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Abstract
Atomic Layer Deposition (ALD) is a commonly employed process for producing
conformal nanoscale coatings in the microelectronics and energy materials indus-
tries. ALD processes are composed of cycles of sequential self-limiting chemical
reactions followed by purges with an inert gas to produce atomically thin coatings.
At the end of each cycle, the Growth Per Cycle (GPC) which corresponds to net
mass or thickness change from the previous ALD cycle is determined. Optimizing
ALD processes for stable and uniform GPC for a new combination of reactants
is challenging as the optimal combination of gas timings, temperature, and gas
partial pressures spans a large multidimensional space and in-situ characterization
is typically performed with a limited number of mass sensors. In this work, we use
Targeted Adaptive Design (TAD), a Gaussian Process (GP)-based probabilistic
machine learning framework that aims at efficiently and autonomously locating
control parameters that would yield a desired target within specified tolerance, to
optimize simulated ALD processes.

1 Introduction
Atomic Layer Deposition (ALD) [1] is a thin-film deposition technique that employs a cyclical pro-
cess of alternating precursor exposures and purging steps, enabling self-limiting chemical reactions
that deposit one atomic layer per cycle, providing precise control over film thickness and composi-
tion. In this work, we consider ALD processes that involve two chemicals, precursor 1 and precursor
2 that reacts cyclically with the surface of a substrate in a sequential and non-overlapping manner.
Each cycle is composed of four sequences: a dose period t1, during which the substrate is exposed to
precursor 1; a purge period t2, during which there is no precursor exposure; a dose period t3, during
which the substrate is exposed to precursor 2; and a final purge period t4, during which there is no
precursor exposure. At the end of each cycle, the GPC which corresponds to net mass or thickness
change from the preceding ALD cycle is determined. In [5], the authors employed a simple physics
model to simulate ALD and proposed three optimization methods- Bayesian Oprimization (BO)
[6] with Expected Improvement [4], Random Optimization (RO) and Expert Systems Optimization
(ESO) leveraging expert knowledge- to find timings (t1, t2, t3, t4) that would yield Growth Per Cy-
cle (GPC) saturation in minimum time. In this work, we use Targeted Adaptive Design (TAD) [2],
a Gaussian Process (GP)-based method for efficiently and autonomously locating control parame-
ters that yield a target feature within specified tolerances, to optimize ALD processes. We employ
the physics model from [5] as a simulator and compare the performance of TAD to the methods
proposed in that paper.

2 Overview of Targeted Adaptive Design
We start by giving a comprehensive overview of TAD which is a recently proposed algorithm for lo-
cating control parameters in a D-dimensional input space X ⊂ RD that would yield a target feature
ftarget in a E-dimensional output space Y ⊂ RE within specified tolerance, while simultaneously
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learning the unknown mapping f : X 7→ Y . The mapping f is only attainable through noisy mea-
surements g = f(x) + ϵ, where x ≡ {xk ∈ X : k = 1, . . . , N} and ϵ is a zero-mean Gaussian
noise vector. TAD is an iterative method with similarities to BO, optimizing an acquisition function
at each iteration to propose new candidate solutions.

2.1 Problem setup
TAD begins by defining three sets which it will update throughout its iterations: a set x1 of N1

points in X with associated noisy observations of f g1 ≡ f(x1) + ϵ1, a set x2 of N2 points in
X associated with latent observations g2 ≡ f(x2) + ϵ2, and a point x ∈ X that corresponds to
the initial target candidate solution. Additionally, TAD defines a Targeted Tolerance Region (TTR)
ηi ≡ [ftargeti − τi, ftargeti + τi], i = 1, . . . , E, where ftargeti is the ith component of the target
vector ftargeti and τi is a tolerance threshold for ftargeti . A vector-valued GP prior is assumed on f
i.e f ≡ N (µ(.), C(., .)) with µ and C corresponding respectively the mean and covariance vectors
of the GP. The GP is trained on the observations (x1, g1) and is used to predict the distributions of
g2|g1 and of f(x)|g1, g2. In particular, we have

g2|g1 ∼ N
(
p(2|1),Q(2|1)

)
(1)

p(2|1) ≡ µ2 +K21 (K11 +Σ1)
−1

(g1 − µ1) (2)

Q(2|1) ≡ K22 +Σ2 −K21 (K11 +Σ1)
−1

K12. (3)
and

f(x)|(g1, g2) ∼ N
{
p(f(x)|1+2),Q(f(x)|1+2)

}
(4)

p(f(x)|1+2) ≡ µ(x) + [Kx1 Kx2]

[
K11 +Σ1 K12

K21 K22 +Σ2

]−1 [
g1 − µ1

g2 − µ2

]
(5)

Q(f(x)|1+2) ≡ Kxx − [Kx1 Kx2]

[
K11 +Σ1 K12

K21 K22 +Σ2

]−1 [
K1x

K2x

]
. (6)

where µ1 ≡ µ(x1), µ2 ≡ µ(x2), Kxx ≡ C(x, x), Kx1 = KT
1x ≡ C(x,x1), Kx2 = KT

2x ≡
C(x,x2), K11 ≡ C(x1,x1), K22 ≡ C(x2,x2), K12 = KT

21 ≡ C(x1,x2), Σ1 is the noise
covariance matrix associated to ϵ1, and Σ2 is the noise covariance matrix associated to ϵ2. The
acquisition function is then constructed using these distributions.

2.2 Acquisition Function: Expected Log-Probability Density
TAD proposes a new acquisition function that computes the log-predictive probability density
(LPPD) of the target design ftarget at the point x, conditioned on observations (g1, g2). By Equation
4 and the standard formula for multivariate normal probability density, this is

LP (x,x1, g1,x2, g2) = −1

2
log detQ(f(x)|1+2)

− 1

2

(
ftarget − p(f(x)|1+2)

)T (
Q(f(x)|1+2)

)−1 (
ftarget − p(f(x)|1+2)

)
, (7)

up to a constant. However, in this expression the mean p(f(x)|1+2) is dependent on the latent values
g2 that are yet to be acquired. To obtain the TAD acquisition function, the expectation of the LPPD
with respect to the predictive distribution g2|g1 is calculated to obtain

LTAD(x,x1, g1,x2) ≡ Eg2|g1
{LP(x,x1, g1,x2, g2)} . (8)

The TAD acquisition function LTAD(x,x1, g1,x2) of Equation 8 has the following closed form:

LTAD(x,x1, g1,x2) = −1

2
log detQ(f(x)|1+2)−

1

2

(
fT − p(f(x)|1)

)T (
Q(f(x)|1+2)

)−1 (
fT − p(f(x)|1)

)
− 1

2
Trace

{(
Kx2 −Kx1 (K11 +Σ1)

−1
K12

)(
Q(2|1)

)−1

×
(
K2x −K21 (K11 +Σ1)

−1
K1x

)(
Q(f(x)|1+2)

)−1
}
. (9)
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TAD then defines two stopping rules: convergence/success, which occurs when a solution with
uncertainties that fit within the TTR is found, and convergence/failure, which occurs when the search
space is exhausted without finding such a solution (based on information theory). TAD iterates until
one of these stopping conditions is met or the computational budget is reached. TAD thus offers an
efficient search (with the x2 points) at the cost of more function evaluations. A detailed discussion of
the properties of this acquisition function, including its incorporation of the exploration/exploitation
trade-off, as well as numerical simulations and comparisons with existing methods, can be found in
[2].

3 Optimization of Atomic Layer Deposition (ALD):
The authors in [5] developed a physics-based model surrogate for ALD processes, which they sample
with varying levels of noise. They then propose three different optimization methods, Bayesian
Optimization with Expected Improvement (BO/EI) as an acquisition function, Random Optimization
(RO) and Expert Systems Optimization (ESO) to find dose and purge timings that would yield GPC
saturation in minimum time.
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(a) TAD vs BO/EI, RO and ESO.
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(b) TAD normalized GPC for all the different runs.

Figure 1: Comparison between our approach and current GP-based approaches

Prior to running the BO algorithm, an initial set of 10 observations is sampled using a Latin-
hypercube design of experiments (LH-DOE) [3] to provide a representative starting point for the
GP surrogate model. The objective function for BO/EI and RO is defined as a combination Ctotal

of four cost functions C1, C2, C3 and C4. C1 focuses on minimizing the sum of the dose and purge
timings relative to the sum of the maximum allowed time for each sequence. C2 aims at reducing the
divergence of the average GPC over multiple cycles from a reference GPC of a stable ALD process.
C3 aims at controlling the difference in GPC between an ALD process and one resulting from per-
turbed timings while C4 does the same n comparison to the initial GPC. The three different methods
were run over 40 iterations for 10 different initializations of the physics model. We reproduce their
experiments for the Al2O3 system at 200oC and a noise value of 0.1. Figure 1a shows the mean and
95% confidence intervals of the normalized GPC ĥ across these runs with respect to the number of
ALD cycles (each iteration consists of 21 ALD cycles). BO/EI and RO produced timings that would
yield desirable GPC but also explored values that led to excessive GPC during optimization. ESO,
on the other hand, while reliable, suffered from overly conservative precursor dose times. Note that
the variability during the first 210 ALD cycles for BO/EI is due to the LH-DOE sampling.
We now add TAD to the optimization strategies. We define the unknown function f to be
f(t1, t2, t3, t4) = (Ctotal, ĥ), with Ctotal and ĥ defined above, resulting in a 2-dimensional out-
put space. We then set ftarget = (0.4, 1.) where 0.4 is a conservative value derived from the ESO
and ĥtarget = 1 ensures the normalized GPC remains stable around 1 during the optimization. We
initialize the candidate solution to (t1, t2, t3, t4) = (1, 1, 1, 1) and x2 is initialized as in [2]. Fi-
nally, we set the tolerance for the TTR to be 10% across both output space dimensions. Since the
GPC is dependent from previous ALD cycles, one needs to be conservative about the number N2

of x2 points to be acquired at each TAD iteration. Furthermore, the number of ALD cycles per
TAD iteration is N2 times more the number of ALD cycles per BO/EI iteration. To avoid having a
prohibitive number of ALD cycles, we set N2 = 1. We also run TAD for 10 different initializations
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of the physics model and an observation noise level of 0.1. The initial (x1, g1) observations for the
initial GP fitting are also constructed using the same LH-DOE procedure as before. If TAD reaches
convergence/success, only the successful candidate solution is acquired after the last iteration. For
each initialization, TAD successfully found a solution within the prescribed tolerance in 14 to 21
iterations (i.e. between 4 to 11 iterations after the 10 initial LH-DOE steps) corresponding to 357 to
651 total ALD cycles, as illustrated in Figure 1. Furthermore, the normalized GPC remained stable
across the 10 different runs. Note that Figure 1a shows TAD results for the smallest number of
iterations across the 10 different initializations while Figure 1b shows TAD normalized GPC values
for each of the runs over each corresponding number of iterations.

For illustration purposes, we show uptake curves which are commonly used graphical represen-
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Figure 2: The solid lines correspond to TAD uptake curves while the reference uptake curves for
noise level 0.1 are represented by the dashed lines.

tations of the growth or deposition rate of material as a function of the precursor exposure time or
dose. Uptake curves are obtained by varying one timing and fixing all the others at values result-
ing in saturation. Figure 2 shows uptake curves from one of the TAD runs (solid lines) superposed
with reference uptakes curves for a noise level of 0.1. TAD saturated slightly above the reference
horizontal line y = 1 with saturation speed similar to the reference growth.

4 Discussion and future work:
We applied TAD, a recently developed batch iterative algorithm for locating control parameters
that yield a target design, to the optimization of ALD. We compared TAD to existing optimization
methods for ALD, including Bayesian optimization with expected improvement and have shown the
effectiveness of our method in terms of the number of ALD cycles required for convergence and the
stability of the normalized growth per cycle during optimization. In order to avoid a large number
of ALD cycles per TAD iterations, we used a conservative number of points to be acquired at each
TAD iteration, and aim to relax this constraint in the future by modifying the objective function
and refining the function sampler require fewer ALD cycles per evaluation. Furthermore, we plan
to analyze the effect of lower noise levels on TAD. In fact, in the zero-noise limit, the covariance
matrices Q(f(x)|1+2) can become ill-posed especially in the presence of redundant x2 points. The
authors in [2] proved that matrix has a finite limit when the noise goes to zero and it would be
interesting to diagnose how TAD is affected in this case and compare with the other three methods
presented here.
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