Under review as a conference paper at ICLR 2026

DIRECT OPTIMAL ACTION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in offline reinforcement learning leveraged two key innova-
tions: policy extraction from behavior-regularized actor-critic (BRAC) objective
and expressive policies, such as diffusion and flow models. However, backprop-
agation through iterative sampling chains is computationally tricky and often re-
quires policy-specific solutions and careful hyperparameter tuning. We observe
that the reparameterized policy gradient of the BRAC approximately trains the
policy to replicate an ’optimal’ action. Building on this insight, we introduce
Direct Optimal Action Learning (DOAL), an efficient, effective, and versatile
framework for policy extraction from Q value functions. DOAL utilizes efficient
behavior losses native to the policy’s distribution (e.g., flow matching loss) to imi-
tate an optimized action based on Q-values. Furthermore, we demonstrate that the
traditional balancing factor between Q-loss and behavior-loss can be reinterpreted
as a mechanism for selecting a trust region for the optimal action. The trust region
reinterpretation yields a Batch-Normalizing Optimizer. This facilitates the hy-
perparameter search and makes it shareable across polices. Our DOAL framework
can be easily integrated with any existing Q-value-based offline RL methods. We
apply DOAL to Gaussian, Diffusion, and Flow policies. For Diffusion and Flow
policies, our baseline models use the MaxQ action sampling, where the number of
samples is tuned for each task. In particular, with regularized Q value estimation,
flow policies achieved the best results. On 9 OGBench tasks, our baseline models
outperformed the previous best models, and DOAL improves over strong baseline
models while simplifying hyperparameter search. On 6 Adroit tasks from D4RL,
improvement can be achieved when the Q value learning is regularized. The code
is available through Anonymous Github.

1 INTRODUCTION

Offline reinforcement learning (RL) aims at efficiently and effectively extracting policy from ex-
perience beyond the simple imitation learning(Lange et al., 2012; Levine et al., 2020). For offline
RL agents to perform better than a simple behavior cloning agent, value estimation and extracting
information from the estimated value function is the key citep park2024is. Yet, due to the lack of
interaction, agents cannot extrapolate too much to avoid the distribution shift. Hence, the success of
offline RL depends on balancing the maximization of the estimated Q value and behavior cloning
(Haarnoja et al., 2018; Wu et al., 2019; Kostrikov et al., 2022; Tarasov et al., 2023).

Meanwhile, as the scale and diversity of offline datasets continue to grow, there is an increasing need
for policies capable of modeling highly multi-modal and complex action distributions. Diffusion and
flow matching models(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b; Lipman et al.,
2023; Lu et al., 2022; Sun et al., 2025) have recently been applied to Offline RL(Janner et al., 2022;
Wang et al., 2023; Hansen-Estruch et al., 2023; Kang et al., 2023; Park et al., 2025c), and improved
the modeling capacity of policy distribution.

However, efficient policy extraction requires a reparameterized policy gradient through the Q value
function(Park et al., 2024), and it is non-trivial for distribution involving an iterative sampling pro-
cedural(Park et al., 2025¢c; Kang et al., 2023; Fujimoto & Gu, 2021; Tarasov et al., 2023). While
many solutions have been proposed, they usually involve some computation overhead, require care-
ful tuning of hyperparameter across environments, or are not as effective (Wang et al., 2023; Chen
et al., 2023; Kang et al., 2023; Lu et al., 2023).

https://anonymous.4open.science/r/iclr2026-7144

Under review as a conference paper at ICLR 2026

1)
BC BC target v
Loss a Loss a T E(S,Q)NB[HVaQ(S, a)] «Q(s,0)

a/ a

L& =~

fz/' \ lT <——— Backpropagation
\ —> Forward Pass

T o

*

Q Loss Q Loss

BRAC: Learn to Optimize Action DOAL: Learn the Optimized Action
Figure 1: DOAL Framework. On the left, we have the end2end re-parameterized policy gradient
from the Q and the behavior clone loss. On the right, we have our DOAL framework, where we
extract an optimized a‘®'¢°* from Q, and use policy dependent efficient behavior clone loss.

In this work, we present an efficient, effective, and versatile framework for policy extraction from
Q-value functions. As shown in Figure |, we observe that the reparameterized policy gradient
w.r.t. Behavior Regularized Actor Critic (BRAC) objective can be replaced by simple gradient w.r.t.
behavior clone loss of an optimized action. ' In Proposition |, we make a slightly more formal
statement about their similarity and difference when the BC loss is the Mean Squared loss.

This observation has two consequences: Direct Optimal Action Learning (DOAL) instead of
backpropagating end2end, we can optimize the action with q value and behaviour loss, then learn
the optimized action with the efficient loss function that is native to the policy distribution (e.g.,
velocity matching loss); Batch-Normalizing Optimizer if learning from Q value function is ap-
proaching a better local solution, and Q value estimations are known to be not reliable, we should
have a trust region § for how much the optimized a'3°* can shift away from data distribution.
Meanwhile, it is also desirable that the shift distance be proportional to the gradient of the Q
value w.r.t. action. This can be realized by normalizing the shift with a batch average of gradi-
ent qtareet — ¢ 4 B a)NB[H(;VaQ(s,a)H] V.Q(s,a), where B is the data mini-batch.

To isolate the effects of value estimation from policy extraction, we use the Implicit Q Learning
(IQL) (Kostrikov et al., 2022). The value estimation in IQL doesn’t interact with the policy ex-
traction, making it an ideal choice for our study. Still, the learned Q-value can be used. For Gaus-
sian policy, Advantage-Weighted Regression (AWR) can use Q-value to weight actions during train-
ing (Kostrikov et al., 2022). For flow and diffusion models, we use MaxQ Sampling to select the
action with the highest Q-value from a set of sampled candidates during testing. To obtain strong
baseline models, we recognized that the sample size for action candidates is a critical, previously
neglected hyperparameter (Park et al., 2025¢). Varying this number allows us to manage the inherent
trade-off between the overestimation risk in the Q-value (maximization bias) and the representative-
ness of the sample set (coverage). To obtain better performance, we further tested DOAL framework
with Q-Learning and regularized Q-Learning.

Empirically, in all, we tested over three different Q-value Empirically, we tested over three different
Q-value functions (IQL, Q-Learning, and Regularized Q-Learning) and three classes of policies
(Gaussian, flow, and diffusion models). We performed experiments in 9 default tasks on OGBench
and 6 Adroit tasks on D4RL datasets. Overall, the DOAL learned policies achieved improvement
over strong baselines on OGBench. On Adroit tasks, we observed performance gain with regularized
Q-learning. Both our baseline models and DOAL models suppress the previously best published
work, FQL (Park et al., 2025c). Importantly, for all algorithms in the same task and same value
function, the DOAL hyperparameters § are shared, and DOAL costs one extra forward and backward
call of the Q value net, compared to baselines. In all, the DOAL framework is an efficient, effective
and versatile tool to extract polices from Q values.

2 PRELIMINARIES

We consider a Markov decision process (MDP) M = (S, A, r,p,, po)(Sutton & Barto, 1998),
where S is the state space, A = R? is a d-dimensional continuous action space, 7(s, a) is the reward

"Notice that we are not claiming the two objectives are equivalent, but rather the BRAC and DOAL objective
both pushes the policy to produce higher valued action while being close to the action data point.

Under review as a conference paper at ICLR 2026

function, p(s’ | s, a) is the transition dynamics, v € [0, 1) is the discount factor, and po(s) is the

initial state distribution. In offline RL, the agent learns from a fixed dataset D = {(s;, a;, s}, 7;)} ¥,

consisting of individual transitions rather than complete trajectories. The objective is to learn a
policy 7g(a | s) that maximizes the expected discounted return J(mg) = Er, [>,° v'7(s¢, ar)],
while avoiding distributional shift caused by querying actions outside the support of D.

Implicit Q-Learning. IQL (Kostrikov et al., 2022) avoids querying out-of-sample actions through
expectile regression. Unlike SARSA-style methods (Brandfonbrener et al., 2021) that learn using
the next actions from the dataset, IQL learns the value function of the current policy.

The value function V;;(s) and the Q-function @ are learned via:

Ly () = B(oajon [L5 (Qu(5,0) = Vi(s)], Lo(8) = E(amayen | (1 +7Vi(s") — Qol(s,0))”
1
where L3 (u) = |7 — I(u < 0)|u?. For policy extraction, standard IQL uses Advantage-Weighted
Regression (AWR) (Peng et al., 2019):
Lawr(0) = E(s,0)~p [exp (B(Qp(s,a) — Vis(s))) log mg(als)] , 2
where 3 controls the strength of the advantage weighting.
Flow Matching. Flow Matching (FM) establishes a deterministic path (pt)te[(),l] that continuously

transforms a simple source distribution p; into the target behavior distribution pg, with each p;
defined over R¢ (Lipman et al., 2023; 2024). 2

We adopt the most simple instantiation of FM, utilizing linear interpolation paths with uniform time
sampling (Lipman et al., 2024; Park et al., 2025c). For an action ag ~ 7(ap), we learn a time-
dependent velocity field vg(a,t) : R? x [0, 1] — R? through the following regression loss:

Lem(0) = Eagmg(ao),ar~n(0.0),t~ufo,1] [ve(ar,) = (a0 —an) P, ar = (1 —t)ag +tay (3)
This formulation ensures training stability while admitting efficient sampling through explicit Euler
discretization of the underlying flow ODE:

1
ai—ar = ar + At - vg(ar,t), At = N “4)
where NN represents the number of flow steps.

TrigFlow. We adapt the TrigFlow (Lu & Song, 2025) to train diffusion policy(Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2021b), defining the forward diffusion process as follows: given
ag ~ p(ag) and z ~ N(0, I), the noisy sample at time ¢ is given by

a; = cos(t)ag +sin(t)z, te [0, 5])

with a, /o ~ N(0,). The model can be trained to minimize the prediction error:

Laittusion (0) = Eagmp(ac),z~n(0,1),e~1[0,7/2) [fo(as, t) — aoll3] (6)

folag,t) = cos(t)as —sin(t) - Fy(ay,t), (7)
where Fjy is a learned network and fy naturally satisfies the boundary condition fy(ag,0) = ag. We
implement a first-order DDIM(Song et al., 2021a) sampling scheme for efficient inference:

az = cos(k —t) - ap, —sin(k —t) - Fy(ag, k), (8)
where k is the previous time step. In our paper, we divide the steps evenly into 10.

Max Q Sampling. A principled strategy orthogonal to behavior-regularized actor-critic frameworks
is a resampling mechanism (Ghasemipour et al., 2021; Chen et al., 2023; Hansen-Estruch et al.,
2023; Liet al., 2025). Instead of training the action policy with Q value, Max Q sampling leverages
the estimated) in the inference time. Formally, given a proposal distribution 7y (a|s) and a target
criterion (s,), the Max Q sampling procedure selects the optimal action from a set of samples:

a= argmax Qu(s,a?), a ~ my(s))

o (Tsample)

.....

’In the usual flow matching notation p; is the data distribution, but we want to make it consistent with
diffusion model notations.

Under review as a conference paper at ICLR 2026

Behavior-Regularized Actor-Critic (BRAC). Behavior-regularized actor-critic methods form a
family of effective offline RL approaches that combine value function learning with behavior reg-
ularization (Haarnoja et al., 2018; Wu et al., 2019; Tarasov et al., 2023). The critic loss follows
equation |. The actor loss, defined in our implementation, integrates policy improvement and be-
havior regularization:

[’7]?,1]{3%%035(0) = E(s,a)ND [_Q¢(Sv WG(S)) +a- BCLOSS(TFG(S)’ CL)]) (10)

where « is a hyperparameter balancing policy improvement and behavior constraint and BCLoss is
a behavior clone loss, e.g. ||7g(s) — al|? or the velocity matching loss in the previous section. While
the BARC objective is almost necessary, it has been shown to be highly sensitive to « (An et al.,
20215 Chen et al., 2024b; Fang et al., 2025; Gao et al., 2025), requiring extensive per-task tuning.

The problem in applying Equation 10 to a diffusion/flow-based policy is the computationally costly
iterative sampling chain(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b). There
exists many works to circumvent this issue, see Section 6 for more discussion.

Regularized-Behavior-Regularized Actor-Critic (ReBRAC).

£(¢) =]E(s,a,r,s’,a/)ND) [HQ¢(Sa a) - (’I" + Y (Q(,/)’ (Slv W@(S,)) — Qritic * (a/ - 7(-9(5/))2)) Hg%{])

where Q4 is target critic network and the a.critic is the critic be coefficient. This regularized Q-value
target reduces the overestimation issue in Q-learning (Tarasov et al., 2023).

For notational simplicity, we drop the mention of noise in the main text, as that can be easily inte-
grated, or we consider a joint state s’ = (s, z) for where noise is needed.

3 DIRECT OPTIMAL ACTION LEARNING

In deep learning, there is a doctrine that all we need to train neural networks is a differentiable
loss w.r.t. the parameters (Rumelhart et al., 1995). In the context of learning policy with iterative
sampling, the computational cost becomes too high. In fact, it is not entirely clear what the learned
policy represents aside from it balances behavior regularization and expected return maximization.
We present a intuitive motivation and a formal motivation to derive our Direct Optimal Action Learn-
ing framework, and show how it can naturally yields more interpretable and robust hyperparameter
choice.

3.1 THE OPTIMAL ACTION

Intuitive Perspective. An actor policy should learn to produce actions that have high estimated
Q-values. When learning from a static dataset, this search for high-value actions should naturally be
centered around the actions already present in the data. This leads to a straightforward idea of direct
optimal action learning (DOAL): instead of indirectly learning a policy that optimizes a complex
objective, we can directly learn the optimal action itself. In related works 6, we discuss other neural
network learning methods that also follow non-conventional target matching objectives.

Formal perspective. The DOAL idea emerges from a re-interpretation of the policy gradient in
standard behavior-regularized actor-critic methods:

Proposition 1 (BRAC Objective Pursue BRAC Target). Let my(s) be a deterministic differentiable
policy and Q4(s,a) be a differentiable action-value function. Consider the behavior-regularized
objective:

Lq(0) 2 E¢s)~ [Qo(5,m0(s)) — allmo(s) — all3] (12)
where o > 0 is a regularization coefficient. The gradient of this objective with respect to 0 is
equivalent to the gradient of a simpler squared-error objective Lirger(0):

VQEQ(Q) — VOEbrac,target(e) £ E(&u)mD [Vg (*Oé ||7T9($) — abrac,target)H;)} (13)

(14)

a’=mg(s)

] 1
gbrac-target — EVG/Q(b(s’ a’)

4

Under review as a conference paper at ICLR 2026

The proof is an application of the chain rule (see Appendix B). This gradient equivalence reveals
that the BRAC objective implicitly minimizes the distance between the policy’s output 74 (s) and a
target action qP"@¢-*a1&¢t Under such an interpretation, a conceptual inconsistency exists. The target
aPrac-target g constructed by taking a gradient ascent step from the data action a, but the gradient
Vo Qy is evaluated at the policy’s output mg(s). This requires action sampling at training time and
creates a mismatch between the point of expansion (@) and the point of Q value gradient evaluation
(mo(s)). DOAL performs the gradient ascent using the gradient evaluated at the data action a, which
would define a a'®r&°* for each data point (s, a) without sampling. Importantly, Proposition | shows
BRAC objective and the DOAL objective are similar but different. DOAL is a reasonable objective
for offline RL in its’ own right.

By defining the target action directly from the data and Q value, DOAL decouple the target compu-
tation from the policy being trained. The major practical benefit is that we no longer need to sample
an action during training. Consequently, we can leverage more powerful generative modeling tech-
niques to learn the action distribution, such as training flow-based models with flow matching losses
or diffusion models with their diverse loss functions.

3.2 BATCH-NORMALIZING OPTIMIZER

A challenge with BRAC-style methods is the sensitivity of the regularization coefficient o, which
often requires careful tuning across several orders of magnitude (Park et al., 2025¢; Kumar et al.,
2020). Our re-interpretation of the objective as learning a target action raises a critical question:
what is the appropriate magnitude for the update from the data action a to the target action a'?'&°t?

In offline reinforcement learning, the learned Q-function is merely an estimator, and it is crucial
to remain conservative to avoid distribution shift to out-of-support actions where the Q-function
is unreliable (Kostrikov et al., 2022; Kumar et al., 2020; Tarasov et al., 2023). Therefore, instead
of an arbitrary step size dictated by «, we should define a statistical trust region for our action
optimization. We can achieve this by setting a fixed expected magnitude for the update vector
g(s,a) = at¥&°t — q. Specifically, we desire two conditions for the update vector g(s, a):

1. The update should be in the direction of the Q-function’s gradient at the data action:
g(s,a) = C - V,Q4(s,a) where C > 0.

2. The expected squared magnitude of the update over the dataset should be a constant, which
we denote as 6: E¢; o)p|[|9(s, a)|[2] = 0.

These two conditions uniquely determine the update vector, as shown in the following proposition.

Proposition 2 (Batch Normalized Update). To satisfy the conditions g(s,a) = C - V,Qg(s, a) and
E(s,a)~plllg(s, a)|2] = 6, where 6, C' > 0, the only action update vector g(s, a) is :

1)
: va 5 15
e oron Ve Qu(e aa] Y@@ (15)

The proof is straightforward calculation (see Appendix C). This formulation replaces the obscure
hyperparameter o with an interpretable one, §, which directly controls the expected squared mag-
nitude of the action update. In practice, we use the batch statistics as estimator, so we have
E(s ot [[IVarQo(s',a)||3], where B is the current mini-batch. This “batch-normalization”
of the action gradients provides a more stable and robust training target, alleviating the need
for extensive hyperparameter sweeps. We are not claiming that this batch normalized scheme
can find better a**™8°* than not using batch-normalized gradient. In fact, if the gradient statis-
tics is stable, you can always get the same result by having g(s,a) = C - V,Q(s,a) where
)

.)
C:= EoooolVa @ aTil- We will empirically see that optimal § varies less than ¢§’.

g(s,a) =

3.3 THE DOAL OBIJECTIVES

DOAL can work with any value function learning. We only alter the actor loss :
Lpoar(0) =a - E(s q)pBCLoss(my(s), a"*&") (16)
0

@'t i—a + +VaQo(s,a) a7
E(sr,a)~8 [[[VarQq(s' a')l2] ¢

Under review as a conference paper at ICLR 2026

where BCLoss can be any distribution matching losses. In terms of computational overhead, as the
gradient V,Q4 (s, a) will be called explicit or implicitly at least once to extract first order structure
information from @),. We still keep the a parameter from (Park et al., 2025¢) for all experiments for
consistency. In ablation study in Appendix F, we find setting it to 1 is fine.

4 MAXQ SAMPLING NEEDS BALANCING

As our DOAL framework learn from optimized action based on V,Q(s,a), we consider models
without learning from V,Q(s, a) as our baseline models. In such case, Q(s, a) can still be used for
weighting the behavior clone loss and performing actions selection, as we discussed Section 2. To
have a solid baseline for comparison, we argue that 14ample @ crucial hyper-parameter.

When taking ngample = 1, we clearly recover the actor distribution and completely lost access
to information from ()4. On the other extreme, Some earlier work suggested the bigger ngampie,
the better (Ghasemipour et al., 2021). However, while a* maximize the Q value estimator () as
Nsample — 100, there exists maximization bias such that the maximum Q value will be overesti-
mated due to noise in the estimator, and a* with large positive random fluctuation will be selected.

Proposition 3 (Informal). Consider countably many actions a1, as, For each i, the Q-estimator

is independent Gaussian: Q(a;) ~ N (i, o?), with bounded means sup, p; < U < oo and non-
trivial noise o; > ¢ > 0. Draw n i.i.d. actions from any policy with dense support and pick the one
with the largest observed Q). As n — oco:

* (i) the selected QQ value diverges to +oco (driven by extreme positive noise);

* (ii) the probability of picking any true-mean maximizer tends to .

Proof Intuition. The maximum of m i.i.d. Gaussian draws grows like u; + 0;1/2logm. With
infinitely many actions having o; > 0, actions with an extremely large positive fluctuation will
dominate the max, regardless of the bounded means. Thus, making ngmple large pushes selection
toward noise outliers rather than actions with the highest y1;, even with unbiased estimator. O

The above analysis shows that increasing ngample can exacerbate the maximization bias: as
Nsample — 00, Max-selection over noisy Q-estimates systematically prefers actions with large pos-
itive noise realizations, independent of the learned (). While it is hard to precisely characterize the
resulting distribution from MaxQ sampling, the more samples we have the more data coverage we
have. In the case where action policy is value agnostic, having multiple samples is necessary to
ensure mode coverage so that Q function can provide a selection. Yet, if we sample too much, the
stochasticity in ()4 dominates and we might get “good” actions due to overestimation rather than
being reliable. Pragmatically, n4,mple balances the conflict between the in-distribution behavior and
the noisy Q value estimator in the inference time.

5 EXPERIMENTS & DISCUSSION

In this section, we examine our DOAL framework. Our baseline models benefit from Q4(s, a)
either through advantage weighted regression or max-Q sampling without accessing to VQ4 (s, a).
We analyse the time complexity of DOAL, and discuss the trust region § selection. Other ablation
studies are presented in Appendix F.

Benchmarks We conduct a comprehensive evaluation of our method on two challenging offline RL
benchmarks: 1) The 6 Adroit/D4RL tasks with expert, human, and cloned dataset qualities. 2) 9
default tasks from the more diverse and demanding OGBench suite. We omit some tasks, as no
current algorithms can work well (Park et al., 2025¢). Following Park et al. (2025¢), we train on
OGbench for 1m steps, and take the average performance on 800k, 900k and 1m steps. We train on
D4RL tasks for 500k steps and test on last step.

Models We test our DOAL framework under implicit Q-learning, Q-learning and regularized Q-
learning. Our policy models include simple Gaussian policy, Multi-step Flow models and TrigFlow
models. Except the number of MaxQ sampling candidates, we follow the hyperparameters from
FQL (Park et al., 2025¢) whenever possible, this includes 7 in IQL and « for scaling BC loss.

Under review as a conference paper at ICLR 2026

Table 1: IQL-based offline RL results. Full results on the OGBench and D4RL tasks with IQL value function.
They are the default single-task in each environment. The results are averaged over 8 seeds on D4RL and
OGBench. The IQL(tanh)*, IQL(Gauss) on OGBench, IFQL* results are collected from Flow Q learning (Park

et al., 2025¢; Tarasov et al., 2022).

Simple Policies Flow Policies Diffusion Policies
Task IQL (tanh)* IQL(Gauss) DIQL IFQLx IFQL DIFQL TrigFlow DTrigFlow ETrigFlow
antmaze-large-navigate - 48 +9 63 +10 24 +17 48 +24 67 +6 72 +6 63 +24 63 +21
humanoidmaze-medium-navigate - 32 47 55 +8 69 +1 68 +3 68 +a 64 +a 67 +a 63 +4
humanoidmaze-large-navigate - 3 +1 10 6 +2 6 +3 8+3 T +2 8 +4 6 +3
antsoccer-arena-navigate - 3 +2 13 +3 16 +o 40 +5 40 +6 40 +s 11 +4 11
cube-single-play - 85 +s 80 +4 73 +3 88 +4 90 +3 86 +4 88 +2 88 +4
cube-double-play - 141 342 945 11 43 21 +a 16 +4 22 16 +3
scene-play - 12 43 37 +10 0 +o0 40 +23 40 23 43 +16 46 +15 50 +12
puzzle-3x3-play - 2 41 5 +1 0 o 5 41 5 42 T +2 T t3 8 +2
puzzle-4x4-play - 5 +2 10 +2 21 +11 23 +7 21 45 26 +5 27 +e 26 +4
Total - 191 276 218 329 359 361 368 359
pen—human-v1l 78 54 +6 43 +8 71 +12 81 s 68 +8 71 +n 69 +13 72 +12
pen-cloned-v1l 83 66 +7 56 +o 80 +11 73 +7 T4 +7 65 +7 67 +8 67 +o
pen-expert-vl 128 131 +s 1324 13945 1344 13814 135 +s 133 +7 134 +s
door-expert-vl 107 104 +2 104 2 104 +2 104 +1 104 +1 104 +1 104 +1 104 +1
hammer-expert-vl 129 68 +a7 76 46 11740 96 48 98 +12 103 +s 98 +11 100 +10
relocate-expert-vl 106 97 +10 101 +s 10443 104x3 102 +s 106 +2 107 +2 106 +2
Total 631 520 518 615 592 584 584 577 583

For IQL value function, we have three representative and strong baseline algorithms with our
method: IQL, with simple Gaussian policy learned from AWR; IFQL, a flow policy with MaxQ
sampling; TrigFlow, a trigflow diffusion policy with MaxQ sampling. For each one of them, we
have the DOAL versions DIQL, DIFQL, and DTrigflow. Furthermore, we have efficient trigflow
(ETrigflow (Lu & Song, 2025; Kang et al., 2023),see Appendix D for details) that uses the BRAC
objective but uses one-step sampling from corrupted a; and still use IQL for value learning.

For the Q-learning value function, our baseline model MFQL replace the IQL value learning with
Q-learning. Also, we have the DOAL version DMFQL. Furthermore, we add the ReBRAC objective
to regularize the Q learning target, and get MFReBRAC and DMFReBRAC (see Appendix D for
details). We also report the results of MFQLy¢¢ that actually running BPTT for actor learning.

5.1 MAIN RESULTS

Table | shows we have very strong baseline models of IFQL and Trigflow. In particular, our ngampie
tuned IFQL improved over the original IQL* significantly on OGBench. On the OGBench, on ag-
gregation, our DOAL models performed better than their baselines. Up on closer examination,
we find that those are due to one or two tasks that has significant gains‘that we high-lighted. Other-
wise, their performance is very similar. On antmaze-large, both DTrigFlow and ETrigFlow dropped
their performance. We find that there are two seeds that have very low performance (hence the large
std). For training curves see Appendix E.

On the D4RL, we re-run IQL from FQL paper. It appears that there is no performance gain from
either DOAL model or even ETrigflow. This might be due to the unreliability of IQL learned function
gradient. It should be noted that the DOAL models subsume their baselines, as one can set 6 = 0
to recover the baseline or choose extremely small 5. However, even if finer search for ¢ can yield
higher performance, one can not rule out the selection bias. A proper way to address the inability to
extract information from Q value is to investigate (Regularized) Q-Learning based functions.

In Table 2, excluding MFQL with BPTT, % all our models outperform FQL. In fact, in Table 2,
MFQL outperforms FQL. This shows that effectiveness of MaxQ sampling. Furthermore, DMFQL
outperforms MFQL on OGBench but not on D4RL. This again indicates that the effectiveness of
DOAL might depend on the task or quality of Q value function. The fact, DMFReBRAC outper-
forms MFReBRAC indicates well regularized Q function can make DOAL work better. We present
MFQL with BPTT to show that while being less stable, it is not always weaker. However, the
computational complexity of BPTT is indeed much higher as we will discuss.

In Figure 4, we have the relations between MFQL,DMFQL, MFReBRAC and DMFReBRAC. We
should notice that the DOAL version can achieve the same result as their baselines by letting § = 0,
but we do not include such choice to explicitly show that first order gradient-based policy extraction
might not always work.

31t might be possible that with better tuning on learning rates, BPTT training can achieve better performance.
Nonetheless, it shows BPTT is fragile.

Under review as a conference paper at ICLR 2026

Table 2: Q-Learning based offline RL results. The results are averaged over 8 seeds . The ReBRAC*, FQL*
results are collected from Flow Q learning (Park et al., 2025c).

Simple Policies Flow Policies
Task ReBRAC (tanh) * ReBRAC (Gauss) FQL* MFQL DMFQL MFQLpptt MFReBRAC DMEReBRAC
antmaze-large-navigate 91 - 80 +s 62 +11 72 +8 64 +13 65 +13 83 +7
humanoidmaze-medium-navigate 16 +o - 19212 49 30 44 +13 54 +o 53 £14 52 47
humanoidmaze-large-navigate 241 - 7 +6 8 43 T +3 6 +2 9 +4 8 +2
antsoccer-arena-navigate 0 +o0 - 39+6 43 46 37 45 15 15 41 +6
cube-single-play 92 44 - 97 42 95 +1 98 +1 62 137 91 +5 9941
cube-double-play T +3 - 36 +6 72 +a 75 +e 72 +3 74 +4 5
scene-play 50 +13 - 76 49 57 +20 90 +10 68 +15 57 +12 92 +e
puzzle-3x3-play 241 - 16 +5 T +3 6 +2 1+ T +2 542
puzzle-4x4-play 10 +3 - 1143 2443 14 +a 0 +o 25 12 43
Total 297 - 381 418 443 372 425 166
pen-human-vl 103 55 90 5346 TH+o 72 18 - 64 +o T4 +8
pen-cloned-vl 92 72 +15 T4 +11 75 4o 80 +5 - 71 +12 75 +10
pen-expert-vl 152 143 +6 142 £ 138 +4 130 48 - 140 o0 143 +a
door-expert-vl 106 105 +1 104 +1 104 +2 104 +1 - 105 +s 105 +1
hammer-expert-vl 134 131 +1 125 +3 126 +3 124 45 - 126 +3 126 +1
relocate-expert-vl 108 107 +1 107 +1 106 44 104 +4 - 106 +1 107 +2
Total 706 614 605 623 614 - 614 630

Importance of Regularization. On D4RL tasks in Table 2, we observe that only regularized Q
function can boost the DOAL model performance. This strongly suggests that DOAL or maybe
other gradient based policy extraction methods need the Q function to be reliable.

Importance of Tanh. Yet, our models still large behind ReBRAC that use a simple policy. We
identified another difference that is the ReBRAC used tanh nonlinearity for producing actions be-
tween [-1,1]. This might introduce useful inductive bias. Indeed, by removing it, the performance
of ReBRAC dropped. Studying how to add this nonlinear transformation after flow models is an
interesting research question for future work.

5.2 TIME COMPLEXITY

Regression Analysis

FQL IFQL DIFQL MFQL MFQL-BPTT DMFQL
Forward Policy Call 13 1 1 11 21 11 60 ML e
Forward Value Call 3 4 5 3 4 4 =55
Backward Policy Call 2 1 1 1 10 1 Eg
Backward Value Call 2 2 3 1 2 2 ¢
Total Calls 20 8 10 16 37 18 E®
Actual Time in Minutes 37 29 31 35 61 37 g 40
I35
For MFQL, training policy net only requires 1 forward policy call. Train Q net requires sampling, 30
therefore 10 forward policy calls. MaxQ sampling runs many samples in parallel, so as long as it fits
to memory, it has no impact. MFQL takes 3 Value Q for Q learning and MaxQ sampling (yes, it can 2 T T % 7 T 3 @
reduce to 2). DMFQL only adds one forward and one backward call to get a**"2°" compared to MFQL. Number of NN Calls

Figure 2: Runtime and Computational Complexity . On the left side, a table presents the training time
number of function calls and actual runtime. On the right side, a regression line models the actual running time
by the number of function calls. The actual run time is on the antmaze-large task with a single A800 GPU.

Offline RL algorithms train neural networks for value functions and policy distribution. In our work,
4-layer MLP are used for all neural modules. In Figure 2, we count the number of forward and
backward calls through value and policy networks and present their total calls during the training
phase. As forward and backward calls have similar computation cost and policy and value network
share similar architectures, the sum of total calls can be used to predict the actual run time. Indeed, an
affine relation is found. The relation is not linear, because there are overheads such as data loading
and testing. One might notice that FQL’s actual run time is faster than predicted, this is because
FQL uses a one-step policy during testing. We did not include DMFReBRAC as it is the same as
DMFQL. As for the memory usage, it is bottleneck-ed by the backward policy calls that requires
storing intermediate computing states. Therefore, only BPTT version consume more memory.

5.3 CHOOSE STATISTICAL TRUST REGION ¢

In OGBench (Park et al., 2025a), actions are bounded in [-1,1] box of varying dimensionality.
The statistical trust region should be related to how reliable are the Q value estimation at data
point and how well can neural network generalize. As we are using IQL for value estimation

Under review as a conference paper at ICLR 2026

and the same value net in all our experiments, the only thing varying is the datasets. For OG-
Bench experiments, we choose § from (0.03,0.1,0.3), and for D4RL experiments, we choose from
(0.0003,0.001, 0.003) as we see from « in the FQL paper (Park et al., 2025¢) tends to be extremely
large. See Appendix G for the exact hyperparameters.

Envs puzzle-4x4 cube-single scene-play antmaze-large-navigate
E.ay~n IV Qy(s', a")l2] 43.78 5.85 15.58 0.55

a 1000 300 300 10

) 0.03 0.03 0.1 0.1

6.9e-4 5.1e-3 1.9e-3 1.8e-2

)
Esr,anynslllVarQg(s”,a")l2]

Table 3: Different Environments with the Observed Mean ||V ,Q(s, a)||, ., and .

In Table 3, we present a few representative environments and their average ||V,Q(s,a)l||, opti-
mal « (Park et al., 2025¢) and § we selected. As you can see the larger the gradient, the larger
the selected . Based on our Proposition |, we would be expecting o be inverse proportional to
E<5/,a/>~5[\IVi/Q¢(S’7a’)I\2]’ Indeed, this is what we observe. While o ranges across two orders of

magnitude, our hyperparameter ¢ is relatively stable and easier to search for.

Comparison of Gradient Norm Mean Across

=0
MFReBRAC «<—————— DMFReBRAC

?a Qleritic) = 0 Qeritic = 0
[|t — 5 - 0
(‘ MFQL <—— DMFQL
Figure 3: Mean Batch Normalized Gradient Figure 4: The relationship between MFQL, DM-
Norm of DMFQL across OGbench FQL, MFReBRAC and DMFReBRAC.

In Figure 3, we can see the batch gradient normal is quite stable during training. This implies
6 . .
that EoaralIVa @] is roughly a constant for each task, therefore, one can equivalently

treating the direct gradient scaling factor as a hyperparameter and avoid the batch-normalization.
The performance would be equivalent. However, the range of this linear scaling hyperparameter
would be much wider. In Table 3, it ranges across two orders of magnitude just like a.

6 RELATED WORK

6.1 REGULARIZED VALUE ESTIMATION

In-Sample Optimization (e.g., IQL(Kostrikov et al., 2022); X-QL(Garg et al., 2023); SQL and
EQL(Xu et al., 2023)) addresses offline RL by performing in-sample value iteration, avoiding
queries to out-of-distribution (OOD) actions and directly approximating the optimal value func-
tion; Conservative Methods (e.g., CQL (Kumar et al., 2020); EDAC(An et al., 2021); AWAC(Nair
et al,, 2021); BCQ(Fujimoto et al., 2018); ReBRAC(Tarasov et al., 2023)) proposed methods that
penalizing out-of-distribution actions to prevent overestimation of Q values.

6.2 PoLICY EXTRACTION FOR DIFFUSION MODELS

Accelerated Sampling Techniques. A prominent research direction focuses on accelerating the
sampling process of pre-trained generative policies. EDP (Kang et al., 2023) reformulates the re-
verse denoising process to estimate the target action ag in a single step. While these approaches

Under review as a conference paper at ICLR 2026

achieve notable improvements in sampling efficiency, they remain inherently heuristic. Meanwhile,
FQL (Park et al., 2025¢) circumvents the sampling via a student network with one-step sampling.

Value Guidance Methods. A substantial body of work in offline RL leverages diffusion models to
approximate the behavior policy underlying the dataset. One prevalent strategy involves using the
gradient of Q-value functions to guide the action generation process: QGPO (Wang et al., 2023),
SFBC (Chen et al., 2023), EDA (Chen et al., 2024a), QVPO (Ding et al., 2024), and CFGRL(Frans
et al., 2025). An alternative, more straightforward approach modulates the policy by re-weighting
transition samples based on their estimated values (Peng et al., 2019; Frans et al., 2025).

MaxQ Sampling. MaxQ sampling has been introduced in early work with diffusion models. How-
ever, they mostly set ngample to be a large number and thought the trade-off is between computation
budget vs. quality (Wang et al., 2023; Kang et al., 2023; Park et al., 2025¢). Some other work
used weighted resampling instead of MaxQ sampling(Hansen-Estruch et al., 2023), where proper
weighting can alleviate the overestimation bias. As for MaxQ sampling, Ghasemipour et al. (2021)
suggested larger ngample is better. A very recent/concurrent work on horizon reduction (Li et al.,
2025) tuned the ngample, arguing that for large ngample, the sampled distribution might deviate from
policy distribution too much. Yet, they did not discuss the over-estimation bias of the Q value.

6.3 POLICY DISTILLATION WITH REGULARIZED ACTOR-CRITIC METHODS.

Regularized value function learning has been shown to be effective (An et al., 2021; Hansen-Estruch
et al., 2023). Contemporary methods like DAC (Fang et al., 2025) and BDPO (Gao et al., 2025)
further integrate diffusion models with the regularized actor-critic framework. In particular, a con-
current work, FAC (Anonymous, 2025), builds on FQL and add carefully designed regularization on
the Q value function, achieved very strong performance.

6.4 LONG HORIZON PROBLEMS

For challenging tasks that most algorithm cannot address, like antmaze-giant-navigate, (Park et al.,
2023; 2025b; Li et al., 2025) looked at the horizon reduction issue. While this is orthogonal to our
problem, such methods might be necessary for challenging environments.

6.5 NON END2END OPTIMIZATION

Similar to our DOAL at a conceptual level, there are several alternatives to end2end back-
propagation that have been explored for neural network training. Target-Propagation. (Lce et al.,
2014; Meulemans et al., 2020) propose to compute targets rather than gradients, at each layer.
Nested-Learning. (Behrouz et al., 2025) trains neural networks with nested component-wise as-
sociative memory learning problems. It is not hard to see that their formulation can be converted
to target matching like DOAL. Nonparametric Learning. (Wang et al., 2022) provably learns a
two-layer network by matching the first layer output with the ideal second layer input.

7 CONCLUSION

In this work, we present Direct Optimal Action Learning, a framework that enables efficient and
effective learning from V,Q(s, a) for any policy distribution with different Q value functions. We
provide strong baselines by re-exaiming the importance of Mgample in MaxQ sampling, then we
are able to show our models improved over baseline for OGBench tasks for various policies and
value functions. On Adroit tasks, improvements are observed when we use ReBrac objective. Our
experiment set up is mostly aiming at controlled study. In the future, better uncertainty aware Q
estimation should be explored, as it might further improve the statistical trust region identification.
Another important direction for diffusion/flow model training is to leveraging the squeezing layer
such as tanh transformation.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline re-
inforcement learning with diversified g-ensemble. In A. Beygelzimer, Y. Dauphin, P. Liang,
and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems (NeurlPS),
2021.

Anonymous. Flow actor-critic for offline reinforcement learning. In Submitted to The Fourteenth
International Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=wuncwN71iZN. under review.

Ali Behrouz, Meisam Razaviyayn, Peilin Zhong, and Vahab Mirrokni. Nested learning: The illusion
of deep learning architectures. In The Thirty-ninth Annual Conference on Neural Information
Processing Systems, 2025. URL https://openreview.net/forum?id=nbMeRvNb7A,

David Brandfonbrener, William F Whitney, Rajesh Ranganath, and Joan Bruna. Offline RL without
off-policy evaluation. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning
via high-fidelity generative behavior modeling. In The Eleventh International Conference on
Learning Representations (ICLR), 2023.

Huayu Chen, Kaiwen Zheng, Hang Su, and Jun Zhu. Aligning diffusion behaviors with g-functions
for efficient continuous control. Advances in Neural Information Processing Systems (NeurIPS),
2024a.

Tianyu Chen, Zhendong Wang, and Mingyuan Zhou. Diffusion policies creating a trust region for
offline reinforcement learning. Advances in Neural Information Processing Systems (NeurlPS),
2024b.

Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and
Ye Shi. Diffusion-based reinforcement learning via q-weighted variational policy optimization.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems (NeurIPS),
2024.

Linjiajie Fang, Ruoxue Liu, Jing Zhang, Wenjia Wang, and Bingyi Jing. Diffusion actor-critic:
Formulating constrained policy iteration as diffusion noise regression for offline reinforcement
learning. In The Thirteenth International Conference on Learning Representations (ICLR), 2025.

Kevin Frans, Seohong Park, Pieter Abbeel, and Sergey Levine. Diffusion guidance is a controllable
policy improvement operator, 2025.

Scott Fujimoto and Shixiang Gu. A minimalist approach to offline reinforcement learning. In
Advances in Neural Information Processing Systems (NeurIPS), 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning (ICML), 2018.

Chen-Xiao Gao, Chenyang Wu, Mingjun Cao, Chenjun Xiao, Yang Yu, and Zongzhang Zhang.
Behavior-regularized diffusion policy optimization for offline reinforcement learning. In Forty-
second International Conference on Machine Learning (ICML), 2025.

Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme g-learning: Maxent RL
without entropy. In The Eleventh International Conference on Learning Representations (ICLR),
2023.

Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. Emaq: Expected-
max g-learning operator for simple yet effective offline and online rl. In Proceedings of the 38th
International Conference on Machine Learning (ICML), 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning (ICML), 2018.

11

https://openreview.net/forum?id=wuncwN7iZN
https://openreview.net/forum?id=wuncwN7iZN
https://openreview.net/forum?id=nbMeRvNb7A

Under review as a conference paper at ICLR 2026

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit g-learning as an actor-critic method with diffusion policies. ArXiv, abs/2304.10573,
2023.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023. URL https://
arxiv.org/abs/1606.08415.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems (NeurIPS), 2020.

Michael Janner, Yilun Du, Joshua B. Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning (ICML), 2022.

Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for
offline reinforcement learning. Advances in Neural Information Processing Systems (NeurlPS),
2023.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL

https://arxiv.org/abs/1412.6980.
Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit g-
learning. In International Conference on Learning Representations (ICLR), 2022.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline
reinforcement learning. Advances in neural information processing systems (NeurIPS), 2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch Reinforcement Learning, pp. 45-73.
Springer Berlin Heidelberg, 2012.

Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propaga-
tion. In ECML/PKDD, 2014. URL https://api.semanticscholar.org/CorpusID:
14218948.

Sergey Levine, Aviral Kumar, G. Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. ArXiv, abs/2005.01643, 2020.

Qiyang Li, Zhiyuan Zhou, and Sergey Levine. Reinforcement learning with action chunking. In
The Thirty-ninth Annual Conference on Neural Information Processing Systems, 2025. URL
https://openreview.net/forum?id=XUks1lY96NR.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations (ICLR), 2023.

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky T. Q.
Chen, David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. arXiv
preprint arXiv:2412.06264, 2024.

Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
In The Thirteenth International Conference on Learning Representations (ICLR), 2025.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in neural
information processing systems (NeurlPS), 2022.

Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy
prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In Inter-
national Conference on Machine Learning (ICML), 2023.

Alexander Meulemans, Francesco S. Carzaniga, Johan A. K. Suykens, Jodo Sacramento, and Ben-
jamin F. Grewe. A theoretical framework for target propagation. ArXiv, abs/2006.14331, 2020.
URL https://api.semanticscholar.org/CorpusID:220055614.

12

https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1412.6980
https://api.semanticscholar.org/CorpusID:14218948
https://api.semanticscholar.org/CorpusID:14218948
https://openreview.net/forum?id=XUks1Y96NR
https://api.semanticscholar.org/CorpusID:220055614

Under review as a conference paper at ICLR 2026

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets, 2021.

Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. HIQL: Offline goal-
conditioned RL with latent states as actions. In Thirty-seventh Conference on Neural Information
Processing Systems (NeurlPS), 2023.

Seohong Park, Kevin Frans, Sergey Levine, and Aviral Kumar. Is value learning really the main bot-
tleneck in offline RL? In The Thirty-eighth Annual Conference on Neural Information Processing
Systems (NeurIPS), 2024.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. OGBench: Benchmarking
offline goal-conditioned RL. In The Thirteenth International Conference on Learning Represen-
tations (ICLR), 2025a.

Seohong Park, Kevin Frans, Deepinder Mann, Benjamin Eysenbach, Aviral Kumar, and Sergey
Levine. Horizon reduction makes rl scalable, 2025b.

Seohong Park, Qiyang Li, and Sergey Levine. Flow g-learning. In Forty-second International
Conference on Machine Learning (ICML), 2025c.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. ArXiv, abs/1910.00177, 2019.

David E. Rumelhart, Richard Durbin, Richard Golden, and Yves Chauvin. Backpropagation: the
basic theory, pp. 1-34. L. Erlbaum Associates Inc., USA, 1995. ISBN 0805812598.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Proceedings of the 32nd International Con-
ference on Machine Learning (ICML), 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations (ICLR), 2021a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations (ICLR), 2021b.

Qiao Sun, Zhicheng Jiang, Hanhong Zhao, and Kaiming He. Is noise conditioning necessary for
denoising generative models? In Forty-second International Conference on Machine Learning
(ICML), 2025.

R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction. IEEE Transactions on Neural
Networks, 9(5):1054-1054, 1998.

Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov.
CORL: Research-oriented deep offline reinforcement learning library. In 3rd Offline RL Work-
shop: Offline RL as a ”Launchpad”,2022. URL https://openreview.net/forum?id=

SyAS49bBcv.

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the min-
imalist approach to offline reinforcement learning. Advances in Neural Information Processing
Systems (NeurIPS), 2023.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In The Eleventh International Conference on Learning
Representations (ICLR), 2023.

Zhunxuan Wang, Linyun He, Chunchuan Lyu, and Shay B Cohen. Nonparametric learning of two-
layer reLLU residual units. Transactions on Machine Learning Research, 2022. ISSN 2835-8856.
URL https://openreview.net/forum?id=Yi0I0vgJdOn.

Yifan Wu, G. Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning. ArXiv,
abs/1911.11361, 2019.

13

https://openreview.net/forum?id=SyAS49bBcv
https://openreview.net/forum?id=SyAS49bBcv
https://openreview.net/forum?id=YiOI0vqJ0n

Under review as a conference paper at ICLR 2026

Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan, and Xi-
anyuan Zhan. Offline RL with no OOD actions: In-sample learning via implicit value regulariza-
tion. In The Eleventh International Conference on Learning Representations (ICLR), 2023.

14

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

Large language models are used for polishing the texts, including equations and literature reviews.

B PROOF OF PROPOSITION |

Proof. The proof follows from applying the chain rule. First, we compute the gradient of the regu-
larized Q-objective in equation 12:

VoJo(0) = VoQ(s,ma(s)) — Vo (allme(s) — all3)
_ (an(s,a’)))T Voma(s) — 2a(mg(s) — a) T Voma(s)

a’'=mg(s

~ [v.Q0s.a) 20(mo(s) ~)] Vomo(s)

a’=me(s)

Next, let the target action be a* £ a + iVQQ(s, a) }a . We compute the gradient of the

'=mg(s)
target-matching objective Jupeet(6) = —a||ma(s) — a*||3:

V(QJlarget(e) =—Vy ((XHF@(S) - a*HS)
—2a(mg(s) — a*)Terg(s)

T
a’—‘n'@(s))> VQWQ(S)

N
_ [—20[(7@(5) —a) + VaQ(s, “')b/:ﬂe(s)} Vora(s)

The resulting gradients are identical. O

— 24 (779(5) - <a + ian(Sa a’)

15

Under review as a conference paper at ICLR 2026

C PROOF OF PROPOSITION 2
Proof. We are given two conditions that g(s, a) must satisfy:

1. g(s,a) x VaQy(s,a)
2. E(s,a)wD[”g(S7 a)HQ] =0

From the first condition (proportionality), we can write g(s, a) as the gradient scaled by some con-
stant C":

g(sva) =C- Va@d)(sa a)
The constant C' must be determined. We use the second condition to solve for C'.
We substitute our expression for g(s, a) into the second condition:
E(s,a)~plllg(s,a)ll2] =0
E(S@)ND[HC : VaQ¢(37 Q)HQ] =0

Using the properties of norms, we can pull the scalar C' out of the L2-norm as its absolute value:

E(s.a)~p[C - [IVaQy(s, a)lo] = 0

Because C' is a constant, we can pull it out of the expectation:

C-E(sa)v[lVaQo(s, a)ll2] =0

Now, we solve for C"
)

C =
E(s,0)~0ll[VaQy(s; a) 2]

Finally, we substitute this expression for C' back into our original equation for g(s,a). To avoid
ambiguity with the variables of integration in the expectation, we use (s, a’) as dummy variables
for the expectation, as shown in the proposition:

s = (0
g (s anp (Ve Qo (s’ a')|[2]

This completes the proof. O

) Vsl

16

Under review as a conference paper at ICLR 2026

Algorithm 1 Direct Optimal Action Learning (DOAL)

Require: Dataset D, policy parameters 6, Q-function parameters ¢ [, Value-function parameters /]
1: repeat
2: Update ¢[, 1] using value loss of Choice
3: Update 6 using Equation 16 for BCLoss of Choice
4: until convergence

D DOAL OBJECTIVES

In summary, the overall algorithm for DOAL is given in Algorithm |. Similarly, you can replace the
line 2 in Algorithm | with any Q value learning algorithms. In this section, we explicitly discuss the
DOAL objectives. If one replace a'2'¢°* with dataset action a, one recover the baseline model.

D.1 DIRECTED IMPLICIT Q-LEARNING (DIQL)

DIQL extends the implicit Q-learning framework by introducing a direct optimal action learning
approach that explicitly guides policy optimization through value-aware action adjustments. The
key innovation lies in replacing the action of the data set a with the optimized target action a* in the
policy loss, thus directly steering the policy towards high-value regions.

ﬁIT)rIQL(H) = E(5,a)~D [exp (a(Qp(s,a) — Vy(s)))log wg(atargcﬂs)} , (18)

Notice that the weighting uses the original (s, a) as we want to reduce computational overhead.

D.2 DIRECT IMPLICIT FLOW-Q-LEARNING (DIFQL)

Implicit Flow-Q-Learning (DIFQL) (Park et al., 2025¢) builds upon the framework established by
Implicit Diffusion Q-learning (Hansen-Estruch et al., 2023). While the updates for the Q-function
and value function remain consistent with IQL (see Equation 1), IFQL distinguishes itself by em-
ploying a flow-matching objective for policy optimization, as defined by the behavior cloning loss
in Equation 3.

The policy’s behavior cloning loss in DIFQL is formulated as:

LOF(0) = o - gy onvo,1),eoupo,1] [[va(ae,t) — (a8 —ap)[]], ar = (1 —)" + ta,
(19)

Actions are subsequently generated by sampling from the learned flow model (see Equation 4) and
the final action selection is determined by maximizing the learned Q-value function (see Equation 9).

D.3 EFFICIENT IMPLICIT TRIGFLOW Q-LEARNING (ETRIGFLOW)
We present the Efficient TrigFlow (ETrigFlow) actor objective:
LEMERO () = B(q a0.4.2)op [~Qo (s, folar, 1) + - || folar, t) — aol3] (20)

where a; = cos(t) - ag + sin(t) - z and fg(a¢,t) = cos(t)a; — sin(t) - Fy(ay,t),

D.4 DIRECTED IMPLICIT TRIGFLOW Q-LEARNING (DTRIGFLOW)

For DTrigFlow, we build upon the policy diffusion formulation in Equation 6 and adopt the DOAL
framework:

LOTEFION () = B, a0),emh (0.1) t~d[0,7/2) ||| fo(ae,) — ag 5 ||3] (21)

where a; = cos(t)a'?"8" + sin(t)z.

17

Under review as a conference paper at ICLR 2026

D.5 DIRECTED MULTISTEP FLOW Q-LEARNING (DMFQL)
The DMFQL share the same actor loss as the DIFQL, however it trains the value function through

Q learning:

L(¢) = E(s.ars,a)~p) [[Qo(s,a) = (r +7(Qu (', mo(s)))) 3] , (22)

where 74(s’) is sampled from MaxQ sampling with n¢arget sample

D.6 DIRECTED MULTISTEP FLOW REGULARIZED Q LEARNING (DMFREBRAC)

DMFReBRAC introduce an additional regularizor on the Q target.

£(¢) =]E(s,a,r,s’,a’)ND) [Hth(sa a) - (T + (Q(i)’ (5/7 WG(SI)) — COlritic * (a/ - 779(3/))2)) H%%Za?j)
where 7y(s’) is sampled from MaxQ sampling with Niarget_sample aNd Occrigic controls the regular-
ization strength.

18

Under review as a conference paper at ICLR 2026

E EXPERIMENT RESULTS

antmaze humanoidmaze mdedium humanoid _large
oror orar
oo oot
owraL o
80172 Srmerion omcron
g | o g g 8 |
§ 6012 meriow /o A E é criow
E [0 emorige e F E E | emonon
2w s 2 £
& i & &
20
q_ﬁbjiég?ﬁg
0.0 0.2 o. 6 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 6 08 10
Steps (x10°) Steps (x10°) Steps (x10°)
antsoccer cube_single cube_double
oroL oror
oo o
owral o
80172 Srmerion omcron
° oL ° ° oL R ——
2 6ol = trarmc g 2 6ol = e
o© 60 TRIGH o o TRIGFLOV > 7
E | cmonow E E | cmonon
2 a0 2 £
3 S]
& & & ey
@ -
5 » S ——
T — <
00 02 04 06 02 04 06 3 10 o 02 04 06 0% 10
Steps (x10°) Steps (x10°) Steps (x10°)
scene puzzle3 puzzle4
ool - - orar
oL g - oL
o ¥ owral
80175 Crmcrion omcriow
5 60] o TRIGFLOW
E = E E ETRIGRLOW
s s s
t 40 b= t
& & &
20
) e e]
00 02 04 0 04 06 08 1o 00 02 04 06 038 10
Steps (x10°) Steps (x10°) Steps (x10°)

Figure 5: Performance Comparison of Algorithms on the OGbench Environment.

The figures 5 illustrate the performance curves of different algorithms across various environments.
Specifically, each curve in the generated plots represents the performance trend achieved during
the training process of the corresponding algorithm in a specific environment. The vertical axis
displays the normalized return. This return is the direct evaluation result without applying any
aggregation or averaging over multiple runs (e.g., without a moving average filter of size 3). The
Antmaze Giant environment is deliberately excluded from this set of figures because the observed
performance (normalized return) in these scenes was consistently near zero (=~ 0) for all algorithms

tested, rendering the resulting plots visually uninformative.

19

Under review as a conference paper at ICLR 2026

F ABLATION STUDY

In the following section, we present a detailed discussion on the influence of four critical hyperpa-
rameters: the max q sample ngample, the brac coefficient a, the § in DOAL, and the n¢arget_sample fOor
sample next action in DMFQL. Given the number of hyperparameters introduced in this work, and
to rigorously demonstrate that our findings are not a consequence of aggressive ’tuning”, we adopt
a strict and transparent two-stage evaluation strategy. Below, we detail the parameter search process
and the measures taken to prevent overfitting and selection bias. All hyperparameter choices and
initial ablation studies were conducted based on runs using four fixed random seeds: 11, 22, 33, and
44. Crucially, the final, definitive results presented in the main body of this paper are derived from a
more robust set of eight independent random seeds: 111, 222, 333, 444, 555, 666, 777, and 888.

With IQL, we first choose nigample on the Trigflow model, then choose § on the DTrigflow model.
Then, for all our models with IQL value function ngampie and § are shared.

With Q-Learning, we choose 7sample 0n the MFQL model, and choose § on the DMFQL model. On
DA4RL tasks, we copy the aitic from ReBRAC and tune it on OGBench.

F.1 CHOOSING ngample

Table 4 demonstrates that a larger ngample does not automatically translate into better performance.
For instance, across the majority of environments, the optimal performance is achieved at relatively
small Ngample values. In contrast, increasing nsample t0 64 or 128 often leads to a measurable
decline in the average success rate. Our results demonstrate that MFQL benefits significantly from
task-specific optimization of ngample-

Table 4: Comparison of MFQL Performance Across Different ng,mpi. averaging over 4 seeds

TNsample
1 2 4 8 16 32 64 128
antmaze-large-navigate-singletask-v0 0.050 0.655 0.695 0.560 0.330 0.265 0.140 0.125

humanoidmaze-medium-navigate-singletask-v0 0.015 0.250 0.480 0.500 0.600 0.610 0.550 0.500
humanoidmaze-large-navigate-singletask-v0 0.000 0.005 0.045 0.075 0.095 0.045 0.040 0.035

Environment

antsoccer-arena-navigate-singletask-v0 0.005 0.165 0.355 0.500 0.460 0400 0.295 0.285
cube-single-play-singletask-v0 0.105 0.965 0950 0.870 0.780 0.675 0.645 0.575
cube-double-play-singletask-v0 0.005 0.290 0.700 0.625 0.455 0.350 0.215 0.135
scene-play-singletask-v0 0.040 0.550 0.665 0.635 0.545 0.630 0.520 0.550
puzzle-3x3-play-singletask-v0 0.005 0.090 0.040 0.000 0.000 0.000 0.000 0.000
puzzle-4x4-play-singletask-v0 0.000 0.045 0.205 0.095 0.080 0.055 0.065 0.050

F.2 CHOOSING §

Regarding the § hyperparameter, our analysis primarily serves to validate the effectiveness of DOAL.
We strategically compared the performance of DMFQL using three distinct § values: 0.03, 0.1, and
0.3. As demonstrated in the performance comparison (Figure 6), the choice of ¢ has a major impact
on the success rate across most environments. While we do not rule out the existence of even better
0 values, our core objective was to show that the active learning mechanism introduced by the ¢§
parameter is effective and necessary.

It should be noted that § = 0 recovers the baseline model exactly, but we do not consider this a valid
hyperparameter choice.

F.3 IMPORTANCE OF BEHAVIOR CLONE COEFFICIENT «

We kept a from FQL (Park et al., 2025¢) in the main experiments for controlling. In Figure 7, on
DMFQL, we compare the set o from FQL with o = 1. We found that this parameter does not matter.
In fact, one should realize « effectively controls the learning rate for actor networks and is no longer
in charge of balancing in-distribution vs. Q value. With modern optimizers like ADAM (Kingma &
Ba, 2017), such explicit weighting is not needed.

20

Under review as a conference paper at ICLR 2026

antmaze humanoid_medium humanoid_large
ok owrar ol o owraL o ok owar -0
ot owraL-on o owrau i ot owraLn
ot ouroL 03 o om0 ok owaL (9
80 80 80
o o o
2 c £
S 60 S 60 S 60
£ 3 13
2 a0 € 40 2 a0
3 S]
& & &
20 20 20
ot o 0 e e e G G 0.
0.0 0.2 0.4 6 0.8 10 0.0 0.2 . 6 0.8 0.0 0.2 0.4 6 08 10
Steps (x10°) Steps (x10°) Steps (x10°)
antsoccer cube_single cube_double
ok owrar - ol ok owraL -0
o owraL (-1 “of owraL(-on
ot ouraL -8 ot owraL 9
80 80 80
o o o
g < <
& 60 & 60 H 60
13 3 £
@ 40 ‘g 40 g 40
3 S]
& & &
20 20 20
o o
02 04 06 08 1o 00 02 6 08 00 02 04 6 08 1o
Steps (x10°) Steps (x10°) Steps (x10°)
scene puzzle3 puzzle4
ol ouroufr—omo—— o —a—o— o owroLt-om) ol oroL -om
ot owralfi_on o oweou o) ok owsoL -0
ot owrali-0n T owraL G0 ot owaL-an
80 [80 80
9] 9
5 e €
S 60 S 60 S 60
E £ £
s s s
t 40 ‘£ 40 £ 40
& & &
20 20 20
o o = o
00 02 04 06 08 1o 00 02 04 06 08 00 02 04 06 08 1o

Figure 6: Performance Comparison of DMFQL on the OGbench Environment with ¢ = 0.03, 0.1,

Steps (x10°)

0.3 over 4 seeds.

Steps (x10°)

Steps (x10°)

antmaze humanoid_medium humanoid_large
ok oot) o omraL i ok oot 1)
ouraL oweQL (o) oweaL (1)
80 1 80 80
) 9 9
5 e €
S 60 o S 60 S 60
E A £ £
S S o s
t 40 ‘£ 40 o £ 40
& & s &
o
20 20 e 20
= &
o a
& A~ g —a—0
o [0-—o—o——o—R——71 =
04 06 08 10 02 04 06 08 00 02 04 06 08 10
Steps (x10°) Steps (x10°) Steps (x10°)
antsoccer cube_single cube_double
ol omraL () o omroL) g e ol oMo (e
owrdL (-1 orraL =TT owraLia-
80 80 80
) 9 9
c g c
S 60 S 60 S 60
E E E
S S S
£ 40 ‘£ 40 £ 40
9 3] 9
& & &
20 20 20
o [o
0.0 0.2 0. 0.8 1.0 0.0 0.2 . . 0.8 0.4 08 1.0
Steps (x10°) Steps (x10°) Steps (x10°)
scene puzzle3 puzzle4
OMFQL (") - g o DML fa) DMEQL (a")
5 o P =g 5 ot = owa
80 80 80
@ o @
2 g e
S 60 S 60 S 60
E E E
€ a0 £ w0 2 a0
9] 1]
& & &
20 20 20
——o———o— O ——o—y =
o 01— o -
0.0 0.2 0.8 10 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.6 0.8 10

0. . 0.4
Steps (x10°) Steps (x10°) Steps (x10°)

Figure 7: Performance Comparison of DMFQL on the OGbench Environment with alpha* from
FQL and alpha = 1 over 4 seeds.

21

Under review as a conference paper at ICLR 2026

antmaze humanoid_medium humanoid_large
P [[—
owraL it o— owraL (.11
80 80 80
o o) o
2 o c £
S 60 o . < 60 S 60
£ o 3 - 13
o
2 a0 s o € 40 = T €
3 o S -]
& = & &
o o
20 20 o o 20
e o5 “ o
oo N X . o—b
o o} ieBt o PPN e P
0.0 0.2 0. 6 0.8 10 0.0 0.2 4 6 0.8 1.0 0.0 0.2 0.4 0.6 08 10
Steps (x10°) Steps (x10°) Steps (x10°)
antsoccer cube_single cube_double
oML (1 B =7 -
owraL o) owraL (.11
80 80 [80 o
/ a “
9 9 [o S o
g < <
& 60 & 60 H 60
13 3 E a S—
S S S o .
£ 40 o £ 40 £ 40 o
a9 o o e 17 a
& o5 : & & e
20 o 20 20 o
7= o
o T [0t -
00 02 04 06 0’8 10 00 02 04 06 3 10 00 02 04 06 0% 10
Steps (x10°) Steps (x10°) Steps (x10°)
scene puzzle3 puzzle4
o J B—
P — G54 [sya— [y—
oMFQL 1') o o o o o DMFQL fn, 0 DMFOL (e = 1}
80 80 80
9] 9
5 : e €
S 60 S 60 S 60
E £ £
s s s
t 40 ‘£ 40 £ 40
& & &
o0
20 20 20 o = . o o -
. o o
, " o—o— o o T o >
o ol b=t i - — ——: | o
00 02 04 06 08 1o 00 02 04 06 08 1o 00 02 04 06 08 1o
Steps (x10°) Steps (x10°) Steps (x10°)

Figure 8: Performance Comparison of DMFQL on the OGbench Environment with target n sample
=4 and target n sample = 1 over 4 seeds.

F.4 CHOOSING Ntarget_sample

The ntarget_sample 18 necessary for computing the Bellman target value in the DMFQL Q-learning

loss:
L(¢) = Esars ar~p) [|Qs(s,a) = (r+ 7 (Qu (s, ma(s) 3]

where 7g(s’) is an approximation of arg maxas Q4 (s’,a’). To estimate this maximum in a contin-
uous action space, we employ MaxQ sampling by drawing 7¢arget_sample actions from the policy g
at state s’ and taking the maximum Q-value. While MaxQ sampling can run samples in parallel, if
the memory is full, increasing Marget sample Will significantly increase the running time. We fix the
Ntarget sample = 4 for balancing computational budget and performance. In Figure 8, we observe
that Niarget sample = 4 could achieved better results than n¢arget_sample = 1 overall, but not always.
We acknowledge that a more exhaustive hyperparameter search might yield slightly improved re-
sults for specific environments; our primary goal was to validate the effectiveness of the DOAL
framework, not to achieve the absolute maximum score through extensive tuning.

22

Under review as a conference paper at ICLR 2026

G HYPERPARAMETERS

Table 5: DOAL Related Hyperparameters

Task IQL-based (Regularized) QL-based
d Nsample 0 Nsample Qlcritic
antmaze-large-navigate 0.1 4 0.03 4 0.01
humanoidmaze-medium-navigate 0.1 32 0.1 32 0.01
humanoidmaze-large-navigate 0.03 8 0.03 16 0.001
antsoccer—arena—-navigate 0.1 16 0.1 16 0.1
cube-single-play 0.03 32 0.03 2 0.01
cube-double-play 0.1 16 0.03 4 0.1
scene-play 0.1 32 0.1 4 0.01
puzzle-3x3-play 0.03 4 0.03 2 0.01
puzzle-4x4-play 0.03 64 0.03 4 0.01
pen-human-v1 0.001 8 0.0003 4 0.5
pen-cloned-vl 0.001 16 0.0003 32 0.5
pen—-expert-vl 0.001 64 0.0003 32 0.01
door—expert-vl 0.003 2 0.003 16 0.01
hammer—-expert-vl 0.003 2 0.003 4 0.01
relocate-expert-vl 0.003 2 0.0003 4 0.01

Table 5 summarizes the hyperparameters that we find. However, on D4RL tasks, we find that the
variance is high across seeds. The optimal hyperparameters are not reliable. This might be another
reason for the lack of improvement of DOAL models.

Table 6: Other Hyperparameters

Hyperparameter Value

Learning rate 0.0003

Optimizer Adam (Kingma & Ba, 2015)
Gradient steps 1000000 (OGBench), 500000 (D4RL)
Minibatch size 256

MLP dimensions [612,512,512,512]

Nonlinearity GELU (Hendrycks & Gimpel, 2023)
Target network smoothing coefficient 0.005

Discount factor ~y 0.99

IQL expectile 0.9

Flow steps 10

Flow time sampling distribution Unif(]0, 1])

23

	Introduction
	Preliminaries
	Direct Optimal Action Learning
	The Optimal Action
	Batch-Normalizing Optimizer
	The DOAL Objectives

	MaxQ Sampling needs Balancing
	Experiments & Discussion
	Main Results
	Time Complexity
	Choose Statistical Trust Region δ

	Related Work
	Regularized Value Estimation
	Policy Extraction for Diffusion Models
	Policy Distillation with Regularized Actor-Critic Methods.
	Long Horizon Problems
	Non End2End Optimization

	Conclusion
	The Use of Large Language Models
	Proof of Proposition 1
	Proof of Proposition 2
	DOAL Objectives
	Directed Implicit Q-Learning (DIQL)
	Direct Implicit Flow-Q-Learning (DIFQL)
	Efficient Implicit TrigFlow Q-Learning (ETrigFlow)
	Directed Implicit TrigFlow Q-Learning (DTrigFlow)
	Directed MultiStep Flow Q-Learning (DMFQL)
	Directed MultiStep Flow Regularized Q Learning (DMFReBRAC)

	Experiment Results
	Ablation Study
	Choosing n_sample
	Choosing δ
	Importance of Behavior Clone Coefficient α
	Choosing n_target_sample

	Hyperparameters

