
j/ε2

)
possible dimension reductions, thereby capturing all solutions U . We are

unaware of any previously successful attempts at integrating multiple dimension reductions within a
chaining analysis and believe that the technique may be of independent interest.

4 Useful results from learning theory

Our goal is to bound the rate with which the empirical risk decreases for clustering problems. For
a fixed set of n points P and a set of functions F : P → R, we define the Rademacher complexity
(Radn) and the Gaussian complexity (Gn) wrt F respectively as

Radn(F ) =
1

n
· Er sup

f∈F

∑
p∈P

f(p) · rp Gn(F ) =
1

n
· Eg sup

f∈F

∑
p∈P

f(p) · gp

where rp are independent random variables following the Rademacher distribution, whereas gp are
independent Gaussian random variables. In our case, we can think of f as being associated to a
solution S (respectively a solution U) and f(p) = cost(p,S) = mins∈S ∥p − s∥z2 (respectively
f(p) = cost(p,U) = minU∈U ∥(I − UUT )p∥z2). Since we associate every f with a cost vector vS ,
we will use Radn(F ) and Radn(V ) as well as Gn(F ) and Gn(V ) interchangeably. The following
theorem is due to Bartlett and Mendelson. [9].
Theorem 4.1 (Simplified variant of Theorem 8 of Bartlett and Mendelson [9]). Consider a loss
function L : A → [0, 1]. Let F be a class of functions mapping from X to A and let (Xi)

n
i=1 be

independent samples from D. Then, for any integer n and any δ > 0, with probability at least 1− δ

over samples of length n, denoting by Ên the empirical risk, every f ∈ F satisfies

EL(f(X)) ≤ ÊnL(f(X)) +Radn(F ) +

√
8 ln 2/δ

n
.

Thus, in order to bound the excess risk, Theorem 4.1 shows that it is sufficient to bound the
Rademacher complexity. It is well known (see, for example, B.3 of Rudra and Wootters [68])
that Radn(V ) ≤

√
2πGn(V ). Thus we can alternatively bound the Gaussian complexity, which is

sometimes more convenient. Note that if V is the set of all cost vectors, clustering nets are mere
N (V, ∥.∥∞, ε). Using these nets, we can bound the Rademacher and Gaussian complexity. Indeed
the following lemma holds.
Lemma 4.2. Let D be a distribution over Bd

2 and let P a set of n points sampled from D. Sup-
pose that for a set of n-dimensional vector V , we have an absolute constant C, γ > 0 such that
log |N (V, ∥.∥∞, ε)| ∈ O(ε−2 logγ(nε−1)C). Then

Gn(V ) ∈ O

√C logγ+2 n

n

 .

The specific types of nets used in our study and the size bounds for those nets will be the key to
obtaining the desired upper bounds and will be detailed in the next section.

5 Generalization bounds for center-based clustering and subspace clustering

We start by giving our generalization bounds for center based clustering and subspace clustering
problems. For subspace clustering problems, we first state the result for general (k, j, z) clustering.
An improvement for the special case z = 2 will be given later.
Theorem 5.1. Let D be a distribution over Bd

2 and let P be a set of n points sampled from D. For
any set of k points S ⊂ Bd

2 , we denote by vS the n-dimensional cost vector of P in solution S

6



with respect to the (k, z)-clustering objective. Moreover we denote by vU the n-dimensional cost
vector of P in solution U with respect to the (k, j, z)-clustering objective. Let Vz be the union of all
cost vectors of P for the center-based clustering and Vj,z the union of all cost vectors for subspace
clustering. Then with probability at least 1− δ

En(Vz) ∈ O

√k · log4 n
n

+

√
log 1/δ

n

 (2)

En(Vj,z) ∈ O

(√
k · j2 · log jn · log3n

n
+

√
log 1/δ

n

)
. (3)

Following Theorem 4.1, it is sufficient to bound the Rademacher complexity in order to bound
the excess risk. The Rademacher complexity is, up to lower order terms, equal to the Gaussian
complexity, which, following Lemma 4.2 may be bounded by obtaining small nets with respect to the
∥.∥∞ norm. We believe that the results on the bounds of the nets, may be of independent interest and
we’ll state these results in the following Lemma.
Lemma 5.2. Let D be a distribution over Bd

2 and let P a set of n points sampled from D, let Vz be
defined as in Theorem 5.1 let Vj,z be defined as in Theorem 5.1. Then

|N (Vz, ∥.∥∞, ε)| ≤ exp(O(1)z3 · k · ε−2 log n · (log(z) + log(ε−1))) (4)

|N (Vj,z, ∥.∥∞, ε)| ≤ exp(O(1)(3z)z+2 · k · j · ε−2(log n+ j log(jε−1)) log ε−1). (5)

Combining Lemma 5.2 with Lemma 4.2 now yields the immediate bound on the Rademacher and
Gaussian complexity. Following the discussion from Section 3, we use terminal embeddings to
prove the part of Lemma 5.2 pertaining to (k, z) clustering, see Appendix B. Unfortunately, the
terminal embedding technique is not admissible for obtaining nets for subspace clustering as clarified
in Section 3. Thus, we use an entirely different approach. We show the existence of a collection of
dimension reducing maps with subspace preserving properties. Fortunately, the number of dimension
reducing maps is small. Our desired net sizes then follow by enumerating over all of these dimension
reducing maps, and for the candidate solutions covered by each such dimension reducing map, we can
find an efficient net. First, we introduce a slightly different, but closely related notion to (1, j, z)-nets.

Definition 5.3 (Projective Nets). Let P ⊂ Bd
2 be a set of points, and let z be a positive integer. For a

d× j matrix S with columns that have at most unit norm and any point p ∈ P , define the projective
cost as costproj(p, S) = ∥ST p∥2. Let V be the set of all projective cost vectors induced by such
matrix S. We call a N (V, ∥.∥∞, ε) a (ε, j)-projective net of P .

On a high level, the proof largely relies on the following decomposition. Let U be a candidate
subspace and let Π be a projection matrix used to approximate ∥(I − UUT )p∥z2 We have

∥(I−UUT)p∥2=∥Πp∥2︸ ︷︷ ︸
(1)

−∥UTΠp∥2︸ ︷︷ ︸
(2)

+∥(I −Π)p∥2︸ ︷︷ ︸
(3)

−∥UUT(I −Π)p∥2︸ ︷︷ ︸
(4)

+2pTΠUUT(I −Π)p︸ ︷︷ ︸
(5)

(6)

Here, we wish to select Π such that ∥UT (I − Π)p∥2 is small for all p ∈ P . Note that this implies
that the terms 2pTΠUUT (I − Π)p and ∥UUT (I − Π)p∥2 are small. For the term (2), we merely
have to show that projective nets exist. If the number of Π is small, we can further construct good
nets for the terms (1) and (3) . We start by giving a bound for the projective nets. Our first Lemma
5.4 shows that if the points lie in a sufficiently low-dimensional space, such a net can be obtained by
constructing a net N (Bd

2 , ∥.∥2, ε′) for a sufficiently small ε′.

Lemma 5.4. Let P ⊂ Bd
2 be a set of points, and z be a positive integer. Then there exists an

(ε, j)-projective net of size |N (V, ∥.∥∞, ε)| ≤ exp(O(1) · d · j · log(jε−1)).

To reduce the dependency on the dimension, we now use the following lemma. Essentially, it shows
that in order to retain the properties of U , we can find a projection matrix Π of rank at most O(jε−2).

Lemma 5.5. Let P ⊆ Bd
2 . For any orthogonal matrix U ∈ Rj×d, there exists M ⊆ P , with

|M | ∈ O(j · ε−2), such that ∀p ∈ P, ∥UT (I −ΠM )p∥ ≤ ε · ∥(I −ΠM )p∥.
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We now use this lemma as follows. We can efficiently enumerate over all candidate Π, as Lemma 5.5
guarantees us that we only have to consider

(
n

j·ε−2

)
≤ exp(j · ε−2 log n) many different M inducing

projection matrices. This immediately gives us 0-nets for the terms (1) and (3). For each Π, we then
apply Lemma 5.4, which gives us a net for term (2). Finally, by choice of Π, we can show that terms
(4) and (5) are negligible.

5.1 Tight generalization bounds for projective clustering

For the specific case of (k, j, 2) clustering, also known as projective clustering, we obtain an even
better dependency on j. A similar bound can likely also be derived using the seminal work of [39],
though the dependencies on log n and log 1/δ are slightly weaker. The proof uses the main result by
[45], itself heavily inspired by [39], and arguments related to bounding the Rademacher complexity
of linear function classes. Crucially, it avoids the issue of obtaining an explicit dimension reduction
entirely, but the approach cannot be extended to general (k, j, z) clustering.

Theorem 5.6. Let D be a distribution over Bd
2 and let P a set of n points sampled from D. For any

set U of k orthogonal matrices of rank at most j, we denote by vU the n-dimensional cost vector of
P in solution U with respect to the (k, j, 2)-clustering objective, i.e. vUp = minU∈U ∥(I −UUT )p∥2.
Let Vj,2 be the union of all cost vectors of P . Then with probability at least 1− δ for any γ > 0

En(Vj,2) ∈ O

(√
kj

n
· log3+γ

(
n

j

)
+

√
log 1/δ

n

)
.

Finally, we also show that the bounds from Theorem 5.6 and [39] are optimal up to polylogarithmic
factors.

Theorem 5.7. There exists a distribution D supported on Bd
2 such that En(Vj,2) ∈ Ω

(√
(kj)/n

)
.

The rough idea is to define a distribution D supported on the nodes of a 2kj-dimensional simplex
with some points having more probability mass and some points having smaller mass. Using the
tightness of Chernoff bounds, we may then show that the probability of fitting a subspace clustering
to a good fraction of the lower mass points is always sufficiently large.

6 Experiments

Theoretical guarantees are often notoriously conservative compared to what is seen in practice. In this
section, we present empirical findings detailing whether the risk bounds from the previous sections
are also the risk bounds one can expect when dealing with real datasets. Indeed, for the related
question of computing coresets, experimetal work by [71] seems to indicate that the worst case
bounds by [47] are not what one has to expect in practise for center based clustering. Generally, two
properties can determine the risk decrease. First, the clusters may be well separated [4, 29]. Indeed,
making assumptions to this end, there is also some theoretical evidence that a rate of O(k/n) is
possible [5, 52]. The other, somewhat related explanation is that if the ground truth consists of k′ < k
clusters [13, 63], the dependency on k will point more towards the smaller, true number of clusters.
We run the experiments both for center based clustering, as well as subspace clustering. While the
focus of the paper is arguably more on subspace clustering, the experiments are important in both
cases. Although both problems are hard to optimize exactly, center based clustering is significantly
more tractable and thus may lend better insight into practical learning rates. For example, we have
an abundance of approximation algorithms for (k, z) clustering [6, 61] whereas, even in the case
of (k, 1, z) clustering in two dimensions [49] it is not possible to find any finite approximation in
polynomial time.

In the main body, we focus on (k, 1, z) clustering, as there already exists a phase transition in terms of
the computational complexity between the normal k-median and k-means problems and the (k, 1, 1)
and (k, 1, 2) clustering objectives, while j = 1 still admits more positive results than other subspace
clustering problems Agarwal et al. [3], Feldman et al. [41, 42].

Datasets We use four publicly available real-world datasets: Mushroom [70], Skin-Nonskin [12],
MNIST [51], and Covtype [15]. Below, we show the results on the Covtype dataset, and the remaining
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Figure 1: Excess risk for line clustering on Covtyp. Shaded areas show max-min intervals.

experiments are deferred to the supplementary material. Each dataset was normalized by the diameter,
ensuring that all points lie in Bd

2 .

Table 1: Datasets used for the experiments
Dataset Points Dim Labels

Mushrooms 8,124 112 2
MNIST 60,000 784 10
Skin_Nonskin 245,057 3 2
Covtype 581,012 54 7

Problem parameters and algorithms For both center based clustering as well as subspace clus-
tering, we focus on the powers z ∈ {1, 2, 3, 4}. z = 2 is arguably the most popular and also the
most tractable variant. z = 1 is the objective with the least susceptibility to outliers. Finally, we
consider the cases z = 3, due to it minimizing asymmetry and z = 4 as a tractable alternative
to the coverage objective z → ∞. The excess risk is evaluated for k ∈ {10, 20, 30, 50} for both
center based and subspace clustering. Expectation maximization (EM) type algorithms are used
for both center-based and subspace clustering, though this is a severe computational challenge fo
(1, j, z) clustering, if z ̸= 2, see [24, 36]. Given a solution S we first assign every point to its
closest center and subsequently recompute the center. For more details on initialization and concrete
implementations, we refer to the supplementary material.

Experimental setup and results To estimate the optimal cost OPT for the two objective functions,
we run the corresponding appropriate algorithms mentioned above ten times on the entire dataset P
and use the minimal objective value as an estimate for OPT . We obtain a sample Si of size n by
sampling uniformly at random and estimate the optimal cost for that sample, OPTi. We repeat this 5
times. The empirical excess risk is calculated as En = 1

|P |
∑5

i=1
cost(P,OPTi)

5 − OPT. The excess
risk for center-based clustering is evaluated on exponential-sized subset sizes n ∈ {26, 27, . . . , 212}.
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We fit a line of the form c · kq1

nq2
where c, q1, q2 are the optimizeable parameters. Let yi be the excess

risk in run i. Let ki and ni be the values of k and n in run i and let r be the total number of times the
excess risk was evaluated for each combination of algorithm and dataset. We use gradient descent on
the following loss to optimize the parameters LSE =

∑r
i=1

(
yi − c · kq1

nq2

)2
.

The results in Figure 1 show that the excess risk for subspace clustering decreases quicker for higher
values of z, and we see a similar pattern for center-based clustering. The supplementary material
contains more details on the empirical evaluations of center-based clustering. The best-fit lines shown
in Tables 2 and 3 in the supplementary material indicate that the empirical excess risk values decrease
slightly quicker than predicated by theory. The expected values are q1 = q2 = 0.5 and we observe
q1, q2 around 0.44, 0.52 respectively. For k this indicates a slightly favorable dependency in practice.
For q2, we consider the difference to the theoretical bound of 0.5 negligible. The choice of z does
not seem to have a significant impact on either finding. For subspace clustering, the dependency
on k is a bit more pronounced and increases slightly towards the theoretical guarantees. Contrary
to hopes that margin or stability conditions might occur on practical datasets, the results indicate
that the theoretical guarantees of the learning rate are near-optimal even in practice. Moreover, the
rates were not particularly affected by either the choice of z or by the dimension j when analyzing
subspace clustering.

7 Conclusion and open problems

In this paper, we presented several new generalization bounds for clustering objectives such as
k-median and subspace clustering. When the centers are points or constant dimensional subspaces,
our upper bounds are optimal up to logarithmic terms. For projective clustering, we give a lower
bound showing that the results obtained by [39] are nearly optimal. A key novel technique was using
an ensemble of dimension reduction methods with very strong guarantees.

An immediate open question is to which degree ensembles of dimension reductions can improve
learning rates over a single dimension reduction. Is it possible to find natural problems where there
is a separation between the embeddability and the learnablity of a class of problems, or given the
ensemble, is it always possible to find a single dimension reduction with the guarantees of the
ensemble? Another open question is motivated by the recent treatment of clustering through the lens
of computational social choice [19]. Using current techniques from coresets [17] and learning theory
[45], it seems difficult to improve over the learning rate of O

(√
k2
/n
)

for the fair clustering problem
specifically. It it possible to match the bounds for unconstrained clustering?
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Supplementary Materials

A Proof of Lemma 4.2

In this section, we include the proof of Lemma 4.2 and some preliminary facts that will be useful for
the proof.

Let r be a Rademacher vector, i.e. every entry ri is sampled independently uniformly from {−1, 1}.
Further, we say that g is a Gaussian vector if every entry gi is a standard Gaussian with mean 0 and
variance 1. We have the following useful properties of Gaussians.

Fact A.1 (Appendix B.1 by [68]). Let g1, . . . gn be Gaussians with means µi and variances σ2
i .

• If σ2
i ≤ σ2 for all i, then E[maxgi |gi|] ≤ 2σ

√
2 log n.

• If the Gaussians are independent, then
∑n

i=1 aigi is Gaussian distributed with mean∑n
i=1 aiµi and variance

∑n
i=1 a

2
iσ

2
i .

• If the gi are independent standard Gaussians with mean 0 and variance 1, then Y :=
∑n

i=1 g
2
i

is Chi-squared distributed with mean E[
√
Y ] ∈ O(

√
n).

Another result we need is the following

Lemma A.2 (Lemma 5.2 of [75]). |N (Bd
2 , ∥.∥2, ε)| ≤ (1 + 2/ε)d.

We are now ready to prove the Lemma 4.2. The proof of Lemma is similar to arguments used to
prove Dudley’s theorem. We also write here the statement of the Lemma for the sake of completeness

Lemma (Lemma 4.2). Let D be a distribution over Bd
2 and let P be a set of n points sampled from

D. Suppose that for a set of n-dimensional vectors V , we have absolute constants C, γ > 0 such that

log |N (V, ∥.∥∞, ε)| ∈ O(ε−2 logγ(n · ε−1) · C). (7)

Then

Gn(V ) ∈ O

√C logγ+2 n

n

 .

Proof. For ease of notation, we use solutions S induced by points, but the proof carries over without
any modifications other than changing the notation to collections of subspaces U .

Consider an arbitrary cost vector vS . We write vS as a telescoping sum

vS :=

∞∑
h=0

vh+1,S − vh,S

where v0 = 0 and vi,S is a vector from N (V, ∥.∥∞, 2−i) approximating vS . Observe that

∥vh+1,S − vh,S∥∞ ≤ ∥vh+1,S − vS + vS − vh,S∥∞ ≤ 2 · 2−h (8)
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due to the triangle inequality. Thus we have

n ·Gn(V ) = EP,g

[
sup
S

(vS)T g

]
= EP,g

[
sup
S

∞∑
h=0

(vh+1,S − vh,S)T g

]

≤ EP,g

∞∑
h=0

[
sup
S

(vh+1,S − vh,S)T g

]

= EP,g

∞∑
h=0

 sup
vh+1,S ,vh,S∈

N (V,∥.∥∞,2−(h+1))×N (V,∥.∥∞,2−h)

(vh+1,S − vh,S)T g



= EP,g

logn∑
h=0

 sup
vh+1,S ,vh,S∈

N (V,∥.∥∞,2−(h+1))×N (V,∥.∥∞,2−h)

(vh+1,S − vh,S)T g



+EP,g

∞∑
h=logn

 sup
vh+1,S ,vh,S∈

N (V,∥.∥∞,2−(h+1))×N (V,∥.∥∞,2−h)

(vh+1,S − vh,S)T g



= EP,g

logn∑
h=0

 sup
vh+1,S ,vh,S∈

N (V,∥.∥∞,2−(h+1))×N (V,∥.∥∞,2−h)

(vh+1,S − vh,S)T g

 (9)

+EP,g

[
sup
S

(vS − vlogn,S)T g

]
(10)

We bound the terms 9 and 10 differently, starting with the latter.

For every S
(vS − vlogn,S)T g ≤ ∥vS − vlogn,S∥2 · E[∥g∥2],

due to the Cauchy Schwarz inequality. Further,

∥vS − vlogn,S∥2 ≤
√
n · ∥vS − vlogn,S∥∞ ≤

√
n · 2− logn =

√
1

n
,

which, combined with the third item in Fact A.1 yields

EP,g

[
sup
S

(vS − vlogn,S)T g

]
∈ O

(√
1

n
·
√
n

)
= O(1). (11)

We now consider the term 9. Due to the second item of Fact A.1, (vh+1,S − vh,S)T g is Gaussian
distributed with mean 0 and variance

n∑
i=1

(vh+1,S − vh,S)2i ≤ 4n · 2−2h.

Thus, we have, using the first item in Fact A.1

EP,g

logn∑
h=0

 sup
vh+1,S ,vh,S∈

N (V,∥.∥∞,2−(h+1))×N (V,∥.∥∞,2−h)

(vh+1,S − vh,S)T g


≤

logn∑
h=0

√
32n · 2−2h log

∣∣N (V, ∥.∥∞, 2−(h+1))×N (V, ∥.∥∞, 2−h)
∣∣

(12)
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Now using equation (7) we obtain that,

32n · 2−2h log
∣∣∣N (V, ∥.∥∞, 2−(h+1))×N (V, ∥∥̇∞, 2−h)

∣∣∣ ∈ O(n · logγ n)

So we have that
logn∑
h=0

√
32n · 2−2h log

∣∣N (V, ∥.∥∞, 2−(h+1))×N (V, ∥.∥∞, 2−h)
∣∣ ∈ O(

√
n · logγ+2 n) (13)

Adding the bounds (13) and (11) for Terms (10) and (9), respectively yields the claim.

Finally, we will frequently use the following triangle inequality extended to powers.
Lemma A.3 (Triangle Inequality for Powers (Lemma A.1 of [60])). Let a, b, c be an arbitrary set of
points in a metric space with distance function d and let z be a positive integer. Then for any ε > 0

d(a, b)z ≤ (1 + ε)z−1d(a, c)z +

(
1 + ε

ε

)z−1

d(b, c)z

|d(a, b)z − d(a, c)z| ≤ ε · d(a, c)z +
(
2z + ε

ε

)z−1

d(b, c)z.

B Omitted Proofs for Center-Based Clustering

Lemma B.1. Let P ⊂ Bd
2 be a set of points. Let V be the set of all cost vectors of P for (k, z)-

clustering. Then there exists an ε-clustering net of size

|N (V, ∥.∥∞, ε)| ≤ exp(O(1) · z · k · d · log(zε−1)).

Proof. We start by proving the bound for k = 1. Suppose we are given a net N (Bd
2 , ∥.∥2, δ), for

a δ to be determined later. Consider a candidate solution {s} with cost vector v{s} ∈ V . Let
s′ be the point in ∈ N (Bd

2 , ∥.∥2, δ) of such that ∥s − s′∥ ≤ δ, if s′ is not unique any one will be
sufficient. Let vS

′
be the cost vector of S ′. The number of distinct solutions S ′ are |N (Bd

2 , ∥.∥2, δ)| =
exp(O(1) · d · log δ−1) due to Lemma A.2.

What is left to show is that all solutions constructed in this way satisfy the guarantee of N (V, ∥.∥∞, δ),
for an appropriately chosen δ. We have for any p ∈ P and any non-negative integer z due to Lemma
A.3

|∥p− s∥z − ∥p− s′∥z| ≤ α · ∥p− s∥z +
(
2z + α

α

)z−1

∥s− s′∥z

≤ α · ∥p− s∥z + (3z)z
(
δ

α

)z−1

· δ

We set α = 1
2·2z ε and δ = α · 1

2(3z)z ε = 1
4(6z)z ε

2. Then the term above is upper bounded by
at most ε as ∥p − s∥ ≤ 2. Now since |∥p− s∥z − ∥p− s′∥z| ≤ ε for all s ∈ Bd

2 also implies
|mins∈S ∥p− s∥z −mins′∈S′ ∥p− s′∥z| ≤ ε, we have proven our desired approximation.

To conclude, observe that by our choice of δ, the overall net N has size at most exp(O(1) · z · d ·
log(zε−1)).

To extend this proof to k-centers, observe that any solution consisting of k centers can be obtained by
selecting k points from Bd

2 , rather than one. This raises the net size of the single cluster case by a
power of k.

We now show that Lemma B.1 combined with terminal embeddings yields the desired net.
Lemma (Equation 4 in Lemma 5.2). Let D be a distribution over Bd

2 and let P a set of n points
sampled from D and let V be defined as in Theorem 2. Then

|N (V, ∥.∥∞, ε)| ≤ exp(O(1)z3 · k · ε−2 log n · (log(z) + log(ε−1))).
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Proof. Let f : Rd → Rm be a terminal embedding, that is f is such that m ∈ O(z2 · ε−2 log |P |)4

and for all p ∈ P and q ∈ Rd

∥p− q∥z = (1± ε)∥f(p)− f(q)∥z,
as given by [62]. Therefore, for any candidate solution S, we also have

cost(p,S) = (1± 2ε)cost(f(p), f(S)).
In other words, the set of cost vectors in the image of f is the desired O(ε)-net for the true set of
cost vectors. Hence an ε-net for the cost vectors induced by solutions in the image of f is also an
O(ε)-net for the set of cost vectors. We thus may apply Lemma B.1 for all cost vectors induced by
solutions in the image of f . After rescaling ε by constant factors, the overall net size is therefore
exp(O(1)z3 · k · ε−2 log n · (log(z) + log(ε−1)))

C Omitted Proofs for Subspace Clustering

In this section, we provide full proofs for Section 5 relative to subspace clustering.

We start with a few basic lemmas that will be useful in the calculations later.

We further require the following bounds that will prove useful in the calculations later.
Lemma C.1. Let a, b be numbers in [0, 2] and let ε > 0. Suppose a2 = b2 ± ε · b. Then

|a− b| ≤ ε.

Moreover, for any non-negative integer z, we have

|az − bz| ≤ 2 · (3z)z · ε.

Proof. For the first part of the lemma, we observe

|a2 − b2| = |a− b| · (a+ b) ≤ ε · b
which implies

|a− b| ≤ ε.

For the second part, Lemma A.3 implies

|az − bz| ≤ ε ·max(a, b)z +

(
2z + ε

ε

)z−1

· |a− b|z ≤ ε · 2z +
(
3z + ε

ε

)z−1

· εz ≤ 2(3z)zε.

This lemma now immediately implies the following corollary by rescaling ε.
Corollary C.2. Let a, b be numbers in [0, 2] and let ε > 0. Suppose a2 = b2± 1

4·(3z)z max(ε · b, ε2).
Then for any non-negative integer z, we have

|az − bz| ≤ ε.

We now show that for any candidate subspace U we can find a subspace representing it that is spanned
by only a few vectors in P .
Lemma (Lemma 5.5). Let P ⊆ Bd

2 . For any orthogonal matrix U ∈ Rj×d, there exists M ⊆ P ,
with |M | = O(j · ε−2), such that

∀p ∈ P, ∥UT (I −ΠM )p∥ ≤ ε · ∥(I −ΠM )p∥. (14)

Proof. Initially, let M = ∅. We add points to M in rounds and denote by Mt the set after t rounds.
Furthermore, let Πt be the projection matrix onto the subspace spanned by Mt at round t. If there is
a p ∈ P in round t such that

∥UT (I −Πt)p∥ > ε∥(I −Πt)p∥ (15)

4The dependency on z is easily derived via a straightforward application of Lemma A.3.
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then we let Mt+1 = Mt ∪ {p}. Our goal is to show that after T ∈ O(jε−2) many rounds, we have
∥UT (I −ΠT )p∥ ≤ ε · ∥(I −ΠT )p∥. We show this by proving inductively

∥UTΠt∥2F ≥ ε2 · t.
For the base case t = 0, this is trivially true. Thus suppose we add a point p in iteration t + 1.
Reformulating Equation 15, we have ∥UT (I−Πt)p∥

∥(I−Πt)p∥ > ε. By the Pythagorean theorem, we therefore
have

∥UTΠt+1∥2F = ∥UTΠt∥2F +
∥UT (I −Πt)p∥2

∥(I −Πt)p∥2
≥ ε2 · t+ ε2 ≥ ε2 · (t+ 1).

Now since Πt is a projection and since U has j orthonormal columns j ≥ ||UT ||2F ≥ ||UTΠt||2F . If
T ≥ ε−2j, we obtain ||UTΠT ||2F ≥ j. This implies that U is contained in the space spanned by MT .
Conversely, U must also be orthogonal to the kernel of MT that is U(I −ΠT ) = 0. Therefore after
at most ε−2j rounds, we have ∥UT (I −ΠT )p∥ ≤ ε · ∥(I −ΠT )p∥.

Lemma (Lemma 5.4). Let P ⊂ Bd
2 be a set of points and let z be a positive integer. Then there exists

an (ε, j)-projective net of size

|N (V, ∥.∥∞, ε)| ≤ exp(O(1) · d · j · log(jε−1)).

Proof. Let N be an ε/j-net of the Euclidean unit ball, i.e. N = N (Bd
2 , ∥.∥2, ε/j) due to Lemma

A.2. Let N = ⊗j
i=1N be the set of j−subsets of of N . We claim that for every S, there exists an

S′ ∈ N such that
∥ST p∥2 = ∥S′T p∥2 ± ε.

Note that this implies the claim as |N | ∈
((

1 + 2j
ε

)d)j
= exp(O(1) · d · j · log(jε−1)).

Define S′T
i to be the vector in N closest to the ith row of ST , i.e. ∥ST

i − S′T
i ∥2 ≤ ε/j. We have

∥S′T − S∥2 ≤
∑j

i=1 ∥S′T
i − ST

i ∥2 ≤ ε. Therefore

∥ST p∥2 = ∥(ST − S′T )p+ S′T p∥2
≤ ∥(ST − S′T )p∥2 + ∥S′T p∥2
≤ ∥S′T p∥2 + ∥ST − S′T ∥2∥p∥2
≤ ∥S′T p∥2 + ε.

The bound ∥ST p∥2 ≥ ∥S′T p∥2 − ε is proven analogously.

We can now conclude with the proof of Equation 5 in Lemma 5.2.
Lemma ( Equation 5 in Lemma 5.2). Let D be a distribution over Bd

2 and let P a set of n points
sampled from D and let Vj,z be defined as in Theorem 5.1. Then

|N (Vj,z, ∥.∥∞, ε)| ≤ exp(O(1)(3z)z+2 · k · ε−2(log n+ j log(jε−1)) log ε−1).

Proof. Let α, β > 0 be sufficiently small parameters depending on ε that will determined later. We
first describe a construction for nets for a single subspace of rank at most j, before composing to k
subspaces.

We start by describing the composition of the nets. For every subset M ⊆ P , with |M | ∈ O(jα−2),
we let ΠM denote an orthogonal projection matrix of the span of M . Note that this implies
rank(ΠM ) = O(jα−2). Further, let N(ΠM ) := N (B

rank(ΠM )
2 , ∥.∥2, β) be a (β, j)-projective

net of the point set ∪p∈M{ΠMp} of size at most exp(O(1) · rank(ΠM ) · log(jβ−1)) given by
Lemma 5.4. Finally, let N := ∪MN(ΠM ).

We consider an arbitrary orthogonal matrix U ∈ Rj×d. Denote by MU the subset of points and by
ΠU the projection matrix given by Lemma 5.5, using α as the precision variable. We claim that for
every U , there exists an U ′ ∈ N such that for all p ∈ P∣∣∣(∥ΠUp∥22 − ∥U ′TΠUp∥22 + ∥(I −ΠU )p∥22

)z/2 − ∥(I − UUT )p∥z
∣∣∣ ∈ O(α+ β).
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In other words, by enumerating over all (β, j)-projective nets, we obtain an O(α + β)-subspace
clustering net for (1, j, z)-clustering. The desired error of ε then follows by choosing α and β
accordingly. For U , we construct U ′ as follows. Let D =

√
ΠU , i.e. DDT = ΠU . Further, let

V = UTD, notice that V has at most j rows that have at most unit norm. Hence, there exists a
U ′ ∈ N such that

|∥UΠUp∥2 − ∥U ′ΠUp∥2| ≤ ε

that is a (β, j)-projective net.

We then obtain

∥ΠUp∥22 − ∥U ′TΠUp∥22 + ∥(I −ΠU )p∥22
= ∥ΠUp∥22 − ∥UTΠUp∥22 ± β + ∥(I −ΠU )p∥22
= ∥ΠUp∥22 − ∥UUTΠUp∥22 ± β + ∥(I −ΠU )p∥22
= ∥(I − UUT )ΠUp∥22 + ∥(I −ΠU )p∥22 ± β

(Eq.6) = ∥(I − UUT )p∥22 ± β − ∥UT (I −ΠU )p∥2 − 2pTΠUUUT (I −ΠU )
T p

(Lem.5.5) = ∥(I − UUT )p∥22 ± α2 · ∥(I − UUT )p∥2 ± 2α · ∥(I − UUT )p∥ ± β

Setting α2 = β = 1
64(3z)z ε

2, we then have due to Corollary C.2

∣∣∣∣∣∥ΠUp∥22 − ∥U ′TΠUp∥22 + ∥(I −ΠU )p∥22
∣∣z − ∥(I − UUT )p∥z

∣∣∣ ≤ ε. (16)

To extend this from a single j-dimensional subspace to a solution U given by the intersection of k
j-dimensional subspaces, we define cost vectors vS

′
obtained from N = ⊗k

i=1N as follows. For
each U ∈ U let U ′ be constructed as above and let U ′ be the union of the thus constructed U ′. Then,
with a slight abuse of notation, letting ΠU ′ correspond to the subspace used to obtain U ′, we define

vU
′

p := min
U ′∈U ′

∣∣∥(I −ΠU ′)p∥2 + ∥ΠU ′p∥2 − ∥U ′ΠU ′p∥2∥
∣∣z/2 .

Let U be the subspace to which p is assigned U and let U ′ be the center in U ′ used to approximate U

and let U∗′ = argminU ′∈U ′

∣∣∥(I −Π′
U )p∥2 + ∥ΠU ′p∥2 − ∥U ′Π′

Up∥2∥
∣∣z/2 and let U∗ ∈ U be the

center approximated by U∗′. Then applying Equation 16, we have

∥(I − UUT )p∥z

≤ ∥(I − U∗U∗T p∥z

≤
∣∣∥(I −ΠU∗′)p∥2 + ∥ΠU∗′p∥2 − ∥U∗′ΠU∗′p∥2

∣∣z/2 + ε

≤
∣∣∥(I −ΠU ′)p∥2 + ∥ΠU ′p∥2 − ∥U ′ΠU ′p∥2

∣∣z/2 + ε

Thus, the cost vectors obtained from N are a (k, j, z)-clustering net, i.e.∣∣∣vS′

p − vSp

∣∣∣ := ∣∣∣∣min
s′∈S′

∥Πs′p− [s′, 0]∥z −min
s∈S

∥p− s∥z
∣∣∣∣ ≤ ε.

What remains is to bound the size of the clustering net. Here we first observe that size of the clustering
net is equal to |N | = |N |k. For |N |, we have

( |P |
O(α−2 logα−1)

)
≤ nO(jα−2 logα−1) many choices of

N(Π). In turn, the size of each N(Π) is bounded by (β/j)−O(j2α−2) due to Lemma 5.4. Thus the
overall size of N is

exp
(
k · j ·O(α−2 logα−1(log n+ j log β/j))

)
= exp(O(1)(3z)z+2 · k · j · ε−2(log n+ j log(jε−1)) log ε−1)

as desired.
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C.1 Proofs of Theorem 5.6 (Section 5.1)

The proof of the theorem is a straightforward application of Theorem 4.1 with the following Lemma

Lemma C.3. Let D be a distribution over Bd
2 , let P a set of n points sampled from D, and let V be

defined as in Theorem 5.6. Then for any γ > 0

Radn(Vj,2) ∈ O

(√
kj

n
log3+γ

(
n

j

))
.

Proof. We use the following result due to Foster and Rakhlin [45].

Theorem C.4 (ℓ∞ contraction inequality (Theorem 1 by [45])). Let F ⊆ X → Rk, and let
ϕ : Rk → R be L-Lipschitz with respect to the ℓ∞ norm, i.e. ∥ϕ(X)−ϕ(X ′)∥∞ ≤ L·∥X−X ′∥∞ for
all X,X ′ ∈ Rk. For any γ > 0, there exists a constant C > 0 such that if |ϕt(f(x))|∨∥f(x)∥∞ ≤ β,
then

Radn(ϕ ◦ F ) ≤ C · L
√
K ·max

i
Radn(F |i) · log3/2+γ

(
βn

maxi Rn(F |i)

)
.

We use this theorem as follows. Our functions are associated with candidate solutions U , that is
ϕ(f) = minU∈U ∥(I − UUT )p∥22. In other words, f maps a point p to the k-dimensional vector,
where fi(p) = ∥(I − UiU

T
i )p∥22 and ϕ selects the minimum value among all ∥I − UiU

T
i )p∥22.

Thus, we require three more steps. First, we have to bound the Lipschitz constant of the minimum
operator. Second, we have to give a bound on β. Third and last, we have to give a bound on the
Rademacher complexity

Radn(V ) =
1

n
· Er sup

U

∑
p∈P

∥(I − UUT )p∥22rp. (17)

The Lipschitz constant of the minimum operator with respect to the ℓ∞ norm can be readily shown to
be 1 as for any two vectors x, y with mini yi = yj

min
i

xi −min
i

yi = min
i

xi − yj ≤ xj − yj ≤ |xj − yj | ≤ ∥x− y∥∞.

Since U is an orthogonal matrices and p ∈ Bd
2 , we have ∥(I − UUT )p∥22 ≤ 1 and thus β is bounded

by 1.

Thus, we only require a bound on Equation 17. For this, we use a result by [50]. Since the result is
embedded in the proof of another result, we restate it here for the convenience of the reader.

Lemma C.5 (Compare the proof Theorem 3 of [50]). Let P be an set of n points in Bd
2 and let U be

the set of all orthogonal matrices of rank at most j. For every U ∈ U , define fU (p) = ∥(I−UUT )p∥22
and let F be the set of all functions fU (p) Then.

Radn(F ) :=
1

n
· Er sup

U∈U

∑
p∈P

∥(I − UUT )p∥22 · rp ∈ O

(√
j

n

)
.

Proof. We have

Radn(F ) = Er sup
U

∑
p∈P

∥(I − UUT )p∥22rp = Er

∑
p∈P

∥p∥2rp + Er sup
U

∑
p∈P

∥UT p∥22rp.
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We observe that the term Er

∑
p∈P ∥p∥2rp is 0. Thus, we focus on the second term. We have

Er sup
U

∑
p∈P

∥UT p∥22 · rp = Er sup
U

∑
p∈P

pTUUT p · rp = Er sup
U

∑
p∈P

trace(pTUUT p) · rp

= Er sup
U

∑
p∈P

trace(UUT ppT ) · rp

= Er sup
U

trace

UUT
∑
p∈P

(
rp · ppT

)
≤ Er sup

U
∥U∥F

∥∥∥∥∥∥
∑
p∈P

rp · ppT
∥∥∥∥∥∥
F

.

We have ∥U∥F ≤
√
j, so we focus on

∥∥∥∑p∈P rp · ppT
∥∥∥
F

. Here, we have∥∥∥∥∥∥
∑
p∈P

rp · ppT
∥∥∥∥∥∥
2

F

= trace

∑
p∈P

rp · ppT
∑

p∈P

rp · ppT


=
∑
p∈P

∑
q∈P

rp · rq · trace
(
ppT qqT

)
=
∑
p∈P

∑
q∈P

rp · rq · (pT q)2.

This implies

n ·Radn(F ) = Er sup
U

∑
p∈P

∥UT p∥22rp ≤ Er sup
U

∥U∥F

∥∥∥∥∥∥
∑
p∈P

rp · ppT
∥∥∥∥∥∥
F

≤
√
j · Er

√∑
p∈P

∑
q∈P

rp · rq · (pT q)2

(Jensen’s inequality) ≤
√
j ·
√
Er

∑
p∈P

∑
q∈P

rp · rq · (pT q)2

=
√
j ·
√∑

p∈P

(pT p)2 ≤
√

j ·
√∑

p∈P

1 =
√

nj.

Solving the above for Radn(F ) concludes the proof.

We can now conclude the proof. Combining the bounds on L and β with Lemma C.5 and Theorem
C.4, we have

Radn(Vj,2) ∈ O

(
√
k ·
√

j

n
· log3+γ (n)

)
as desired.

C.2 Lower Bound

Finally, we also show that the bound given in Theorem 5.6 is optimal, up to polylog factors.

Theorem (5.7). There exists a distribution D supported on Bd
2 such that E(Vj,2) ∈ Ω

(√
kj
n

)
.

Proof. We first describe the hard instance distribution D. We assume that we are given d = 2kj
dimensions. Let ei be the standard unit vector along dimension i with i ∈ {1, . . . d}. Let p, ε ∈ [0, 1]
be a parameters, where ε is sufficiently small. We set the densities for a point q as follows.

P[q] =


p if q = ei, i ∈ {1, . . . , k · j}
p− ε · p if q = ei, i ∈ {kj + 1, . . . , d}
0 otherwise

(18)
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We choose p such that integral over densities is 1, i.e. kj · p+ kj · (p− εp) = 1. It is straightforward
to verify that for ε sufficiently small, p ∈ ( 1

kj ,
2
kj ). We denote the points {e1, . . . ekj} by G for

"good" and the points {ekj+1, . . . ed} by B for "bad".

We now characterize the properties of the optimal solution as well as suboptimal solutions.

Lemma C.6. Let D be the distribution described above in Equation (18). Then for any optimal
solution U = {U1, . . . Uk}, we have ei ∈ Ut for i ∈ {1, . . . , kj} and some t and OPT = kj ·p·(1−ε).

Proof. We transform the instance into a d× d diagonal matrix D where Di,i =
√
P[ei]. So D is a

d× d diagonal matrix with diagonal entries equal to
√
p for the first k · j elements and

√
p− ε · p

for elements from k · j + 1 to d. Now consider any partition of the points into clusters Ct with the
corresponding subspace Ut for (t ∈ {1, . . . , k} ). The optimal solution for Ut is simply the right
singular vector of the submatrix of D corresponding to points in Ct, which by the construction of D
is the j points with the largest weight. This means that each cluster can remove at most

∑j
i=1 1 = j

from the cost, so k clusters can remove at most
∑k

i=1 j from the cost. This imples that the cost of the
clustering is lower bounded by

∑d
i=1 D

2
i,i −

∑kj
i=1 D

2
i,i =

∑d
i=kj+1 D

2
i,i. Conversely, the solution

U has exactly this cost, which implies that it must be optimal.

Using Lemma C.6, we now have to, given n independent samples from D. Control the probability
that the sample P will (falsely) put a higher weight on some of the points in B than the points in G.
Let Bex denote the set of misclassified points in B and let POPT denote the optimum computed on
the sample P . We have

E[cost(D, POPT)] = kj · p · (1− ε) + p · ε · |Bex|.

and hence an expected excess risk bound of

E[cost(D, POPT)]− OPT = p · ε · E[Bex].

By linearity of expectation, we have E[|Bex|] = kj · P[ekj+1 ∈ Bex]. Thus, E[cost(D, POPT)] −
OPT ∈ Θ(1)ε ·P[ekj+1 ∈ Bex]. Define Glow to be the set of points from G that are have an empirical
density of at most p. Let êkj+1 denote the empirical density of ekj+1. We now claim that

P[ekj ∈ Bex] ≥ P[êkj+1 > p ∧ ekj+1 ∈ Bex]

= P[ekj+1 ∈ Bex|êkj+1 > p] · P[êkj+1 > p] ≥ 1/2 · P[êkj+1 > p]

The first inequality follows because we are considering a subset of the possible events, the second
inequality follows because the number of points with an empirical estimated density greater than p is
negatively correlated with the empirical density êkj+1 of the point ekj . Specifically, conditioned on
êkj+1 > p, the mean and median density of any point ei ∈ G is at most 1

n ·p(̇n−p·n) = p·(1−p) < p.
Thus, the (marginal) mean and median density of any other point is below p and therefore the
probability that ekj+1 will be in Bex is at least 1/2.

Thus, what remains to be shown is a bound on P[ekj > p]. Here, we use the tightness of the Chernoff
bound (see Lemma 4 of [48]).

Lemma C.7 (Tightness of the Chernoff Bound). Let X be the average of n independent, 0/1 random
variables. For any ε ∈ (0, 1/2] and µ ∈ (0, 1/2], assuming ε2µn ≥ 3 if each random variable is 1
with probability at least µ, then

P[X > (1 + ε)p] > exp(−9ε2µn).

Thus, sampling n elements, we have

P [ekj > p] = P
[
ekj >

(
1 +

ε

1− ε

)
· (1− ε) · p

]
> exp

(
−9

ε2

(1− ε)2
(1− ε)pn

)
∈ Ω(1) exp

(
− ε2

kj
n

)
.

26



If we require E[cost(D, POPT)] − OPT = ε · c for a sufficiently small absolute constant c, we also

require P [ekj > p] = c′ and hence
√

kj
n ≤ ε · c′′ for a sufficiently small absolute constants c′

and c′′. Letting ε → 0 then shows that the excess risk can asymptotically decrease no faster than

Ω

(√
kj
n

)
.

D Details for the Experiments (Section 6)

D.1 Description of datasets

Mushroom comprises of 112 categorical features of the appearance of mushrooms with class labels
corresponding to poisonous or edible. MNIST contains 28x28 pixel images of handwritten digits.
Skin_Nonskin are RGB values given as 3 numerical features used to predict if a pixel is skin or not.
Lastly, Covtype consists of a mix of categorical and numerical features used to predict seven different
cover types of forests. In the main body, we focus on Covtype because of its large number of points.

D.2 Description of algorithms

Center based clustering For each experiment, we use an expectation maximization (EM) type
algorithm. Given a solution S, we first assign every point to its closest center and subsequently, we
recompute the center. For the case z = 2, we do this analytically and in this case the EM algorithm
is more commonly known as Llyod’s method [59]. For the cases, z ∈ {1, 3, 4}, the new center is
obtained via gradient descent. The initial centers are chosen via Dz sampling, i.e. sampling centers
proportionate to the zth power of the distance between a point and its closest center (for z = 2 this is
the k-means++ algorithm by [6]).

We wrote all of the code using Python 3 and utilized the Pytorch library for implementations using
gradient descent. Specifically, we employed the AdamW optimizer to find the closest center with
a learning rate set to 0.01. All experiments were conducted on a machine equipped with a single
NVIDIA RTX 2080 GPU.

Subspace Clustering For subspace clustering, we consider j ∈ {1, 2, 5} to demonstrate the effects
of the subspace dimension on convergence rate, taking computational expenses into consideration.
Since there are no known tractable algorithms for these problems with guarantees, we initialize a
solution U = {U1, . . . , Uk} by sampling k orthogonal matrices of rank j, where the subspace for
each matrix is determined via the volume sampling technique [35]. Subsequently, we run the EM
algorithm. As before, the expectation step consists of finding the closest subspace for every point. For
z = 2, the maximization step consists of finding the j principal component vectors of the data matrix
induced by each cluster. For the other values of z, it is NP-hard even approximate the maximization
step [24], so we use gradient descent to find a local optimum. Due to the fact that Skin_nonskin
only has 3 features, we only evaluate the excess risk for j ∈ {1, 2}. Due to a large computational
dependency on dimension, we do not evaluate subspaces on the MNIST dataset.

D.3 Experimental results

In this section, we provide plots of the excess risk and the found parameters of the best-fit lines for
each of the datasets.

Table 2: Best fit lines on Covtype and Mushroom (left to right)
z c q1 q2

1 3 · 10−2 0.44 0.54
2 4 · 10−3 0.42 0.52
3 6 · 10−4 0.44 0.51
4 1 · 10−4 0.44 0.51

z c q1 q2

1 1 ·10−1 0.48 0.51
2 8 ·10−2 0.48 0.51
3 4 ·10−2 0.49 0.50
4 3 ·10−2 0.49 0.50
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Figure 2: Excess risk for center-based clustering on the Covertype dataset. The shaded areas indicate
the maximal and minimal deviation for the respective sample sizes.

Figure 3: Excess risk for center-based clustering on the Mushroom dataset. The shaded areas indicate
the maximal and minimal deviation for the respective sample sizes.

Table 3: Best fit lines on Skin_NonSkin and MNIST (left to right)
z c q1 q2

1 2 · 10−2 0.49 0.50
2 3 · 10−3 0.47 0.52
3 8 · 10−4 0.46 0.53
4 2 · 10−4 0.46 0.53

z c q1 q2

1 1 · 10−1 0.49 0.51
3 5 · 10−2 0.50 0.50
4 3 · 10−2 0.50 0.50
2 8 · 10−02 0.50 0.50
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Figure 4: Excess risk for center-based clustering on the Skin_Nonskin dataset. The shaded areas
indicate the maximal and minimal deviation for the respective sample sizes.

Figure 5: Excess risk for center-based clustering on the MNIST dataset. The shaded areas indicate
the maximal and minimal deviation for the respective sample sizes.
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Figure 6: Excess risk for subspace clustering on the Mushroom dataset. The shaded areas indicate
min/max values

Table 4: Best fit line for subspace clustering on Covtype and Mushroom (left to right)
j z c q1 q2

1 1 0.1 0.45 0.54
1 2 2 · 10−2 0.48 0.51
1 3 3 · 10−4 0.46 0.53
1 4 4 · 10−5 0.46 0.52
2 1 8 · 10−2 0.48 0.51
2 2 2 · 10−3 0.47 0.51
2 3 4 · 10−5 0.46 0.53
2 4 2 · 10−6 0.46 0.52
5 1 8 · 10−3 0.48 0.51
5 2 5 · 10−5 0.46 0.53
5 3 4 · 10−7 0.47 0.52
5 4 3 · 10−9 0.47 0.51

j z c q1 q2

1 1 1 · 10−1 0.48 0.51
1 2 1 · 10−1 0.48 0.51
1 5 1 · 10−1 0.49 0.49
2 1 7 · 10−2 0.48 0.51
2 2 6 · 10−2 0.50 0.49
2 5 6 · 10−2 0.49 0.48
3 1 4 · 10−2 0.49 0.50
3 2 3 · 10−2 0.49 0.50
3 5 3 · 10−2 0.49 0.49
4 1 2 · 10−2 0.49 0.50
4 2 2 · 10−2 0.49 0.50
4 5 1 · 10−2 0.48 0.50
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Figure 7: Excess risk for subspace clustering on the Skin_Nonskin dataset. The shaded areas indicate
min/max values
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Table 5: Best fit line for subspace clustering on Skin-Nonskin
j z c q1 q2

1 1 1 · 10−2 0.48 0.50
1 2 3 · 10−3 0.45 0.53
2 1 2 · 10−3 0.46 0.53
2 2 2 · 10−4 0.46 0.53
3 1 4 · 10−4 0.46 0.53
3 2 2 · 10−5 0.46 0.53
4 1 9 · 10−5 0.46 0.53
4 2 3 · 10−6 0.46 0.53
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