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Abstract

We introduce SATBench, a benchmark for evaluating the logical reasoning capa-1

bilities of large language models (LLMs) through logical puzzles derived from2

Boolean satisfiability (SAT) problems. Unlike prior work that focuses on inference3

rule-based reasoning, which often involves deducing conclusions from a set of4

premises, our approach leverages the search-based nature of SAT problems, where5

the objective is to find a solution that fulfills a specified set of logical constraints.6

Each instance in SATBench is generated from a SAT formula, then translated7

into a story context and conditions using LLMs. The generation process is fully8

automated and allows for adjustable difficulty by varying the number of clauses.9

All 2100 puzzles are validated through both LLM-assisted and solver-based consis-10

tency checks, with human validation on a subset. Experimental results show that11

even the strongest model, o4-mini, achieves only 65.0% accuracy on hard UNSAT12

problems, close to the random baseline of 50%. SATBench exposes fundamental13

limitations in the search-based logical reasoning abilities of current LLMs and14

provides a scalable testbed for future research in logical reasoning.15

1 Introduction and Method16

Logical reasoning is a fundamental component of human intelligence and continues to be a significant17

challenge in the field of artificial intelligence. The growing interest in the reasoning capabilities of18

large language models (LLMs) highlights the pressing need for robust benchmarks and evaluation19

methods [1]. While many datasets have been proposed to evaluate logical reasoning capabilties of20

LLMs, earlier datasets do not exclusively evaluates logical reasoning in isolution, e.g., LogiQA [2],21

and ReClor [3], which combine logical reasoning with commonsense reasoning.22

Recently, new datasets have been introduced to assess logical reasoning in isolation, such as FO-23

LIO [4] and P-FOLIO [5]. These datasets are manually curated by researchers and focus on logical24

problems based on inference rules, which involve deriving conclusions from a set of premises. A25

more comprehensive review of related work is provided in Appendix A.26

In this work, we introduce SATBench, a benchmark designed to create logical puzzles from Boolean27

satisfiability (SAT) problems [6, 7] with LLMs. Unlike benchmarks based on inference rules,28

SAT problems are characterized as search-based logical reasoning tasks, where the objective is to29

determine a truth assignment that fulfills a specified set of logical constraints [8]. This approach to30

logical reasoning emphasizes a search process akin to backtracking used in SAT solvers. Unlike other31

search-based benchmarks such as ZebraLogic [9], which presuppose the existence of a valid solution,32

SAT problems can result in either a satisfiable solution (SAT) or no solution (UNSAT).33

As shown in Figure 1, starting from a SAT formula in Conjunctive Normal Form (CNF), such as34

(A∨¬B)∧ (¬C ∨¬D), our framework uses LLMs to generate a story context and define a mapping35

between formula variables and entities in the story. Each clause is then translated into a natural36
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Figure 1: Overview of the SATBench methodology. The generation pipeline begins with sampling
Conjunctive Normal Form (CNF) formulas, followed by LLM-driven creation of story backgrounds
and conditions. To ensure the logical puzzle’s quality, both LLM-assisted and solver-based consistency
validations are employed. The evaluation pipeline then examines the puzzle’s prediction outcomes
and checks its reasoning process.

language condition based on this mapping. By sampling CNF formulas with varying numbers of37

clauses, we can control puzzle difficulty. To ensure the quality of resulting logical puzzles, we reverse38

the generation process: LLMs translate the natural language conditions back into logical formulas,39

which are then compared to the originals using a combination of LLM-assisted and solver-based40

consistency checks. In the evaluation pipeline, we check the result and employ the LLM-as-a-judge41

strategy to assess the reasoning trace. To validate the overall process of story generation and reasoning42

trace evaluation, we manually validate 100 examples, increasing confidence in the quality of resulting43

dataset and evaluation protocol. The detailed construction procedure is provided in Appendix B.44

Metric Value

Number of Instances 2100
Average Number of Variables 35.8
Average Number of Clauses 20.6
Average Number of Words 554.9
Average Number of Sentences 55.5

Table 1: Dataset statistics for SATBench.

The evaluation on our generated 2100 logical puzzle45

dataset shows that reasoning models perform well on46

SATBench, with the o4-mini model achieving the highest47

accuracy. However, as the number of conditions in the48

puzzles increases, performance drops noticeably. For the49

hard UNSAT subset, o4-mini reaches an average accuracy50

of 65.0%, only slightly above the 50% random baseline.51

Models perform better on SAT than on UNSAT problems,52

as UNSAT often requires exhaustive search through the53

entire solution space. Interestingly, reasoning traces are54

less reliable for SAT than for UNSAT problems. These55

results show that SATBench can reveal the limitations of current LLMs in logical reasoning.56

2 Experiments57

2.1 Experimental Setup58

Dataset and Prompts. The SATBench dataset contains 2100 logical puzzle instances. Table 159

reports statistics on the average number of Boolean variables and clauses in the sampled SAT formulas,60

as well as the average number of words and sentences in the generated puzzles. The fully automated61

generation process allows creating more instances if needed. For evaluation, we use 0-shot prompts62

consisting of a story background, a set of conditions that must be satisfied simultaneously, and a63

satisfiability query. Models must output a reasoning trace and a final label (SAT or UNSAT); for SAT,64
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Model SAT UNSAT Overall Avg.Easy Medium Hard Easy Medium Hard Easy Medium Hard

Random Baseline 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
Llama3.1-8B 57.7 59.5 51.4 30.4 14.8 17.5 44.0 37.1 34.5 38.5
DeepSeek-Distill-7B 63.7 29.0 20.4 69.1 43.8 42.1 66.4 36.4 31.2 44.7
Mixtral-8x7B 61.1 54.3 67.1 44.8 33.3 31.8 52.9 43.8 49.5 48.7
gpt-4o-mini 82.1 81.9 89.3 42.3 12.9 13.2 62.2 47.4 51.3 53.6
Qwen3-1.7B 77.3 68.1 52.5 53.4 30.5 42.5 65.4 49.3 47.5 54.0
Mixtral-8x22B 71.8 64.8 61.1 40.0 40.5 45.7 55.9 52.6 53.4 54.0
Llama4-Scout 84.3 77.6 68.9 52.0 24.3 37.5 68.1 51.0 53.2 57.4
Llama3.1-70B 81.8 55.2 47.9 55.2 59.0 48.9 68.5 57.1 48.4 58.0
gpt-4o 85.5 82.4 81.1 54.3 27.1 18.9 69.9 54.8 50.0 58.2
Llama3.3-70B 90.7 88.1 77.1 39.5 27.1 30.0 65.1 57.6 53.6 58.8
DeepSeek-Distill-14B 82.9 52.9 42.4 85.7 59.0 51.8 84.3 56.0 47.1 62.4
Llama4-Maverick 80.0 87.1 87.5 76.8 25.7 17.9 78.4 56.4 52.7 62.5
Qwen3-4B 84.1 78.1 79.3 80.7 31.9 22.1 82.4 55.0 50.7 62.7
Qwen3-8B 82.7 78.6 69.6 81.6 34.8 32.1 82.1 56.7 50.9 63.2
Qwen3-14B 87.1 73.3 78.6 88.9 47.6 22.1 88.0 60.5 50.4 66.3
DeepSeek-Distill-32B 84.5 54.3 43.9 90.0 68.1 58.6 87.2 61.2 51.2 66.6
Qwen3-235B-Int8 90.0 84.3 85.4 86.1 46.2 19.6 88.0 65.2 52.5 68.6
Qwen-QwQ-32B 92.5 77.1 62.1 84.1 51.9 46.4 88.3 64.5 54.3 69.0
Claude-3.7-Sonnet 88.4 78.1 82.5 93.8 63.3 42.1 91.1 70.7 62.3 74.7
DeepSeek-V3 93.6 85.2 70.4 97.5 83.3 74.3 95.5 84.3 72.3 84.0
DeepSeek-R1 94.8 87.6 71.4 98.2 89.5 83.6 96.5 88.6 77.5 87.5
o4-mini 97.0 97.1 91.1 98.2 88.1 65.0 97.6 92.6 78.0 89.4

Average 82.4 72.5 67.3 70.1 45.6 39.3 76.3 59.0 53.3 62.9

Table 2: Model accuracy on SATBench using zero-shot prompting for satisfiability prediction.
Difficulty levels are categorized as follows: Easy (4-19 clauses), Medium (20-30 clauses), and Hard
(31-50 clauses). All open-source models are instruction-tuned.

they provide a satisfying assignment, and for UNSAT, an explanation of the conflict. Detailed prompt65

templates are given in Appendices C.1 and C.2.66

Metrics and Models. Satisfiability is framed as a binary classification task (50% random baseline),67

with accuracy as the main metric. Reasoning trace correctness is judged only when the predicted68

label is correct, using GPT-4o to verify that the explanation supports the outcome (Appendix B.4).69

We evaluate proprietary models (GPT-4o, GPT-4o-mini, o4-mini, Claude 3.7 Sonnet) and recent70

open-source models from the Qwen, Llama, and DeepSeek families. Reasoning trace evaluation71

focuses on the five best-performing models, with GPT-4o as the judge.72

2.2 Main Results73

Reasoning models excel, but struggle on harder problems. Table 2 shows zero-shot satisfiability74

prediction results on SATBench. The best-performing model, o4-mini, reaches 89.4% accuracy,75

followed by DeepSeek-R1 (87.5%), DeepSeek-V3 (84.0%), Claude 3.7 Sonnet (74.7%), and Qwen-76

QwQ-32B (69.0%). However, performance drops as difficulty increases: on Hard instances (31–5077

clauses), o4-mini falls to 78.0%, and the average accuracy across models is 53.3%, close to the78

random baseline. Detailed difficulty analysis is provided in Section 2.3.79

SATBench is a challenging benchmark. For the Hard instances, even the state-of-the-art model80

o4-mini only achieves 78.0% accuracy, only a moderate improvement over the 50% random baseline.81

For the UNSAT instance, its accuracy is only 65.0%, leaving significant room for improvement.82

Scaling Trends. Figure 2 illustrates the scaling trends observed across various model families, such83

as Qwen3, Llama3.1, Mixtral, Llama4, and DeepSeek-Distill-Qwen. In each family, an increase in84

model size consistently leads to improved accuracy in satisfiability prediction, thereby validating the85

anticipated scaling behavior.86
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Figure 2: Scaling trend on SATBench.
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Figure 3: Impact of clause quantity on accuracy.

2.3 Analysis of Difficulty87

SAT versus UNSAT. The “average” row in Table 2 shows a clear accuracy gap between SAT and88

UNSAT subsets. On Hard instances, models average 67.3% for SAT but only 39.3% for UNSAT,89

indicating that SAT is generally easier. This likely stems from the higher complexity of UNSAT90

problems, which require checking all 2n assignments for n variables to prove unsatisfiability, while91

SAT only needs one valid assignment.92

Impact of Clause Quantity. Figure 3 shows an inverse relationship between clause count and93

accuracy. For example, GPT-4o’s accuracy drops sharply toward the 50% random baseline as clause94

count approaches 30. This trend suggests that more clauses increase problem complexity, confirming95

that our dataset generation method can effectively control difficulty.96

2.4 Reasoning Trace Evaluation97

Model SAT UNSAT Overall
Pred. Trace Pred. Trace Trace

QwQ 76.9 51.9 60.7 52.4 52.2
Claude-3.7 83.0 46.1 66.4 61.1 53.6

DS-V3 83.1 63.3 85.0 71.1 67.2
o4-mini 95.0 73.2 83.6 74.1 73.7
DS-R1 84.5 70.3 90.3 82.1 76.2

Table 3: Accuracy in prediction and reasoning trace
evaluation.

We evaluate the reasoning trace validity98

of various models with GPT-4o, and re-99

sults are shown in Table 3. The table high-100

lights that DeepSeek-R1 leads in overall101

trace accuracy with a score of 76.2%, sur-102

passing the o4-mini model by 2.5%. This103

indicates that while o4-mini excels in pre-104

diction accuracy, DeepSeek-R1 provides105

more reliable reasoning traces.106

A notable observation is the disparity in107

trace accuracy between the SAT and UN-108

SAT subsets. Models generally exhibit a109

more pronounced drop in trace accuracy on SAT problems compared to UNSAT ones. For example,110

Claude-3.7 experiences a significant 36.9% decrease in trace accuracy on SAT instances, whereas111

the drop is only 5.3% on UNSAT instances. This pattern indicates that a model’s higher prediction112

accuracy on SAT problems does not necessarily imply it has identified a valid variable assignment.113

Instead, models exhibit a bias towards predicting SAT outcomes without verifying a valid assignment114

as evidence.115

3 Conclusion116

We present SATBench, a benchmark for assessing LLMs’ logical reasoning via SAT-derived puzzles.117

Our dataset features search-based logical reasoning tasks, with controls difficulty and correctness118

checked by solvers and LLMs. SATBench contains 2100 logical puzzles and we evaluate both119

satisfiability prediction and reasoning trace validity. Our findings show model performance drops120

with increased difficulty, with o4-mini scoring 65.0% on hard UNSAT cases, near the 50% random121

baseline. This indicates current LLMs struggle with search-based logical reasoning, especially for122

UNSAT problems. SATBench offers a scalable testbed to future research in logical reasoning.123
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Appendix253

A Related Work254

Benchmark Search-
Based

Logic
Isolation

Automated
Generation

Difficulty
Control

Natural
Language

Template-
Free

Reasoning
Evaluation

LogiQA [2] ✗ ✗ ✗ ✗ ✓ ✓ ✗
BIG-bench [10] ✗ ✗ ✗ ✗ ✓ ✓ ✗
ReClor [3] ✗ ✗ ✗ ✗ ✓ ✓ ✗
RuleTaker [11] ✗ ✓ ✓ ✓ ✓ ✗ ✗
LogicNLI [12] ✗ ✓ ✓ ✗ ✓ ✓ ✗
FOLIO [4] ✗ ✓ ✗ ✗ ✓ ✓ ✗
P-FOLIO [5] ✗ ✓ ✗ ✗ ✓ ✓ ✓
LogicPro [13] ✗ ✗ ✓ ✗ ✓ ✓ ✓
ZebraLogic [9] ✓ ✓ ✓ ✓ ✓ ✗ ✗
AutoLogi [14] ✓ ✓ ✓ ✓ ✓ ✓ ✗
PARAT [7] ✓ ✓ ✓ ✓ ✗ ✓ ✓
LogicBench [15] ✗ ✓ ✓ ✗ ✓ ✗ ✗
LogicAsker [16] ✗ ✓ ✓ ✗ ✓ ✗ ✗
Unigram-FOL [17] ✗ ✓ ✓ ✗ ✓ ✗ ✗
Multi-LogiEval [18] ✗ ✓ ✓ ✓ ✓ ✗ ✗
SATBench (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table A1: Comparison of existing logical reasoning benchmarks. An ideal evaluation framework
should meet the following five critera — (1) Logic Isolation: the benchmark exclusively evaluates
logical reasoning in isolation; (2) Automated Generation: the benchmark construction is automated
and scalable; (3) Difficulty Control: the difficulty levels of the benchmark questions are adjustable;
(4) Natural Language: the questions are written in natural language rather than formal formulas;
(5) Template-Free: the benchmark does not rely on expert-designed templates, enhancing diversity;
(6) Reasoning Evaluation: the benchmark evaluates both the accuracy of model predictions and the
correctness of their reasoning traces.

Logical Reasoning Benchmarks for LLMs Reasoning is a longstanding focus in NLP, with255

many benchmarks developed to assess model performance. Early efforts targeted natural language256

inference [19] and commonsense reasoning [20], while recently there has been increasing atten-257

tion to assessing logical reasoning, as seen in LogiQA [2], ReClor [3], BoardgameQA [21], and258

CLUTRR [22]. These typically involve reasoning that relies on real-world knowledge. In contrast,259

datasets like FOLIO [4], RuleTaker [11], and P-FOLIO [5] aim to isolate formal logical reason-260

ing from commonsense knowledge. Logical puzzles have emerged as a compelling testbed in this261

area [23], with benchmarks including ZebraLogic [9], AutoLogi [14], and LogicNLI [12]. Our work262

builds on this line by proposing satisfiability-based puzzles [8, 7] for evaluating logical reasoning,263

using fully automated generation and solver-verified answers. To effectively benchmark the logical264

reasoning capabilities of LLMs, we propose that an ideal evaluation framework should meet the five265

criteria, as illustrated in Table A1, while previous works address some of these aspects, few manage266

to fulfill all these criteria simultaneously.267

Logical Reasoning with Language Models Recent work investigates how large language models268

engage in logical reasoning via prompting techniques, supervised training on reasoning datasets, and269

translation into formal logic. A prominent line of research focuses on prompting methods that elicit270

step-by-step reasoning, including chain-of-thought prompting [24], tree-of-thought prompting [25],271

and self-improvement via bootstrapping [26], along with other methods [27, 28]. Another approach272

involves fine-tuning LLMs on datasets specifically designed for logical reasoning [29, 30, 1, 31],273

which has demonstrated improved performance on formal reasoning benchmarks. Complementary to274

these methods, some work treats LLMs as semantic parsers that convert natural language reasoning275

tasks into formal logical representations, which are then executed or verified by external solvers276

or theorem provers [32, 33]. In our evaluation, we use chain-of-thought prompting and prohibit277

models from invoking external tools; solvers are used only during dataset generation for correctness278

validation.279

8



B Method280

Sample CNF Formula

Story Background
In a small town, there are three musicians who are preparing for performances in two genres: jazz and
rock. Each musician can independently choose whether to perform in one or both genres, or not at all.

Variable Mapping Conditions
1. Carol decides to perform in rock.
2. Alice does not perform in jazz.
3. Either Bob does not perform in jazz, or Alice performs in jazz.
4. Either Carol does not perform in rock, or Bob performs in jazz.
Question: Is there a way for all these performance choices to work?

Clause
Translation

Consistency Validation

Clause 1 Clause 2 Clause 3 Clause 4

i=0
Alice

i=1
Bob

i=2
Carol

j=0
jazz

j=1
rock

Figure A1: Benchmark curation pipeline. The process starts with sampling SAT formulas, followed
by using a LLM to generate variable mappings and a story background. Clauses in the formula are
then translated into narrative conditions. Consistency between the original formula and the generated
puzzle is ensured through both LLM-based and solver-based validation.

Our objective is to create logical puzzles derived from Boolean satisfiability (SAT) formulas, ensuring281

the quality of the dataset through both LLM-based and solver-based consistency checks. We further282

validate each LLM-involved process with human review. The generation method is divided into three283

stages: SAT formula sampling (Appendix B.1), LLM-based story generation (Appendix B.2), and284

consistency validation (Appendix B.3). In the evaluation phase, we assess the correctness of the285

reasoning trace (Appendix B.4).286

B.1 SAT formula Sampling287

Conjunctive Normal Form (CNF) Conjunctive Normal Form is a structured way of expressing288

logical formulas, where a formula is a conjunction (AND) of one or more disjunctions (OR) of literals.289

Each disjunction is referred to as a clause, and each clause consists of literals, which can be either a290

variable or its negation. For instance, the formula (x(2, 1)) ∧ (¬x(1, 0) ∨ x(0, 0)) ∧ (¬x(0, 0)) ∧291

(¬x(2, 1) ∨ x(1, 0)) is in CNF. Here, x represents a two-dimensional array with boolean elements,292

indicating true or false values. The SAT problem expressed in CNF form involves determining293

whether there exists an assignment of boolean values to the variables that satisfies the entire formula,294

making it true. If such an assignment exists, the formula is satisfiable. Conversely, if no such295

assignment can be found, the formula is unsatisfiable, and an UNSAT-Core can be identified, which is296

a subset of clauses that are inherently unsatisfiable. This approach constructs puzzles that challenge297

LLMs to determine if all conditions can be satisfied.298

Automation and Difficulty Control The SAT problem can be efficiently solved using a SAT299

solver, which provides a soundness guarantee and allows for automated and scalable solution. To300

systematically generate problems with varying levels of difficulty, we can sample formulas that differ301

in the number of boolean variables and clauses. Additionally, we can increase the dimensionality of302

the array to create more complex story contexts. By increasing the number of boolean variables, we303

can generate more clauses to be translated into story conditions. This approach effectively controls304

the difficulty level by expanding the search space and adding complexity to the constraints, making305

the search-based logical reasoning more challenging.306

B.2 Puzzle Story Generation307

Background and Variable Mapping To transform the sampled SAT formula into a narrative308

context, we utilize a language model, such as GPT-4o, to generate a story background and establish a309

mapping of variables. For example, as shown in Figure A1, given the SAT formula, the language310

model creates a scenario involving three musicians: Alice, Bob, and Carol. These musicians311
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are deciding on their performances in two musical genres, jazz and rock. Each musician can312

independently choose whether to perform in one or both genres, or not at all. The musicians and the313

genres correspond to the two dimensions of the array x. This mapping is defined as:314

x(i, j) → “musician i performs in genre j”

For example:315

• x(0, 0): Alice performs in jazz316

• x(1, 0): Bob performs in jazz317

• x(2, 1): Carol performs in rock318

Clause-to-Condition Mapping To transform each clause of the CNF formula into a narrative319

condition, we employ a large language model (e.g., GPT-4o). This transformation leverages the320

previously established story background and variable mapping. For example, the clause ¬x(0, 0)321

is translated to the condition “Alice does not perform in jazz,” while the clause ¬x(2, 1) ∨ x(1, 0)322

is expressed as “Either Carol does not perform in rock, or Bob performs in jazz.” The final puzzle323

integrates the story background with these translated conditions and concludes with a question like “Is324

there a way for all these performance choices to work?” This question serves to assess the satisfiability325

of the conditions in the logical puzzle.326

Our two-phase generation strategy, which begins with the creation of the story background and327

variable mapping, followed by the transformation of clauses into narrative conditions, improves the328

tractability and reliability of the process. This structured approach facilitates easier debugging and329

human validation.330

B.3 Consistency Validation331

LLM-based Validation We utilize a large language model (GPT-4o) to ensure that each condition332

in the generated logical puzzle precisely matches the original SAT formula, given the specified333

variable mapping. This process checks that no extra conditions are introduced and none are missing.334

If the check fails, the puzzle is removed from our dataset.335

Solver-based Validation In addition to LLM-based validation, we implement a solver-based336

validation process. The process begins by using an LLM to convert the narrative conditions back into337

a SAT formula given the variable mappings. This reconstructed SAT formula is then evaluated by a338

SAT solver to determine its satisfiability status (SAT or UNSAT). We then cross-verify this result339

with the satisfiability status of the original CNF formula from which the puzzle was derived. Any340

inconsistencies between these results lead to the exclusion of the puzzle from our dataset, thereby341

maintaining the integrity and reliability of our generated benchmark.342

Human Validation To ensure the quality of our dataset, we conduct human validation at two crucial343

stages involving LLMs, as detailed in Appendix B.2. The first stage involves the generation of the344

puzzle’s background and variable mapping, where human assess the logical coherence and confirm345

that the story background accurately reflects the independence of boolean variables. The second stage346

focuses on the translation of clauses into narrative conditions, where human ensure that no additional347

constraints or misinterpretations are introduced.348

B.4 Reasoning Trace Evaluation349

After generating the logical puzzle dataset, we evaluate an LLM’s performance using this dataset.350

Our evaluation emphasizes both the binary prediction result (SAT or UNSAT) and the validity of the351

model’s reasoning trace. We adopt an LLM-as-a-judge methodology, where the model is instructed352

to produce a reasoning trace to justify its prediction. Below, we detail the approach for assessing the353

reasoning trace in SAT and UNSAT scenarios.354

SAT Problems When a problem is identified as SAT, it indicates that there is at least one assignment355

of True or False values to the variables that satisfies the CNF formula. Multiple solutions may exist.356

For example, consider the CNF formula (x(0, 0) ∨ ¬x(1, 0)) ∧ (x(1, 0) ∨ x(2, 1)). One possible357
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satisfying assignment is x(0, 0) = True, x(1, 0) = False, and x(2, 1) = True. After the model358

predicts a problem as SAT, it is required to generate a reasoning trace to support its prediction. We359

then instruct the judging LLM to translate this reasoning into a specific variable assignment using360

the given variable mapping. The judging LLM is further used to verify that each clause in the SAT361

formula evaluates to True, thereby confirming the satisfiability of the entire SAT formula.362

UNSAT Problems Unlike SAT problems, UNSAT problems have no variable assignment that363

satisfies all clauses. A SAT solver can identify an UNSAT-Core, which is a minimal subset of364

unsatisfiable clauses. When the model predicts UNSAT, it must provide a reasoning trace.365

Consider the formula: (x(2, 1)) ∧ (¬x(1, 0) ∨ x(0, 0)) ∧ (¬x(0, 0)) ∧ (¬x(2, 1) ∨ x(1, 0)). We can366

demonstrate its unsatisfiability through a step-by-step analysis:367

1. From the first clause, x(2, 1), we must set x(2, 1) to true.368

2. From the third clause, ¬x(0, 0), we must set x(0, 0) to false.369

3. Given that x(0, 0) is false, the second clause, ¬x(1, 0) ∨ x(0, 0), can only be satisfied if370

¬x(1, 0) is true, suggesting x(1, 0) is false.371

4. However, since x(2, 1) is true, the fourth clause, ¬x(2, 1) ∨ x(1, 0), can only be satisfied if372

x(1, 0) is true.373

This results in a irreconcilable contradiction: x(1, 0) is required to be both true and false simultane-374

ously to satisfy all clauses, rendering the formula unsatisfiable. The example above illustrates a valid375

reasoning trace for an UNSAT problem in formula format. However, since the model being evaluated376

lacks access to the variable mapping during its reasoning trace generation, the judging LLM must first377

translate the reasoning trace back into the variable format. It then compares this translated reasoning378

with the provided UNSAT-Core to assess the accuracy of the reasoning trace.379

Human Validation Given our use of an LLM-as-a-judge methodology for evaluating reasoning380

traces, we incorporate a human validation process to check the correctness of the LLM’s judgments.381

We selected a sample of 100 examples from the dataset for human validation, focusing on three382

critical stages where LLMs are utilized, to enhance confidence in the dataset’s quality and the383

evaluation protocol. Each LLM-based process was manually assessed for correctness. The first two384

stages involve puzzle generation, as described in Appendix B.2: 1) ensuring the generated puzzle385

background and variable mapping accurately represent the sampled CNF formula, where we achieved386

100% accuracy; 2) confirming the precise translation of each clause into its corresponding condition,387

with a 97% accuracy rate. The third stage involves assessing the accuracy of the LLM’s evaluation of388

the reasoning trace, achieving 93% accuracy. These numbers indicate that our dataset quality and389

evaluation pipeline are robust and reliable.390

Nonetheless, a few failure cases were observed. In story generation, one error involved the clause391

(¬x(2, 0) ∨ x(2, 1)) being translated as “If Dr. Brown is not assigned project 0, then Dr. Brown is392

assigned project 1.” This misuses the if-then structure: the negation should be removed from the393

antecedent. The correct phrasing should be “If Dr. Brown is assigned project 0, then Dr. Brown is394

also assigned project 1.”395

For the LLM-as-judge setting, the main error mode involved incomplete extraction of the assignment396

within the trace. In some cases, the model judged that the trace was invalid, even though the trace397

was logically sound. These minor errors, however, were rare and did not affect the overall robustness398

of our pipeline.399
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C Prompt Template400

C.1 SATBench Evaluation Prompt Template401

402

Prompt Template

You are a logical reasoning assistant. You are given a logic puzzle.

<scenario >
{scenario}

<conditions >
{conditions}

<question >
{question}

Guidelines:
- All constraints come **only** from the <conditions > section.
- The <scenario > provides background and intuition , but **does not

impose any additional rules or constraints **.
- All variables represent ** independent decisions **; there is no

mutual exclusivity or implicit linkage unless stated explicitly
in <conditions >.

- Variables not mentioned in <conditions > are considered unknown and
irrelevant to satisfiability.

Your task:
- If the puzzle is satisfiable , propose one valid assignment that

satisfies all the conditions.
- If the puzzle is unsatisfiable , explain why some of the conditions

cannot all be true at once.

Think step by step. At the end of your answer , output exactly one of
the following labels on a new line:

[SAT] - if a valid assignment exists
[UNSAT] - if the constraints cannot be satisfied

Do not add any text or formatting after the final label.

403

C.2 Trace Evaluation Prompt Template404

Trace Evaluation Prompt Template for SAT Prediction

You are given a logical puzzle and a reasoning trace from a language
model.

The puzzle is also expressed as a CNF (Conjunctive Normal Form)
formula. Each clause is a disjunction (OR) of literals formatted
like x(i,), x(i,j), or x(i,j,k). These variables follow the

meaning:

- x(i,) means object or person i has some unnamed property.
- x(i,j) means object i has property or role j.
- x(i,j,k) means object i has property j in context or slot k (e.g.,

time , situation , location).

A positive literal like x(0,1) means that property is present.
A negative literal like \neg x(0,1) means it is absent.

405
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Below is the full logical puzzle and its corresponding formula:

<scenario >
{scenario}

<conditions >
{conditions}

<final question >
{question}

<variable explanation >
{variable_mapping}

<readable CNF formula >
{readable}

<trace from model >
{model_trace}

Your task is to extract the truth assignment implied by the model 's
reasoning trace , and evaluate whether each clause in the CNF
formula is satisfied.

Go through the trace and determine whether each variable appearing
in the CNF formula is marked as True or False.

Then , for each clause , evaluate the truth value of each literal
using this assignment.

For example , if a clause in readable CNF formula is (x(0,) \vee \neg
x(1,)), and the model says x(0,) is True and x(1,) is also True

, then this clause becomes [1, 0].

Think step by step. Show the variable assignments and how you
evaluate each clause.

Finally , in the **last line**, output a single line in the format:
Assignment: [[1, 0], [0, 1, 1], [1], ...]

For any variable that is not explicitly mentioned in the reasoning
trace , assume its value is 0 when constructing the assignment
list.

Do not include anything after this label.

406

Trace Evaluation Prompt Template for UNSAT Prediction

You are evaluating whether a model 's reasoning trace correctly
explains an UNSAT logical puzzle.

<scenario >
{scenario}

<conditions >
{conditions}

<question >
{question}

407
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<variable explanation >
{variable_mapping}

<reasoning trace from model >
{model_trace}

<ground -truth unsat reason >
{unsat_reason}

We already know this puzzle is UNSAT (unsatisfiable).
Your task is to judge whether the reasoning trace correctly

identifies or meaningfully reflects the cause of
unsatisfiability - that is, whether it aligns with the given
ground -truth unsat reason , even if it doesn 't name it explicitly
.

Focus on logical precision:
- Does the trace show or imply a variable assignment or chain of

reasoning that leads to contradiction?
- Does it avoid hallucinations or irrelevant claims?

Note: The trace may present a specific variable assignment or
reasoning path that leads to a contradiction. Whether it aligns
with the given ground -truth UNSAT reason means you must judge
whether the contradiction is logically valid and reflective of
the actual cause - even if it doesn 't explicitly name the
minimal core or unsat pattern.

You are **not** evaluating whether the conclusion "UNSAT" is correct
- that is already known to be correct.

You are only evaluating whether the explanation substantively
captures why the instance is unsatisfiable.

Please think step by step. First , explain whether and how the
reasoning trace aligns with the unsat reason.

Then , in the last line , output one of the following labels:

[YES] - the reasoning trace is logically valid and correctly
captures the UNSAT cause

[NO] - the trace is flawed , incomplete , or does not match the
correct unsat reason

Do not include anything after this label.

408
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