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Abstract

Whole slide image (WSI) classification has emerged as a powerful tool in computational
pathology, but remains constrained by domain shifts, e.g., due to different organs, diseases,
or institution-specific variations. To address this challenge, we propose an Attention-based
Generative Latent Replay Continual Learning framework (AGLR-CL), in a multiple in-
stance learning (MIL) setup for domain incremental WSI classification. Our method em-
ploys Gaussian Mixture Models (GMMs) to synthesize WSI representations and patch count
distributions, preserving knowledge of past domains without explicitly storing original data.
A novel attention-based filtering step focuses on the most salient patch embeddings, en-
suring high-quality synthetic samples. This privacy-aware strategy obviates the need for
replay buffers and outperforms other buffer-free counterparts while matching the perfor-
mance of buffer-based solutions. We validate AGLR-CL on clinically relevant biomarker
detection and molecular status prediction across multiple public datasets with diverse cen-
ters, organs, and patient cohorts. Experimental results confirm its ability to retain prior
knowledge and adapt to new domains, offering an effective, privacy-preserving avenue for
domain incremental continual learning in WSI classification.

Keywords: Whole Slide Image Analysis, Computation Pathology, Biomarker Screening,
Continual Learning

1 Introduction

Recent advances in computational pathology (CPath) and digitizing WSIs have transformed
histopathology image analysis, driving significant progress in automated disease detection
and biomarker assessment. However, WSI classification remains challenging due to the
gigapixel resolution and the lack of pixel-level annotations. A common strategy divides
WSIs into manageable patches, which are processed offline by vision encoding models to ob-
tain feature sequences. Notably, self-supervised pretraining has enabled the development of
domain-specific foundation models (FMs) that outperform out-of-domain counterparts (Xu
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et al., 2024; Chen et al., 2024; Wang et al., 2023), such as ImageNet-pretrained models.
The conversion of patch-level features into slide-level predictions is achieved through MIL
by aggregation of these features.

Despite these advancements, WSI classification models still face challenges in clinical set-
tings. Variability in morphological features, originating from differences in organ-specific
biology, staining protocols, scanner manufacturers, and patient cohorts, induces distribu-
tion shifts that degrade performance on new datasets. Conventional MIL models struggle
to generalize when WSIs are acquired from diverse hospitals and settings. Fine-tuning
on new datasets is a common adaptation strategy; however, it often leads to catastrophic
forgetting (CF) (Kirkpatrick et al., 2017; Kumari et al., 2024a). On the other hand, con-
tinual learning (CL) has emerged as a promising solution for evolving medical data while
mitigating CF (Sadegheih et al., 2025; Kumari et al., 2025b,a). By enabling continuous
knowledge accumulation, CL enhances model robustness and adaptability in clinical set-
tings and facilitates forward knowledge transfer, e.g., from frequently stained datasets in
H&E or PAS to those for follow-up diagnostics like CD8 or TRI (Kumari et al., 2024b).
Although buffer-based methods, which store selected past samples, typically yield superior
performance (Derakhshani et al., 2022; Bhatt et al., 2024), their applicability to WSIs is
hindered by storage and privacy constraints. Existing WSI CL research is limited, focusing
primarily on buffer-based and class incremental methods (Huang et al., 2023; Zhu et al.,
2024). To address these limitations, we propose AGLR-~CL, a buffer-free generative replay
approach for domain incremental WSI classification. AGLR-CL models past domain distri-
butions with GMMs trained on patch embeddings and counts. For each domain, class-wise
multivariate GMMs and one-dimensional GMMs capture prior data distribution. In subse-
quent domains, synthetic data sampled from these GMMs are combined with new WSIs to
update the MIL model, thus avoiding real data storage and preserving privacy. We validate
AGLR-CL on multiple tasks across domain incremental datastes including various centers
and organs. Extensive experiments show that AGLR-CL effectively retains prior knowledge
and adapts to new domains, surpassing other buffer-free methods and achieving performance
close to buffer-based methods. Our main contributions are:

(1) Domain incremental CL for MIL. To our knowledge, we introduce domain incre-
mental CL for MIL for the first time and present a GMM and attention-based filtering for
effective re-sampling of past data across domains.

(2) Broad applicability and increased privacy. Across CPath tasks, including biomarker
screening and molecular status predictions, our AGLR-CL consistently surpasses buffer-free
methods and is on par with buffer-based methods, while avoiding WSI storage and thus
increasing privacy.

2 Method

A flowchart of the proposed approach is shown in Fig. 1. In the following, we detail MIL-
based WSI classification, CL settings, and our AGLR-CL framework, which incorporates an
attention-based selection for GMM training and synthetic embedding generation for a latent
replay mechanism.
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Figure 1: Privacy-aware domain incremental AGLR-CL framework. Following WSI
tessellation, a frozen FM-based encoder generates a sequence of tractable em-
beddings. A MIL aggregator is then trained on the current episode, with high-
attention features selected to fit GMMs for patch embeddings and counts. In
subsequent episodes, historical data is revisited by re-sampling synthetic WSIs
using the per-episode GMMs.

2.1 MIL-based WSI Classification

We adopt a standard preprocessing pipeline, partitioning each WSI into n non-overlapping
patches p; € R312X512x3 A pretrained CPath FM is then used to extract patch embeddings,
resulting in a feature sequence {f;j}l"; € R™*P with D denoting the latent dimension.
These embeddings are aggregated using a learnable MIL model M. Specifically, we employ
AB-MIL (Ilse et al., 2018), which embeds each feature into a lower-dimensional space d
via a linear layer and applies an attention mechanism to assign instance-level weights. The
weighted embeddings are summed and fed into a classification head for WSI prediction.

2.2 Continual Learning Configuration

We consider a CL pipeline for WSI classification, where datasets arrive sequentially (defined
as episodes), {Dy, Dy, ..., Dy}, each representing a distinct domain t € {1,...,7}. At train-
ing domain ¢, the model M has access to the current dataset D; only, while evaluation is
performed on test sets from all episodes {D;, D, ..., Dr}. Unlike approaches that retain a
buffer of past samples (Zhu et al., 2024; Huang et al., 2023), our method addresses CF while
avoiding WSI storage, a critical requirement in privacy-sensitive domains.
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2.3 GMM-based Synthetic Embedding Generation

WSIs inherently contain a variable number of patches. To generate synthetic WSI represen-
tations, we model both the patch counts and patch embeddings using GMMs. For a new
dataset Dy, we estimate class-specific multivariate models GMM,_, on the collected patch
embeddings to capture feature variations. Concurrently, one-dimensional models GMM?_ .
are fitted on patch counts to account for tissue variability across WSIs. Since not all patches
contribute meaningfully to the classification task, we introduce an attention-guided filtering
step prior to GMM estimation. After the ¢ training session with classifier M, attention
scores are computed for patches across each WSI in the dataset of the current episode D;.
Low-attention patches are discarded, retaining only the top ¢% for subsequent processing.
Consequently, the feature sequence {fz}?il of each WSI W; € D, with j € {1,...,|Dy|} is
reduced to m; < nj. Next, we define GMMs for WSI embedding generation. The probabil-
ity density function for a feature embedding is its likelihood under a K-component GMM,
given by

K
p(fil®) = > N (filis Sh), (1)

k=1

where N (fi|ux, Xk ) represents a Gaussian density function with k mixture parameters given
by mean uj and covariance ¥, which are defined by
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with the responsibility v;x computed via the Expectation-Maximization (Dempster et al.,
1977) to update the parameters py, X iteratively:

TN (fil e, X)
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The optimal K is selected by minimizing the Bayesian Information Criterion (BIC) (Fraley
and Raftery, 1998) over candidate values. The estimated parameters define a generative
model that facilitates on-the-fly sampling of synthetic patch embeddings mimicking D;.
Concurrently, the number of patches n; in a synthetic WSI W, € D; is determined by
sampling from GMMY ., ensuring that the generated WSIs have a realistic patch count,
or in other words, tissue variability. We denote the union of GMMs created for each episode

as GMM family.

2.4 Generative Latent Replay

During the #*! training session, the current dataset D; is expanded with synthetic WSIs gen-

erated from the t—1 GMM families learned in all previous episodic datasets {D1, Da, ..., Di_1}.
For each past session t' < t, synthetic WSI embeddings are generated as feature sequences
{fi}:2, for j € {1,...,|Dy|}. To this end, we first sample a patch count #; from GMML, .

and subsequentially drawing 7; patch embeddings from GMMtelmb. The number of synthetic
WSIs matches the WSIs count in D; while preserving the class ratio previously observed in
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Table 1: Dataset statistics. Overview of data cohorts across organs, centers, and tasks,
to create both homogeneous and heterogeneous domain shifts. We used a patient-
stratified split into Train/Test sets to avoid data leakage from individual datasets.

Train Test
Name Class 0/1 Class 0/1 Organ Center
TCGA-CRC 303/52 79/13 Colorectal multiple
_CPTAC-COAD | 138/41  30/12 Colon C1
E PAIP-CRC 28/9 7/3 Colorectal C2
TCGA-STAD 239/48 62/12 Stomach  multiple
TCGA-UCEC 340/92 88/25 Uterine  multiple
TCGA-STAD 261/66 67/16 Stomach  multiple
m TCGA-UCEC | 278/152 68/38 Uterine  multiple
S TCGA-NSCLC | 533/280  143/67 Lung  multiple
& TCGA-CRC 350/65 90/16 Colorectal  multiple
TCGA-BRCA 853/26 210/6 Breast multiple
N TCGA-BRCA | 469/135 114/32 Breast multiple
RCPTAC-BRCA | 266/38  56/7 Breast C4
am BCNB 625/221 156 /56 Breast C5h
TCGA-BRCA | 275/577  71/145 Breast multiple
©CPTAC-BRCA | 114/159  41/34 Breast C4
BCNB 214/632 54/158 Breast C5h

Table 2: Dataset episodes detail. We curate heterogeneous organ/center (a2, al, a5) and
homogeneous center (a3, a4) shifts to obtain domain incremental episodes.

Seq. Task Dataset episodes

al MSI TCGA-STAD — PAIP-CRC — TCGA-UCEC
a2 MSI PAIP-CRC — TCGA-CRC — TCGA-STAD — CPTAC-COAD — TCGA-UCEC
a3 PR TCGA-BRCA — CPTAC-BRCA — BCNB

a4 HER2 TCGA-BRCA — BCNB — CPTAC-BRCA
ab TMB TCGA-STAD — TCGA-UCEC — TCGA-NSCLC — TCGA-CRC — TCGA-BRCA

Dy . These synthetic samples are then combined with the real WSIs from the current session
to form a hybrid training set. By integrating synthetic data through generative replay, the
model continuously reinforces knowledge from previous episodes, thereby mitigating CF,
reducing overfitting to new data, and eliminating the need to store real historical samples.

3 Experiments

Datasets. We consider multiple publicly available WSI datasets for biomarker screening
of microsatellite instability (MSI) and tumor mutational burden (TMB), binarizing TMB
numeric values at 10 mutations/megabase. We also perform molecular status prediction
of progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) in
breast cancer. Specifically, we explore data repositories such as The Cancer Genome At-
las (TCGA) (Cancer Genome Atlas Network, 2012), Clinical Proteomic Tumor Analysis
Consortium (CPTAC) (Edwards et al., 2015), PAIP2020 challenge (Kim et al., 2023), and
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Table 3: Performance comparison across CL methods. Past raw data (PRD) marks
if past WSIs need to be stored. Red and blue indicate first and second best perfor-
mances by all CLL methods. Underline shows best performance in buffer-free CL.

Task weighted F1 AUROC AUPRC
(Seq.) | PRD | Method ACC A BWT | Acc A BWT | AccC A BWT
3 Naive 6550 6545 -17.32 | 6117 667  23.67 | 3231 39.93 -25.97
v Joint 69.84 - 65.96 - - 41.21 = -
v Cumulative | 76.02 76.71  -0.41 | 77.63  81.6  -6.13 | 54.85  59.23  -7.67
v Replay 73.02  75.07 -2.84 | 67.87  73.22  -5.27 | 47.88  50.44  -5.51
MSI v GDumb 64.52 65.34  -0.5 | 58.54  61.91  -0.19 | 34.96 36.83  -5.55
(al) x LwF 50.94  64.53 -11.72 | 53.42  59.95 -31.47 | 31.68  40.22  -23.5
x EWC 64.17 70.06 -21.79 | 55.16  65.74  -33.83 | 37.27  46.57  -27.65
x sI 66.25 68.15 -16.64 | 60.26  65.77 -37.24 | 45.24  51.74  -23.68
x EVCL 69.09 69.38 -13.97 | 59.29  65.26  -36.04 | 38.22  48.23  -27.76
x Ours 69.91 73.84  -4.45 | 64.88  72.87  -20.18 | 38.38  49.44  -23.84
X Naive 68.10 7450 -2.63 | 7082  76.33  l2v | 4544 5446  6.78
v Joint 79.95 X - 74.07 . » 56.87 X -
v Cumulative | 72.90 76.51  3.36 | 72.13  76.53  4.03 | 41.11  50.8  2.92
v Replay 68.34 72.35  -2.50 | 68.32  75.01  -1.6 | 40.51  47.24  -3.41
MSI v GDumb 71.66  68.05  16.11 | 60.69  60.42  3.39 | 40.47 3856  2.19
(al) x LwF 68.71 72.68 -3.86 | 62.51  70.76  -5.0 | 34.76 4247  -6.39
x EWC 65.03 7049  -7.01 | 59.17  69.81  -9.16 | 37.52  45.9  -1.26
x SI 68.58 71.53  -7.1 | 63.51  70.68 -85 | 36.97 47.26  -5.66
x EVCL 67.16  71.05  -5.79 | 59.85  67.71  -11.04 | 34.47  44.81  -3.14
X Ours 78.01 74.1 -1.89 69.11 74.05 -2.32 47.66 52.94 9.61
x Naive 64.29 67.20 -7.44 | 6685 69.08  -0.85 | 73.34  74.06 -8.04
v Joint 69.76 - 71.84 - - 7769 -
v Cumulative | 67.60 66.73  0.37 | 71.40  72.0 05 | 77173 7731 -0.48
v Replay 70.77  67.76  3.54 | 68.48  69.18  -4.56 | 74.96 7431  -2.46
PR v GDumb 67.21 63.22 11.52 72.82 67.97 9.7 77.51 74.98 2.5
(a3) x LwF 66.91  64.1  -2.05 | 70.35  68.16  -1.79 | 76.00  73.28  -0.65
x EWC 63.28 64.27  -4.82 | 66.30  66.87  -7.13 | 73.36  72.13  -5.03
x sI 63.55 65.03 -6.61 | 66.77  68.28  -6.64 | 7472  74.34  -3.42
x EVCL 6519 6549  -4.11 | 7L.22  71.16  -4.90 | 76.49 75.79  -3.95
x Ours 67.97 66.33 -1.48 | 70.34  71.16  -8.0 | 76.35  76.23  -6.28
X Naive 7180  71.99  3.21 | 59.57  63.6 5.4l | 29.36 3553  -5.08
v Joint 75.85 - 62.90 - - 36.44 -
v Cumulative | 75.50  75.66  0.84 | 61.82  66.07  1.96 | 36.91  41.5 5.1
v Replay 75.32 74.12 1.7 59.24 63.93 1.59 31.95 38.0 1.62
HER2 v GDumb 75.64  73.43  3.56 | 62.13  64.77  8.47 | 32,95 37.60 7.5
(64) X LwF 72.29 72.16 -4.59 58.12 62.71 -5.04 28.07 34.21 -5.44
x EWC 71.44 7231  -5.39 | 61.22  64.97  -2.85 | 28.90 3574  -5.34
x sI 71.62  72.74  -3.39 | 55.37 6221  -0.53 | 28.27 3592  -1.58
x EVCL 71.26  72.85  -3.44 | 54.68  61.46  -8.96 | 24.71  33.61  -10.99
x Ours 76.94 7511  -0.78 | 66.18  66.79  -0.49 | 35.07  37.99  -1.97
X Naive 7078 68.84  -7.16 | 49.50  59.27 -11.33 | 22.84 38524 7.7
v Joint 74.35 —_ —_ 61.48 —_ —_ 34.49 —_ —_
v Cumulative | 74.48 69.75  0.51 | 5540  60.4  -0.03 | 32,91 37.88  1.95
v Replay 71.62  69.4  -2.00 | 50.77  60.39  -7.30 | 26.53  36.84  -4.44
TMB v GDumb 72.98  67.80 049 | 5472 5547  4.76 | 28.08  33.37  3.07
(a5) x LwF 70.32  690.05  -4.42 | 55.51  60.58  -6.12 | 28.35  37.03  -5.11
x EWC 70.63  67.32 -11.63 | 48.34  59.13  -15.18 | 20.60  33.09 -13.94
x s 70.44  67.76  -5.20 | 43.98  56.4  -13.12 | 20.33  34.53  -7.99
x EVCL 70.46  69.26  -4.15 | 50.08  61.96  -7.85 | 21.72  37.85  -4.65
X Ours 73.04 69.58 -4.73 57.45 62.39 -10.6 31.53 38.53 -5.25

Early Breast Cancer Core-Needle Biopsy WSI (BCNB) (Xu et al., 2021). For TCGA and
CPTAC, we obtain labels from cbioportal.org. Table 1 summarizes the datasets, detailing
tasks, train/test volume, organs, and centers. Datasets from multiple centers are marked
multiple; otherwise, labeled as (C1,C2,...).

Continual Learning Episodes. To comprehensively evaluate AGLR-CL, we create multi-
ple sequences from datasets listed in Table 1, each having several datasets as episodes. WSI
datasets in each sequence exhibit differences in terms of organ, center, and mixed shifts to
create domain incremental scenarios within the CL framework, as detailed in Table 2.
Continual Learning Baselines. We compare our method against various CL baselines,
including regularization methods such as EWC (Kirkpatrick et al., 2017), SI (Zenke et al.,
2017), LwF (Li and Hoiem, 2018), and EVCL (Batra and Clark, 2024) and rehearsal meth-
ods such as GDumb (Prabhu et al., 2020) and Replay (Rolnick et al., 2019). We report lower
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Figure 2: Attention heatmaps for AGLR-CL across domain shifts in MSI predic-
tion. Attentions scores for WSIs from D; (PAIP-CRC) by the model trained over
five CL stages in a2 reflect that past knowledge acquired from D; is preserved.

bound performance by naive approach and upper bound performances by joint and cumula-
tive approaches. Naive corresponds to traditional fine-tuning with only current dataset, joint
uses all datasets simultaneously, and cumulative sequentially incorporates seen datasets.

Implementation Details. We extracted patches using the CLAM library (Lu et al., 2021)
and employed the pre-trained UNI pathology FM (Chen et al., 2024) for feature extraction
across all methods. Data leakage is avoided as considered datasets (Table 1) for our CL
experiments are disjoint from UNI’s training data. The buffer for Replay and GDumb is set
to 100. For SI, EWC, EVCL, and LwF, the regularizing factor was set to 1 by following the
literature (Kumari et al., 2024b). In our AGLR-CL, we keep ¢ as 80%. We select K from
{8,16,24} for GMM(_, and {1,2,3,4,5} for GMM!__ .. To accommodate for class imbal-
ances, we track weighted F1 score, AUROC, and AUPRC metrics. For sequential training
and evaluation in CL with T episodes, we consider R € RT*T as train-test matrix (Kumari
et al., 2025b) where cell R;; denote performance on 4t datasets after i*" training session with
D;. We compute CL metrics from this matrix, including forgetting measure BWT (Diaz-
Rodriguez et al., 2018) and average performance on seen datasets using ACC (Lopez-Paz
and Ranzato, 2017), computed at the last episode and A (Diaz-Rodriguez et al., 2018),
computed at each training step. The CL metric A captures both transfer learning and back-
ward transfer capabilities (Ozgiin et al., 2020). The metrics are described in detail in the
supplementary file. The larger these metrics, the better the performance. All experiments
were run on a single NVIDIA H100 GPU.

4 Results

Table 3 compares AGLR-CL against competing approaches on MSI prediction, PR status,
HER2 status, and TMB mutation. We report ACC, A, and BWT based on weighted F1,
AUROC, and AUPRC. Across sequences al—ab, the naive update of the model exhibits lower
performance (ACC and A) and higher forgetting (BWT') compared to the cumulative, while
joint training on all data provides an upper bound. Among CL methods, buffer-based meth-
ods (Replay and GDumb) generally achieve the best performance (red), with our approach
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Table 4: Ablation study for attention-based filtering (ABF). Best in bold.

T w/o weighted F1 AUROC AUPRC
ask Seq.
ABF ACC A BWT ACC A BWT ACC A BWT
MSI al X 67.13 69.15 -13.8 63.09 68.51 -24.22 41.61 45.44 -24.21
v 69.91 73.84 -4.45 64.88 72.87 -20.18 38.38 49.44 -23.84
MSI a2 X 66.16 67.75 -9.84 68.59 73.30 -1.22 45.57 49.27 8.17
v 78.01 74.10 -1.89 69.11 74.05 -2.32 47.66 52.94 9.61
PR a3 X 64.32 63.72 -3.14 62.93 65.00 -6.92 69.85 70.90 -8.5
v 67.97 66.33 -1.48 70.34 71.16 -8.0 76.35 76.23 -6.28
HER2 ad X 73.12 73.41 -5.73 61.75 65.06 -5.65 29.32 36.07 -7.79
v 76.94 75.11 -0.78 66.18 66.79 -0.49 35.07 37.99 -1.97
TMB a5 X 73.58 70.32 -1.88 58.60 65.39 -2.95 30.98 38.86 -0.09
v 73.04 69.58 -4.73 57.45 62.39 -10.6 31.53 38.53 -5.25

following in al and a3 and surpassing them in a2, a4 and a5. Notably, when considering
buffer-free methods only, our approach mostly delivers the best results (underlined). Thus,
while slightly trailing buffer-based methods, our buffer-free solution offers a competitive
alternative in privacy-sensitive applications.

Fig. 2 shows attention heatmaps for two WSIs from D; (PAIP-CRC) in sequence a2 by model
M over five training sessions, corresponding to sequential training with different datasets. It
can be observed that high attention scores cover the annotated region in all CL training ses-
sions. Interestingly, an organ-shift (¢ = 3,5) creates a few artifacts compared to center-only
shifts (¢t = 2,4). Overall, consistent attention to the ground-truth area reflects that past
knowledge is preserved while learning on new datasets with differences in centers and organs.

Ablation. Table 4 presents an ablation study on attention-based filtering for GMMs train-
ing. The results show that, except for sequence ab, GMMs trained with filtered patches
consistently outperform those trained on all patch embeddings. For sequence ab, the slight
drop may occur due to the high variability of morphological alterations in different TMB
outcomes across organs, thus discarding certain patches can hurt data recovery.

5 Conclusion

We proposed AGLR-CL, a buffer-free generative latent replay framework enabling privacy-
aware CL for WSI tasks including biomarker screening and molecular status predictions.
Instead of maintaining a buffer, AGLR-CL leverages GMMs to synthesize past feature dis-
tributions, allowing the model to retain knowledge while adapting to new domains. Re-
sults demonstrate that AGLR-CL mitigates CF and achieves state-of-the-art performance
in privacy-sensitive CL.
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Supplementary Material

Continual Learning Metrics

ACC: ACC represent average accuracy across all tasks, computed after learning with the
last dataset (Lopez-Paz and Ranzato, 2017) computed as below

1 T
T > Rr; (4)
j=

A: The CL metric A (Diaz-Rodriguez et al., 2018) captures both transfer learning and
backward transfer capabilities (Ozgiin et al., 2020). It shows the incremental learning ability
of the model in a non-stationary environment which is computed as the average of entries
in the lower-triangular matrix (R) including the diagonal entries as follows:

2
T(T +1) ; R (5)

BWT: It shows the effect of learning a new dataset on previously already learned datasets.
It is a way to measure stability, i.e., how well the model would retain the performance on
previously acquired knowledge to prevent catastrophic forgetting. The larger the negative
value of BWT, the larger the forgetting. Specifically, we compute BWT following (Diaz-
Rodriguez et al., 2018) as shown below:

T-1

T 1_ 1 > . > [Rij— R;j] (6)

Jj=1 ‘{ti}oj i>]

12



	Introduction
	Method
	MIL-based WSI Classification
	Continual Learning Configuration
	GMM-based Synthetic Embedding Generation
	Generative Latent Replay

	Experiments
	Results
	Conclusion

