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Abstract

While the Large Language Models (LLMs)001
dominate a majority of language understand-002
ing tasks, previous work shows that some of003
these results are supported by modeling biases004
of training datasets. Authors commonly assess005
model robustness by evaluating their models on006
out-of-distribution (OOD) datasets of the same007
task, but these datasets might share the biases008
of the training dataset.009

We introduce a framework for finer-grained010
analysis of discovered model biases and mea-011
sure the significance of some previously-012
reported biases while uncovering several new013
ones. The bias-level metric allows us to as-014
sess how well different pre-trained models and015
state-of-the-art debiasing methods mitigate the016
identified biases in Question Answering (QA)017
and compare their results to a resampling base-018
line. We find cases where bias mitigation hurts019
OOD performance and, on the contrary, when020
bias enlargement corresponds to improvements021
in OOD, suggesting that some biases are shared022
among QA datasets and motivating future work023
to refine the analyses of LLMs’ robustness.024

1 Introduction025

Unsupervised pre-training objectives (Devlin et al.,026

2018; Radford and Narasimhan, 2018) allow Large027

Language Models (LLMs) to reach close-to-human028

accuracy on complex downstream tasks such as029

Natural Language Inference, Sentiment Analysis,030

or Question Answering. However, previous work031

shows that these outstanding results can partially be032

attributed to models’ reliance on non-representative033

patterns in training data shared with the test set,034

such as the high lexical intersection of the entailed035

hypothesis to premise (Tu et al., 2020) in Natural036

Language Inference (NLI) or of the question and037

the answering passage in the context (Shinoda et al.,038

2021) in Question Answering (QA).039

We jointly refer to these phenomena with a040

term of bias; dataset biases, i.e. largely-valid, yet041

Figure 1: We quantify model bias using bootstrapped
evaluation on segments of data separated by exploit-
ing chosen bias (left) and subsequently, by measuring
the difference in model’s performance over these two
groups (right), that we refer to as Bias significance (§3).

non-representative predictive patterns present in 042

the training set are commonly fingerprinted in the 043

model during the training, creating a model bias. 044

Arguably, a major motivation for eliminating 045

models’ biases is to enhance their robustness in 046

practical deployments, avoiding a decrease in qual- 047

ity when responding the open-ended user requests. 048

A common approach for estimating model robust- 049

ness is to assess its prediction quality on sam- 050

ples from other, out-of-distribution (OOD) datasets 051

(Clark et al., 2019a; Karimi Mahabadi et al., 2020; 052

Utama et al., 2020b; Xiong et al., 2021). While 053

such estimates provide information on model ro- 054

bustness under a specific domain shift, the OOD 055

datasets might share some of the training, in- 056

distribution (ID) biases, conditioned, for instance, 057

by data collection methodology or human annota- 058

tors’ background (Mehrabi et al., 2021), conversely 059

allowing to reach higher OOD performance by 060

modeling shared bias. Additionally, using only the 061

OOD evaluation, the robustness of the model to the 062

adversarial samples exploiting specific biases re- 063

mains hidden, leaving their practical deployments 064

vulnerable to systematic errors. 065

1



Our work addresses this gap, presenting a frame-066

work to quantify model bias by comparing models’067

performance on data segments split on an attribute068

exploiting the bias. We apply this methodology069

to measure the biases of selected commonly-used070

LLMs for extractive QA. We report on the signif-071

icance of several previously identified biases and072

some new ones that we identify as significant. Fi-073

nally, we assess the efficiency of the state-of-the-074

art debiasing methods and a resampling baseline075

in eliminating these biases and evaluate the signifi-076

cance of model bias and its OOD performance.077

We find that the relation between model bias and078

OOD performance is not straightforward; While079

the debiasing methods can largely mitigate the ad-080

dressed model bias, often such-debiased models do081

not reach gains in the model’s OOD performance.082

Conversely, a magnification of bias can correspond083

to large OOD gains. Our findings suggest that084

many biases might be shared among the datasets085

and motivate the presented practice of assessing086

robustness not only by OOD performance but also087

from the perspective of specific, known biases.088

This paper is structured as follows. Section 2089

overviews data biases observed in NLP datasets, re-090

cent debiasing methods, and the previous methods091

related to measuring bias significance. Section 3092

presents our method for measuring the significance093

of specific biases. We follow in Section 4 with094

details on our evaluation setup, including the tested095

debiasing methods, addressed biases, and the de-096

sign of specific heuristics that exploit them. Subse-097

quently, in Section 5, we measure and report mod-098

els’ robustness to biases and OOD datasets before099

and after applying the selected debiasing methods100

and wrap up our observations in Sections 6 and 7.101

2 Background102

Biases of NLP datasets Previous work analyzed103

erroneous subsets of LLMs’ test sets and identified104

numerous false presumptions that LLMs use in105

prediction and can be misused to notoriously draw106

wrong predictions with the model.107

In Natural Language Inference (NLI), where the108

task is to decide whether a pair of sentences entail109

one another, McCoy et al. (2019) identifies LLMs’110

reliance on a lexical overlap and on specific shared111

syntactic units such as the constituents in the pro-112

cessed sentence pair. Poliak et al. (2018) show that113

the NLI model might even learn to ignore the text114

of the premise and draw conclusions solely on the115

hypothesis. Asael et al. (2021) identify model’s 116

sensitivity to meaning-invariant structure permuta- 117

tions. Similarly, Chaves and Richter (2021) iden- 118

tify BERT’s reliance on invariant morpho-syntactic 119

composition of the input. 120

In the extractive Question Answering task, iden- 121

tifying an answer to a given question in the given 122

context, LLMs often rely on mutual positional 123

information of the question and possible answer 124

words. Jia and Liang (2017a) show that QA mod- 125

els learn to rely on the proximity of the answer to 126

the words shared between the question and context. 127

Bartolo et al. (2020) find that instead of learning to 128

reason the answer, models tend to identify the ques- 129

tion keywords and look for the passages containing 130

similar keywords, remaining vulnerable to samples 131

with none or multiple occurrences of the keywords 132

in the context. Ko et al. (2020) demonstrate models’ 133

inclination to give answers using only the first two 134

sentences of the context, being statistically most 135

likely to answer human-created questions. 136

A perspective direction circumventing the biases 137

conditioned by data collection is presented in adver- 138

sarial data collection (Jia and Liang, 2017a; Bartolo 139

et al., 2020) where the annotators collect the dataset 140

with the intention of fooling the possibly-biased 141

model, possibly enhancing the model-in-the-loop 142

in several iterations. Still, some doubts remain; for 143

instance, Kaushik et al. (2021) find that models 144

trained on adversarial data work better on adversar- 145

ial datasets but underperform in a wider variety of 146

OOD datasets. Such behavior suggests that adver- 147

sarial collection might bring its own set of biases, 148

of which some were already identified in the QA 149

domain (Kovatchev et al., 2022). 150

Debiasing methods Other works address the doc- 151

umented biases of the NLP model through debi- 152

asing methods, mitigating one or more biases of 153

LLMs. Karimi Mahabadi et al. (2020) and He et al. 154

(2019) obtain the debiased model by (i) training 155

a biased model, that exploits the unwanted bias, 156

followed by (ii) training the debiased model as a 157

complement to the biased one, as an application 158

of the model-agnostic Product-of-Experts (PoE) 159

framework (Hinton, 2002). Clark et al. (2019a) ex- 160

tend this framework in the LearnedMixin method, 161

learning to weigh the contribution of the biased 162

and debiased model in the complementary ensem- 163

ble. Moving away from addressing a single bias, 164

Niu and Zhang (2021) simulates the model for non- 165

biased, out-of-distribution dataset through coun- 166
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terfactual reasoning (Niu et al., 2021) and uses167

the resulting distribution in a weighted distillation168

(Hinton et al., 2015), similarly to the LearnedMixin.169

Utama et al. (2020b) and Wu et al. (2020) also omit170

the assumption of the bias’ knowledge and presume171

a representation of bias in the overconfidence of172

the general model.173

In a complement to PoE approaches, other works174

apply model confidence regularization on the sam-175

ples denoted as biased. Feng et al. (2018) and176

Utama et al. (2020a) down-weight the predicted177

probability of the examples marked as biased by178

humans or a biased model. Consistently to our179

experience, Xiong et al. (2021) argue that a more180

precise calibration of the biased model might bring181

further benefits to this framework.182

Measuring model bias Most of the referenced183

work evaluates the acquired robustness on OOD184

datasets, i.e. samples of the same task but col-185

lected independently. In some cases, the evaluation186

utilizes OOD datasets specifically constructed to187

exploit the biases typical for a given task, such188

as HANS (McCoy et al., 2019) for NLI, PAWS189

(Zhang et al., 2019) for Paraphrase Identification,190

or AdversarialQA (Bartolo et al., 2020) for Ques-191

tion Answering, that we also use in evaluations.192

Similar to us, some previous work quantified193

dataset biases by splitting data into the biased and194

non-biased subsets and compared model behav-195

ior between the two groups. McCoy et al. (2019)196

perform such evaluation over the biases of MNLI,197

demonstrating large margins in accuracy over the198

two groups and superior robustness of BERT over199

previous models. Utama et al. (2020b) compares200

model confidence between the two groups. Our201

bias measure elaborates further in this direction,202

providing a statistical assessment of the model per-203

formance polarisation over such groups.204

3 Measuring Bias Significance205

To provide a fair and reliable comparison of differ-206

ent models for their bias, we formalize a technique207

based on a comparison of two segments of data di-208

vided by a heuristic exploiting a chosen bias.1 The209

following steps of the proposed bias assessment210

are also described in Algorithm 1 and visualized in211

Figure 1.212

We begin by (i) implementing a heuristic, i.e.213

a method h : X → R, that for all samples of214

1Implementation of our Bias significance measure will be
available on a GitHub link here.

func measure_bias(Θ, X, h, Th):
Ah ← h(X)

X1 ← x1 ∈ X : Ah(x1) ≤ Th

X2 ← x2 ∈ X : Ah(x2) > Th

foreach X ′
1 ∈ repeat(sample(X1)) do

E1 ← E1 + evaluate(Θ (X ′
1))

foreach X ′
2 ∈ repeat(sample(X1)) do

E2 ← E2 + evaluate(Θ (X ′
2))

dist← max(0; E↓
1 − E↑

2 ; E
↓
2 − E↑

1)

return dist

Algorithm 1: We measure Bias significance
of the model Θ exploited by the heuristic h
on dataset X , as a difference of Θ’s perfor-
mance on two groups (X1 and X2) obtained by
segmenting the samples of X by the attribute
Ah = h(X) on a given threshold Th.
We bootstrap both evaluations, (samples =
800, trials = 100, and obtain two sets of
measurements (E1 and E2), of which we sub-
tract the upper and lower quantiles E↑ and E↓

(q↑ = 0.975, q↓ = 0.025) and consider such
distance a significance of the exploited bias.

dataset X computes an attribute Ah that we sus- 215

pise as non-representative, yet predictive for our 216

end task and hence, possibly relied upon by the 217

assessed model. We (ii) evaluate h on a selected 218

evaluation dataset X . (iii) We choose a threshold 219

Th that we use to (iv) split the dataset into two 220

segments by Ah. Finally, (v) we evaluate the as- 221

sessed model Θ on both of these segments, and 222

(vi) measure the Bias significance as the difference 223

in performance between the two groups. Using 224

bootstrapped evaluation, we mitigate the effect of 225

randomness by only comparing selected quantiles 226

of confidence intervals. We propose to perform a 227

hyperparameter search for the heuristic’s thresh- 228

old Th that maximizes the measured distance. 229

Our approach presumes that the performance 230

of the biased model can be significantly polarised 231

by picking samples where a simple heuristically- 232

exploitable attribute does or does not hold. As such, 233

one should note that such measure should not be 234

used in a standalone but rather as a complement to 235

OOD evaluations since the sole bias significance is 236

reduceable merely by lowering the performance on 237

the biased, better-performing subset. Additionally, 238

even though we perform a hyperparameter search 239

for Th feasible for a given size of dataset splits, no 240

guarantees on the maximality of the correspond- 241
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ing polarisation can be obtained. Hence our Bias242

measurement technique only provides the lower243

bounds of the model’s worst-case polarisation.244

4 Experiments245

Our experiments assess the significance of known246

biases of LLMs and the impact of selected alter-247

ations in the training configuration on the scales248

of these biases in the resulting models. Given a249

large body of previous work documenting biases250

of Question Answering models, we specifically251

focus on QA. For all the documented and newly-252

identified biases of QA models, we first describe253

and implement the exploiting heuristics we use to254

measure the Bias significance (§4.1). Subsequently,255

we observe the impact of the selected pre-training256

strategies (§4.2) and of selected debiasing methods257

(§4.3 – §4.4) on the bias significance and OOD258

performance of QA models.259

4.1 Biases and Exploiting Heuristics260

Following is a list of biases of QA models that we261

evaluate in our experiments. While a majority of262

these biases are either introduced or mentioned in263

the previous work, we further extend this list using264

our empirical experience with two novel biases that265

we later assess as significant. The biases introduced266

in this work are preceded with +.267

Together with each bias, we also briefly describe268

its exploiting heuristic computing the possibly-269

predictive bias attribute Ah (Algorithm 1).270

Distance of Question words from Answer words271

(word-dist) Jia and Liang (2017a) propose that272

the models are prone to return answers close to the273

vocabulary of the question in context. The corre-274

sponding heuristic computes how close the closest275

question word is to the first answer in the context276

and computes the distance (Ah) as a number of277

words between the closest question word and the278

answer span.279

Similar words between Question and Context280

(sim-word) Shinoda et al. (2021) report the com-281

mon occurrence of a high lexical overlap between282

the question and the correct answer over QA283

datasets. In the exploiting heuristic, we represent284

the lexical overlap by the number of shared words285

between the question and the context. Both are286

defined as sets, and the intersection of these two287

sets is computed as the heuristic’s evaluation (Ah).288

Answer position in Context (ans-pos) Ko et al. 289

(2020) report that the models trained on SQuAD 290

(Rajpurkar et al., 2016) are biased by the relative 291

position of the answer as a consequence of the over- 292

representations of the samples with answers in the 293

first sentence. Our exploiting heuristic segments 294

the context into sentences first, identifies the sen- 295

tence containing the first answer, and yields a scalar 296

representing the ordering of the sentence within the 297

context that contains the answer (Ah). 298

Cosine similarity of TF-IDF representations be- 299

tween Context and Question (cos-sim) (Clark 300

et al., 2019a) use the TF-IDF similarity as a bi- 301

ased model for QA, implicitly identifying a bias 302

in undesired reliance of the model on the match of 303

the keywords between the question and retrieved 304

answer. We exploit this bias in the correspond- 305

ing heuristic by fitting the TF-IDF model on all 306

SQuAD contexts, used to infer the TF-IDF vectors 307

of questions and their corresponding answers, re- 308

turning the scalar (Ah) as cosine similarity between 309

the TF-IDF vectors of question and answer. 310

Answer length (ans-len) Bartolo et al. (2020) 311

show that by presenting QA models trained on 312

SQuAD with samples of significantly higher an- 313

swer lengths, the QA models yield correct spans 314

much less frequently. This observation implicitly 315

identifies models’ reliance on the irrelevant pre- 316

sumption that the answer must comprise at most 317

a few words. We exploit this bias by simply com- 318

puting Ah as the length of the answer. In the cases 319

where multiple, diverse answers are considered 320

valid, we average their lengths. 321

+Number of Answer’s named entities in Context 322

(sim-ents) Based on our observations, we suspect 323

that the in-context presence of multiple named en- 324

tities of the same type, such as multiple personal 325

names or locations, might impact the QA model’s 326

prediction quality. This might suggest that models 327

tend to reduce the QA task to a simpler yet not fully 328

relevant problem of Named Entity Recognition. To 329

exploit such bias, we utilize a pre-trained BERT 330

model provided within SPACY library (Honnibal 331

and Montani, 2017) to identify named entities in 332

specific answers and contexts. If no entity resides 333

within the question, we return Ah = 0; otherwise, 334

we count Ah as the number of named entities of 335

the same type as in the question in the context. If 336

the question contains multiple entities of a different 337

type, we return the maximum over all types. 338
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+Position of Question’s subject to the correct339

Answer in Context (subj-pos) Our observations340

suggest that the position of the question’s subject341

in the context impacts the predicted answer spans342

of QA models. In the corresponding heuristic, us-343

ing SPACY library, we identify the subject from344

the question and its position in the context. Then345

we locate the answer in the context and compute346

Ah as a relative position of the answer: either be-347

fore the subject, after the subject, or after multiple348

occurrences of the question subject.349

4.2 Impact of Pre-training350

With no alterations to the traditional approach for351

training LLMs for QA (Devlin et al., 2019), we fine-352

tune a set of diverse pre-trained LLMs, estimating353

the impact of the selection of the pre-trained model354

on the robustness of the final QA model given by355

its Bias significance and OOD performance.356

We alternate between the following models:357

BERT-BASE (Devlin et al., 2019), ROBERTA-358

BASE and ROBERTA-LARGE (Liu et al., 2019)359

and ELECTRA-BASE (Clark et al., 2020). This360

selection allows us to outline the impact of361

the pre-training data volume (BERT-BASE vs.362

ROBERTA-BASE), model size (ROBERTA-BASE363

vs. ROBERTA-LARGE) and pre-training objective364

(BERT-BASE vs. ELECTRA-BASE) on the robust-365

ness of the final QA model.366

4.3 Debiasing Baseline: Resampling (RESAM)367

Based on the heuristics and their tuned configura-368

tion, our baseline method performs simple super-369

sampling of the underrepresented group (X1 or370

X2 in Algorithm 1) until the two groups are rep-371

resented equally. This approach shows the possi-372

bility of bias reduction by simply normalizing the373

distribution of the biased samples in the dataset,374

requiring only the identification of the members375

of the under-represented group. RESAM closely376

follows the routine of Algorithm 1 and splits the377

data by the optimal threshold of the attributes of the378

heuristics corresponding to each addressed bias.379

4.4 Assessed Debiasing Methods380

To assess the efficiency of the current debiasing381

methods in mitigating the addressed biases, we im-382

plement and evaluate the representatives of two383

diverse debiasing methods and measure their im-384

pact on Bias significance and OOD performance,385

following the measurement methodology described386

in Section 3. We follow the reference implementa- 387

tions2 and highlight the significant alterations in the 388

following description. A complete description of 389

our training settings can be found in Appendix A.2. 390

LearnedMixin (LMIX) method introduced by 391

Clark et al. (2019b) is a popular adaptation of 392

Product-of-Experts framework (Hinton, 2002), fol- 393

lowed by diverse refinements (Section 2) and uses 394

a biased model as a complement of the trained debi- 395

ased model in a weighted composition. We use the 396

reference implementation and its parameters with 397

the following alterations. Instead of the BIDAF 398

model, we use BERT-BASE as the trained debiased 399

model. Instead of using a TF-IDF-based bias model 400

custom-tailored for a single bias type, we opt for 401

a universal approach for obtaining biased models 402

(§4.4.1). We also rerun the parameter search and 403

use a different entropy penalty H = 0.4 throughout 404

the experiments. 405

Confidence Regularization (CREG) aims to re- 406

duce the model’s confidence, i.e. the predicted 407

score over samples presumed to be biased. One 408

of the latest instances of this direction is a debias- 409

ing strategy of Utama et al. (2020a), that refines 410

the reduction of the bias from the predicted scores 411

using distillation from the conventional QA teacher 412

model, scaled down by the relative scores of a bi- 413

ased predictor. In our experiments, we consistently 414

use BERT-BASE for both the teacher and bias 415

model. To enable comparability with LMIX, we 416

use identical bias models for both methods (§4.4.1). 417

4.4.1 Bias models 418

The original debiasing implementations utilize bias- 419

specific models for identifying bias; Clark et al. 420

(2019b) use the TF-IDF model as a scalar of pos- 421

sible bias for each QA sample, while Utama et al. 422

(2020a) experiment with a percentage of the shared 423

words and cosine embeddings between word dis- 424

tances, in NLI context. 425

As we scale our experiments to seven different 426

biases, we opt for a universal approach for obtain- 427

ing bias models for both LMIX and CREG and train 428

each bias’ model on a biased segment of the dataset 429

identified using the approach described in Section 3. 430

For all our biased models, we train BERT-BASE 431

architecture from scratch and pick the checkpoint 432

with a maximal difference of the F1-score between 433

2We will make all bias heuristics, biased and debiased
models available for future experiments under a link here.
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the biased and non-biased segment of the validation434

split of SQuAD.435

While our approach scales well over many bi-436

ases, a significant difference between the learned437

bias models and the unsupervised bias models, such438

as TF-IDF, is the scaling of prediction probabilities;439

As the trained bias models become gradually more440

confident on a biased subset, they often reach prob-441

abilities close to 1 for the biased samples. A “per-442

fect” bias model causes problems for both LMIX443

and CREG as such model forces the trained model444

to avoid correct predictions on the biased samples445

completely. We learn to address this problem by446

rescaling bias predictions and tuning the scaling447

interval based on a validation performance of the448

debiased model. Consequently, we scale the bias449

probabilities to ⟨0; 0.2⟩ for LMIX and ⟨0; 0.1⟩ for450

CREG. Further details on training our bias models451

can be found in Appendix A.2.452

5 Results453

Following the methodology introduced in §4, we454

assess the impact of selected training alterations of455

LLMs on Bias significance and OOD performance456

of resulting models.457

5.1 Impact of Pre-training458

Figure 2 compares the Bias significance of the mod-459

els using diverse pre-training data volumes and ob-460

jectives. We observe that the selection of a base461

model results in differences in the significance of462

the fine-tuned model’s bias.463

The results suggest that increased amounts of464

pre-training data of the base models (cf. BERT-465

BASE and others) might mitigate the models’ re-466

liance on the bias. The results are less consistent467

in a comparison of different pre-training objec-468

tives (cf. ROBERTA-BASE and ELECTRA-BASE);469

While ELECTRA is less polarised in 4 out of 7 cases,470

the differences are minimal. The most signifi-471

cant gain presents an increase of the model size472

of ROBERTA-LARGE, reducing average Bias sig-473

nificance by 1.2 points.474

Analogically, Figure 3 compares OOD per-475

formance on selected QA datasets: Adversari-476

alQA (Jia and Liang, 2017b), NaturalQuestions477

(Kwiatkowski et al., 2019) and TriviaQA (Joshi478

et al., 2017). While the relative ranking of the mod-479

els varies between the datasets, the average ranking480

is consistent with the conclusions of Bias signifi-481

cance; increased pre-training data size might also482

help the OOD performance, as well as the increase 483

of the model size. 484

5.2 Impact of Debiasing Methods 485

Figure 4 compares the biases of Question Answer- 486

ing models obtained using three debiasing methods 487

(§4.3 – §4.4), applied to BERT-BASE-CASED. 488

We observe that the methods are not consistent 489

in the efficiency of mitigating the addressed Bias 490

significance, and there is not a single method that 491

is more efficient than the others. While LMix is the 492

only method mitigating word-dist and cos-sim bi- 493

ases below the significance level, it underperforms 494

on subj-pos bias and might even enlarge the bias 495

of the original model, as in the case of sim-ents. 496

In fact, only RESAM baseline consistently lowers 497

the bias of the original model. We attribute in- 498

consistency in the efficiency of debiasing methods 499

to their high sensitivity to properties of the bias 500

models, which we discuss further, in Section 6. 501

Table 1 enumerates the OOD performance of de- 502

biased models over three diverse QA datasets. Sim- 503

ilarly to Bias significance, there is no clear cut-off 504

of the most efficient configuration for any dataset. 505

Interestingly, it is difficult to observe correspon- 506

dence in success in the bias mitigation (Figure 4) 507

to the OOD results. While the most robust model 508

by OOD performance is obtained by addressing 509

word-dist bias using CREG, improving OOD per- 510

formance by 2.8% on average and by 7.5 on Natu- 511

ralQuestions, the Bias significance of such model 512

counterintuitively increases by 1.1 points compared 513

to the standard QA model. Similar situation holds 514

for CREG and sim-word bias, delivering 1.5-point 515

average gain on OOD, but raising bias significance 516

by 0.9 points. However, the inverse scaling of bias 517

significance and OOD performance does not hold 518

for all biases; For instance, addressing subj-pos 519

bias with CREG brings OOD improvement of 2.3% 520

and a decay of Bias significance by 0.8. 521

Addressing some biases, on average, delivers 522

higher OOD gains than others. The most efficient 523

biases to address are word-dist, improving OOD in 524

6 cases, or sim-ents and sim-word in 5 cases, while 525

as the least efficient ones seem ans-len, helping in 2 526

cases or subj-pos in 3 cases. While it is tempting to 527

conclude which biases are shared between SQuAD 528

and OOD datasets from this enumeration, we note 529

that the results are conditioned by the relatively 530

variable efficiency of the debiasing methods over 531

different biases. 532
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Figure 2: Bias significance per pre-trained model. Comparison of Bias significance of QA models trained from
different pre-trained LLMs. Per-group results were measured using bootstrapping of 100 repeats with 800 samples.
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Figure 3: OOD performance per pre-trained model.
Comparison of F1-score of models fine-tuned from se-
lected LLMs, evaluated on listed OOD datasets.

6 Discussion533

Impact of pre-training to models’ robustness534

The bias-level analyses of the QA models fine-535

tuned from diverse pre-trained models (Figure 2)536

suggest that the mere increase of data and model537

parameters does not lead to a complete avoiding538

of non-representative heuristic shortcuts from the539

models’ decision-making but still guides the fine-540

tuned model to lower reliance on biased features541

of the problem. While such ranking holds on aver-542

age, even larger models might not necessarily be543

more resistant to specific biases, such as in the case544

of ROBERTA-LARGE and ELECTRA-BASE and545

the most-significant bias of Answer length. We546

speculate that even larger volumes of data might547

make the model more attracted to taking the short-548

cut through easier problem formulations, such as549

through Named entity recognition (cf. BERT-550

BASE and ROBERTA-BASE on sim-ents bias).551

Out-of-distribution results seem to aggregate this 552

property more strictly. Figure 3 shows minimal dif- 553

ferences in the ranking of the fine-tuned models 554

over different OOD datasets. Subsequently, im- 555

provements in the average follow the suggestive 556

bigger-data and bigger-model rules, with the aver- 557

age differences similar to debiasing techniques. 558

Relation of OOD performance and model’s bias 559

Most of the previous work on debiasing LLMs 560

demonstrates the efficiency of debiasing by im- 561

provements on a chosen OOD dataset (§2). While 562

such evaluations are valuable for possible appli- 563

cations within the evaluation domain, our results 564

suggest that often such OOD improvements might 565

not be attributed to the bias elimination; we find 566

cases where a bias polarises the debiased model’s 567

performance even more than the original model, 568

but the model improves OOD performance both in 569

average and on specific datasets (§5.2). 570

We argue that increases in both Bias significance 571

and OOD performance might be attributed either 572

to the bias being shared between the training and 573

evaluation dataset or to the existence of the inverse 574

bias within the evaluated OOD dataset, where the 575

dataset can be heuristically exploited by follow- 576

ing the inverse rule to the rule valid in the train- 577

ing dataset. Such a situation appears viable in the 578

context of the adversarial data collection of Adver- 579

sarialQA, where the samples are collected with an 580

explicit aim to mislead the SQuAD QA model. 581

Limited conclusions can be drawn in the cases 582

where the OOD performance does not improve; 583

Even in cases of reduced Bias significance, the 584

model’s performance can be corrupted as a side- 585

product of the debiasing process. While we can not 586

7



ans-len word-dist cos-sim sim-ents sim-word subj-pos ans-pos average
Bias type

0

2

4

6

8

10

12

Bi
as

 si
gn

ifi
ca

nc
e

12.5

8.6

2.6 2.5

1 1

0

4

6.9 6.7

2
1.6

0.2 0 0

2.5

6.4

0 0

2.9

0.7

4.4

0

2

11.2

9.7

2.4 2.4
1.9

0.2 0

4

Comparison of Bias significance between debiasing methods
Debiasing method

None
ReSam
LMix
CReg
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applied in debiasing BERT-BASE model. Per-group evaluations were measured using bootstrapping of 100 repeats
with 800 samples.

reject that the bias elimination caused the decay of587

the performance on a given OOD dataset, implying588

that the bias is shared, we instead propose to evalu-589

ate the biases of the model trained directly on such590

OOD dataset, if permitted by its size.591

Practical aspects of applying debiasing methods592

Even though we confirm that debiasing methods593

enable improvements in the OOD performance of594

LLMs, we find that the significance of such im-595

provements largely varies between the addressed596

biases and that the suitable configuration for one597

bias and dataset pair is often suboptimal for others.598

The scope of this variance can be seen in Table 1599

from the comparison of average OOD performance600

of LMIX and CREG addressing word-dist, used to601

pick methods’ hyperparameters and bias models602

(Appendix A.2), to other biases; Both of the meth-603

ods perform best on the bias used in parameter604

tuning, and the differences are often large. Bias-605

specific parameter tuning is further convoluted by606

the speed of the convergence of debiasing methods,607

which we measure as approximately 4 times slower608

for CREG and 8 times slower for LMIX, compared609

to the standard fine-tuning of QA models.610

The bias model is an important parameter of both611

assessed debiasing approaches. We find that the612

scores have to be rescaled for highly confident bias613

models to avoid perplexing the debiased models on614

biased samples and that the optimal scaling param-615

eter is also bias-specific. The selection of the bias616

model also affects the optimal Entropy scaling H617

of LMIX; we find that the reported optimal value618

for AdversarialQA (H = 2.0) is also not close to619

optimal (H = 0.4) with our bias model.620

Table 1: OOD performance of debiasing methods.
Differences of F1-scores of QA models trained on
SQuAD using specified debiasing methods (§4.4) to
address biases overviewed in §4.1 and evaluated on
a selection of OOD datasets; AdversarialQA / Natu-
ralQuestions / TriviaQA, respectively. The largest gains
per dataset are in bold.

Original model: 29.8 / 67.8 / 46.1
ReSam LMix CReg

ans-len −0.8 / −5.6 / −1.7 −12.2 / −24.3 / −2.3 −0.4 / +5.5 / +2.1
word-dist+0.5 / +1.3 / +0.0 − 5.0 / − 3.4 / +7.3 +1.4 / +7.5 / −0.5
cos-sim −0.1 / +0.3 / −1.3 −16.0 / −28.9 / −4.2 −0.3 / +7.4 / +1.1
sim-ents +1.1 / +1.5 / +0.3 − 8.7 / −19.5 / −0.2 −1.0 / +5.9 / +2.0
sim-word +0.3 / +0.1 / +0.4 −15.0 / −34.6 / −8.1 −0.7 / +3.9 / +1.4
subj-pos −1.6 / −0.7 / −2.2 −16.2 / −32.3 / −7.1 +0.0 / +5.1 / +1.6

Average −0.45 −12.82 +2.33

7 Conclusion 621

This paper analyses the relationship between the 622

model’s prediction bias and out-of-distribution per- 623

formance, commonly used to assess the robustness 624

of LLMs. We build a simple framework to quantify 625

models’ prediction bias and analyze the impact of 626

different pre-training and denoising strategies in 627

addressing a diverse set of documented and newly- 628

found biases of QA models. 629

We find empirical evidence for our initial hypoth- 630

esis that bias mitigation does not always correspond 631

to enhancements of the model’s OOD performance, 632

suggesting that many of the inspected biases are 633

shared between ID and OOD datasets. Our results 634

strive to motivate future research enhancing the 635

robustness of LLMs to more detailed assessments 636

of bias alterations that may allow future work to 637

evade false conclusions on the covariates of mod- 638

els’ robustness, fostering steady progress toward 639

more reliable deployments of LLMs. 640
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A.1 Standard Fine-tuning 857
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parameters: learning rate: 2e-5, batch size: 16, 859

10

http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.1145/3457607
https://doi.org/10.1145/3457607
https://doi.org/10.1145/3457607
https://doi.org/10.1109/CVPR46437.2021.01251
https://doi.org/10.1109/CVPR46437.2021.01251
https://doi.org/10.1109/CVPR46437.2021.01251
https://proceedings.neurips.cc/paper/2021/file/878d5691c824ee2aaf770f7d36c151d6-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/878d5691c824ee2aaf770f7d36c151d6-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/878d5691c824ee2aaf770f7d36c151d6-Paper.pdf
https://doi.org/10.18653/v1/S18-2023
https://doi.org/10.18653/v1/S18-2023
https://doi.org/10.18653/v1/S18-2023
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://aclanthology.org/2021.mrqa-1.6.pdf
https://aclanthology.org/2021.mrqa-1.6.pdf
https://aclanthology.org/2021.mrqa-1.6.pdf
https://aclanthology.org/2021.mrqa-1.6.pdf
https://aclanthology.org/2021.mrqa-1.6.pdf
https://doi.org/10.18653/v1/2022.acl-demo.26
https://doi.org/10.18653/v1/2022.acl-demo.26
https://doi.org/10.18653/v1/2022.acl-demo.26
https://doi.org/10.1162/tacl_a_00335
https://doi.org/10.1162/tacl_a_00335
https://doi.org/10.1162/tacl_a_00335
https://doi.org/10.18653/v1/2020.acl-main.770
https://doi.org/10.18653/v1/2020.acl-main.770
https://doi.org/10.18653/v1/2020.acl-main.770
https://doi.org/10.18653/v1/2020.acl-main.770
https://doi.org/10.18653/v1/2020.acl-main.770
https://doi.org/10.18653/v1/2020.emnlp-main.613
https://doi.org/10.18653/v1/2020.emnlp-main.613
https://doi.org/10.18653/v1/2020.emnlp-main.613
https://aclanthology.org/2020.emnlp-demos.6.pdf
https://aclanthology.org/2020.emnlp-demos.6.pdf
https://aclanthology.org/2020.emnlp-demos.6.pdf
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.findings-emnlp.74
https://doi.org/10.18653/v1/2020.findings-emnlp.74
https://doi.org/10.18653/v1/2020.findings-emnlp.74
https://openreview.net/forum?id=4azYdmhHCG
https://openreview.net/forum?id=4azYdmhHCG
https://openreview.net/forum?id=4azYdmhHCG
https://doi.org/10.18653/v1/n19-1131
https://doi.org/10.18653/v1/n19-1131
https://doi.org/10.18653/v1/n19-1131


evaluation: each 200 steps and train epochs: 3.860

We also set the early stopping patience to 10 eval-861

uation steps, based on a validation loss of the train-862

ing dataset (SQuAD) also used for selecting the863

evaluated model. The validation loss of the eval-864

uated model is 1.02. All other parameters can be865

retrieved from the defaults of TrainingArguments866

of HuggingFace (Wolf et al., 2020b) in version867

4.19.1.868

A.2 Debiasing Training Experiments869

A.2.1 Bias models870

In the initial phase, we experiment with diverse871

configurations and sizes of bias models, intend-872

ing to maximize the polarization of performance873

on the biased and non-biased subsets. Among dif-874

ferent configurations of model sizes and configu-875

rations, we find that the highest polarisation can876

be reached using BERT-BASE architecture trained877

from scratch. We fix this decision and fix the learn-878

ing rate (4e-5), and a number of steps (88 000) with879

respect to the maximum OOD (AdversarialQA) F-880

score of this model in LMIX addressing word-dist881

bias. Our bias models reach between 18%, and882

59% of accuracy on bias data split while between883

4% and 19% on the non-biased one.884

A.2.2 Baseline debiasing: Resampling885

We train the RESAM analogically to Baseline886

Fine-tuning experiments (§A.1). Compared to887

other debiasing methods, RESAM baseline is non-888

parametric, including no dependence on the bias889

model.890

Even though we find RESAM to be the only891

method mitigating bias significance in all the cases,892

our further analyses show that its enhancements on893

OOD datasets vary among biases. Figure 5 shows894

validation losses from the training on SQuAD re-895

sampled using RESAM by word-dist, while ana-896

logically, Figure 6 shows the losses for sim-ents897

bias. While in the former case, RESAM does not898

stably reach lower loss on OOD datasets, in the899

latter case, validation losses are consistently lower900

between steps 7 000 and 8 000, where the SQuAD901

validation loss used to pick the best-performing902

model plateaus.903

A.2.3 Learned Mixin904

In addition to the implementation and default pa-905

rameters of Clark et al. (2019a), we find that addi-906

tional entropy regularization component H makes907

significant difference in the resulting model eval- 908

uation. Therefore we perform a hyperparame- 909

ter search over the values of H used for QA by 910

Clark et al. (2019a) on word-dist bias, optimizing 911

the OOD performance on AdversarialQA (Bartolo 912

et al., 2020) and eventually fix H = 0.4 over all 913

our experiments. 914

Following the low initial OOD performance 915

of LMIX as compared to the results of Clark 916

et al. (2019a), we further investigate covariates 917

of this result and identify LMIX’s high sensitiv- 918

ity to bias model; while in the original imple- 919

mentation, TF-IDF similarities of question and an- 920

swer segment likely never reach 1.0, our generic 921

bias models reaches 1.0 probability for most of 922

the samples marked as biased. Hence, we in- 923

troduce a parameter of scaling interval ⟨0;x⟩ of 924

bias model’s scores, where we optimize x ∈ 925

⟨0, 2; 0, 4; 0, 5; 0, 6; 0, 7; 0, 8; 0, 9; 0, 95⟩ according 926

to the maximum OOD (AdversarialQA) F-score 927

of the debiased model addressing word-dist bias, 928

fixing optimal x = 0.8 throughout all other experi- 929

ments. All other parameters remain the identical to 930

the standard fine-tuning (§A.1). 931

We implement LMIX using Adaptor library (Šte- 932

fánik et al., 2022) in version 0.1.6. 933

A.2.4 Confidence Regularization 934

While the authors of CREG (Utama et al., 2020a) 935

find benefits in its non-parametricity, we find that 936

CREG also shows high sensitivity to a selection of 937

bias model, guiding us to also rescale the prediction 938

of the bias model in the training distillation process. 939

We use the same methodology to pick the scaling 940

interval ⟨0;x⟩ for CREG as for LMIX and fix x = 941

0.9 as the optimal one. All other parameters remain 942

the identical to the standard fine-tuning (§A.1). 943

We implement CREG using Transformers library 944

(Wolf et al., 2020a) in version 4.19.1. 945

B Exploiting Heuristics Configuration 946

Here we enumerate the optimal thresholds over 947

all pairs of the implemented heuristics, as picked 948

according to BERT-BASE-CASED model. 949

We assess the candidate thresholds among all 950

possible values within the range of the computed 951

values Ah computed over X = SQuADvalid (see 952

Algorithm 1), with steps of 1 for possible values 953

higher than 1 and 0.1 for values between 0 and 954

1, within the valid interval; We set the validity in- 955

terval such that the resulting splits of the dataset 956

must each have a size of at least two times of the 957

11



sample size parameter, except where there is only958

one significant threshold, and its size is larger than959

the sample size. The optimal threshold value is960

then the one that delivers the highest bias signifi-961

cance value. We find and use the following optimal962

thresholds of BERT-BASE-CASED evaluated on963

X = SQuADvalid for specific biases: 7 for word-964

dist, 3 for sim-word, 4 for ans-len, 0.1 for cos-sim,965

0 for sim-ents and 1 for subj-pos.966

The implementations of some biases’ heuristics967

utilize external libraries, for entity recognition, or968

TF-IDF vectorization. For these, we used SPACY969

in version 3.4.1 and NLTK in version 3.4.1.970

C Experimental Environment971

Our experiments utilized a single NVidia A100972

GPU with 80 GB of VRAM, a single CPU core, and973

less than 32 GB of RAM. However, all our experi-974

ments can be run using a lower compute configura-975

tion, given a longer compute time; The inference976

of a single-sample prediction batch of ROBERTA-977

LARGE as our largest model requires only 13 GB978

of VRAM. The debiasing training runs take longer979

to converge, as compared to standard fine-tuning;980

While the conventional training and RESAM con-981

verges within 10 000 steps (Figures 5 and 6) we find982

that LMIX requires between 60 000 and 100 000983

steps, and CREG needs between 20 000 and 30 000984

steps to converge, making the debiasing training985

4–8 times slower in average. In our training con-986

figuration, each of the reported training runs takes987

between 50 minutes and 1 hour per 10 000 updates.988

Given that our evaluation already aggregates the989

bootstrapped results, we perform a single run for990

each experiment, which might result in a wider con-991

fidence interval and consistently smaller measured992

volumes of Bias significance.993
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Figure 5: Development of validation loss of RESAM addressing word-dist bias (darker plots) and standard fine-
tuning (lighter plots) for Question Answering on SQuAD, also evaluated on other (OOD) datasets, for the first
10 000 steps.

Figure 6: Development of validation loss of RESAM addressing sim-ents bias (darker plots) and standard fine-tuning
(lighter plots) for Question Answering on SQuAD, also evaluated on other (OOD) datasets, for the first 10 000 steps.
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