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ABSTRACT

Recent advancements in offline reinforcement learning have leveraged two key
innovations: policy extraction from behavior-regularized actor-critic (BRAC) ob-
jective and the use of expressive policy architectures, such as diffusion and flow
models. However, backpropagation through iterative sampling chains is compu-
tationally tricky and often requires policy-specific solutions and careful hyper-
parameter tuning. We observe that the reparameterized policy gradient of the
BRAC objective trains the policy to clone an “optimal” action. Building on this
insight, we introduce Direct Optimal Action Learning (DOAL), a novel frame-
work that directly learns this “optimal” action. Then, efficient behavior losses
native to the policy’s distribution (e.g., flow matching loss) can be used for effi-
cient learning. Furthermore, we demonstrate that the traditional balancing factor
between Q-loss and behavior-loss can be reinterpreted as a mechanism for select-
ing a trust region for the optimal action. The trust region reinterpretation yields
a Batch-Normalizing Optimizer. This facilitates the hyperparameter search and
makes it shareable across policy distributions. Our DOAL framework can be eas-
ily integrated with any existing Q-value-based offline RL methods. To control the
impact of value estimation, our baseline models use simple behavior clone loss
and implicit q-learning. We apply DOAL to Gaussian, Diffusion, and Flow poli-
cies. In particular, for Diffusion and Flow policies, we obtained strong baseline
models by improving the MaxQ Action Sampling. Our results on 15 tasks from
the OGBench and D4RL adroit datasets show that DOAL consistently improves
performance compared against strong baseline models while simplifying hyper-
parameter search. Our best models achieved very strong performance. The code
is available through Anonymous Github.

1 INTRODUCTION

Offline reinforcement learning (RL) aims at efficiently and effectively extracting policy from expe-
rience beyond the simple imitation learning(Lange et al., 2012; Levine et al., 2020). While learning
from pre-collected trajectories avoids the costly environment interactions, for offline RL agents to
perform better than a simple behavior cloning agent, value estimation and extracting information
from the estimated value function is the key(Park et al., 2024). Yet, due to the lack of interaction,
agents cannot extrapolate too much to avoid distribution shift. Hence, the success of offline RL
depends on balancing the maximization the estimated Q value and behavior cloning (Haarnoja et al.,
2018; Wu et al., 2019; Kostrikov et al., 2022; Tarasov et al., 2023).

Meanwhile, as the scale and diversity of offline datasets continue to grow, there is an increasing need
for policies capable of modeling highly multi-modal and complex action distributions. Diffusion and
flow matching models(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b; Lipman et al.,
2023; Lu et al., 2022; Sun et al., 2025) have recently been applied to Offline RL(Janner et al., 2022;
Wang et al., 2023; Hansen-Estruch et al., 2023; Kang et al., 2023; Park et al., 2025c), and improved
the modeling capacity of policy distribution.

However, efficient policy extraction requires reparameterized policy gradient through the Q value
functionPark et al. (2024), and it is non-trivial for distribution involving an iterative sampling proce-
dural(Park et al., 2025c; Kang et al., 2023; Fujimoto & Gu, 2021; Tarasov et al., 2023). While many
solutions have been proposed, they usually involves some computation overhead, requires careful
tuning of hyperparameter across environments or not as effective.
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Figure 1: DOAL Framework. On the left side, we have the end2end re-parameterized policy gradient from
the Q value function and the behavior clone loss. On the right side, we have our DOAL framework, where we
extract an optimized atarget from Q, and then use efficient behavior clone loss from any policy distribution.

In this work, we provide a simple, effective and universal framework for policy extraction from
the Q value function. As shown in Figure 1, we observe that the reparameterized policy gradient
w.r.t. Behavior Regularized Actor Critic (BRAC) objective can be replaced by simple gradient w.r.t.
behavior clone loss of an optimized action.

This observation has two consequences: Direct Optimal Action Learning (DOAL) instead of
backpropagating end2end, we can optimize the action with q value and behaviour loss, then learn
the optimized action with the efficient loss function that is native to the policy distribution (e.g.,
velocity matching loss); Batch-Normalizing Optimizer if learning from Q value function is ap-
proaching a better local solution, and Q value estimations are known to be not reliable, we should
have a trust region δ for how much the optimized atarget can shift away from data distribution.
Meanwhile, it is also desirable to the shift distance to be proportional to the gradient of Q value
w.r.t. action. This can be realized by normalizing the shift with a batch average of gradient
atarget = a+ δ

E(s,a)∼B[∥∇aQ(s,a)∥]∇aQ(s, a), where B is the data mini-batch.

We are not aiming at producing the most performative offline RL algorithms, but studying the ef-
fectiveness of our policy extraction framework (in contrast to the end2end training). To isolate the
effects of value estimation from policy extraction, we use the Implicit Q Learning (IQL) (Kostrikov
et al., 2022). The value estimation in IQL doesn’t interact with the policy extraction, making it an
ideal choice for our study. Still, the learned Q-value can be used. For Gaussian policy, Advantage-
Weighted Regression (AWR) can be used (Kostrikov et al., 2022). For flow and diffusion models,
without learning from Q function in the training time, MaxQ Sampling is used for selecting action
with maximal Q value in a sampled candidate sets. In order to have a solid baseline, we identified
a key parameters that were previously overlooked hyperparameter: the number of samples for ac-
tion candidates. This parameter directly influences the trade-off between the maximization bias of
Q-value and coverage from samples.

Empirically, on 9 default tasks on OGBench and 6 Adroit tasks on D4RL datasets, the DOAL learned
policies achieved consistent improvement over the their behavior clone baseline (with max Q sam-
pling 2 or advantaged weighted regression 2) . In particular, for all algorithms in the same envi-
ronment, the DOAL hyperparameters δ are shared. In all, the DOAL framework is an efficient,
effective and versatile to extract policy distributions from the Q value.

2 PRELIMINARIES

We consider a Markov decision process (MDP) M (S,A, r, p, γ, ρ0)(Sutton & Barto, 1998), where
S is the state space, A = Rd is a d-dimensional continuous action space, r(s, a) is the reward
function, p(s′ | s, a) is the transition dynamics, γ ∈ [0, 1) is the discount factor, and ρ0(s) is the
initial state distribution.

In offline RL, the agent learns from a fixed dataset D = {(si, ai, s′i, ri)}Ni=1 consisting of individual
transitions rather than complete trajectories. The objective is to learn a policy πθ(a | s) that maxi-
mizes the expected discounted return J(πθ) = Eπθ

[
∑∞
t=0 γ

tr(st, at)], while avoiding distributional

2
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shift caused by querying actions outside the support of D, as there will be no online interaction to
correct overoptimism.

Implicit Q-Learning. IQL (Kostrikov et al., 2022) avoids querying out-of-sample actions through
expectile regression. Unlike SARSA-style methods (Brandfonbrener et al., 2021) that learn using
the next actions from the dataset, IQL learns the value function of the current policy.

The value function Vψ(s) and the Q-function Qϕ are learned via:

LV (ψ) = E(s,a)∼D [Lτ2 (Qϕ(s, a)− Vψ(s))] , LQ(ϕ) = E(s,a,r,s′)∼D

[
(r + γVψ(s

′)−Qϕ(s, a))
2
]
.

(1)

where Lτ2(u) = |τ − I(u < 0)|u2. For policy extraction, standard IQL uses Advantage-Weighted
Regression (AWR) (Peng et al., 2019):

LAWR(θ) = E(s,a)∼D [exp (β(Qϕ(s, a)− Vψ(s))) log πθ(a|s)] , (2)

where β controls the strength on the advantage weighting. All our models use IQL for value estima-
tion.

Flow Matching. Flow Matching (FM) establishes a deterministic path (pt)t∈[0,1] that continuously
transforms a simple source distribution p1 into the target behavior distribution p0, with each pt
defined over Rd (Lipman et al., 2023; 2024). 1

We adopt the most simple instantiation of FM, utilizing linear interpolation paths with uniform time
sampling (Lipman et al., 2024; Park et al., 2025c). For an action a0 ∼ π(a0), the objective is to
learn a time-dependent velocity field vθ(a, t) : Rd × [0, 1] → Rd through the following regression
loss:

LFM(θ) = Ea0∼q(a0),a1∼N (0,I),t∼U [0,1]

[
∥vθ(at, t)− (a0 − a1)∥2

]
, at = (1− t)a0 + ta1 (3)

This formulation ensures training stability while admitting efficient sampling through explicit Euler
discretization of the underlying flow ODE:

at−∆t = at +∆t · vθ(at, t), ∆t =
1

N
(4)

where N represents the number of flow steps.

TrigFlow. We adapt the TrigFlow framework (Lu & Song, 2025) to train diffusion policy(Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b), defining the forward diffusion process as
follows: given a0 ∼ p(a0) and z ∼ N (0, I), the noisy sample at time t is given by

at = cos(t)a0 + sin(t)z, t ∈ [0, π2 ] (5)

with aπ/2 ∼ N (0, I). The model can be trained to minimize the prediction error:

Ldiffusion(θ) = Ea0∼p(a0),z∼N (0,I),t∼U [0,π/2]

[
∥fθ(at, t)− a0∥22

]
, (6)

fθ(at, t) = cos(t)at − sin(t) · Fθ(at, t), (7)
where Fθ is a learned network and the fθ naturally satisfies the boundary condition fθ(a0, 0) = a0.
We implement a first-order DDIM(Song et al., 2021a) sampling scheme for efficient inference:

at = cos(k − t) · ak − sin(k − t) · Fθ(ak, k), (8)

where k is the previous time step. In our paper, we divides the steps evenly into 10.

Max Q Sampling. A principled strategy orthogonal to behavior-regularized actor-critic frameworks
is a resampling mechanisms(Ghasemipour et al., 2021; Chen et al., 2023; Hansen-Estruch et al.,
2023). Instead of training the action policy with Q value, Max Q sampling leverages the estimated
Qϕ in the inference time. Formally, given a proposal distribution πθ(a|s) and a target criterion
Qϕ(s, a), the Max Q sampling procedure select the optimal action from a set of samples:

a = argmax
a(1),...,a

(nsample)
Qϕ(s, a

(i)), a(i) ∼ πθ(s) (9)

1In the usual, flow matching setting p1 is the data distribution, but we want to make it consistent with
diffusion model notations.
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We provide ablation studies in Section 5 to show that larger nsample values do not necessarily
yield better performance.

Behavior-Regularized Actor-Critic (BRAC). Behavior-regularized actor-critic methods form a
family of effective offline RL approaches that combine value function learning with behavior reg-
ularization (Haarnoja et al., 2018; Wu et al., 2019; Tarasov et al., 2023). The critic loss follows
equation 1. The actor loss, defined in our implementation, integrates policy improvement and be-
havior regularization:

LBRAC
π,BCLoss(θ) = E(s,a)∼D [−Qϕ(s, πθ(s)) + α · BCLoss(πθ(s), a)] , (10)

where α is a hyperparameter balancing policy improvement and behavior constraint and BCLoss is
a behavior clone loss, e.g. ∥πθ(s)−a∥2 or the velocity matching loss in the previous section. While
the BARC objective is almost necessary, it has been shown to be highly sensitive to α (An et al.,
2021; Chen et al., 2024b; Fang et al., 2025; Gao et al., 2025), requiring extensive per-task tuning.

The problem for applying Equation 10 to a diffusion/flow-based policy is the computational costly
iterative sampling chain(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b). There exists
many works to circumvent this issue, see Section 6 for more discussion. For notational simplicity,
we drop the mention of noise in the main text, as that can be easily integrated or we considering a
joint state s′ = (s, z) for wherever noise is needed. Now, we present our framework for learning
from the Q estimator.

3 DIRECT OPTIMAL ACTION LEARNING

In deep learning, there is a doctrine that all we need to train neural networks is a differentiable
loss w.r.t. the parameters (Rumelhart et al., 1995). In the context of learning policy with iterative
sampling, the computational cost becomes too high. In fact, it is not entirely clear what the learned
policy represents aside from it balances behavior regularization and expected return maximization.
We present two motivations to derive our Direct Optimal Action Learning framework, and show
how it can naturally yields more interpretable and robust hyperparameter choice.

3.1 THE OPTIMAL ACTION

From an intuitive standpoint, an actor policy should learn to produce actions that have high estimated
Q-values. When learning from a static dataset, this search for high-value actions should naturally
be centered around the actions already present in the data. This leads to a straightforward idea:
instead of indirectly learning a policy that optimizes a complex objective, we can directly learn the
optimal action itself. Our framework, Direct Optimal Action Learning (DOAL), is founded on
this principle.

From a formal perspective, this idea emerges from a re-interpretation of the policy gradient in stan-
dard behavior-regularized actor-critic methods.:

Proposition 1 (Equivalence of Policy Gradients). Let πθ(s) be a deterministic differentiable policy
parameterized by θ and Qϕ(s, a) be a differentiable action-value function. Consider the behavior-
regularized objective:

JQ(θ) ≜ E(s,a)∼D
[
Qϕ(s, πθ(s))− α∥πθ(s)− a∥22

]
(11)

where α > 0 is a regularization coefficient. The gradient of this objective with respect to θ is
equivalent to the gradient of a simpler squared-error objective Jtarget(θ):

∇θJQ(θ) = ∇θJtarget(θ) ≜ E(s,a)∼D

[
∇θ

(
−α ∥πθ(s)− atarget)∥22

)]
(12)

atarget = a+
1

2α
∇a′Qϕ(s, a

′)
∣∣
a′=πθ(s)

(13)

The proof is a straightforward application of the chain rule (see Appendix A.2). This equivalence
reveals that training with the BRAC objective is implicitly minimizing the distance between the
policy’s output πθ(s) and a target action atarget.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

This formulation, however, presents a conceptual inconsistency. The target atarget is constructed
by taking a gradient ascent step from the data action a, but the gradient ∇a′Qϕ is evaluated at
the policy’s output πθ(s). This requires sampling from the policy at training time and creates a
mismatch between the point of expansion (a) and the point of evaluation (πθ(s)). A more direct
approach would be to perform the gradient ascent step using the gradient evaluated at the data action
a, which would define a static target for each data point (s, a) and eliminate the need for sampling.

This insight is the cornerstone of DOAL. By defining the target action directly from the data and
Q value, we decouple the target computation from the policy being trained. The major practical
benefit is that we are no longer constrained by the need to sample a full action during training.
Consequently, we can leverage more powerful generative modeling techniques to learn the action
policy, such as training flow-based models with flow matching losses or diffusion models with their
diverse loss functions.

3.2 BATCH-NORMALIZING OPTIMIZER

A challenge with BRAC-style methods is the sensitivity of the regularization coefficient α, which
often requires careful tuning across several orders of magnitude (Park et al., 2025c; Kumar et al.,
2020). Our re-interpretation of the objective as learning a target action raises a critical question:
what is the appropriate magnitude for the update from the data action a to the target action atarget?

In offline reinforcement learning, the learned Q-function is merely an estimator, and it is crucial
to remain conservative to avoid distribution shift to out-of-support actions where the Q-function
is unreliable (Kostrikov et al., 2022; Kumar et al., 2020; Tarasov et al., 2023). Therefore, instead
of an arbitrary step size dictated by α, we should define a statistical trust region for our action
optimization. We can achieve this by setting a fixed expected magnitude for the update vector
g(s, a) = atarget − a. Specifically, we desire two conditions for the update vector g(s, a):

1. The update should be in the direction of the Q-function’s gradient at the data action:
g(s, a) ∝ ∇aQϕ(s, a).

2. The expected squared magnitude of the update over the dataset should be a constant, which
we denote as δ: E(s,a)∼D[∥g(s, a)∥2] = δ.

These two conditions uniquely determine the update vector, as shown in the following proposition.
Proposition 2 (Batch Normalized Update). To satisfy the conditions g(s, a) ∝ ∇aQϕ(s, a) and
E(s,a)∼D[∥g(s, a)∥2] = δ, the action update vector g(s, a) is defined as:

g(s, a) =
δ

E(s′,a′)∼D [∥∇a′Qϕ(s′, a′)∥2]
· ∇aQϕ(s, a) (14)

where δ > 0 is a hyperparameter representing the desired expected squared magnitude of the action
update, and the expectation in the denominator is computed over a batch of data.

This formulation replaces the obscure hyperparameter α with an interpretable one, δ, which di-
rectly controls the expected squared magnitude of the action update. In practice, we use the batch
statistics as estimator, so we have E(s′,a′)∼B

[
∥∇a′Qϕ(s

′, a′)∥22
]
, where B is the current mini-batch.

This “batch-normalization” of the action gradients provides a more stable and robust training target,
alleviating the need for extensive hyperparameter sweeps.

Why α varies so much? On a flip-side, tuning α in BRAC is similar to finding our statistical trust
region. Therefore, as the reward function varies across environments, the gradients of Q varies a lot.
This factor means even actions all live in a box, the statistical trust regions are of similar size, the
optimal α could still vary hugely.

3.3 THE DOAL OBJECTIVES

In this paper, we use IQL for value estimation. However, this is not an necessity, we make this
choice for better controlled study of policy extraction. We only alter the actor loss :

JDOAL(θ) =α · E(s,a)∼DBCLoss(πθ(s), a
target) (15)

atarget :=a+
δ

E(s′,a′)∼B [∥∇a′Qϕ(s′, a′)∥2]
· ∇aQϕ(s, a) (16)

5
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Algorithm 1 Direct Optimal Action Learning (DOAL) with IQL
Require: Dataset D, policy parameters θ, Q-function parameters ϕ, , Value-function parameters ψ

1: repeat
2: Update ϕ, ψ using Implicit Q Learning as inEquation 1
3: Update θ using Equation 15 for BCLoss of Choice
4: until convergence

where BCLoss can be any distribution matching losses. In terms of computational overhead, as the
gradient ∇aQϕ(s, a) will be called explicit or implicitly at least once to extract first order structure
information from Qϕ. The DOAL objective is at least as efficient as any algorithms that utilize
∇aQϕ(s, a). Notice that we still keep the α parameter, because we believe this parameter also
controls the learning rate of actor. We copy this parameter from Park et al. (2025c) for all our
experiments. In summary, the overall algorithm for DOAL is given in Algorithm 1.

4 MAXQ SAMPLING NEEDS BALANCING

As our DOAL framework learn from optimized action based on ∇aQ(s, a), we consider models
without learning from ∇aQ(s, a) as our baseline models. In such case, Q(s, a) can still be used for
weighting the behavior clone loss and performing actions selection, as we discussed Section 2 and
Section2. To have a solid baseline for comparison, we argue that nsample a crucial hyper-parameter
that were previously overlooked.

When taking nsample = 1, we clearly recovered the actor distribution and completely lost access
to information from Qψ . On the other extreme, Some earlier work suggested the bigger nsample,
the better (Ghasemipour et al., 2021). However, while a∗ maximize the Q value estimator Qψ as
nsample → +∞, there exists maximization bias such that the maximum Q value will be overesti-
mated due to noise in the estimator. While we are interested in the maximizer a∗ not the maximized
Q value, this still is problematic.

Proposition 3 (Informal). Consider countably many actions a1, a2, . . . . For each i, the Q-estimator
is independent Gaussian: Q̂(ai) ∼ N (µi, σ

2
i ), with bounded means supi µi < ∞ and infinitely

many actions having nontrivial noise (σi ≥ c > 0). Draw n i.i.d. actions from any policy with full
support and pick the one with the largest observed Q̂. As n→ ∞: (i) the selected action eventually
leaves every fixed finite set (its index drifts to infinity); (ii) the selected Q̂ value diverges to +∞
(driven by extreme positive noise); (iii) the probability of picking any true-mean maximizer tends to
0.

Proof Intuition. The maximum of m i.i.d. Gaussian draws grows like µi + σi
√
2 logm. With in-

finitely many actions having σi > 0, some action will realize an extremely large positive fluctuation
and dominate the max, regardless of the bounded means. Thus, making nsample very large pushes se-
lection toward noise outliers rather than toward actions with the highest µi, even when the estimator
is unbiased.

The above analysis shows that increasing nsample can exacerbate maximization bias: as nsample →
∞, max-selection over noisy Q-estimates systematically prefers actions with large positive noise
realizations, independent of the learned Q.

While it is hard to precisely characterize the resulting distribution from MaxQ sampling, the more
samples we have the more data coverage we have. In the case where action policy is value agnostic,
having multiple samples is necessary to ensure mode coverage so that Q function can provide a
selection. Yet, if we sample too much, the stochasticity in Qψ dominates and we might get ”good”
actions due to overestimation rather than being reliable.

Pragmatically, nsample balances the conflict between the in distribution behaviour and Q value esti-
mator in the inference time. To our knowledge, this is an overlooked issue in the literature, where
the consensus is that the nsample is trading off between computation and accuracy. . As we will show
in the experiments, this indeed improved our baseline models significantly.

6
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Table 1: Full offline RL results. We present the full results on the OGBench and D4RL tasks. They
are the default single-task in each environment. The results are averaged over 4 seeds on D4Rl and 3 seeds
on OGBench. The ReBRAC*, IQL*, FQL*, IFQL* results are collected from Flow Q learning(Park et al.,
2025c).We treat each return statement as an independent output and compute the standard deviation across all
such outputs, rather than only considering the last three return values as in the original approach.

Gaussian Policies Flow Policies Diffusion Policies

Task ReBRAC* IQL* DIQL FQL* IFQL* IFQL DIFQL Trigflow TrigflowQL DTrigflow

antmaze-large-navigate 91 ±10 48 ±9 66 ±10 80 ±8 24 ±17 66 ±26 77 ±17 51 ±28 81 ±10 77 ±24

antmaze-giant-navigate 27 ±22 0 ±0 0 ±0 4 ±5 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0

humanoidmaze-medium-navigate 16 ±9 32 ±7 52 ±9 19 ±12 69 ±19 67 ±32 56 ±7 63 ±8 67 ±5 65 ±7

humanoidmaze-large-navigate 2 ±1 3 ±1 8 ±3 7 ±6 6 ±2 7 ±10 9 ±4 6 ±5 6 ±6 6 ±6

antsoccer-arena-navigate 0 ±0 3 ±2 13 ±8 39 ±6 16 ±9 38 ±12 31 ±16 63 ±18 34 ±6 35 ±18

cube-single-play 92 ±4 85 ±8 80 ±3 97 ±2 73 ±3 11 ±27 18 ±4 89 ±4 87 ±4 19 ±25

cube-double-play 7 ±3 1 ±1 6 ±25 36 ±6 9 ±5 11 ±27 18 ±4 14 ±26 15 ±25 19 ±25

scene-play 50 ±13 12 ±3 28 ±7 76 ±9 0 ±0 22 ±12 58 ±26 45 ±18 58 ±12 61 ±18

puzzle-3x3-play 2 ±1 2 ±1 0 ±0 16 ±5 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0

puzzle-4x4-play 10 ±3 5 ±2 10 ±1 11 ±3 21 ±11 25 ±1 20 ±7 20 ±6 4 ±3 24 ±5

pen-human-v1 103 78 50 ±14 53 ±6 71 ±12 71 ±8 70 ±1 68±13 68 ±12 64 ±8

pen-cloned-v1 103 83 59 ±3 74 ±11 80 ±11 76 ±13 85 ±12 65 ±4 60 ±4 60 ±6

pen-expert-v1 152 128 125 ±7 142 ±6 139 ±5 138 ±2 136 ±5 135 ±3 135 ±4 141 ±5

door-expert-v1 106 107 103 ±4 104 ±1 104 ±2 104 ±2 102 ±2 104 ±2 104 ±2 102 ±2

hammer-expert-v1 134 129 106 ±44 125 ±3 117 ±9 97 ±17 120 ±6 93 ±16 100 ±12 97 ±18

relocate-expert-v1 108 106 100 ±4 107 ±1 104 ±3 103 ±5 103 ±7 104 ±2 103 ±2 103 ±3

5 EXPERIMENTS & DISCUSSION

In this section, we empirically examine the effectiveness of our DOAL framework for extracting
information from ∇aQϕ(s, a). Our baseline models still benefit from Qϕ(s, a) either through ad-
vantage weighted regression or max-Q sampling. We also compare against efficient diffusion policy
learning Kang et al. (2023).

Benchmarks We conduct a comprehensive evaluation of our method on two challenging offline RL
benchmarks: 1) The D4RL 6 Gymnasium tasks, focusing on the complex pen, hammer, relocate, and
door environments with expert, human, and cloned dataset qualities. 2) 9 tasks from the more diverse
and demanding OGBench suite. To ensure a fair comparison with reward-maximizing algorithms,
we utilize the variant of OGBench.The selection of this 6+9 tasks are due to the fact, no current
simple algorithms can work well.

Models We have three representative and strong baseline algorithms with our method: IQL, A
popular implicit constraint algorithm; IFQL, A flow-based policy learning method; TrigFlow, our
proposed efficient generative policy. For each one of them, we have the DOAL versions DIQL,
DIFQL, and DTrigflow (see Appendix A.3 for details). Furthermore, we have TrigflowQL that uses
the BRAC objective but uses one-step sampling a′ = fθ(at, t) = cos(t)at − sin(t) · Fθ(at, t), from
corrupted at.

All our models use the same IQL hyperparameters for training Q value function, therefore we are
only comparing policy extraction . Environment dependent hyperparams δ, nsample are searched
based on Trigflow and DTrigflow, but shared across algorithms δ, α, nsample.

Evaluation Following Park et al. (2025c) average last three for OGbench 1m steps, the last one for
adroit 500k last. For each environment and algorithm, we report the normalized score as defined
by the respective benchmark. We train multiple seeds for each run, but the seed is shared across
algorithms, we aim at providing a stable and representative measure of relative performance.

5.1 MAIN RESULTS

The first observation we can made from Table 1 is that we made really strong baseline models of
IFQL and Trigflow. In particular, our number of samples tuned IFQL improved over the original
paper results significantly on OGBench. On the D4RL, the results are less clear. As those tasks are
highly random in its’ own. In our prelimnary experiments. We re-run testing with the same model,
and we observed over 20 std across different runs. The adroit benchmark needs more investigation
to useful for algorithm evaluation.

There is no clear advantage between our models Dtrigflow and TrigflowQL. As for comparing
against other models, while we are not aiming at pushing the most performative model, 2 we ob-

2There are many recent works that train flow/diffusion with additional consistency constraints that could
further stabilize the training.
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tained a very strong results. It is still clear that Rebrac model has advantage in many tasks. However,
as we discussed we pick IQL for controlled study, it is possible to adopt Rebarc in the future. In par-
ticular, the behaviour regularized target could be similarly approched by DOAL framework. While
it is not shown here, many runs actually achieved much higher performance during the training then
collapsed. Yet, we are not able to identify a conjecture for explanation yet. We will publish the
wandb log with associated code after the anonymous period.

5.2 HYPERPARAMETER SEARCH

We use a single set of hyperparameters (including the untuned regularization coefficient α that serves
as learning rate controller for our purpose) for each environment across all augmented algorithms
(DIQL, DFQL, DTrigFlow). To ensure fairness, we also apply this same set of environment-specific
hyperparameters to the original base algorithms (IQL, FQL, TrigFlow) when run on that environ-
ment. This design choice demonstrates that our performance gains are not from extensive hyperpa-
rameter tuning but from the stable optimization dynamics of the DOAL framework itself. All other
network architecture and training details (e.g., learning rates) are kept consistent with the original
implementations of the base algorithms.

Max Q sampling nsample To identifying the best number of samples, we run Trigflow for three
seeds. Then only do the re-testing with the last epoch saved model with different nsample. We
attempted (1,2,4,8,16,32,63,128) but very rarely, we have over 32 as the optimal. In Table 2, we
have three selected environments where mid-range number of nsample is preferred. In fact, in
Ghasemipour et al. (2021) , their experiments also find cases where larger nsample hurts.

Envs 1 2 4 8 16 32 64 128
cube-double-play 0 1 9 15 17 13 13 13
scene-play-v0 1 10 43 47 57 54 45 40
puzzle-3x3-play 0 2 5 9 5 6 2 1

Table 2: Success Rates of Sample Checkpoint with Different nsample

Choose Statistical Trust Region δ For choosing a candidates for δ. In OGBench Park et al. (2025a),
actions are bounded in [-1,1] box of varying dimensionality. The statistical trust region should be
related to how reliable are the Q value estimation at data point and how well can neural network gen-
eralize. As we are using IQL for value estimation and the same value net in all our experiments, the
only thing varying is the datasets. For OGBench experiments, we choose δ from (0.03, 0.1, 0.3), and
for d4rl experiments, we choose from (0.003, 0.01, 0.03) as we see from α in the FQL paper Park
et al. (2025c) tends to be extremely large. See the Anonymous Github for the exact hyperparam-
eter. In Table 3, we present a few representative environments and their average ||∇aQ(s, a)||,

Envs pen-cloned-v1 pen-expert-v1 scene-play antmaze-large-navigate
||∇aQ(s, a)|| 279.99 64.99 15.58 0.55
α 10000 3000 300 10
δ 0.03 0.003 0.03 0.1

Table 3: Sample Environments with the Observed Mean ||∇aQ(s, a)||, α, and δ.

optimal α Park et al. (2025c) and δ we selected. As you can see the larger the gradient, the larger
the selected α and it ranges across three orders of magnitude. Meanwhile, our hyperparameter δ is
relatively stable and easier to search for.

6 RELATED WORK

The training of multi-step generative policies (e.g., diffusion or flow models) in offline reinforcement
learning presents significant computational challenges, predominantly stemming from the need for
backpropagation through time (BPTT) during policy gradient estimation. Recent work has demon-
strated the efficacy of diffusion models as expressive policy classes (Frans et al., 2025). We now crit-
ically examine existing methodological paradigms to delineate the fundamental limitations imposed
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by BPTT, thereby contextualizing the conceptual novelty of our Direct Optimal Action Learning
(DOAL) framework.

Long Horizon Challenge Problems For challenging tasks that most algorithm cannot address, like
antmaze-giant-navigate, (Park et al., 2025b) looked at the the horizon reducation issue. While this
is orthogonal to the our problem, but such methods might be necessary for offline RL to work in
challenging environments.

Accelerated Sampling Techniques. A prominent research direction focuses on accelerating the
sampling process of pre-trained generative policies. Methods such as Efficient Diffusion Policy
(EDP) (Kang et al., 2023) reformulate the reverse denoising process to estimate the target action
a0 in a single step. While these approaches achieve notable improvements in sampling efficiency,
they remain inherently approximate, as they seek to mimic the output of a computationally intensive
multi-step generative procedure. In contrast, DOAL fundamentally circumvents this approximation
by directly regressing toward the analytically computed optimal action a∗. Our approach not only
matches the sampling efficiency of accelerated methods but also provides a more stable and tar-
geted learning signal, being grounded in a principled one-step optimization objective derived from
regularized policy improvement.

Value Guidance Methods. A substantial body of work in offline RL leverages diffusion models to
approximate the behavior policy underlying the dataset. One prevalent strategy involves using the
gradient of Q-value functions to guide the action generation process. This includes techniques such
as Q gradient guidance oor energy-based guidance paradigms, exemplified by QGPO (Wang et al.,
2023), SFBC (Chen et al., 2023), EDA (Chen et al., 2024a), and QVPO (Ding et al., 2024). An
alternative, more straightforward approach modulates the policy by re-weighting transition samples
based on their estimated values, as seen in advantage-weighted regression (AWR). A common draw-
back of these guidance-based techniques is their reliance on delicate hyperparameter tuning (e.g.,
guidance scales) to balance the often competing objectives of data fidelity and value maximization,
resulting in a complex and sometimes unstable optimization landscape.

DOAL presents a fundamentally simpler and more cohesive alternative. It collapses the aforemen-
tioned complexity into a single, unified objective derived from a closed-form regularized policy
improvement step. The key hyperparameter admits a clear interpretation as a trust-region radius, en-
abling a stable and interpretable interpolation between conservative imitation and aggressive value
maximization without resorting to ad-hoc guidance heuristics.

Policy Distillation and Actor-Critic Methods. A third category of approaches focuses on distilling
a more efficient policy from value estimates or planning results. This lineage distill the outcomes of
planning procedures using value ensembles (An et al., 2021; Hansen-Estruch et al., 2023). Contem-
porary methods like DAC (Fang et al., 2025) and BDPO (Gao et al., 2025) further integrate diffusion
models within an actor-critic framework.

DOAL distinguishes itself through its conceptual and computational directness. The target action
atarget is computed analytically in a single step, eliminating the need for iterative distillation or
complex optimization. This not only reduces computational burden but also provides a cleaner and
more direct learning signal by precisely targeting the optimal action prescribed by the current policy
and value function. Our DOAL framework presents a fourth, fundamentally distinct approach by
completely decoupling the optimal action computation from policy learning.

7 CONCLUSION

In this work, we present Direct Optimal Action Learning, a framework that enables efficient and
effective learning from ∇aQ(s, a) for any policy distribution. We provide strong baselines by re-
exaiming the importance of nsample in MaxQ sampling, then we are able to show our models im-
proved over baseline in most cases. Our experiment set up is mostly aiming at controlled study, so
we rely on IQL. In the future, uncertainty aware Q estimation should be important to explore, as it
might further improve the statistical trust region identification.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

Large language models are used for polishing the texts, including equations and literature reviews.

A.2 PROOF OF EQUATION 11

Proof. The proof follows from applying the chain rule. First, we compute the gradient of the regu-
larized Q-objective in equation 11:

∇θJQ(θ) = ∇θQ(s, πθ(s))−∇θ

(
α∥πθ(s)− a∥22

)
=

(
∇aQ(s, a′)

∣∣
a′=πθ(s)

)⊤
∇θπθ(s)− 2α(πθ(s)− a)⊤∇θπθ(s)

=
[
∇aQ(s, a′)

∣∣
a′=πθ(s)

− 2α(πθ(s)− a)
]⊤

∇θπθ(s)

Next, let the target action be a∗ ≜ a + 1
2α∇aQ(s, a′)

∣∣
a′=πθ(s)

. We compute the gradient of the
target-matching objective Jtarget(θ) = −α∥πθ(s)− a∗∥22:

∇θJtarget(θ) = −∇θ

(
α∥πθ(s)− a∗∥22

)
= −2α(πθ(s)− a∗)⊤∇θπθ(s)

= −2α

(
πθ(s)−

(
a+

1

2α
∇aQ(s, a′)

∣∣
a′=πθ(s)

))⊤

∇θπθ(s)

=
[
−2α(πθ(s)− a) +∇aQ(s, a′)

∣∣
a′=πθ(s)

]⊤
∇θπθ(s)

The resulting gradients are identical.

A.3 DOAL OBJECTIVES

A.3.1 DIRECTED IMPLICIT Q-LEARNING (DIQL)

DIQL extends the implicit Q-learning framework by introducing a direct optimal action learning
approach that explicitly guides policy optimization through value-aware action adjustments. The
key innovation lies in replacing the dataset action a with the optimized target action a∗ in the policy
loss, thereby directly steering the policy towards high-value regions.

LDIQL
π (θ) = E(s,a)∼D

[
exp (αactor(Qϕ(s, a)− Vψ(s))) log πθ(a

target|s)
]
, (17)

Notice the weighting is using the original Q(s, a) as we want to reduce computational overhead.

A.3.2 DIRECT IMPLICIT FLOW-Q-LEARNING (DIFQL)

Implicit Flow-Q-Learning (DIFQL) (Park et al., 2025c) builds upon the framework established by
Implicit Diffusion Q-learning (Hansen-Estruch et al., 2023). While the updates for the Q-function
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and value function remain consistent with IQL (see Equation 1), IFQL distinguishes itself by em-
ploying a flow-matching objective for policy optimization, as defined by the behavior cloning loss
in Equation 3.

The policy’s behavior cloning loss in DIFQL is formulated as:

LDIFQL
π (θ) = α · Ea1∼N (0,I),t∼U [0,1]

[
∥vθ(at, t)− (atarget − a1)∥2

]
, at = (1− t)atarget + ta1

(18)

Actions are subsequently generated by sampling from the learned flow model (see Equation 4) and
the final action selection is determined by maximizing the learned Q-value function (see Equation 9).

A.3.3 DIRECTED IMPLICIT TRIGFLOW-Q-LEARNING (DTRIGFLOW)

Following Equation 6 and adopt DOAL, we have

LDTrigflow(θ) = Ea0∼p(a0),z∼N (0,I),t∼U [0,π/2]

[
∥fθ(at, t)− atarget0 ∥22

]
, at = cos(t)atarget+sin(t)z

(19)

A.3.4 TRIGFLOW-Q-LEARNING (TRIGFLOWQL)

For TrigflowQL, we have the following:

LTrigflowQL
π (θ) = E(s,a0,t,z)∼D

[
−Qϕ(s, fθ(at, t)) + α ·

[
∥fθ(at, t)− a0∥22

]]
at = cos(t)a0+sin(t)z

(20)
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