ScaleDiff: Higher-Resolution Image Synthesis via
Efficient and Model-Agnostic Diffusion

Sungho Koh SeungJu Cha Hyunwoo Oh
Hanyang University Hanyang University Hanyang University
ksh0009060@hanyang.ac.kr sju9020C@hanyang.ac.kr komjii@hanyang.ac.kr

Kwanyoung Lee Dong-Jin Kim*
Hanyang University Hanyang University
mobled37@hanyang.ac.kr djdkim@hanyang.ac.kr
Abstract

Text-to-image diffusion models often exhibit degraded performance when gen-
erating images beyond their training resolution. Recent training-free methods
can mitigate this limitation, but they often require substantial computation or are
incompatible with recent Diffusion Transformer models. In this paper, we pro-
pose ScaleDiff, a model-agnostic and highly efficient framework for extending the
resolution of pretrained diffusion models without any additional training. A core
component of our framework is Neighborhood Patch Attention (NPA), an efficient
mechanism that reduces computational redundancy in the self-attention layer with
non-overlapping patches. We integrate NPA into an SDEdit pipeline and introduce
Latent Frequency Mixing (LFM) to better generate fine details. Furthermore, we
apply Structure Guidance to enhance global structure during the denoising process.
Experimental results demonstrate that ScaleDiff achieves state-of-the-art perfor-
mance among training-free methods in terms of both image quality and inference
speed on both U-Net and Diffusion Transformer architectures.

1 Introduction

Diffusion models have recently emerged as the leading approach in image generation [7], demonstrat-
ing the ability to synthesize high-fidelity images from simple text prompts [1} 3,19, 21} 30]. While
these models achieve impressive results at standard resolutions (e.g., under 10242), their performance
significantly degrades when generating images at higher resolutions (e.g., beyond 20482), often
producing artifacts such as repetitive patterns and structural distortions [12} [19]. However, training
diffusion models directly on higher-resolution datasets is prohibitively expensive, requiring both
large-scale, high-quality data and substantial computational resources.

As a result, recent research has focused on extending pre-trained diffusion models to generate higher-
resolution images in a training-free manner [2, 8} 12, [16 |17, [19} 20, 22} 23] [49]]. However, most
of the existing methods are primarily designed for U-Net-based models [1} 30], and we observe
that many existing methods are inapplicable [[12}|16] or exhibit limited effectiveness [20} 28] when
applied to recent Diffusion Transformer (DiT) models [9, (10} 211, 29]. Figure [T] highlights this issue,
showing clear qualitative differences when existing methods are applied to DiT models. Although
patch-based methods [12} 18} 22, 23] such as MultiDiffusion [2]] are inherently architecture-agnostic and
can generate detailed results with DiT models by processing the image in patches at its original trained
resolution, they require significant computational redundancy to process overlapping patches. This
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Figure 1: Comparison between U-Net (SDXL) and DiT (FLUX). Zoom in for a better view.
Elapsed time to generate the image is shown in the top-left corner. Images are generated at 40962.

inefficiency creates a major bottleneck for scalable higher-resolution image synthesis in real-world
applications, highlighting the need for more efficient and architecture-agnostic solutions.

In this work, we propose ScaleDiff, a highly efficient and model-agnostic framework for extending the
resolution capability of pre-trained diffusion models without any additional training. In particular, we
introduce Neighborhood Patch Attention (NPA) to address the computational redundancy inherent
in conventional patch-based methods. In self-attention layers, NPA divides the queries into non-
overlapping patches and computes attention individually using key and value patches gathered from
overlapping spatial neighborhoods. For non-self-attention layers (e.g., MLP), which are less sensitive
to resolution, we process the full tensor directly. This design eliminates duplicate computations
caused by overlapping image regions, ensuring seamless transitions across patch boundaries. We
leverage an iterative upsample—diffuse—denoise pipeline [28]] to generate higher-resolution images
with global semantic coherence. While prior works [20}, 44] perform upsampling in RGB-space, this
often results in oversmoothed outputs and a loss of fine details [18,20]. To address this, we introduce
Latent Frequency Mixing (LFM), which refines the RGB-space upsampled latent by replacing its
low-frequency components with those from an alternative upsampling path in latent space. Finally,
to further enforce global consistency, we incorporate Structure Guidance (SG) [17, 20, 39]]. Unlike
previous approaches that operate in RGB-space [20]], our method applies SG in the latent space
to avoid unnecessary computational overhead. SG reinforces structural coherence by aligning the
low-frequency components of the model’s intermediate prediction with those from a reference latent.

Our main contributions are summarized as follows: (1) We present ScaleDiff, a model-agnostic frame-
work demonstrating state-of-the-art results among training-free methods for higher-resolution image
generation, achieving significant improvements in inference speed on both U-Net and DiT models.
(2) We propose NPA, an efficient attention mechanism that reduces computational redundancy by
using non-overlapping patches in self-attention layers. (3) We introduce LFM, a technique integrated
with SG to enhance global structural coherence and fine detail synthesis during the denoising process.

2 Related Work

Text-to-Image Generation. Text-to-image generation has advanced rapidly with the development
of diffusion models [[13 40} 41]], which generate images by progressively denoising random noise.
A major driver of this progress has been the integration of powerful text encoders—most notably
CLIP [32]—which enable conditioning image generation on natural language prompts. Early methods
such as DALL-E [3] and Imagen [36] demonstrated the potential of large-scale language-vision
alignment. The introduction of the Latent Diffusion Model (LDM) [34]], further improved efficiency
by conducting the diffusion process in a lower-dimensional latent space, facilitating practical high-
resolution synthesis. Recent works [, [6} [9] continue to push the boundaries, exploring



alternative generative frameworks like Rectified Flow [26] and architectural innovations such as
Diffusion Transformers (DiT) [29], which replace traditional U-Net [35] backbones with transformer-
based architectures [43]] to enhance scalability and performance.

Higher Resolution Image Generation. Scaling diffusion models to high resolutions often results
in repetitive artifacts and structural distortions when naively extrapolated beyond their training
resolution [12]]. Several methods [6, [11} 25} 33} 43| 147]] address this by fine-tuning or training on
high-resolution datasets. Despite these efforts, their scalability remains limited due to the fundamental
scarcity of high-resolution data and the sharply increasing training cost with image size.

To mitigate these challenges, recent work explores training-free strategies [2} 18, 12} 161 [17, 19} 20,
22| 23 149]] that extend the pretrained model’s resolution methods. [2, 18} 122} 23] subdivide the target
high-resolution images into overlapping trained-resolution patches, which are processed individually
and then stitched together. However, it significantly increases computation due to the necessary
overlap and suffers from object repetition issues. Another line of research [12| [16, 19, 49] alters
the internal behavior of the model during inference. For example, ScaleCrafter [[12] introduces
dilated convolutions into the U-Net to expand its receptive field and reduce repetition. However,
these modifications are often architecture-specific and tend to degrade image quality at ultra-high
resolutions. Editing-based pipelines [17, 20] generate an image at the model’s native resolution,
upsample it, and then refine it using techniques such as SDEdit [28]]. Nevertheless, these editing
methods rely on the base model’s ability to generate strong local details at higher resolutions—a
task that U-Net models can typically handle, but DiT models often struggle with. Compared to prior
works, ScaleDiff generates high-resolution images with fine details regardless of the underlying
model architecture, while significantly reducing computational overhead.

3 Methods

Given a diffusion model trained on fixed-resolution latents z € R"***4 our goal is to generate
higher-resolution image latents Z € R*"*s%*d where s > 1 denotes the scaling factor. To achieve
this, we propose ScaleDiff, a training-free and model-agnostic framework that efficiently extends
pre-trained diffusion models to higher resolutions. ScaleDiff consists of two main components. First,
we introduce Neighborhood Patch Attention (NPA) (Section @, an efficient attention mechanism
applicable to both U-Net and DiT architectures that enables the processing of higher-resolution
latents. Second, we present the ScaleDiff Upscaling Pipeline (Section [3.3), which builds upon
the SDEdit framework [28]]. The pipeline incorporates two key techniques: (i) Latent Frequency
Mixing (LFM), which refines the reference latent to enhance details, and (ii) Structure Guidance
(SG), which maintains global consistency by aligning the low-frequency components of intermediate
latent predictions with those of the refined reference.

3.1 Backgrounds

Latent Diffusion Model. Latent diffusion models [29] [34] first compress an input image in RGB-
space into a lower-dimensional latent zy € R"*®*? via an encoder £. This enables subsequent
diffusion and denoising to be performed more efficiently in latent space rather than directly on
high-resolution pixels. During training, Gaussian noise is gradually added to the clean latent z, from
t = 0to T, following the forward process:

q(2t|20) = N (265 Varzo, (1 — a)T), (D
where {a;}7_, is a set of prescribed noise schedules. A denoising network, often based on a U-
Net [35] or Transformer [45] architecture, is trained to predict the noise added to z;. During inference,
sampling starts from random latent zp ~ N'(0, I). The trained network iteratively predicts the noise
and denoises z; to estimate z;_1, progressively refining the latent until the final clean representation
zp is obtained. This zg is then decoded to the pixel space by a decoder D producing the final image.

Self-attention is key to capturing global context in diffusion models as it allows each token to weigh
its interaction with all other tokens. The self-attention output O is formulated as

KT

O = softmax (Q) V, 2)
Vd

where (), K,V are the Query, Key, and Value matrices derived by linearly transforming the features

extracted from z, through the network. Especially in transformer architecture, Q, K,V € Rh>xwxd,



sharing the same spatial dimension as z;,. To encode positional information, transformer-based
diffusion models [29] often incorporate positional encodings [42] into the self-attention mechanism.
However, these encodings are tied to the training sequence length. Consequently, when self-attention
is applied to sequences longer than those seen during training, unseen positional embeddings may
disrupt spatial understanding and degrade image quality [27].

Patch-Wise Denoising. Conventional methods process Z; € R3"*swxd by directly computing
self-attention with Q, K,V € R*"*sw*d_which results in a computational cost of s*h%w?d FLOPs.
To reduce the significant computational cost and circumvent the resolution limitations introduced
by positional encoding, MultiDiffusion [2] divides the input Z; into N overlapping patches {2} }V |,
where 2z} € R?*w*d_ Then, the denoising network is applied individually to each patch z¢ to obtain
the corresponding denoised patch z{ ;. These individually processed patches are then aggregated to
reconstruct the full latent high-resolution Z;_; by averaging the values in the overlapping regions.

Specifically, they apply a shifted crop sampling strategy with strides S and .S,,, corresponding to
the height and width dimensions, respectively. As a result, the total number of patches is given

by N = (%;h + 1) X (% + 1). This leads to Q, K,V € RN*hxwxd requlting in a total

computational cost of Nh?w?d FLOPs in self-attention. In practice, the stride values are typically set

to (&,%), yielding N = (2s — 1) patches and a corresponding FLOPs of (25 — 1)2h?w?d (Table .

3.2 Neighborhood Patch Attention

MultiDiffusion circumvents the inherent resolution
limitations by decomposing the image into smaller,

. . . o . Q,I(, Ve Rshxswxd
overlapping patches and processing them individu- ]

ally. They effectively reduce the computational cost = -
in self-attention layers by limiting attention to local ) %
regions. However, it often requires substantial over- ' 5

lap between adjacent patches to ensure smooth tran- a4

sitions at the patch boundaries. This overlap causes g
non-self-attention layers to require nearly 4x more ¢ €R"Z20 7 Pachity
FLOPs under a common stride setting, compared to N g e
a single forward pass that processes the full latent at AT P kvek
once. A detailed breakdown of these computational "S'v@‘ ' L N
costs is provided in Table[l] - . > %‘a%\ : SNy
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To reduce the computational redundancy, we intro- = Q,f@.@\ ) <
duce Neighborhood Patch Attention (NPA) in Fig- - $ K
ure |2} Our key insight is that layers such as linear, N 2 < o~

convolution, and cross-attention perform operations \
on individual tokens or local regions. Unlike self- )
attention, these layers remain unaffected by increased e /
input resolution, eliminating the need for patch-based R »41,\;\:*“
processing. Building on this observation, NPA avoids = 1
patch-based processing for these non-self-attention
layers, allowing them to operate on the full latent
tensor Z, in a single forward pass. This design elimi-
nates redundant computations caused by overlapping
patches, therel?y keeping the computational cost of Figure 2: Process of NPA.
non-self-attention layers unchanged (Table [I]).

Attention
\ 1

Within the self-attention mechanism, NPA is designed to further mitigate computational overhead
by extracting queries from non-overlapping patches. Specifically, given a full query tensor @) €
Rshxswxd e apply a shifted crop sampling strategy to obtain a set of N query patches {Q;}Y,,

where (); € R3*%%d The crop stride is set to match the patch size, i.e., Sj, = % Sw = 5, resulting
in a total of N = ( Shh_/];/ 2 41) x (Sw;/g/ 2 1 1) = 452 patches. This ensures that the query patches
do not overlap, keeping the total number of query tokens unchanged. For each non-overlapping
query patch Q;, we extract a corresponding key—value patch pair (K;, V;) € R>wxd from jts spatial

neighborhood, using a larger window of size h x w centered on ();. Because each K; and V; patch is




Table 1: Theoretical FLOPs comparison. NPA reduces the computational complexity of self-
attention without affecting the cost of non—self-attention operations. k denotes the convolution kernel
size, and [ is the length of text tokens. The Base method represents directly processing the input
in a single forward pass. MultiDiffusion is calculated based on a common stride setting. Symbols
highlighted in red indicate key elements for comparison.

Method Linear Conv Cross-Attn Self-Attn
Base s2hwd? s>hwk2d? s>hwld s*h2w3d
MultiDiffusion [2] (25 — 1)2hwd? (25 — 1)2hwk?d? (25 — 1)2hwld (25 — 1)2h2w?d
NPA(Ours) s>hwd? s2hwk?d? s>hwld s2h2w?d
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Figure 3: Comparison between different reference latents.

drawn from an expanded spatial window, the overlap between these patches allows every query patch
to attend to a wider context and ensures smooth transitions across patch boundaries. We describe
the overall process of the Query, Key, and Value patch extraction algorithm in the supplementary
materials.

After that, self-attention is computed between non-overlapping query patch @); and its corresponding
overlapping K/V neighborhood (K, V;), producing the output O; € R2 % *d and resulting in
hzT“’d FLOPs. As this process is computed individually on 452 patches, the final cost is s2h%w?d
(Table . Finally, we reassemble the individually computed output patches {O;}¥ ; into the full

attention output tensor O € R3"*5w*d baged on their original spatial positions, which is then passed
to subsequent layers (e.g., an MLP block).

3.3 ScaleDiff Upscaling Pipeline

To maintain the global structure of a low-resolution image while enhancing high-frequency details
during image generation, we employ an SDEdit [28]-based pipeline. Starting from a low-resolution
image latent z, we first upscale it to obtain Z,, then inject noise up to the intermediate time step T,
and apply denoising using NPA. However, naively applying this process often results in outputs that
lack fine texture details and appear overly smoothed [[18]]. This phenomenon arises because upscaling
a low-resolution image closely resembles the resizing operation used during training. As a result,
the model tends to denoise the input toward the distribution of resized training images, rather than
synthesizing fine-grained details [20].

To understand this limitation, we compare two upsampling strategies in Figure[8] Upsampling directly
in latent space yields Z 7, which lacks high-frequency components, resulting in visible artifacts
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Figure 4: Overview of our pipeline. ScaleDiff starts from a generated low-resolution latent,
upsamples it with LFM, and diffuses it to an intermediate timestep 7. At each denoising step, the
network—integrated with NPA—applies structure guidance to preserve the global image structure.

in the decoded image that propagate to the final output. However, because Z; deviates from the
training distribution of RGB-resized images, the subsequent denoising process is not biased toward
oversmoothing. In contrast, upsampling in RGB space followed by VAE encoding yields Zgry,
which contains rich frequency information and ensures stable, artifact-free decoding. However, since
this process closely mimics training-time resizing operations, it strongly biases the model toward
reproducing oversmoothed textures instead of generating fine details.

To leverage the complementary strengths of both approaches, we propose Latent Frequency Mixing
(LFM). By combining the low-frequency content from Zy—which steers denoising away from
the oversmoothing regime—with the high-frequency content from Zry—which ensures stable
decoding—we can achieve both sharpness and natural texture. The refined reference latent is:

Z’r‘ef = Z]%U + Z2U7 (3)

where ! and " denote low- and high-frequency components obtained by downsampling and upsampling
operations and their residual. This construction guides subsequent denoising toward generating
detailed outputs without oversmoothing.

Since NPA processes images through patches, it can introduce repetitive patterns. To mitigate
this and enforce global structural consistency, we apply Structure Guidance (SG) following prior
work [20L [39]. At each timestep ¢, we obtain a clean estimate Zo| from the noisy latent Z; and
guide it toward Z,..; by blending their low-frequency components:

ZO\t = Zg\t +(1- ’Yt)Z(l)\t + ’Yth“ef’ “)

where 7, controls the guidance strength. This guided prediction Zo|t is then utilized to compute
the subsequent noisy latent Z;_1. This process steers the generation towards the global structure
defined by Z,..; while allowing the model to synthesize high-frequency details. FigureEl illustrates
our pipeline.
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Figure 5: Qualitative comparison with other methods. All images are generated at 40962 from
the same low-resolution input. Zoom in for a better view.

4 Experiments

4.1 Experimental Settings

Implementation Details. We evaluate our proposed method, ScaleDiff, on both FLUX [21] and
SDXL [30] within an iterative 10242 — 20482 — 40962 generation pipeline. For FLUX, we use a
noise timestep 7 = 600, and a structure guidance strength of v, = ¢. This setup uses 30 denoising
steps with a guidance scale of 3.5. For SDXL, we set 7 = 400, and the structure guidance strength to
~v¢ = 1 — a;. This configuration uses 50 denoising steps with a classifier-free guidance (CFG) [[14]]
scale of 7.5. All experiments are conducted on a single NVIDIA A6000 GPU.

Baselines. We compare our method with recent training-free methods (ScaleCrafter [12]], HiDiffu-
sion [49], DiffuseHigh [20], FreeScale [31]], DemoFusion [8]], AccDiffusion v2 [24]), super-resolution
models (BSRGAN [48], OSEDiff [46]), and a training-based model UltraPixel [33]]. Training-free



Table 2: Quantitative comparison results. The best results are shown in bold, and the second best
results are underlined. All time measurements are expressed in seconds.

Model Resolution Method FID| KID| ISt FID,| KID,| IS, CLIPt Time |

SDXL Direct [30] 88.56  0.0124 13.25 5873  0.0137 20.79 31.57 47
SDXL + BSRGAN [48] 64.60 0.0041 18.40 4140 0.0092 23.19 33.03 13
SDXL + OSEDiff [46] 6479 0.0046 18.89 41.76 0.0094 23.58 32.79 29

UltraPixel [33] 64.61 0.0056 18.58 4244 0.0093 25.15 32.61 71
ScaleCrafter [12] 68.68 0.0033 16.56 43.46  0.0064 2352  32.07 64
20482 HiDiffusion [49] 69.52  0.0040 1822 4292  0.0067 24.01 31.50 33
DiffuseHigh [20] 63.27 0.0033 19.10 38.15 0.0062 2495 3277 45
SDXL FreeScale [31] 63.50 0.0031 19.06 3827 0.0062 2425 32.62 69
AccDiffusion v2 [24] 64.86  0.0039 18.37 3824 0.0068 2566 32.62 199
Demofusion [8] 6336  0.0032 19.15 3598 0.0050 26.42 32.72 125
ScaleDiff (Ours) 6298 0.0032 19.54 38.03 0.0067 25.70 33.11 31
SDXL Direct [30] 182.05 0.0717 799  80.80 0.0250 17.68 27.82 328
SDXL + BSRGAN [48] 64.88 0.0044 18.16 4897 0.0160 17.04  33.02 14
SDXL + OSEDiff [46] 6535 0.0045 18.69 4567 0.0118 17.61 32.88 122
UltraPixel [33] 6539 0.0055 19.08 47.09 0.0112 20.64 3233 386
ScaleCrafter [12] 86.66 0.0110 15.14 79.39  0.0217 1447 30.25 932
40962 HiDiffusion [49] 105.37 0.0216 13.87 11230 0.0494 1222 2721 124
DiffuseHigh [20] 6391 0.0034 1899 4230 0.0079 19.54  32.68 325
FreeScale [31] 64.33  0.0036 19.18 39.56 0.0079 1891 32.56 517
AccDiffusion v2 [24] 64.64 0.0037 1856 4092 0.0083 1842 32.34 1599
Demofusion [8] 65.06 0.0041 19.13 4129 0.0079 19.59 32.61 1005
ScaleDiff (Ours) 61.87 0.0025 19.56 38.89 0.0080 2041 33.04 113
FLUX Direct [21] 68.78 0.0069 18.57 42.84 0.0086 22.46  30.79 150
20482 FLUX + BSRGAN [48] 64.65 0.0052 19.07 42.01 0.0081 2298 31.21 33
FLUX FLUX + OSEDiff [46] 65.10 0.0056 1846 41.88 0.0078 2325 31.03 46
ScaleDiff (Ours) 64.31 0.0047 1851 40.03 0.0073 23.38 31.22 103
FLUX Direct [21] 459.07 02775 1.61 36747 0.2642 122 18.03 1251
40962 FLUX + BSRGAN [48] 64.76 0.0051 18.84 4930 0.0125 1692 3119 34

FLUX + OSEDiff [46] 6422 0.0052 19.16 48.37 0.0112 16.99 31.13 136
ScaleDiff (Ours) 64.06 0.0044 1836 4429 0.0098 17.41 31.14 407

baselines are evaluated on SDXL, as they are optimized for U-Net architectures. For FLUX, we
compare against the base model (natively supports resolutions up to 20482) and SR methods.

Evaluation. For quantitative evaluation, we randomly sample 1,000 image-text pairs from the
LAION-5B [38] dataset and generate one image per prompt using each method. We compute the
Fréchet Inception Distance (FID) [[13]], Kernel Inception Distance (KID) [4]], and Inception Score
(IS) [37] between generated images and real images. However, these metrics typically require resizing
images to 2992 pixels, thereby limiting the evaluation of fine-grained details. To better assess detail
fidelity, we extract multiple patches from each image and calculate patch-level FID,,, KID,,, and IS,
following [8]. We also measure the CLIP Score [32] to evaluate text-image alignment.

4.2 Quantitative Comparison

Table 2| compares ScaleDiff with baseline methods for generating images at 20482 and 40962
resolutions. On SDXL, ScaleDiff consistently outperforms existing training-free, training-based, and
super-resolution methods across key quality metrics, demonstrating its ability to generate high-fidelity
images. Similar results on FLUX further confirm ScaleDiff’s robustness and model-agnostic design.

ScaleDiff also achieves remarkable inference efficiency. For 40962 resolution on SDXL, it requires
only 113 seconds—the fastest among training-free methods. Compared to the patch-based method
Demofusion, ScaleDiff achieves an 8.9 x speedup while surpassing it in most evaluation metrics,
demonstrating NPA’s effectiveness. On FLUX, applying NPA yields a 3.1x speedup over direct
inference at 40962 resolution. While super-resolution models like BSRGAN offer faster inference,
they struggle to produce fine details, as reflected in lower patch-level scores. In contrast, ScaleDiff
successfully balances generative quality with computational efficiency.

4.3 Qualitative Comparison

Figure [5| presents a qualitative comparison of ScaleDiff with baseline methods for 40962 image
generation. While all methods produce high-quality outputs, prior approaches exhibit notable
limitations. Super-resolution models like BSRGAN and OSEDiff fail to reproduce fine details,
resulting in visibly corrupted facial features (Figure [5p,c). DemoFusion effectively generates fine
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Figure 6: Qualitative comparison of replacing NPA in the ScaleDiff pipeline. Inference time for
each method is shown in the bottom left. All images are generated at 4096 resolution.

Table 3: Quantitative results of ablation study.

Attention LFM SG|FID| KID| ISt FID,l KID,| IS, CLIPt Timel

Base v v | 6191 0.0028 19.47 3994 0.0082 20.09 33.01 185
MultiDiffusion v v | 61.71 0.0021 19.71 38.08 0.0069 20.85 33.04 239
NPA v v | 61.87 0.0025 19.56 38.89  0.0080 2041 33.04 113
NPA 64.17 0.0036 1949 4155 0.0092 1941 33.02 113
NPA v 62.34 0.0028 19.19 3949 0.0085 20.16 33.01 113
NPA v | 6412 0.0035 18.86 41.50 0.0091 19.71  33.04 113
NPA v v | 61.87 0.0025 19.56 38.89 0.0080 20.41 33.04 113

DiffuseHigh lacks detailed textures due to inherent constraints of RGB-space upsampling (Figure
In contrast, ScaleDiff produces results with improved global structure and finer details, demonstrating
superior qualitative performance across different models.

>

details but often suffers from repetitive object patterns due to its patch-based processing (Figure g).
)

4.4 Ablation Study

Effectiveness of NPA. We validate the effectiveness of our proposed Neighborhood Patch Attention
(NPA) by comparing it against two alternatives integrated into the ScaleDiff pipeline: (1) direct
high-resolution inference (Base) and (2) a standard patch-based method (MultiDiffusion). As shown
in Figure [6] and Table [3] all methods maintain a stable global structure, likely due to the shared
ScaleDiff pipeline. However, the Base method produces local artifacts on SDXL and lacks fine details
on FLUX, while requiring significantly longer inference times. MultiDiffusion generates high-quality
images and achieves the best scores, but suffers from substantial computational overhead (1148s
on FLUX). In contrast, our NPA achieves scores comparable to MultiDiffusion while being more
efficient (407s on FLUX, 2.8 speedup), demonstrating an effective balance between generation
quality and computational efficiency.
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Figure 7: Ablating each component of ScaleDiff. The yellow box highlights the repetition
artifacts. All images are generated at 40962 using SDXL [30]. Zoom in for a better view.

Table 4: Ablating noise timestep 7.

Model 7 |FID| KD} ISt FID,| KID,| IS,7 CLIP?}

700 | 63.61 0.0036 18.93 37.65 0.0064 25.02 33.01
600 | 63.60 0.0034 19.20 37.94 0.0067 2515 33.06
SDXL 500 | 63.30 0.0033 1943 3877 0.0073 2442 33.09
400 | 63.12 0.0032 19.36 3833  0.0070 24.56 33.07
300 | 63.22 0.0032 19.56 39.38  0.0077 2385 33.07

700 | 64.44 0.0049 1822 4037 0.0073 23.62 3127
FLUX 600 | 6445 0.0049 18.52 40.76 0.0076 23.16 31.29
500 | 64.13 0.0049 1836 41.72  0.0081 22.78 3129
400 | 63.59 0.0047 1845 4199 0.0083 2290 3125
300 | 63.67 0.0048 18.30 42.07 0.0084 2324 31.33

Effectiveness of LFM and SG. In Figure [7] and Table 3] we validate the contributions of Latent
Frequency Mixing (LFM) and Structure Guidance (SG). When both components are removed
(Fig.[Th), the model fails to generate coherent results, exhibiting severe object repetition and heavily
oversmoothed textures. Adding LFM alone (Fig. [7p) reduces oversmoothing and enables the synthesis
of finer details, which is confirmed by improvements in patch-level metrics in Table[3} Applying
SG alone (Fig. [Tc) effectively mitigates object repetition, demonstrating its role in enforcing global
structural coherence. The full ScaleDiff pipeline (Fig. [7d), which combines both LFM and SG,
concurrently addresses both issues and achieves the best overall performance among all ablated
configurations.

Ablation of Noise Timestep 7. The noise timestep 7 is a critical hyperparameter governing the
trade-off between preserving global structure from the upsampled reference image (lower 7) and
enabling sufficient synthesis of fine-grained details (higher 7). We conduct an ablation study to
determine the optimal 7 for both architectures. As detailed in Table [d] 7 = 400 for SDXL and
7 = 600 for FLUX provide the best balance between structural fidelity and detail generation.

5 Conclusion

In this paper, we propose ScaleDiff, an efficient and model-agnostic framework that enhances
the resolution capabilities of pretrained diffusion models without requiring additional training.
We introduce Neighborhood Patch Attention (NPA), a mechanism that significantly reduces the
computational redundancy typical of traditional patch-based diffusion approaches. In addition,
we propose Latent Frequency Mixing (LFM) and incorporate Structure Guidance (SG) within an
upsample—diffuse—denoise pipeline to improve fine detail synthesis and structural consistency. Our
experiments, conducted on both U-Net and Diffusion Transformer architectures, show that ScaleDiff
achieves state-of-the-art performance among training-free methods, delivering superior image quality
and faster inference across diverse models. These results highlight ScaleDiff as a powerful and
versatile solution for higher-resolution image generation.
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made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
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* It is fine to include aspirational goals as motivation as long as it is clear that these goals
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implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
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4. Experimental result reproducibility
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the dataset).
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to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Justification: We will release our code after submission.
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* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We do not train any models. Details about evaluation is provided in section
3.1. We cannot share subset for evaluation because we do not hold the rights.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We build upon prior research in the field, utilizing established evaluation
metrics and conducting qualitative analysis for comparison.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: GPU used for evaluation is provided. Inference time is also provided
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We utilize a pre-trained diffusion model, which—like any generative
model—must be used with caution. In our work, we do not fine-tune or modify the model in
any way.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: Our approach preserves the original societal implications of the diffusion
model, given that we do not modify its generation behavior.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: We utilize a pre-trained model without making any modifications to its weights.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All sources are properly cited, and the pre-trained model is publicly available
for research use.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer:
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
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* The answer NA means that the paper does not involve crowdsourcing nor research with
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* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We used LLM only for editing (e.g., grammar, spelling, word choice).
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Implementation Details

When generating images with various aspect ratios, we ensure that the longer side of the initial image
matches the model’s trained resolution. For frequency decomposition, we use a spatial downsampling
ratio of 4 for FLUX and 8 for SDXL. When evaluating the inference speed of MultiDiffusion [2], the
overlap ratio is set to 50%, and we use a batch size of 16 for SDXL and 1 for FLUX.

In U-Net-based models such as SDXL [30]], the spatial resolution is progressively downsampled
across layers. Accordingly, we also downsample the native resolution (h, w) of NPA to match the
downsampling ratio at each corresponding layer. In FLUX [21]], the MM-DiT architecture [9] is used,
where the text tokens are concatenated with latent tokens and jointly processed through a self-attention
layer. Accordingly, in NPA, the text tokens are duplicated for each patch and concatenated with
the corresponding latent tokens within each patch. After the NPA processing, the text tokens are
averaged across all patches. In the original setting, text tokens are assigned the position (0,0) in
ROoPE [42]. When duplicating the text tokens, we assign them the position of the top-left corner of
the corresponding Key/Value patch to ensure proper spatial processing.

B Additional Details and Experiments on Neighborhood Patch Attention

B.1 Query Window Random Shifting

While Neighborhood Patch Attention utilizes overlapping key/value patches to ensure a smooth
transition at patch boundaries, minor boundary artifacts can sometimes appear in the generated output.
Query Window Random Shifting is an optional technique designed to further alleviate such artifacts
by introducing random variations to the query patch grid at each layer (Figure[§)). Specifically, we
randomly sample the top and left offsets for padding uniformly from the respective ranges [0, %]
and [0, ]. The query tensor is then zero-padded by a total of % in height and % in width using
these randomly sampled top-left offsets. Query patches are subsequently extracted from this enlarged
canvas. After attention computation, regions corresponding to the added padding are discarded.
Since offsets are independently resampled at each layer, explicit patch boundaries are avoided, which
reduces border artifacts with minimal computational overhead. Note that this technique was not used
during the evaluation in this paper.
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Figure 8: Illustration of Query Window Random Shifting.

B.2 Comparison of Generation time

Figure [0 presents the model processing time at various resolutions for SDXL and FLUX, compar-
ing three methods: Direct Inference (Base), MultiDiffusion, and NPA. Direct Inference shows a
quadratic growth in processing time as resolution increases, primarily due to the cost of global
self-attention. MultiDiffusion achieves linear scaling with resolution but suffers from higher baseline
overhead, caused by redundant computation on overlapping patches. In contrast, NPA eliminates
such redundancy and maintains linear scaling, resulting in the lowest processing time.
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Figure 9: Comparison of model processing time. A resolution multiplier of 1x corresponds to
generation at 10242 resolution.

B.3 Panorama Generation with NPA
Our NPA adopts the behavior of MultiDiffusion, making it suitable for a wide range of applications.

Notably, Figure [T0] presents the results of using NPA for panorama generation on FLUX. No other
ScaleDiff components were used.

A photo of snowy mountain peak with skiers

A photo of a desert landscape, golden hour

Figure 10: Panorama Generation with NPA. All images are generated at 1024 x 4096 resolution.
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B.4 Patch Extraction Algorithm of NPA

Algorithm [T] presents the detailed patch extraction procedure for NPA. Note that query window
random shifting (Section [B.1)) is not included in this algorithm.

Algorithm 1 NPA: Query/Key/Value Patch Extraction

1: Input: Q, K,V ¢ Rmhxnwxd > Full query, key, value tensor
2: Parameters: 1, w > Native height and width
3: Output: {Ql}l 1 > Set of non-overlapping query patches
4: {K N VY, > Set of overlapping key, value patches
5. N, < % +1 > Number of patch rows
6: N, ™= /“2)/ 211 > Number of patch columns
7: N < N, x N, > Total number of patches
8: fori < 1to N do

9: hyape < Li/Ny] x & > Top-left coordinate of the query patch
10: wl .. < (i mod NT) x ¥
11: hgn g < hl start + 2 > Bottom-right coordinate of the query patch
12: nd < wgmrt Jr
13: hf}’m — clamp(hgmrt b 0,sh—h) > Center K/V patch around query patch
14: why ., clamp(w?,,,, — 2,0, sw — w) > Clamp for window shifting at the edge
15: By B+
16: éC;L}d A wé:tart +w
17: Qi < Q[hl1yy - B2 4wl Wl ] > Non-overlapping query patch extraction
18: K, « K[hkp,, o AR w gt”m,t cwhv > Overlapping key, value patch extraction
19: V — V[hlgtvmf h]ev;id’ sfart : wgz)d’ :]

20: end for
21: return {Ql}z lﬂ{Kl}z 1’{Vi}i1\;1

C Qualitative Results on Various Models

We present qualitative results of ScaleDiff using SDXL and FLUX across various aspect ratios and
resolutions in Figure|l 1/and Figure To highlight the model-agnostic nature of our method, we
also include results using Lumina-T2X [10] in Figure [I3]

D Limitation

ScaleDiff has some limitations. First, as a tuning-free framework, its performance is inherently
constrained by the capabilities of the underlying diffusion model. Second, being a patch-based
approach, it relies heavily on the diffusion model’s prior knowledge of cropped image regions. This
can sometimes lead to inconsistent local content when generating sharp close-up images. Finally,
repetitive artifacts may still occur in background regions, a common drawback of patch-based
generation methods.

23



[4096X4096]

Vintage red British roadster:

[3072x 4096] ‘ [3072x2048)

Figure 11: Qualitative results of ScaleDiff on SDXL
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Figure 12: Qualitative results of ScaleDiff on FLUX
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Figure 13: Qualitative results of ScaleDiff on Lumina-T2X
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