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ABSTRACT

What can we learn from comparing video models to human brains, arguably the
most efficient and effective video processing systems in existence? Our work
takes a step towards answering this question by performing the first large-scale
benchmarking of deep video models on representational alignment to the human
brain, using publicly available models and a recently released video brain imaging
(fMRI) dataset. We disentangle four factors of variation in the models (temporal
modeling, classification task, architecture, and training dataset) that affect align-
ment to the brain, which we measure by conducting Representational Similarity
Analysis across multiple brain regions and model layers. We show that temporal
modeling is key for alignment to brain regions involved in early visual process-
ing, while a relevant classification task is key for alignment to higher-level regions.
Moreover, we identify clear differences between the brain scoring patterns across
layers of CNNs and Transformers, and reveal how training dataset biases transfer
to alignment with functionally selective brain areas. Additionally, we uncover a
negative correlation of computational complexity to brain alignment. Measuring a
total of 99 neural networks and 10 human brains watching videos, we aim to forge
a path that widens our understanding of temporal and semantic video representa-
tions in brains and machines, ideally leading towards more efficient video models
and more mechanistic explanations of processing in the human brain.

1 INTRODUCTION

Humans are extremely efficient in processing the constant streams of visual information they re-
ceive, relying on motion and temporal information on top of visual semantics to understand their
environment (Sekuler et al., 2002). How current state-of-the-art video models compare to that stan-
dard is a question that is often addressed by comparing their performance to human baselines (Zhou
et al., 2018a; Andonian et al., 2020), but is much more under-explored with respect to internal rep-
resentations. Representational alignment was defined in Sucholutsky et al. (2023) as “the extent to
which the internal representations of two or more information processing systems agree”. It is a
cornerstone of cognitive computational neuroscience (Kriegeskorte & Douglas, 2018), a discipline
that aims to identify neural mechanisms underlying cognition by employing task-performing com-
putational models, such as deep neural networks, for hypothesis testing. This has been shown to be
a highly progressive research program yielding novel neuroscientific insights (Doerig et al., 2023).
Identifying model design choices that strongly impact alignment can not only shed light on the un-
derlying brain mechanisms, but also guide machine learning on borrowing brain’s advantages such
as efficiency and robustness, for example using brain-aligned designs as starting points for further
model development (Lu et al., 2024b). Our work aims to fill the gap in exploring the representa-
tional alignment of deep video models to the human brain, joining and increasing understanding of
temporal modeling in brains and machines, and pointing towards more efficient video models.

Human visual information processing has classically been separated into two separate streams, ven-
tral and dorsal (Mishkin et al., 1983). The ventral stream is thought to process more static informa-
tion and the dorsal stream more dynamic information (Kravitz et al., 2011), whereby a motion area
MT (Culham et al., 2001) has also been identified. More recent work found evidence for a third vi-
sual pathway specializing in dynamic social perception (Pitcher & Ungerleider, 2021; Küçük et al.,
2024). Another organizing principle that has been identified in human visual processing is a hier-
archy of temporal receptive fields, with temporal integration extending over longer time-scales in
higher compared to lower visual areas (Hasson et al., 2008; Zhou et al., 2018b; Groen et al., 2022;
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Figure 1: Overview of our pipeline for benchmarking video models on brain representational align-
ment. We systematically compare 99 neural networks across 4 factors of variation on their alignment
with fine-grained brain regions measured with Representational Similarity Analysis.

Brands et al., 2024). These neuroscience findings collectively suggest the presence of specialized
mechanisms for motion and temporal information processing in the human brain.

In video AI, specifically machine learning, temporal information is usually modeled as a third input
dimension, using mechanisms such as 3D convolutions (Tran et al., 2015; Carreira & Zisserman,
2017); however there are only limited similarities with processing in the brain, as the effective
temporal receptive fields in these networks usually stay constant throughout processing layers. Older
models handling RGB images and optical flow as separate streams (Simonyan & Zisserman, 2014)
bear some resemblance to dual-stream processing in the brain, but most successful designs fall far
from direct comparison (Feichtenhofer et al., 2019; Lin et al., 2019). Recent papers focus on video
Transformers (Liu et al., 2022; Wang et al., 2023b), including hybrids to combine benefits of CNNs
and Transformers (local structure and long term dependencies) in temporal modeling (Li et al., 2022;
2023a). Comparing the variety in engineering solutions from video-AI to the way humans process
video can help adjudicate between models in terms of their ability to capture the temporal aspects of
information processing in the brain and increase understanding on the representations they compute.

A line of work has recently set path in large-scale systematic benchmarking of models on represen-
tational alignment, to both the human brain and behavior (Conwell et al., 2022; 2024; Muttenthaler
et al., 2023), advancing the understanding of how these models internally compare to humans on
a common basis. However, these works have so far been limited to the domain of static images; a
comprehensive analysis of video model alignment with human video processing is still lacking.

Our contributions:

• We perform the first large scale benchmarking of video models on human brain representational
alignment, on a recent publicly released video fMRI dataset. Specifically, we consider 47 video
models for action recognition and 41+11 image models for object and action recognition.

• We decouple the alignment effects of temporal modeling from those of action space optimization
by adding image action recognition models as control, as well as examine the impact of model
architecture and training dataset, all comparing across a fine-grained variety of brain regions.

• We show that temporal modeling is the important factor for representational alignment to early
brain regions, while action space optimization for alignment to late brain regions. We find distinct
patterns emerging in different processing stages of CNNs and Transformers, along with an effect
of training biases on alignment to functionally selective areas.

• We report a significant negative correlation of model FLOPs to alignment in several high-level
brain areas, indicating that computationally efficient neural networks can potentially produce
more human-like semantic representations.
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2 RELATED WORK

Large scale brain datasets. Compared to artificial intelligence, the field of computational cognitive
neuroscience has been exposed to the concept of benchmarking only recently (Schrimpf et al., 2020),
with the majority of prior works consisting of stand-alone assessments of representational alignment
on their own brain data for one or only a few models. Works such as BrainScore (Schrimpf et al.,
2018) and the Algonauts challenges (Cichy et al., 2019; 2021; Gifford et al., 2023) have set the stage
for representational alignment research on benchmark datasets where any model can be compared
and comparisons can be widely accessed by everyone in the community, generating new insights via
data-driven exploration and field-mapping. Datasets such as NSD (Allen et al., 2022) and THINGS
(Hebart et al., 2023) have been established as benchmark image stimuli brain imaging datasets due
to their size and high signal quality. For video stimuli there has also been some recent development
(Dima et al., 2022; Zhou et al., 2023; McMahon et al., 2023), that is mostly focused on social actions.
Most recently the Bold Moments Dataset (BMD) (Lahner et al., 2024) was introduced, putting forth
a large-scale, highly reliable video fMRI dataset with extensive quality control to ensure suitability
for AI model comparisons. In this work, we conduct the first extensive benchmarking of a total of
99 models on representational alignment with the fMRI data in BMD.

Measures of model-brain alignment. The two most widely used approaches for measuring brain-
model alignment are voxel-wise encoding (Güçlü & Van Gerven, 2015) and Representational Simi-
larity Analysis (RSA) (Kriegeskorte et al., 2008). The former involves training a linear regression to
predict voxel space from a model’s feature space and conduct all analyses there, modeling each voxel
response independently rather than how voxels respond together. The latter projects both spaces into
a third common space of pairwise condition patterns; it works by computing a distance metric be-
tween the representations of each pair of test conditions for both voxel and feature space, forming
the Representational Dissimilarity Matrix (RDM), which reflects differences between patterns of
activity within populations of voxels. There are several influential works assessing model-brain
alignment for static images, using both voxel-wise encoding (Eickenberg et al., 2017; St-Yves &
Naselaris, 2018; La Tour et al., 2022) and RSA (Cichy et al., 2016; Dobs et al., 2019; King et al.,
2019; Bartnik et al., 2024) as well as methods combining the two approaches (Dwivedi et al., 2021;
Konkle & Alvarez, 2022; Conwell et al., 2022; 2024). Many of these works validate the image
models’ alignment to the brain’s early-to-late processing hierarchy, as has also been shown with
speech models (Millet et al., 2022), but it has not been seen if a similar mapping can be found in
video models. In this work, we use RSA to derive the representational alignment between the video
features of each neural network’s layers and the voxels in each brain Region of Interest (ROI) in
BMD, contrasting this alignment between early and late stages of visual processing.

Model-brain alignment benchmarking. Extensive benchmarking in the image domain was con-
ducted by Conwell et al. (2022; 2024) on NSD, who decoupled multiple factors that give rise to
differences between image models, specifically model architecture, diet (training dataset), and train-
ing task. They varied these one at a time while keeping all others constant, to assess which factors
most influence model-brain alignment. A similar approach was followed in Wang et al. (2023a) to
examine the effect of contrastive learning on model-brain alignment. There are also works exten-
sively benchmarking neural networks on alignment to human behavior, using behavioral similarity
judgment data (Muttenthaler et al., 2023; Marjieh et al., 2023), where the latter also includes three
video action recognition models. In Mineault et al. (2021), a limited testing of five video action
recognition models was performed to compare against their own model trained with a custom objec-
tive. More recently, a study by Garcia et al. (2024) focused on social-action videos and conducted
a first, yet limited, video benchmarking by testing eight video models against 200 image models.
In this work, we include 47 video models for action class recognition and 41+11 image models for
object and action class recognition. Inspired by Conwell et al. (2022), we are interested in disentan-
gling the role of different factors, and thus we vary the models’ architecture by contrasting CNNs
to Transformers, and the models’ training dataset by contrasting three different datasets. Impor-
tantly, we control for the change in task when comparing object recognition image models to action
recognition video models, through varying one factor at a time by further comparing with image
models trained for action class recognition. In addition to Conwell et al. (2022), apart from involv-
ing dynamic stimuli, our analyses also address specific brain regions instead of the visual cortex as
a whole. In contrast to Garcia et al. (2024), we compare an equally large number of video models
to image models, on top of the important control of the training task and the comparison between
different architectures and training dataset, and use RSA instead of voxel-wise encoding.
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3 METHODOLOGY

In Figure 1 we show an overview of our methodology for measuring alignment of video models
to the human brain.1 In the next three sections, we describe the design choices of the alignment
measure, the video models, and the brain imaging dataset.

3.1 ALIGNMENT BY REPRESENTATIONAL SIMILARITY ANALYSIS

We start by motivating our choice of metric to measure the alignment between a neural network
and a brain region. To observe patterns of activity that consider the interactions between groups
of voxels (multivariate analysis), either Representational Similarity Analysis (RSA) (Kriegeskorte
et al., 2008) or a combined approach that performs RSA on top of voxel-wise encoding (mixedRSA
or veRSA (Khaligh-Razavi et al., 2017)) are good candidates. Conwell et al. (2022; 2024) exten-
sively compared these methods and showed that veRSA often fails to uncover differences between
models in terms of brain alignment. This is likely due to the fact that voxel-wise encoding allows
for re-weighting of the model activations while mapping them to the brain, thereby optimizing brain
predictivity but obscuring how the model representations correlate with brain responses out of the
box. Based on our intent to benchmark the emergent alignment of AI models, we choose RSA 2 as
a stricter metric that can uncover more potential differences between models.

Representational Dissimilarity Matrix (RDM) computation. For a brain Region of Interest (ROI)
of a human subject s with voxel vectors vs and a model layer l with feature vectors fl, the brain RDM
(Bs) and model RDM (Ml) are calculated as follows:

Bij
s = 1− r(vis, v

j
s), M ij

l = 1− r(f i
l , f

j
l ), ∀i, j(i < j), 0 ≤ j < N, (1)

where N is the total number of videos and r is the Pearson correlation, resulting in RDMs that are
symmetric with size N(N − 1)/2. To obtain vs we first average the voxels across measurements
from all K repetitions of a stimulus video i, so vis = 1

K

∑K−1
k=0 vis,k. To create fl we first reduce

the dimensionality of the original features to 100 Principal Components using Principal Compo-
nent Analysis (PCA). We provide a comparison with Sparse Random Projection (SRP) and the full
dimensions in Figure 16, Appendix D. No standardization is performed on the voxel and feature
vectors, neither across videos nor across features to avoid distortions (Walther et al., 2016).

Correlation of RDMs. To derive the alignment of a model layer and a brain ROI, we correlate
each layer RDM of each model (Ml) with each subject RDM of each ROI (Bs) using Spearman
correlation (ρ), and then average the correlations across subjects for each model layer:

Rl =
1

M

M−1∑
s=0

ρ(Bs, Ml), (2)

where M is the total number of subjects. In analyses where we show only one correlation value
for the alignment of a whole model and a brain ROI, this is computed by R = maxl(Rl), i.e., the
highest-correlating layer in the model.

Noise ceiling computation. Because of individual subject variability in brain data, noise ceilings
for each ROI are computed to compare model RSA scores against the maximum obtainable score
given the inter-subject variability (Nili et al., 2014). For the lower noise ceiling (LNC) we compute
a mean RDM across all subjects except one. Then we take the Spearman correlation of the left-out
subject RDM and mean RDM, repeating for all the subjects and calculating the average. For the
upper noise ceiling (UNC) we take the mean of all RDMs without removing subjects, compute the
Spearman correlation of each subject RDM with the mean RDM, and average.

LNC =
1

M

M−1∑
j=0

ρ(
1

M

M−1∑
i=0,i̸=j

Bi, Bj), UNC =
1

M

M−1∑
j=0

ρ(
1

M

M−1∑
i=0

Bi, Bj) (3)

The upper noise ceiling signifies perfect correlation for the amount of noise in this ROI’s data, often
referred to as the maximum amount of variance that can be explained.

1Due to licensing restrictions of the stimuli used in the brain dataset, the video frames shown in the figure
are sourced from representative videos captured by the authors themselves and are not subject to copyright.

2We utilize the RSA implementation from the Net2Brain python library (Bersch et al., 2022).
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Table 1: Model families benchmarked. We sample the same number of CNN and Transformer
image object recognition models as in our maximal set of video models. We also test 10 image
models trained on action recognition; this division is shown with the grouping on the right. Action
recognition models are on Kinetics 400; those also available on other datasets are marked by a,b.

Image Object Recognition Action Recognition

CNNs Transformers CNNs Transformers

1 AlexNet 2 CAiT 6 CSN 2 MViTv2b
V

ideo

2 DenseNet 2 ConViT 5 I3D 2 TimeSformer
2 EfficientNet 2 DEiT 1 R2P1D 2 Uniformer
2 RegNet 2 MViTv2 2 SlowFast 2 Uniformerv2a
4 ResNet 3 Swin 4 Slowa 1 VideoMAE
2 ResNeXt 1 Twins 1 TaNet 2 VideoMAEv2
4 VGG 2 ViT 1 TPN 3 VideoSwina

2 WideResNet 5 TSMb

2 Inception 2 X3D Im
age

2 RepVGG
2 SeResNe(X)t 4 C2D 1 TimeSformer
2 Xception 4 TSNb 1 TSN

27 14 27+8 14+2
aAvailability also on Kinetics 710 (Carreira et al., 2019)

bAvailability also on Something-Something-v2 (Goyal et al., 2017)

Statistical significance. To test if model RDMs correlated significantly with brain RDMs, we per-
formed permutation tests (Nili et al., 2014). For each model we permute the rows of all layer RDMs
1000 times using the same 1000 random permutations for all models and layers. We then calcu-
late a null distribution by computing the Spearman correlations of all permuted RDMs with each
subject RDM and average the resulting null distributions across subjects, separately for each model
layer. For significance of a group of models against zero, we perform a two-tailed sign test between
the median null distribution of all models in the group and the median observed Spearman correla-
tion. To test for significant differences between two groups of models, we perform a two-tailed sign
test between the null distribution created from the across-group differences in the within-group me-
dian distributions, and the observed difference in the medians of the two model groups’ Spearman
correlations. We correct for multiple comparisons between model groups by applying Bonferroni
correction equal to the number of group pairwise combinations.

3.2 VIDEO MODELS

Our goal was to benchmark as many publicly released video models as possible, sampling from
different architectures (e.g. CNNs, Transformers) as equally as possible, while differentiating the
effects of optimizing for the action classification task and temporal modeling on brain alignment.

Model choice. In total, we benchmark 99 models; of these, 41 are image models trained for object
recognition on ImageNet, 10 are image models trained for action recognition on Kinetics 400 (Kay
et al., 2017), and 41 are video models trained for action recognition on Kinetics 400. The distinction
between the last two is made based on whether the models treat time in a non-trivial way, where triv-
ial is considered anything that makes completely separate computations per frame and only averages
frame features before classification, or aggregates frames with static pooling operations at different
stages. The remaining 7 models are trained for action recognition on other datasets, namely Kinetics
710 (Carreira et al., 2019) and Something-Something-v2 (Goyal et al., 2017). Image models trained
on object recognition were ported from torchvision3 and timm4, while image and video models
trained on action recognition were ported from mmaction25. The main families of models used are
listed in Table 1, while a full list of all the model versions used can be found in Appendix B.

Model feature extraction. We perform preprocessing according to the functions provided by the
models’ sources (torchvision, timm, or mmaction2). Regarding the temporal dimension, for image
models trained on ImageNet we perform inference for all frames and then average the features,
while action recognition image models were trained on sequences of frames as input samples (only

3https://pytorch.org/vision/main/models.html
4https://huggingface.co/models?library=timm
5https://mmaction2.readthedocs.io/en/latest/model_zoo/recognition.html
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to aggregate with trivial pooling operations), so for those we perform inference on video inputs, as
we do for video models. Because each model expects a specific length of timepoints sampled at a
specific rate, different size batches of sub-clips are created per video and model, and the resulting
sub-clip features are averaged for the whole video. We extract features from all higher-level blocks
in the models (e.g., in a ResNet-type model of five blocks with four layers each, we extract features
at the end of each block) and also include the final fully connected classification layer. We flatten
the features after extraction, producing a single one-dimensional feature vector per layer.

3.3 BRAIN DATASET

We use the Bold Moments Dataset (BMD) (Lahner et al., 2024) consisting of whole-brain 3T fMRI
recordings (2.5 × 2.5 × 2.5 mm voxels, resampled TR of 1s) from 10 subjects watching 1102 3s
videos from the Moments in Time (Monfort et al., 2019) and Multi-Moments in Time (Monfort
et al., 2021) video datasets. Extensive details on the fMRI data acquisition can be found in Lahner
et al. (2024); a summary is provided in Appendix A. For each subject, 1000 videos were shown for
3 repetitions and those recordings make up the “training set”, whereas 102 videos were shown for
10 repetitions and make up the “test set”. In our analysis, we only use the 102 videos of the test
set, whose high number of repetitions allows for the application of RSA. We report partial results
on the 1000 video training set in Figure 17, Appendix D, showing noise increase from insufficient
repetitions. The test set videos are sensibly representative of the videos present in the whole dataset.
Specifically, roughly 25% of the videos are actions of children and 22% actions of animals, another
22% people doing sports, 10% are scenes with motion but no visible humans or animals (e.g. a
waterfall, a car), 6% people cooking, and 6% people performing some other manual labor.

Preprocessing and Regions of Interest (ROIs). We used preprocessed data provided by (Lahner
et al., 2024). A summary of the most important preprocessing steps, including anatomical alignment
and ROI definitions, is again provided in Appendix A. From the available brain ROIs, we first joined
the two hemispheres by concatenating the voxels corresponding to each pair of areas, and then also
joined the dorsal and ventral parts of V1 and V2. We group ROIs based on their anatomical location
on the brain (Grill-Spector & Malach, 2004), in four groups: Early Visual Cortex (includes areas
V1, V2, V3v, V3d), Ventral-Occipital Stream (hV4, OFA, LOC, FFA, PPA), Dorsal Stream (V3ab,
IPS0, IPS1-3, RSC), and Lateral Stream (EBA, TOS, MT, STS). Areas in Early Visual Cortex are
considered early areas of processing, hV4 and V3ab are considered intermediate, and the rest are
considered late areas of visual processing, based on the flow of information through the brain.

4 RESULTS

Differences in brain alignment between 99 neural networks processing videos could be related to
a number of factors. In the following sections we systematically examine the following factors:
temporal modeling, classification task, architecture design, and training dataset. Finally, we also
investigate how brain alignment relates to the models’ computational complexity.

Video vs. Image models, controlling for the classification task. First, we compare models by
varying the temporal modeling (Video vs. Image) and controlling for the classification task (object
vs. action recognition) while keeping the training dataset constant (action recognition on Kinetics
400). In Figure 2a we observe that in the Early Visual Cortex, video models score significantly
higher than the image models, while image models trained on action recognition may even capture
less variance than the image models trained on object recognition. The control for image models
trained on action recognition decouples the effect of classification objective from temporal modeling,
and shows that the latter is the determining factor out of the two for RSA scoring in the early visual
cortex. In later areas it can be seen that here the classification objective exerts more influence on
the RSA score, as the video models do not fare much better than image models trained on action
recognition, and those in general score higher than image models trained on object recognition. Out
of all the later area groups, the Lateral stream shows the least significant differences. In relation
to the noise ceilings, we observe that models are able to explain the largest amount of the total
explainable variance in the Early Visual Cortex out of all brain regions (see Figure 13, Appendix
D for a re-scaled plot by the UNC). In Figure 2b we notice that all three model categories exhibit
an early-to-late hierarchy, with more shallow layers correlating the highest with early brain regions,
and deeper layers correlating the highest with late brain regions. The mid-network representations
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Figure 2: Video vs. Image models, controlling for the classification task: We find that temporal
modeling is the important factor for representational alignment to early brain regions, while action
space optimization for alignment to late brain regions, evaluating the RSA score for a total of 92
models. In 2a we choose the best scoring layer for each model and show all 17 brain regions.
Stars at y = 0 and on top of brackets indicate statistical significance against zero and significance of
pairwise differences respectively (∗ : p < 0.05, ∗∗ : p < 0.01, ∗∗∗ : p < 0.001). Horizontal dashed
lines show the upper and lower noise ceilings for each region. In 2b we show different model layer
depths for regions chosen by zooming in on significant differences from 2a and sampling region
groups evenly, the rest reported in Appendix C.

learned by the video models correlate better with V2 than those of image models, regardless if the
latter are trained for action recognition. On the other hand for OFA, it is the representations in the
classification layer of action recognition models that manage to match the brain better, even if there
is no temporal modeling involved. In Figure 3 we point out that the top models are MViT, CSN,
and SlowFast in V2, and CSN, TimeSformer, and VideoSwin in LOC. In V2 and for a portion of the
subjects, the model MViT v2 S comes close to capturing almost all of the explainable variance.

Varying the architecture. Next, we compare models by varying the architecture design (CNNs
vs. Transformers), keeping temporal modeling, classification task, and training dataset all constant
(video action recognition models trained on Kinetics 400). In Figure 4 we see that, in terms of
the maximum score, Transformers and CNNs appear to be mostly equivalent, either of the two
architectures taking the lead in different ROIs. Nevertheless, an interesting pattern appears when
we analyze the changes in correlation across the models’ layers. In V2 Transformers compute high
correlating representations at a very shallow depth in the network (around 0.1 of the total depth),
while CNNs much later, at around 0.6 of the total depth. In EBA, CNNs show a much clearer
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Figure 3: Ranking of all the Kinetics-400 action recognition models in RSA scoring order, against
the baseline of image object recognition models. Top models in V2 are MViT, CSN, and SlowFast,
while in LOC they are CSN, TimeSformer, and VideoSwin. Error bars signify variation across
subjects. One early and one late region are shown (the two highest overall), the rest in Appendix C.

hierarchy, as correlation gradually increases with model depth, while Transformers have relatively
stable representations up until the classification layer, where the score increases more abruptly. Still
in EBA, Transformers explain more variance than CNNs when comparing only very shallow layers.
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Figure 4: Varying the architecture: CNNs and Transformers are overall equivalent but exhibit
striking differences in their score distribution across layer depths. We show RSA scores of 27
CNNs and 14 Transformers, for the best scoring model layer (4a) and all layer depths (4b). Brain
regions shown are those exhibiting the most significant differences, sampling evenly from brain
region groups. Exhaustive results can be found in Appendix C.

Varying the training dataset. Here, we compare models by varying the training dataset (Kinetics
400 vs. Kinetics 710 and Kinetics 400 vs. Something-Something-v2) and keeping all other factors
constant through only including the exact same models trained on the two different datasets in each
pair of dataset comparisons. In Figure 5a we first observe that using models trained on an extended
and enhanced version of the same dataset such as Kinetics 710 in relation to Kinetics 400, largely has
no effect on brain alignment. However, when testing models trained on a more different domain,
such as Something-Something-v2, some interesting differences emerge. In particular, there is a
significant advantage of Kinetics 400 against Something-Something-v2 in FFA and OFA, and a
somewhat similar pattern in LOC. In fact, this seems to show up both in shallow and deep layers
of the models (Figure 5b). Considering that Something-Something-v2 is a dataset that never shows
faces and that FFA is the functionally selective region for faces, this result identifies that a dataset
bias from the models’ training can indeed be transferred to model-brain alignment for an ROI that
is functionally selective specifically for this bias.

Relation to computational complexity. Last, we investigate how the brain correlation of action
recognition models relates to their computational complexity (in FLOPs). In Figure 6, we report a
moderate but consistent negative correlation of model FLOPs to model-brain alignment especially
in late ROIs of the Lateral and Dorsal Streams, with significant negative correlations observed in
six ROIs, the top four of which are shown in 6b. In 6a we observe that although the significance of
the negative relation is not present in all ROIs, the relation itself is mostly consistent throughout the
brain regions. A similar investigation for model parameters and model accuracy was performed but
no consistent significant correlations were found (see Figure 21, Appendix E).
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Figure 5: Varying the training dataset: Training dataset biases transfer to alignment with function-
ally selective brain areas. We compare the same three models trained on Kinetics 400 and Kinetics
710, and the same four models trained on Kinetics 400 and Something-Something-v2. Models
trained on Kinetics 400 are numbered as (1) and (2) to indicate two different sets of models com-
pared with Kinetics 710 and Something-Something-v2 respectively, and the comparisons are also
separated with a gap. In 5a the highest-scoring layers are shown, selecting a representative sample
of regions (the rest in Appendix C), and in 5b we zoom in on two regions to show all layer depths.
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Figure 6: Relation to computational complexity: We show a significant negative correlation of
model FLOPs to alignment in several high-level brain areas. We correlate the RSA scores of video
models to model FLOPs, using the best RSA scoring layer for each model and report all brain
regions (6a), as well as highlight those with the most significant correlations (6b).

5 DISCUSSION

Decoupling the role of temporal modeling and action space optimization. For alignment of video
models to brains watching videos, and for our sample of models, brains, and videos, different factors
are important at different stages of visual processing. In early areas, temporal modeling improves
alignment, while optimizing for action recognition does not. The latter on its own can even result
in slightly worse alignment than object recognition models, hinting to a potential degradation of
low-level features during action optimization (image action recognition models are pretrained on
ImageNet first). The benefit of temporal modeling for alignment with early brain areas is consistent
with neuroscience literature suggesting that these areas are more sensitive to short time-scale change
in the input, while late areas are more temporally invariant (Hasson et al., 2008; Groen et al., 2022;
Brands et al., 2024). There, improvement over object recognition image models only comes from
optimizing for action recognition and is only reflected in the models’ classification layer. This
could mean (1) that the information captured in late brain areas is dominated by semantics and
particularly action categories (Lahner et al., 2024). Or (2) that current state-of-the-art video models
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fail to capture the more fine-grained high level video representations present in the brain, aside from
action labels. Future work is needed to resolve these competing accounts. In line with Mineault
et al. (2021), we find no indication that action information affects alignment more for areas involved
in navigation such as RSC or motion area MT. Garcia et al. (2024) observed a different pattern
of results from ours, finding improved alignment for video models mainly in MT and EBA. This
could reflect methodological differences (e.g. fMRI dataset, dimensionality reduction method, brain
alignment metric). Our findings are consistent with a recent video reconstruction study (Lu et al.,
2024a) which shows that intermediate and late regions contribute more to the decoding of video
semantics, while early areas more to the decoding of low-level structure and motion in the videos.

Comparing early and late representations of CNNs and Transformers. CNNs exhibit a better
hierarchy overall, as there is a clear mid-depth peak for early regions and gradual improvement as
depth increases for late regions. Transformers however, achieve an impressive correlation to early
regions even from one tenth of layer depth. This also holds for image CNNs and Transformers
(Figure 19). Why is the top-aligned layer mid-depth in CNNs, and not earlier? It does not appear
to be a matter of network size or depth (see Figures 20, 22) - therefore, an interesting hypothesis is
that this relates to the dynamic nature of the stimuli, as in image fMRI studies it was not observed
(Nonaka et al., 2021). This hypothesis requires further validation on (multiple) other video fMRI
datasets. Conversely, why are Transformers more aligned earlier in the network than CNNs? Raghu
et al. (2021) showed that representations in layers 0-60 of a CNN are more similar to layers 0-30 of
a Transformer, and CNN layers 60-120 more similar to Transformer layers 30-140. Transformers
also exhibited more stable representations across layers, while CNNs showed a clear divide between
early and late layers. In Tuli et al. (2021), more human-like error patterns of Transformers indicated
a higher behavioral alignment - we find that alignment in high-level areas based on semantic repre-
sentations is mostly equivalent across both architectures. In future work it is also worth investigating
hybrid models (e.g. Transformers using both convolution and self-attention), as there are indications
these might achieve a balance between the two architectures (Figure 15).

Relating training biases and computational efficiency to alignment. Our comparison of brain
alignment between models trained on different action datasets shows that dataset biases related to a
certain functional selectivity can be transferred in brain alignment with the respective functionally
selective brain area. This highlights the importance of choosing models trained on a dataset that is
representative (1) of the videos humans watch in the experiment, and (2) of the hypotheses tested
when measuring alignment. Our observation that computationally expensive models are less aligned
to higher brain areas leads us to conclude that human-like semantics are more achievable with com-
putationally efficient models. This is important for machine learning research that aims to build
increasingly efficient models for increasingly complex tasks, as it is an indication that more com-
putational resources may not be needed to compute human-like high-level representations. Ideas in
this direction include using the top-aligned models as starting points for further component ablations
towards alignment and efficiency, as well as pruning models to preserve alignment.

Limitations and future work. We base our choice of alignment metric on the comparison of RSA
and veRSA made in Conwell et al. (2022), but this was on static images and it could be worthwhile
to make the same comparison for our video data, as well as comparison between other metrics. RSA
does not examine possible gains in predictivity as a result of linear feature re-weighting. Next, we
benchmark video models that are part of a library and not all publicly available video models, which
limits the comparisons we could make; to show a controlled comparison of learning paradigms
we would need multiples of the same architecture in supervised, contrastive, and self-supervised
variants. Our results are based on a single fMRI dataset, and not validated across multiple fMRI
experimental setups. BOLD signals are also indirect measurements of brain activity, which in turn
is an indirect measurement of the brain’s representations - these are latent variables that cannot
be measured. Our fMRI analyses were conducted in volume space; surface-based analysis could
potentially provide better predictions of brain function (Glasser et al., 2016; Coalson et al., 2018).
Importantly, fMRI lacks good temporal resolution which is crucial to investigate temporal modeling
at finer detail. Future steps in that direction would be to make use of all temporal samples available
in the fMRI data (3 TRs) and collection of EEG/MEG data for the same videos, to perform alignment
benchmarking jointly on fMRI and EEG/MEG - our work sets the foundations for such future studies
by already uncovering differences in models performing temporal modeling with fMRI. Given that
motion and imagery cues in videos likely also engage non-visual brain regions, another promising
direction for future work is to study representational alignment in areas outside visual cortex.
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Umut Güçlü and Marcel AJ Van Gerven. Deep neural networks reveal a gradient in the complexity of
neural representations across the ventral stream. Journal of Neuroscience, 35(27):10005–10014,
2015.

Uri Hasson, Eunice Yang, Ignacio Vallines, David J Heeger, and Nava Rubin. A hierarchy of tem-
poral receptive windows in human cortex. Journal of neuroscience, 28(10):2539–2550, 2008.

Martin N Hebart, Oliver Contier, Lina Teichmann, Adam H Rockter, Charles Y Zheng, Alexis Kid-
der, Anna Corriveau, Maryam Vaziri-Pashkam, and Chris I Baker. Things-data, a multimodal
collection of large-scale datasets for investigating object representations in human brain and be-
havior. Elife, 12:e82580, 2023.

Joshua B Julian, Evelina Fedorenko, Jason Webster, and Nancy Kanwisher. An algorithmic method
for functionally defining regions of interest in the ventral visual pathway. Neuroimage, 60(4):
2357–2364, 2012.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action
video dataset. arXiv preprint arXiv:1705.06950, 2017.

Seyed-Mahdi Khaligh-Razavi, Linda Henriksson, Kendrick Kay, and Nikolaus Kriegeskorte. Fixed
versus mixed rsa: Explaining visual representations by fixed and mixed feature sets from shallow
and deep computational models. Journal of Mathematical Psychology, 76:184–197, 2017.

Marcie L King, Iris IA Groen, Adam Steel, Dwight J Kravitz, and Chris I Baker. Similarity judg-
ments and cortical visual responses reflect different properties of object and scene categories in
naturalistic images. NeuroImage, 197:368–382, 2019.

Talia Konkle and George A Alvarez. A self-supervised domain-general learning framework for
human ventral stream representation. Nature communications, 13(1):491, 2022.

Dwight J Kravitz, Kadharbatcha S Saleem, Chris I Baker, and Mortimer Mishkin. A new neural
framework for visuospatial processing. Nature Reviews Neuroscience, 12(4):217–230, 2011.

Nikolaus Kriegeskorte and Pamela K Douglas. Cognitive computational neuroscience. Nature neu-
roscience, 21(9):1148–1160, 2018.

Nikolaus Kriegeskorte, Marieke Mur, and Peter A Bandettini. Representational similarity analysis-
connecting the branches of systems neuroscience. Frontiers in systems neuroscience, 2:249, 2008.
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APPENDIX

A BRAIN DATASET DETAILS

Below, we provide a summary of the Methods section of the BMD dataset (Lahner et al., 2024).

Participants Ten healthy volunteers (6 female, mean age ± SD = 27.01 ± 3.96 years, sex self-
reported) with normal or corrected-to-normal vision participated in the experiment. All participants
gave informed consent and were screened for MRI safety. The experiment was conducted in accor-
dance with the Declaration of Helsinki and approved by the local ethics committee.

Stimuli The stimulus set consisted of 1102 videos in total and were sampled from the Memento10k
dataset41. Each video was square-cropped and resized to 268×268 pixels. Videos had a duration of 3
s and frame rates ranging from 15 to 30 frames per second. Videos were manually selected from the
Memento10k dataset by two human observers to encompass videos that contained movement (i.e.,
no static content), were filmed in a natural context, and represented a wide selection of possible
events a human might witness. The 1102 videos selected for the main experiment were split into a
training and a testing set; 102 videos were randomly chosen for the testing set. Subjects additionally
viewed a separate set of colored, naturalistic videos (18 s length, composed of 6 3-second videos)
corresponding to one of five categories (faces, bodies, scenes, objects, and scrambled objects) in
order to functionally localize each subject’s category selective regions of interest (ROIs, see below).

MRI data acquisition The MRI data were acquired with a 3 T Trio Siemens scanner using a 32-
channel head coil. During the experimental runs, functional T2*-weighted gradient-echo echo-
planar images (EPI) were collected (TR = 1750 ms, TE = 30 ms, flip angle = 71°, FOV read = 190
mm, FOV phase = 100%, bandwidth = 2268 Hz/Px, resolution = 2.5 × 2.5 × 2.5 mm, slice gap =
10%, slices = 54, multi-band acceleration factor = 2, ascending interleaved acquisition). Addition-
ally, a structural T1-weighted image (TR = 1900 ms, TE = 2.52 ms, flip angle = 9°, FOV read = 256
mm, FOV phase = 100%, bandwidth = 170 Hz/px, resolution = 1.0 × 1.0 × 1.0 mm, slices = 176
sagittal slices, multi-slice mode = single shot, ascending) and T2-weighted image (TR = 7970 ms,
TE = 120 ms, flip angle = 90°, FOV read = 256 mm, FOV phase = 100%, bandwidth = 362 Hz/Px,
resolution = 1.0 × 1.0 × 1.1 mm, slice gap = 10%, slices = 128, multi-slice mode = interleaved,
scending) were obtained as high-resolution anatomical references. Dual echo fieldmaps (TR = 636
ms, TE1 = 5.72 ms, TE2 = 8.18 ms, flip angle = 60°, FOV read = 190 mm, FOV phase = 100%,
bandwidth = 260 Hz/Px, resolution = 2.5 × 2.5 × 2.5 mm, slice gap = 10%, slices = 54, ascending
interleaved acquisition) were acquired at the beginning of every session to post-hoc correct for spa-
tial distortion of functional scans induced by magnetic field inhomogeneities. Subjects completed
a total of 5 separate fMRI sessions on separate days. Session 1 consisted of structural scans, func-
tional localizer runs, and functional resting state scans all interspersed. Sessions 2–5 consisted of
the main functional experimental runs where the subjects viewed the training and testing set videos.

MRI data preprocessing Raw MRI data was converted to BIDS format63 and preprocessed us-
ing the standardized fMRIPrep preprocessing pipeline (Esteban et al., 2019). Lahner et al. (2024)
provide preprocessed data from two different pipelines, with MRI activations in Version A being
calculated using Finite Impulse Response estimates, while Version B uses GLMsingle (Prince et al.,
2022). We use Version B, as the authors recommend it for being higher quality. The full fMRIPrep-
generated preprocessing report is found in Lahner et al. (2024). Briefly, it consisted of anatomi-
cal data preprocessing (intensity non-uniformity correction, skull-stripping, surface segmentation,
and volume-based spatial registration to standard MNI152N-Lin2009cAsym space) and functional
data preprocessing (B0-nonuniformity correction, head-motion estimation, slice-time correction,
and registration to the anatomical reference, with all spatial transformations concatenated into a
single step), generating preprocessed BOLD runs in standard MNI space. Functional localizer scans
were spatially smoothed (9 mm FWHM) while the main experimental data remained unsmoothed.

Brain response estimation A General Linear Model (GLM) was used to estimate single-trial beta
estimates for each video. First, the main experimental runs were temporally interpolated from their
acquisition TR of 1.75 seconds to a TR of 1 second to time-lock volume sampling to stimulus
presentations. The interpolated fMRI time series, stimulus onsets, and stimulus durations (modeled
with 3s durations) for each session separately were input to GLMsingle (Prince et al., 2022), which
estimates single-trial beta values by (1) fitting an optimal Hemodynamic Response Function (HRF)
to each voxel from a library of HRFs, (2) identifying nuisance regressors from a noise pool that
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maximally explain variance, and (3) implementing fractional ridge regression to improve estimates
in a rapid event-related design. The resulting single-trial beta estimates were normalized within each
scanning session using the session’s training set mean and standard deviation.

ROI definitions A set of 23 ROIs (each separated by left and right hemispheres) previously known
to be driven by dynamic stimuli spanning visual and parietal cortices were defined by Lahner
et al. (2024) by creating a non-overlapping parcellation composed of parcels resampled from sev-
eral anatomical atlases (Glasser et al., 2016; Wang et al., 2015; Julian et al., 2012), into standard
MNI152NLin2009cAsym space. Then, brain activations estimated from the independent functional
localizer runs were used to identify the top 50% of activated voxels within each of the correspond-
ing parcels. This ROI definition method facilitates inter-subject modeling by ensuring all ROIs were
defined for each subject and each ROI contained the same number of voxels across subjects. The
defined ROIs were V1v, V1d, V2v, V2d, V3v, V3d, hV4, V3ab, IPS0, IPS1-3, BA2, 7AL, PFt,
PFop, and MT, EBA, LOC, PPA, RSC, STS, OFA, FFA, and STS, separately for each hemisphere.
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B MODEL DETAILS

In this section we explicitly list all the models benchmarked. In the main paper only the model
families are reported, whereas here all the models in those families are shown, including different
backbones, sizes, and configurations.

Table 2: Exhaustive account of all models benchmarked.

Image Object Recognition Action Recognition

CNNs Transformers CNNs Transformers

AlexNet CAiT S IR CSN R152 MViTv2 Sb

DenseNet161 CAiT XXS IR CSN R152 BNfrozen IG65M MViTv2 Bb

DenseNet201 ConViT S IR CSN R50 BNfrozen IG65M TimeSformer DivST
EfficientNetB3 ConViT B IR CSN R152 IG65M TimeSformer JointST
EfficientNetB6 DEiT S IP CSN R152 IG65M Uniformer S
RegNetX16gf DEiT B IP CSN R152 Uniformer B
RegNetY8gf MViTv2 S I3D R50 Uniformerv2 Ba

ResNet34 MViTv2 B I3D R50 dotprod Uniformerv2 B k710pre
ResNet50 Swin T I3D R50 embgauss VideoMAE B
ResNet101 Swin S I3D R50 gauss VideoMAEv2 S
ResNet152 Swin B I3D R50 heavy VideoMAEv2 S
ResNeXt50 Twins pcpvt B R2P1D R50 VideoSwin T
ResNeXt101 ViT S SlowFast R50 VideoSwin Sa

VGG11 ViT B SlowFast R101 VideoSwin B
VGG11BN Slow R50
VGG19 Slow R101
VGG19BN Slow R50 IN1ka
WideResNet50 Slow R50 IN1k embgauss
WideResNet101 TaNet R50
InceptionV3 TPN R50
InceptionV4 TSM R50b

RepVGGa2 TSM R50 dotprod
RepVGGb2 TSM R50 embgauss
SeResNet50 TSM R50 gauss
SeResNeXt50 TSM MobOne s4
Xception41 X3D S
Xception71 X3D M

C2D R50 nopool TimeSformer SpaceOnly
C2D R101 nopool TSN Swin
C2D R50 pool8
C2D R50 pool16
TSN R50b

TSN R101
TSN D161
TSN MobOne s4

aAvailability also on Kinetics 710 (Carreira et al., 2019)
bAvailability also on Something-Something-v2 (Goyal et al., 2017)
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C ALL REGIONS OF INTEREST

In this section we exhibit all Regions of Interest (ROIs) for analyses where a subset of the ROIs was
shown in the main results.
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Figure 7: Expanding Figure 2b to show, for all ROIs, the comparison across layers of object recog-
nition image models and action recognition image and video models.
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Figure 8: Expanding Figure 3 to show model ranking for all ROIs.
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Figure 9: Expanding Figure 4a to show all ROIs for the comparison of CNNs and Transformers.
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Figure 10: Expanding Figure 4b to show all ROIs for the comparison of CNNs and Transformers.
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Figure 11: Expanding Figure 5a to show all ROIs for the comparison of training datasets.
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Figure 12: Expanding Figure 5b to show all ROIs for the layer-wise comparison of training datasets.
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D ADDITIONAL VIEWS

In this section we include alternative ways to produce or view the results of our benchmarking,
including different visualization, dimensionality reduction, or set of models.
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Figure 13: Version of Figure 2a, re-scaled to the Upper Noise Ceiling. With this visualization
the amount of variance explained is more evident, but the information of ROI noise and absolute
correlation is lost.
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Figure 14: Version of Figure 7 with all individual models displayed as separate lines.
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Figure 15: Comparing hybrid Transformers that include convolution. (a) shows image object recog-
nition models, and black marks ConViT (d’Ascoli et al., 2021). (b) shows video action recognition
models, and black marks Uniformer (Li et al., 2023b). ConViT’s alignment is similar to the other
image Transformers, while Uniformer seems to fall in between video CNNs and Transformers.
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Figure 16: Dimensionality reduction method comparison on the analysis from Figure 2; using Prin-
cipal Component Analysis (PCA) vs. using Sparse Random Projection (SRP) vs. no dimensionality
reduction. Overall, models’ RDMs match the brain less when constructed with full dimensions than
when keeping important components - same with SRP where the dimensionality is still high.
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Figure 17: Image model results (analysis from Figure 2) with the 3-repetition 1000-video training
set instead of the 10-repetition 102-video test set. Both noise ceilings and model scores drop signif-
icantly from Figure 2 due to increased measurement noise from the fewer stimulus repetitions.
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Figure 18: Comparison of the self-supervised model videomae B, with and without (video-
mae B pretrainONLY) supervised finetuning on Kinetics 400. Here, it seems that supervised fine-
tuning is crucial for alignment - however, a general conclusion should not be drawn from this one
model comparison and future work is needed to investigate this further.
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Figure 19: Layer hierarchy for image object recognition CNNs and transformers, plotted as in Figure
4b. Similar to the pattern displayed by video action recognition models, here transformers also
exhibit an alignment peak to Early Visual Cortex much earlier in network depth than CNNs.
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Figure 20: Only showing CNNs, plotted in separate lines. AlexNet, marked in black, also does not
exhibit an early-layer peak in Early Visual Cortex regions. The only CNNs having an early-layer
peak in V1 are C2D and TPN, which both have a ResNet50 backbone and so are not particularly
shallow.
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E RELATION TO PARAMETERS & ACCURACY

In this section we provide results for the relation of the RSA score to model parameters and model
accuracy.
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Figure 21: Similar to Figure 6a but with model parameters and model accuracy. Here the trends are
less consistent than with the model FLOPs.
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Figure 22: Relation of model parameters with the top-aligned layer to the Early Visual Cortex in
(all) CNNs. Early-layer correlation does not seem to be a function of model size.
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