Proceedings of Machine Learning Research — nnn:1-20, 2025 Full Paper — MIDL 2025

Scaling Supervision for Free: Leveraging Universal
Segmentation Model for Enhanced Medical Image Diagnosis

Yingtai Lil? LIYINGTAI@MAIL.USTC.EDU.CN
Shuai Ming?

Haoran Lail*?

Fenghe Tang'?

Wei Wei?

S Kevin Zhou' 2% S.KEVIN.ZHOU@QGMAIL.COM
L School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science
and Technology of China (USTC), Hefei Anhui, 230026, China

2 Center for Medical Imaging, Robotics, Analytic Computing € Learning (MIRACLE), Suzhou In-
stitute for Advance Research, USTC, Suzhou Jiangsu, 215123, China

3 The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, USTC, Hefei,
Anhui, 230001, China

4 State Key Laboratory of Precision and Intelligent Chemistry, USTC, Hefei, Anhui 230026, China
> Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS),
Institute of Computing Technology, CAS, Beijing, 100190, China

Editors: Accepted for publication at MIDL 2025

Abstract

Deep learning-based medical image analysis has been constrained by the limited avail-
ability of large-scale annotated data. While recent advances in large language models have
enabled scaling automatic extraction of diagnostic labels from reports, we propose that
scaling other form of supervision could be an equally important yet unexplored direction.
Inspired by the success of foundation models, we leverage modern universal segmentation
model to scale anatomical segmentation as an additional supervision signal during train-
ing. Through extensive experiments on three large-scale CT datasets totaling 58K+ vol-
umes, we demonstrate that incorporating this “free” anatomical supervision consistently
improves the performance of various mainstream architectures (ResNet, ViT, and Swin
Transformer) by up to 12.74%, with particularly significant gains for Transformer-based
models and anatomically-localized abnormalities, while maintaining inference efficiency as
the segmentation branch is only used during training. This work opens up a new scaling di-
rection for medical imaging and demonstrates how existing universal segmentation models
can be repurposed to enhance diagnostic models at virtually no additional cost.
Keywords: supervision scaling, CT diagnosis

1. Introduction

Precise computer-aided diagnosis (CAD) is one of the main goals of medical image analysis.
In the deep learning era, building performant medical image diagnosis systems usually
involves curating large-scale datasets paired with diagnostic labels. Scaling paired data
with automatically extracted labels has greatly enlarged the scale of available datasets in
the past few years (Hamamci et al., 2024; Draelos et al., 2021; Irvin et al., 2019; Wang et al.,
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2017; Cid et al., 2024), which pave the way for the development of many successful models
(Li et al., 2018; Liu et al., 2019; Hamamci et al., 2024; Kim et al., 2021; Pham et al., 2021;
Yan et al., 2018; Van Sonsbeek et al., 2023). While scaling data is a common technique to
improve model performance, it faces unique challenges in medical contexts - certain diseases
have fixed occurrence rates, which fundamentally limits our ability to obtain more training
samples (James et al., 2018; Mitani and Haneuse, 2020). This constraint has led researchers
to explore alternative approaches for improving model performance.

Scaling supervision, rather than just scaling data, has emerged as a promising direction.
Recent work has demonstrated several successful approaches to this end. For example,
concept bottleneck models (Koh et al., 2020; Tan et al., 2025; Gao et al., 2024) explicitly
learn interpretable intermediate “concepts” that can enhance both performance and model
interpretability. The success of these approaches shows that incorporating additional forms
of supervision can be as valuable as increasing dataset size in improving model performance,
which also leads to more explainable models.

( Radiology Report )

“Right thyroid lobe sizes increased. .....Mild scoliosis with left opening is observed in the thoracic
region.", Calcific atheromatous plaques in coronary arteries. Slight increase in heart size. Several
reactive-looking lymph nodes in the mediastinal area. Minimal bronchiectatic changes and mild
peribronchial thickness increases. Sequelae of fibrotic densities in both lungs.
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Figure 1: Our approach parallels using natural language processing algorithms to automate
label extraction from medical reports, offering a cost-effective way to scale data,
and takes an orthogonal direction to scale the type of supervision.

In this work, we propose localization information such as anatomical segmentation as
another valuable direction for supervision scaling. Localization information is crucial for
diagnosis, as it provides spatial context for lesions and enhances explainability. The success
of introducing localization information to CAD systems has been validated by a wide range
of research works and prize winning competition practices (Li et al., 2018; Liu et al., 2019;
Lin et al., 2023; Ardila et al., 2019; Cao et al., 2023; Wang et al., 2024; Jiménez-Sanchez
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et al., 2018). This can be provided through various forms such as bounding boxes (Li et al.,
2018; Irvin et al., 2019; Nguyen et al., 2022), detected landmarks (Lin et al., 2023), segmen-
tation masks (Rudie et al., 2024), and signed distance maps (Zheng et al., 2024), in either
one-stage or two-stage pipelines (Lin et al., 2023; Wang et al., 2024; Cao et al., 2023; Ardila
et al., 2019). While traditional approaches require manual annotation of localization infor-
mation, which is prohibitively expensive given the expertise required, we explore whether
modern segmentation models can automatically provide this valuable supervision signal.

Our approach draws inspiration from recent developments in automated label gener-
ation. In particular, the evolution of extracting diagnostic labels from medical reports
provides an interesting parallel. Initially, this process relied on manually designed tem-
plates and rule-based natural language processing (NLP) methods (Draelos et al., 2021;
Wang et al., 2017; Irvin et al., 2019). It then progressed to supervised approaches using
deep learning models such as BERT (Devlin, 2018) to extract labels (Hamamci et al., 2024;
Bustos et al., 2020), and most recently to more efficient methods using large language mod-
els (LLMs) (Park et al., 2024). This progression shows how automated approaches can
effectively scale diagnostic label while reducing manual effort. Despite the limitation of
NLP algorithms and the imperfect quality of medical reports, many successful models have
been trained with dataset constructed from mining free-text reports and shown promising
results in more serious validation and clinical practice (Cid et al., 2024).

We foresee a similar opportunity with anatomical segmentation. Medical image segmen-
tation has been extensively studied for decades, with modern models achieving remarkable
performance across various anatomies, especially for the CT modality. While other forms
of localization information such as bounding boxes, landmarks, or distance maps can be
valuable, their development lags behind, with no universal model readily available, univer-
sal segmentation models trained on large-scale datasets (Wasserthal et al., 2023; Li et al.,
2024; Ma et al., 2024; Zhao et al., 2024; Ren et al., 2024) are readily available. We hereby
ask: Similar to how NLP models now automate report label extraction, can universal seg-
mentation model provide valuable supervision signals to boost the performance of medical
image analysis models?

To answer this question, we conduct extensive experiments. Using three large-scale CT
datasets (Hamamci et al., 2024; Draelos et al., 2021; Rudie et al., 2024) totaling around
60,000 volumes, we generate segmentation masks using TotalSegmentator (Wasserthal et al.,
2023; Isensee et al., 2021) and evaluate how adding automatically generated segmentation
supervision impact the performance of various mainstream vision backbones (ResNet (He
et al., 2016), ViT (Dosovitskiy, 2020), and Swin Transformer (Liu et al., 2021)). We use
video variants (Liu et al., 2022; Fan et al., 2021; Tran et al., 2018) of these models provided
by torchvision offical implementation. To isolate the effect of adding segmentation super-
vision, we keep our approach as simple as possible - using only a linear layer for pixel-level
classification at the lowest resolution feature maps, followed by upsampling to the original
image size for loss computation.

Our experiments demonstrate that these automatically generated segmentation masks
provide significant performance improvements without requiring additional manual anno-
tations, especially for Transformer-based models and abnormalities with fixed anatomi-
cal locations. We hope that our findings can facilitate the development of more accu-
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rate and explainable medical image analysis systems. Code will be available at https:
//github.com/SigmalDC/AutoSeg-Scale-Supervision.
In summary, we introduce the following contributions:

e We propose anatomical segmentation as a new direction for scaling supervision in med-
ical image analysis, demonstrating that automatically generated anatomical masks can
provide effective auxiliary supervision without any additional manual annotation cost

e We conduct comprehensive empirical analysis using three large-scale CT datasets
(58K+ volumes) across multiple anatomical regions, providing strong empirical evi-
dence that scaling supervision consistently improves diagnostic across multiple main-
stream architectures, with particularly significant gains for Transformer-based models

e We introduce a simple yet effective approach for incorporating segmentation supervi-
sion that requires no architectural changes and adds zero inference overhead, making
it readily applicable to existing medical image analysis pipelines

2. Methods

2.1. Automatic segmentation mask generation

We use TotalSegmentator (Wasserthal et al., 2023; Isensee et al., 2021) to generate segmen-
tation masks for all CT volumes in our experiments. TotalSegmentator is a deep-learning
based segmentation model that can segment over 100 anatomical structures from CT vol-
umes. The model is a suite of nnUNet (Isensee et al., 2021) models trained on a large
dataset of manually annotated CT scans and has shown robust performance across differ-
ent scanners and protocols.

For preprocessing, we first resample all CT volumes to a common spacing of 1.5mm x
1.5mm X 3.0mm using a trilinear interpolation and stick to this spacing for training diagno-
sis models. The intensity values are clipped to [-1000, 1000] Hounsfield Units. We use the
fast version of TotalSegmentator to accelerate the inference and save memory comsuption.
The segmentation masks are saved as one-channel masks in NIfTI format with the same
dimensions as the input volumes.

2.2. Classification training with segmentation supervision

We incorporate automatically generated segmentation masks as an auxiliary task for train-
ing the classification model. Formally, given an input CT volume z € RT*W>D " our model
fo produces feature maps F = fp(x) € R*Mw*d where h,w,d are the spatial dimensions
of the lowest resolution feature map and c¢ is the number of channels.

Classification branch: We apply global average pooling to get the feature z =
GAP(F') € R¢ for classification, followed by a linear classifier and a normalizing function to
yield the probability:

Dels = U(Wclsz + bcls)~ (1)

For CT-RATE (Hamamoci et al., 2024) and RAD-ChestCT (Draelos et al., 2021) datasets,
which involve only binary multi-label classification, ¢ is a sigmoid function. For RATIC
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Figure 2: We generate segmentation masks using TotalSegmentator offline, and use them
as an auxiliary supervision for training the classification model. For inference,
only the classification branch is needed.

dataset (Rudie et al., 2024), which involves both multi-class and binary classification tasks,
we use softmax for organ-specific injury grades and sigmoid for binary labels. Additionally,
For the “any_injury” label in RATIC dataset, we calculate its probability as:

_ (4)
Pany _injury = 1- H phealthy' (2)

ie{bowel,liver,
spleen kidney,extravasation}

Segmentation branch: To isolate the effect of adding segmentation supervision, we
keep our way of introducing segmentation supervision as simple as possible to show its
effectiveness, which simply add a segmentation head consisting of a linear layer (1x1x1
convolution) followed by trilinear upsampling to the original image size for loss computation:

Pseg = Upsample(Weg F' + bgeg ) - (3)

The total loss varies by dataset. For binary multi-label tasks (CT-RATE and RAD-
ChestCT):
L= »Ccls,l + ﬁseg- (4)

For RATIC, which includes multiple classification objectives::
L= ['cls,l + Ecls,2 + Aﬁany,injury + ﬁsega (5)

where Lgs 1 and Lany injury 1S binary cross entropy (BCE) loss for binary multi-label classi-
fication and Lgs 2 is the cross entropy (CE) loss for multi-class classification, Lgeg is the CE
loss for segmentation, and A is a weighting factor. While we use CE loss for segmentation
in our main experiments, our preliminary experiments suggest that using Dice loss or a
combination of Dice and CE loss could achieve similar performance improvements.



L1 MING LAl TANG WEI ZHOU

As TotalSegmentator predicts 128 different anatomies, predicting all these structures
is computationally expensive and unnecessary. For CT-RATE and RAD-ChestCT, we use
segmentation mask of the 5 lung lobes and the heart. For RATIC, we use segmentation mask
of the evaluated organs: liver, spleen, left kidney, right kidney, and bowel (representing a
combination of esophagus, stomach, and duodenum, small bowel, and colon).

3. Experiments

3.1. Datasets and implementation details

Datasets: We evaluate our method on three large-scale CT datasets: CT-RATE (Hamamci
et al., 2024), RAD-ChestCT (Draelos et al., 2021), and RATIC (Rudie et al., 2024).

CT-RATE (Hamamci et al., 2024) consists of 25,692 chest CT scans from 21,304 unique
patients, expanded to 50,188 through various reconstructions. The dataset is enriched
with 18 distinct abnormalities extracted from radiology reports. CT-RATE features diverse
pathologies related to heart and lung conditions, with C'T scans acquired from multiple man-
ufacturers using various imaging parameters, ensuring representation of real-world clinical
heterogeneity.

RAD-ChestCT (Draelos et al., 2021) comprises 36,316 non-contrast chest CT volumes
from Duke University Health System (2012-2017). The dataset contains 83 abnormality
labels in total. Currently, only 10% (3,630 volumes) is publicly available, and we utilize
these public volumes with the official split of 2,646 training and 984 test volumes, focusing
on 16 classes that overlap with CT-RATE.

RATIC (Rudie et al., 2024) (RSNA Abdominal Traumatic Injury CT) is the largest
publicly available adult abdominal trauma CT dataset, containing 4,274 studies from 23
institutions across 14 countries. We use the publicly available training set of 3,147 studies
(4,711 image series), randomly split into 2,500 training and 647 test cases.

Implementation details: All CT volumes are resampled to a common spacing of
1.5mm x 1.bmm x 3.0mm using trilinear interpolation. The intensity values are clipped
to [-1000, 200] for chest CT and [-150, 250] for abdomen CT, then normalized to [-1, 1].
Volumes are first padded/cropped to 240x240x120 or 256 X256 x 192 voxels, then randomly
cropped during training to 192x192x96 or 176x192x160 voxels. For evaluation we center
crop the CT volume to 192x192x96 or 176x192x160 voxels.

For CT-RATE and RAD-ChestCT, we use equal weights for positive and negative sam-
ples. For RATIC, the sample weights are as follows: 1 for all healthy labels; 2 for low grade
solid organ injuries (liver, spleen, kidney) and bowel injuries; 4 for high grade solid organ
injuries; and 6 for extravasation and the auto-generated any_injury label. As the successive
multiplication of the pany injury results in large gradients, we set the weight of Lany injury to
0.1 to stabilize gradients. The weights for segmentation loss are set to 1 for all tasks and
models.

We use the AdamW optimizer with a cosine learning rate scheduler. More implementa-
tion details can be found in Appendix A.

3.2. Classification from scratch

We evaluate the effectiveness of segmentation supervision for different vision backbones.
For each backbone, we compare performance with and without segmentation supervision.
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Table 1: Classification performance (AUC-ROC %) comparison with and without segmen-
tation supervision. Results are shown for models with and without pretrained
weights initialization. Numbers in parentheses show absolute improvement from
adding segmentation supervision.

CT-RATE RAD-ChestCT RATIC
w/o seg w/ seg w/o seg w/ seg w/o seg w/ seg

Without Pretrained Weights

ResNet | 83.84 8545 (+1.61) | 72.93  74.77 (+1.84) | 72.36  79.75 (+7.39)
MVIiT | 80.87 82.94 (+2.07) | 69.54  72.40 (+2.86) | 65.18  77.92 (+12.74)
Swin3D | 80.22  83.07 (+2.85) | 68.85 72.99 (+4.14) | 65.39  74.68 (+9.29)

With Pretrained Weights

ResNet | 84.83  85.64 (+0.81) | 74.81  75.93 (+1.12) | 8256  84.51 (+1.95)
MVIiT | 8213  84.36 (+2.23) | 72.01  73.90 (+1.89) | 70.91  81.92 (+11.01)
Swin3D | 8230  85.58 (+3.28) | 72.32  75.01 (+2.69) | 70.88  80.55 (+9.67)

Model

The results in Table 1 demonstrate that adding segmentation supervision consistently
improves classification performance across all backbones and datasets. The improvement
ranges from 0.81% to 12.74% in terms of AUC-ROC, with larger gains observed on Transformer-
based models and relatively smaller datasets, which may hint more supervision is especially
useful for training Transformer-based models, possibly due to their data-hungry nature and
the challenge of learning effective attention patterns from limited samples.

Furthermore, we observe that, for the abnormalities strongly correlated with specific
anatomical regions, our method exhibits larger improvements, suggesting that the anatom-
ical knowledge from segmentation is particularly helpful for these categories. A comprehen-
sive results of all categories with more metrics are provided in Appendix B.

3.3. Classification with pretrained weights

Leveraging pretrained weights as initialization is widely adopted practice in medical image
analysis, as they can provide a good starting point for the training of a model, especially
when the scale of data and annotation is limited. To validate the practical value of adding
segmentation as an auxiliary supervision signal, we also evaluate the performance of the
classification model with pretrained weights as initialization. The improvements remain
substantial even with pretrained weights, indicating that segmentation supervision provides
unique benefits beyond what is captured in pretraining.

3.4. Analysis of training dynamics

We track the gradient norm of the models across training iterations and the correspond-
ing training loss, the results are shown in Figure 3. We observe the gradient gradually
increase during the training process, while the curvature remains relatively stable, and the
training loss experience an accelerated decrease. This phenomenon, combined with dete-
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Figure 3: Training dynamics comparison between resnet3D with and without segmentation
supervision. The bold line represents time weighted average. A more flat minima
is observed with segmentation supervision.

riorating test performance, suggests the model is converging towards sharp minima in the
loss landscape. In contrast, models trained with segmentation supervision exhibit more
stable gradient and smoother loss curves throughout training. The additional supervision
appears to guide optimization towards flatter minima, which are generally associated with
better generalization (Goodfellow, 2016). We hypothesize that the anatomical knowledge
provided by segmentation supervision helps constrain the solution space, steering the model
towards parameters that capture meaningful anatomical relationships rather than spurious
correlations.

3.5. Ablation of segmentation weighting factor

We investigate the effect of varying loss weighting factors for segmentation supervision,
with results presented in Table 2. The macro AUC remains relatively stable across different
weighting factors. However, we observe that specific weighting factors influence performance
differently across individual categories, the detailed results are provided in Appendix C.

Table 2: Impact of loss weighting factor on classification performance (AUC-ROC %).
Segmentation Weighting Factor ‘ 0.0 0.1 1.0 5.0 10.0

Swin3D (RATIC) | 70.88 7270 80.55 79.15 80.81




SCALE SUPERVISION THROUGH AUTOSEG

3.6. Impact of imperfect segmentation masks

To evaluate robustness to imperfect segmentation, we simulate common segmentation errors
by applying controlled erosion/dilation operations to the segmentation boundaries. These
operations mimic typical failure modes in automated segmentation. Our analysis reveals
that the proposed method maintains stable performance under light to moderate boundary
perturbations. The detailed results are provided in Appendix C.

3.7. Ablation on anatomy sensitivity

Our main experiments utilize segmentation of liver, kidney, spleen, and bowel—anatomies
directly related to the target abnormalities. To assess anatomical specificity, we conduct
additional experiments using segmentation of individual organs. Results show that liver
and spleen segmentation alone yield minimal improvements, while kidney and bowel seg-
mentation provide substantial gains.

Table 3: Impact of different anatomical segmentations on performance (AUC-ROC %).

Model RATIC
No segmentation Liver only Kidney only Spleen only Bowel only All organs
Swin3D ‘ 70.88 69.15 76.15 71.17 79.60 80.55

4. Limitations

Despite consistent improvements across datasets and models, our approach has several lim-
itations. First, it depends on the availability of robust universal segmentation models for
the target modality. While such models exist for CT and increasingly for MRI, they are
less developed for other imaging modalities like ultrasound or nuclear medicine, limiting im-
mediate cross-modality applicability. Second, our findings indicate that not all anatomical
segmentations contribute equally to performance improvements. The boundary conditions
that determine when and how anatomical supervision proves beneficial require further in-
vestigation to fully characterize the method’s scope and optimal application scenarios.

5. Conclusion and discussion

In this work, we demonstrate that segmentation masks automatically generated by modern
universal segmentation models can serve as effective auxiliary supervision signals for train-
ing CT diagnosis models. Our comprehensive experiments across three large-scale datasets
show consistent performance improvements across different architectures and tasks, partic-
ularly for Transformer architectures and abnormalities with strong anatomical correlations.
The challenge of obtaining high-quality supervision has long been a bottleneck in medi-
cal image analysis, where expert annotation is both expensive and time-consuming. Our
approach offers a practical solution by leveraging existing universal segmentation models
to provide “free” anatomical supervision. This parallels the successful use of natural lan-
guage processing to automate diagnostic label extraction from medical reports, suggesting a
broader paradigm of repurposing mature Al models to scale supervision in medical imaging.
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Appendix A. More implementation details
A.1. Class used in RAD-ChestCT dataset
We list the class used in RAD-ChestCT dataset in Table 4.

Table 4: Class used in RAD-ChestCT Dataset

Class
1. cathether_or_port 2. lymphadenopathy 3. spetal_thickening
4. hernia 5. nodule 6. pericardial_effusion
7. scarring 8. bronchial_wall_thickening 9. opacities
10. emphysema 11. cardiomegaly 12. pleural_effusion
13. bronchiectasis 14. consolidation
15. atelectasis 16. calcification

A.2. Data preprocessing details

We list the data preprocessing details in Table 5. Different intensity clipping ranges and crop
sizes are applied to chest and abdomen CT scans. A larger crop size is used for abdomen
CT, as we observed that the abdomen CT scans in the RATIC dataset typically had larger
dimensions compared to the chest CT scans in the CT-RATE and RAD-ChestCT datasets.
This size difference likely stems from the fact that many abdomen CT scans in the dataset
actually encompass full-body scans.

Table 5: Data Preprocessing Details

Step Details

Resampling 1.5mm x 1.5mm x 3.0mm (trilinear interpolation)
Intensity Clipping [-1000, 200] HU chest CT; [-150, 250] HU abdomen CT
Normalization min-max normalization to [-1, 1]

Pad_or_Crop 240%x240x120 chest CT; 256x256x192 abdomen CT
Training Crop Size 192x192x96 chest CT; 176x192x160 abdomen CT
Evaluation Crop Center crop to same dimensions as training

A.3. Training configuration

The training configuration parameters are summarized in Table 6. The base learning rates
are selected from the range of le-4 to le-5. We observe that Transformer-based models
typically require lower learning rates, possibly due to their larger parameter count. The
batch sizes are determined based on GPU memory constraints.

A.4. Model architecture details

The model architecture specifications are detailed in Table 7. We use the implementa-
tion and pretrained weights of these models from the official torchvision repository, the
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Table 6: Training Configuration

Parameter Value
Optimizer AdamW
Base Learning Rate le-4 (ResNet/MVIiT chest CT)

5e-5 (Swin chest CT)
le-5 (MViT/Swin RATIC)

Weight Decay le-4
LR Schedule Cosine decay
Batch Size Chest CT:
10 (ResNet)
6 (Swin)
4 (MViT)
Abdomen CT:
5 (ResNet)
2 (Swin, MViT)
Training Epochs 20 (CT-RATE)
100 (RAD-ChestCT/RATIC)
Loss Functions BCE with Logits Loss (binary)
Cross Entropy Loss (multi-class)
Gradient Clipping Maximum norm of 5.0

pretrained weights are trained on the Kinetics-400 dataset. We modify the patch embed-
ding layer (or stem layer) of these models to 1-channel, and do not use the corresponding
pretrained weights for these layers. This is because the pretrained weights are trained on
RGB videos, which has 3 channels, and our CT scans are single-channel. For models with
positional encoding, we modify the positional encoding to match the input size.

Table 7: Model Architecture Details

Model Modifications

ResNet e Modified R3D-18 input layer to single-channel 3D convolution
(kernel=2x2x2, stride=2)

Swin e Modified Swin3D-T with custom patch embedding (patch_size=16x2x2,
in_channels=1, embed_dim=96)

MViT e Custom 3D projection layer (kernel=16x2x2, stride=16x2x2)

e Modified MViT-v2-S with adjusted positional encoding (spa-
tial_size=96x96, temporal_size=6)

A.5. Evaluation metrics

We adopt the Area Under the Receiver Operating Characteristic curve (AUC-ROC) as our
primary evaluation metric, supplemented by additional metrics to ensure comprehensive
performance assessment. The optimal threshold is selected based on the ROC-based optimal
threshold, and we use this threshold to calculate all metrics.
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Table 8: Performance Metrics (%) Comparison: Models With and Without Segmentation
Supervision. Numbers in parentheses show absolute improvement from adding
segmentation supervision.

. CT-RATE RAD-ChestCT RATIC
Model Metric
w/o seg w/ seg w/o seg w/ seg w/o seg w/ seg
Without Pretrained Weights
AUC 83.84 85.45 (+1.61) 72.93 T4.77 (+1.84) 72.36 79.75 (+7.39)
Sens 78.49  80.03 (+1.54) 69.05 70.44 (+1.39) 67.87 74.52 (+6.65)
ResNet | Spec | 78.17  78.83 (+0.66) | 78.77  73.09 (-5.68) | 70.35  75.04 (+4.69)
F1 79.77  80.64 (+0.87) | 75.71 75.14 (-0.57) 82.40 84.46 (42.06)
Prec 43.58  45.47 (+1.89) 43.56 40.40 (-3.16) 45.35 46.85 (41.50)
AUC 80.87  82.94 (42.07) 69.54 72.40 (+2.86) 65.18 77.92 (+12.74)
Sens 75.98 7855 (+2.57) | 67.40  68.04 (+0.64) | 63.43  74.79 (+11.36)
MViT | Spec 74.98 7557 (+0.59) | 67.60  71.00 (+3.40) | 66.42 73.85 (+7.43)
F1 7723 T8AT (+1.24) | 7164  73.85 (+2.21) | 85.00  80.05 (-4.95)
Prec 40.03  41.84 (+1.81) 36.04  39.05 (+3.01) 42.38 45.64 (43.26)
AUC | 80.22  83.07 (+2.85) | 68.85  72.99 (+4.14) | 65.39  74.68 (+9.29)
Sens 75.20 77.37 (+2.17) 66.18  69.98 (+3.80) 63.11 72.29 (+9.18)
Swin3D | Spec 74.66  76.77 (+2.11) | 67.16 7047 (+3.31) | 64.33  72.33 (+8.00)
F1 77.00  79.00 (+1.91) | 70.37  73.20 (+2.92) | 81.27  78.87 (-2.40)
Prec 39.14 4253 (+3.39) | 34.75  38.96 (+4.21) | 41.16 44.39 (+3.23)
With Pretrained Weights
AUC | 84.83  85.64 (+0.81) | 74.81  75.93 (+1.12) | 8256  84.51 (+1.95)
Sens 78.88 80.12 (+1.24) 70.28 69.96 (-0.32) 74.67 78.31 (+3.64)
ResNet | Spec 77.52 79.73 (+2.21) 75.48 72.43 (-3.05) 80.59 80.11 (-0.48)
F1 80.07 8105 (+0.98) | 76.76  74.45 (-2.31) | 81.64  86.04 (+4.40)
Prec 44.37  46.08 (+1.71) 41.81 41.55 (-0.26) 46.51 50.10 (+3.59)
AUC 82.13 84.36 (+2.23) 72.01 73.90 (+1.89) 70.91 81.92 (+11.01)
Sens 76.82  78.38 (+1.56) | 67.71  69.66 (+1.95) | 67.55 77.49 (4+9.94)
MViT | Spec | 76.59 77.81 (+1.22) | 71.76  70.63 (-1.13) | 69.14  77.28 (+8.14)
F1 78.54 79.84 (+1.30) 73.60 73.33 (-0.27) 79.25 83.75 (+4.50)
Prec 41.91 4386 (+1.95) | 38.11  39.38 (+1.27) | 43.03  47.04 (+3.91)
AUC 82.30  85.58 (+3.28) | 72.32  75.01 (+2.69) | 70.88 80.55 (+9.67)
Sens 76.62  79.92 (+3.30) | 67.60  70.15 (+2.55) | 66.78  75.56 (+8.78)
Swin3D | Spec | 76.80  79.48 (+2.68) | 70.00  71.40 (+1.40) | 68.84  76.34 (+7.50)
F1 78.71  81.14 (4+2.43) | 72.65  74.67 (+2.02) | 80.62 82.63 (42.01)
Prec 41.58  45.96 (+4.38) 37.51 39.91 (+2.40) 42.57 47.16 (4+4.59)
Note: AUC = Area Under ROC Curve, Sens = Sensitivity, Spec = Specificity, Prec = Precision.

metrics are macro-averaged across classes.

Appendix B. Detailed results

All

We provide results with more metrics in Table 8. We also provide the results with all 18
abnormality categories in CT-RATE dataset in Table 10, the 16 abnormality categories in
RAD-ChestCT dataset in Table 11, and the 14 abnormality categories in RATIC dataset

in Table 12.
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Table 9: Sensitivity and specificity comparison with and without segmentation pretraining
on CT-RATE dataset. Detailed results with all 18 abnormality categories.

Model Metric | CT-RATE

ode ¢ TAWC ATL BRE CDM CON CAC EMP HH IST LN LOP LAP MM MAP PBT PCE PLE PFS AVG

R Sens | 87.43 70.13 7818 89.23 87.26 87.45 66.67 73.86 8474 G61.65 78.04 65.65 76.68 83.79 78.87 80.08 9441 68.71 78.49
Spec | 84.07 7L11 76.67 8556 8$0.30 80.83 73.56 73.27 79.79 69.73 78.87 7356 80.08 79.18 70.49 83.97 93.00 72.92 78.17

R4S Sens | 90.08 70.55 7243 90.15 87.44 86.93 7550 80.10 87.95 67.89 76.01 66.42 79.87 8410 7437 80.53 9468 6414 80.03
Spec | 84.35 7554 7176 8530 83.08 8276 75.98 7620 78.17 64.24 80.27 7378 S$7.13 7T7.60 76.42 8838 9448 63.45 78.83

R4P Sens | 86.62 72.23 70.91 88.00 87.09 89.94 77.50 73.14 87.15 67.74 7508 7110 79.55 7620 7747 80.53 93.09 66.43 78.88
Spec | 8550 73.99 70.80 87.25 79.82 86.54 68.51 77.19 79.39 63.05 78.28 6858 8144 80.73 70.19 79.95 93.73 70.33 77.52

Rapog|Sens |8985 7377 6070 9L70 86.06 8042 7350 75.06 8755 70.24 784G 6933 8275 SL&2 8085 BL86 9415 G6.07 80.12
Spec | 85.36 73.73 75.86 87.21 79.66 86.59 76.51 79.06 7821 66.15 79.89 7467 8474 8414 76.60 S7.53 9561 63.63 79.73

Table 10: Classification performance (AUC-ROC %) comparison with and without segmen-
tation pretraining on CT-RATE dataset. Detailed results with all 18 abnormality

categories.
Model \ CT-RATE
ode ‘ AWC ATL BRE CDM CON CAC EMP HH IST LN LOP LAP MM MAP PBT PCE PLE PFS AVG
R 90.1 77.3  79.2 943 883 883 802 793 87.8 681 86.3 76.8 87.1 89.8 809 89.2 97.3 689 83.84
R+ S 923 793 799 94.7 899 919 812 834 88.0 699 8.8 788 894 89.6 821 919 972 7T1.8 8545
R+P 93.0 793 785 925 899 934 799 83.0 879 69.8 8.4 774 895 87.8 81.6 89.0 973 7TL8 84.83

R+P+S| 931 796 80.9 945 903 9036 799 859 87.8 69.2 862 777 913 884 825 913 971 725 85.64

Note: Model variants: R (ResNet), R + S (ResNet+seg), R + P (ResNet+pretrain), R + P + S
(ResNet+pretrain+seg).
Abbreviations: AWC (Arterial Wall Calc.), ATL (Atelectasis), BRE (Bronchiectasis), CDM (Car-
diomegaly), CON (Consolidation), CAC (Coronary Art. Calc.), EMP (Emphysema), HH (Hiatal Hernia),
IST (Interlobular Sept. Thick.), LN (Lung Nodule), LOP (Lung Opacity), LAP (Lymphadenopathy), MM
(Medical Material), MAP (Mosaic Atten. Pattern), PBT (Peribronchial Thick.), PCE (Pericardial Eff.),
PLE (Pleural Eff.), PFS (Pulm. Fibrotic Seq.).

Table 11: Classification performance (AUC-ROC %) comparison with and without seg-
mentation pretraining on RAD-ChestCT dataset. Detailed results with all 16
abnormality categories.

Model RAD-ChestCT

COP LAP ST HER NOD PCE SCR BWT OPC EMP CDM PLE BRE CON ATL CAL AVG
R 74.12 75.07 8257 65.31 64.40 69.13 64.05 66.25 64.31 80.94 85.34 92.97 74.16 74.27 67.37 67.73 72.93
R+S 84.25 71.14 71.80 63.76 73.55 64.81 59.85 62.92 85.34 87.55 86.32 93.00 77.56 75.76 71.84 72.24 T74.77
R+ P 94.55 67.88 81.12 64.52 67.21 63.16 63.51 65.10 62.07 81.19 87.91 92.76 75.63 73.24 69.98 76.89 74.81
R+P+S|9146 7570 86.07 7241 69.60 72.28 65.71 60.63 62.33 85.89 87.81 93.30 73.48 7432 67.68 76.16 75.93

Note: Model variants: R (ResNet), R + S (ResNet+seg), R + P (ResNet+pretrain), R + P + S
(ResNet+pretrain+seg).

Abbreviations: COP (Cathether or Port), LAP (Lymphadenopathy), ST (Septal Thickening), HER (Her-
nia), NOD (Nodule), PCE (Pericardial Effusion), SCR (Scarring), BWT (Bronchial Wall Thickening), OPC
(Opacities), EMP (Emphysema), CDM (Cardiomegaly), PLE (Pleural Effusion), BRE (Bronchiectasis),
CON (Consolidation), ATL (Atelectasis), CAL (Calcification).

17



L1 MING LAl TANG WEI ZHOU

Table 12: Classification performance (AUC-ROC %) comparison with and without segmen-
tation pretraining on RATIC dataset. Detailed results with all 14 abnormality

categories.
Model ‘ RATIC
‘ Al BH BI EH El KH KHI KL LH LHI LL SH SHI SL AVG
R 72.0 69.3 69.3 65.0 65.0 74.1 76.2 69.2 734 845 694 757 809 69.0 72.36
R+S 774 841 84.1 686 68.6 84.6 82.1 865 Tr.0 926 71.0 80.7 88.7 704 79.75
R+ P 80.8 823 823 734 734 888 875 873 783 89.6 742 86.1 91.3 80.3 82.56

R+S+P|788 932 932 764 764 91.8 89.7 81.7 79.0 944 73.6 854 90.3 79.8 84.51

Note: Model variants: R (ResNet), R + S (ResNet+seg), R + P (ResNet+pretrain), R + P + S
(ResNet+pretrain+seg).

Abbreviations: AI (Any injury), BH (Bowel healthy), BI (Bowel injury), EH (Extravasation healthy), EI
(Extravasation injury), KH (Kidney healthy), KHI (Kidney high), KL (Kidney low), LH (Liver healthy),
LHI (Liver high), LL (Liver low), SH (Spleen healthy), SHI (Spleen high), SL (Spleen low).

Appendix C. More ablation results
C.1. Ablation on segmentation weighting factor

In Table 13, we show the classification performance with different segmentation weighting
factors on RATIC dataset. We observe that the performance is relatively stable with a wide
range of segmentation weighting factors, while different segmentation weighting factors may
favor different abnormality categories.

Table 13: Classification performance (AUC-ROC %) with different segmentation weighting
factors on RATIC dataset. Detailed results with all 14 abnormality categories.

] RATIC

Weights

‘ AT BH BI EH EI KH KHI KL LH LHI LL SH  SHI SL  AVG
0 70.40 73.25 73.25 62.23 62.23 69.57 7249 67.45 70.81 7592 68.69 68.36 70.88 65.53 70.88
0.1 71.69 83.94 83.94 7041 70.41 70.78 69.94 69.33 69.08 79.70 65.09 72.35 7235 68.91 72.70
1.0 77.34 84.61 84.61 71.52 71.52 82.80 86.62 81.48 78.92 96.57 73.07 78.86 85.00 71.26 80.55
5.0 77.11 83.64 83.64 7547 7547 81.96 83.07 81.64 73.05 88.62 68.28 79.65 8598 70.55 79.15
10.0 78.26 84.44 84.44 7425 74.25 86.88 85.33 88.04 76.81 91.39 71.49 7891 86.35 70.53 80.81

Abbreviations: AI (Any injury), BH (Bowel healthy), BI (Bowel injury), EH (Extravasation healthy), EI
(Extravasation injury), KH (Kidney healthy), KHI (Kidney high), KL (Kidney low), LH (Liver healthy),
LHI (Liver high), LL (Liver low), SH (Spleen healthy), SHI (Spleen high), SL (Spleen low).

C.2. Ablation on impact of imperfect segmentation masks

We conduct experiments on the RATIC dataset to evaluate the impact of imperfect segmen-
tation masks on classification performance, the result is shown in Table 14. A distortion
factor of x means x % of boundary pixels will gone through a erosion/dilation operation.
From the result we conclude that the performance is relatively robust against imperfect seg-
mentation masks. While since segmentation mask is not used during inference, we suspect
a significant failure of segmentation of inference image would not lead to a significant drop
of performance.
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Table 14: Impact of imperfect segmentation masks on classification performance (AUC-

ROC %).
Distortion Factor ‘ 0 10 50
Swin3D (RATIC) ‘ 80.81 80.36 81.30
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