
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DIRECT OPTIMAL ACTION LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in offline reinforcement learning have leveraged two key
innovations: policy extraction from behavior-regularized actor-critic (BRAC) ob-
jective and the use of expressive policy architectures, such as diffusion and flow
models. However, backpropagation through iterative sampling chains is compu-
tationally tricky and often requires policy-specific solutions and careful hyper-
parameter tuning. We observe that the reparameterized policy gradient of the
BRAC objective trains the policy to clone an “optimal” action. Building on this
insight, we introduce Direct Optimal Action Learning (DOAL), a novel frame-
work that directly learns this “optimal” action. Then, efficient behavior losses
native to the policy’s distribution (e.g., flow matching loss) can be used for effi-
cient learning. Furthermore, we demonstrate that the traditional balancing factor
between Q-loss and behavior-loss can be reinterpreted as a mechanism for select-
ing a trust region for the optimal action. The trust region reinterpretation yields
a Batch-Normalizing Optimizer. This facilitates the hyperparameter search and
makes it shareable across policy distributions. Our DOAL framework can be eas-
ily integrated with any existing Q-value-based offline RL methods. To control the
impact of value estimation, our baseline models use simple behavior clone loss
and implicit q-learning. We apply DOAL to Gaussian, Diffusion, and Flow poli-
cies. In particular, for Diffusion and Flow policies, we obtained strong baseline
models by improving the MaxQ Action Sampling. Our results on 15 tasks from
the OGBench and D4RL adroit datasets show that DOAL consistently improves
performance compared against strong baseline models while simplifying hyper-
parameter search. Our best models achieved very strong performance. The code
is available through Anonymous Github.

1 INTRODUCTION

Offline reinforcement learning (RL) aims at efficiently and effectively extracting policy from expe-
rience beyond the simple imitation learning(Lange et al., 2012; Levine et al., 2020). While learning
from pre-collected trajectories avoids the costly environment interactions, for offline RL agents to
perform better than a simple behavior cloning agent, value estimation and extracting information
from the estimated value function is the key(Park et al., 2024). Yet, due to the lack of interaction,
agents cannot extrapolate too much to avoid distribution shift. Hence, the success of offline RL
depends on balancing the maximization the estimated Q value and behavior cloning (Haarnoja et al.,
2018; Wu et al., 2019; Kostrikov et al., 2022; Tarasov et al., 2023).

Meanwhile, as the scale and diversity of offline datasets continue to grow, there is an increasing need
for policies capable of modeling highly multi-modal and complex action distributions. Diffusion and
flow matching models(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b; Lipman et al.,
2023; Lu et al., 2022; Sun et al., 2025) have recently been applied to Offline RL(Janner et al., 2022;
Wang et al., 2023; Hansen-Estruch et al., 2023; Kang et al., 2023; Park et al., 2025c), and improved
the modeling capacity of policy distribution.

However, efficient policy extraction requires reparameterized policy gradient through the Q value
functionPark et al. (2024), and it is non-trivial for distribution involving an iterative sampling proce-
dural(Park et al., 2025c; Kang et al., 2023; Fujimoto & Gu, 2021; Tarasov et al., 2023). While many
solutions have been proposed, they usually involves some computation overhead, requires careful
tuning of hyperparameter across environments or not as effective.

1

https://anonymous.4open.science/r/iclr2026-7144

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

BC
Loss

Q Loss

BC
Loss

Q Loss

BP
TT

Backpropagation
Forward Pass

BRAC
Learn to
Optimize

Action

DOAL
Learn the
Optimized

Action

Figure 1: DOAL Framework. On the left side, we have the end2end re-parameterized policy gradient from
the Q value function and the behavior clone loss. On the right side, we have our DOAL framework, where we
extract an optimized atarget from Q, and then use efficient behavior clone loss from any policy distribution.

In this work, we provide a simple, effective and universal framework for policy extraction from
the Q value function. As shown in Figure 1, we observe that the reparameterized policy gradient
w.r.t. Behavior Regularized Actor Critic (BRAC) objective can be replaced by simple gradient w.r.t.
behavior clone loss of an optimized action.

This observation has two consequences: Direct Optimal Action Learning (DOAL) instead of
backpropagating end2end, we can optimize the action with q value and behaviour loss, then learn
the optimized action with the efficient loss function that is native to the policy distribution (e.g.,
velocity matching loss); Batch-Normalizing Optimizer if learning from Q value function is ap-
proaching a better local solution, and Q value estimations are known to be not reliable, we should
have a trust region δ for how much the optimized atarget can shift away from data distribution.
Meanwhile, it is also desirable to the shift distance to be proportional to the gradient of Q value
w.r.t. action. This can be realized by normalizing the shift with a batch average of gradient
atarget = a+ δ

E(s,a)∼B[∥∇aQ(s,a)∥]∇aQ(s, a), where B is the data mini-batch.

We are not aiming at producing the most performative offline RL algorithms, but studying the ef-
fectiveness of our policy extraction framework (in contrast to the end2end training). To isolate the
effects of value estimation from policy extraction, we use the Implicit Q Learning (IQL) (Kostrikov
et al., 2022). The value estimation in IQL doesn’t interact with the policy extraction, making it an
ideal choice for our study. Still, the learned Q-value can be used. For Gaussian policy, Advantage-
Weighted Regression (AWR) can be used (Kostrikov et al., 2022). For flow and diffusion models,
without learning from Q function in the training time, MaxQ Sampling is used for selecting action
with maximal Q value in a sampled candidate sets. In order to have a solid baseline, we identified
a key parameters that were previously overlooked hyperparameter: the number of samples for ac-
tion candidates. This parameter directly influences the trade-off between the maximization bias of
Q-value and coverage from samples.

Empirically, on 9 default tasks on OGBench and 6 Adroit tasks on D4RL datasets, the DOAL learned
policies achieved consistent improvement over the their behavior clone baseline (with max Q sam-
pling 2 or advantaged weighted regression 2) . In particular, for all algorithms in the same envi-
ronment, the DOAL hyperparameters δ are shared. In all, the DOAL framework is an efficient,
effective and versatile to extract policy distributions from the Q value.

2 PRELIMINARIES

We consider a Markov decision process (MDP) M (S,A, r, p, γ, ρ0)(Sutton & Barto, 1998), where
S is the state space, A = Rd is a d-dimensional continuous action space, r(s, a) is the reward
function, p(s′ | s, a) is the transition dynamics, γ ∈ [0, 1) is the discount factor, and ρ0(s) is the
initial state distribution.

In offline RL, the agent learns from a fixed dataset D = {(si, ai, s′i, ri)}Ni=1 consisting of individual
transitions rather than complete trajectories. The objective is to learn a policy πθ(a | s) that maxi-
mizes the expected discounted return J(πθ) = Eπθ

[
∑∞
t=0 γ

tr(st, at)], while avoiding distributional

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

shift caused by querying actions outside the support of D, as there will be no online interaction to
correct overoptimism.

Implicit Q-Learning. IQL (Kostrikov et al., 2022) avoids querying out-of-sample actions through
expectile regression. Unlike SARSA-style methods (Brandfonbrener et al., 2021) that learn using
the next actions from the dataset, IQL learns the value function of the current policy.

The value function Vψ(s) and the Q-function Qϕ are learned via:

LV (ψ) = E(s,a)∼D [Lτ2 (Qϕ(s, a)− Vψ(s))] , LQ(ϕ) = E(s,a,r,s′)∼D

[
(r + γVψ(s

′)−Qϕ(s, a))
2
]
.

(1)

where Lτ2(u) = |τ − I(u < 0)|u2. For policy extraction, standard IQL uses Advantage-Weighted
Regression (AWR) (Peng et al., 2019):

LAWR(θ) = E(s,a)∼D [exp (β(Qϕ(s, a)− Vψ(s))) log πθ(a|s)] , (2)

where β controls the strength on the advantage weighting. All our models use IQL for value estima-
tion.

Flow Matching. Flow Matching (FM) establishes a deterministic path (pt)t∈[0,1] that continuously
transforms a simple source distribution p1 into the target behavior distribution p0, with each pt
defined over Rd (Lipman et al., 2023; 2024). 1

We adopt the most simple instantiation of FM, utilizing linear interpolation paths with uniform time
sampling (Lipman et al., 2024; Park et al., 2025c). For an action a0 ∼ π(a0), the objective is to
learn a time-dependent velocity field vθ(a, t) : Rd × [0, 1] → Rd through the following regression
loss:

LFM(θ) = Ea0∼q(a0),a1∼N (0,I),t∼U [0,1]

[
∥vθ(at, t)− (a0 − a1)∥2

]
, at = (1− t)a0 + ta1 (3)

This formulation ensures training stability while admitting efficient sampling through explicit Euler
discretization of the underlying flow ODE:

at−∆t = at +∆t · vθ(at, t), ∆t =
1

N
(4)

where N represents the number of flow steps.

TrigFlow. We adapt the TrigFlow framework (Lu & Song, 2025) to train diffusion policy(Sohl-
Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b), defining the forward diffusion process as
follows: given a0 ∼ p(a0) and z ∼ N (0, I), the noisy sample at time t is given by

at = cos(t)a0 + sin(t)z, t ∈ [0, π2] (5)

with aπ/2 ∼ N (0, I). The model can be trained to minimize the prediction error:

Ldiffusion(θ) = Ea0∼p(a0),z∼N (0,I),t∼U [0,π/2]

[
∥fθ(at, t)− a0∥22

]
, (6)

fθ(at, t) = cos(t)at − sin(t) · Fθ(at, t), (7)
where Fθ is a learned network and the fθ naturally satisfies the boundary condition fθ(a0, 0) = a0.
We implement a first-order DDIM(Song et al., 2021a) sampling scheme for efficient inference:

at = cos(k − t) · ak − sin(k − t) · Fθ(ak, k), (8)

where k is the previous time step. In our paper, we divides the steps evenly into 10.

Max Q Sampling. A principled strategy orthogonal to behavior-regularized actor-critic frameworks
is a resampling mechanisms(Ghasemipour et al., 2021; Chen et al., 2023; Hansen-Estruch et al.,
2023). Instead of training the action policy with Q value, Max Q sampling leverages the estimated
Qϕ in the inference time. Formally, given a proposal distribution πθ(a|s) and a target criterion
Qϕ(s, a), the Max Q sampling procedure select the optimal action from a set of samples:

a = argmax
a(1),...,a

(nsample)
Qϕ(s, a

(i)), a(i) ∼ πθ(s) (9)

1In the usual, flow matching setting p1 is the data distribution, but we want to make it consistent with
diffusion model notations.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

We provide ablation studies in Section 5 to show that larger nsample values do not necessarily
yield better performance.

Behavior-Regularized Actor-Critic (BRAC). Behavior-regularized actor-critic methods form a
family of effective offline RL approaches that combine value function learning with behavior reg-
ularization (Haarnoja et al., 2018; Wu et al., 2019; Tarasov et al., 2023). The critic loss follows
equation 1. The actor loss, defined in our implementation, integrates policy improvement and be-
havior regularization:

LBRAC
π,BCLoss(θ) = E(s,a)∼D [−Qϕ(s, πθ(s)) + α · BCLoss(πθ(s), a)] , (10)

where α is a hyperparameter balancing policy improvement and behavior constraint and BCLoss is
a behavior clone loss, e.g. ∥πθ(s)−a∥2 or the velocity matching loss in the previous section. While
the BARC objective is almost necessary, it has been shown to be highly sensitive to α (An et al.,
2021; Chen et al., 2024b; Fang et al., 2025; Gao et al., 2025), requiring extensive per-task tuning.

The problem for applying Equation 10 to a diffusion/flow-based policy is the computational costly
iterative sampling chain(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b). There exists
many works to circumvent this issue, see Section 6 for more discussion. For notational simplicity,
we drop the mention of noise in the main text, as that can be easily integrated or we considering a
joint state s′ = (s, z) for wherever noise is needed. Now, we present our framework for learning
from the Q estimator.

3 DIRECT OPTIMAL ACTION LEARNING

In deep learning, there is a doctrine that all we need to train neural networks is a differentiable
loss w.r.t. the parameters (Rumelhart et al., 1995). In the context of learning policy with iterative
sampling, the computational cost becomes too high. In fact, it is not entirely clear what the learned
policy represents aside from it balances behavior regularization and expected return maximization.
We present two motivations to derive our Direct Optimal Action Learning framework, and show
how it can naturally yields more interpretable and robust hyperparameter choice.

3.1 THE OPTIMAL ACTION

From an intuitive standpoint, an actor policy should learn to produce actions that have high estimated
Q-values. When learning from a static dataset, this search for high-value actions should naturally
be centered around the actions already present in the data. This leads to a straightforward idea:
instead of indirectly learning a policy that optimizes a complex objective, we can directly learn the
optimal action itself. Our framework, Direct Optimal Action Learning (DOAL), is founded on
this principle.

From a formal perspective, this idea emerges from a re-interpretation of the policy gradient in stan-
dard behavior-regularized actor-critic methods.:

Proposition 1 (Equivalence of Policy Gradients). Let πθ(s) be a deterministic differentiable policy
parameterized by θ and Qϕ(s, a) be a differentiable action-value function. Consider the behavior-
regularized objective:

JQ(θ) ≜ E(s,a)∼D
[
Qϕ(s, πθ(s))− α∥πθ(s)− a∥22

]
(11)

where α > 0 is a regularization coefficient. The gradient of this objective with respect to θ is
equivalent to the gradient of a simpler squared-error objective Jtarget(θ):

∇θJQ(θ) = ∇θJtarget(θ) ≜ E(s,a)∼D

[
∇θ

(
−α ∥πθ(s)− atarget)∥22

)]
(12)

atarget = a+
1

2α
∇a′Qϕ(s, a

′)
∣∣
a′=πθ(s)

(13)

The proof is a straightforward application of the chain rule (see Appendix A.2). This equivalence
reveals that training with the BRAC objective is implicitly minimizing the distance between the
policy’s output πθ(s) and a target action atarget.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

This formulation, however, presents a conceptual inconsistency. The target atarget is constructed
by taking a gradient ascent step from the data action a, but the gradient ∇a′Qϕ is evaluated at
the policy’s output πθ(s). This requires sampling from the policy at training time and creates a
mismatch between the point of expansion (a) and the point of evaluation (πθ(s)). A more direct
approach would be to perform the gradient ascent step using the gradient evaluated at the data action
a, which would define a static target for each data point (s, a) and eliminate the need for sampling.

This insight is the cornerstone of DOAL. By defining the target action directly from the data and
Q value, we decouple the target computation from the policy being trained. The major practical
benefit is that we are no longer constrained by the need to sample a full action during training.
Consequently, we can leverage more powerful generative modeling techniques to learn the action
policy, such as training flow-based models with flow matching losses or diffusion models with their
diverse loss functions.

3.2 BATCH-NORMALIZING OPTIMIZER

A challenge with BRAC-style methods is the sensitivity of the regularization coefficient α, which
often requires careful tuning across several orders of magnitude (Park et al., 2025c; Kumar et al.,
2020). Our re-interpretation of the objective as learning a target action raises a critical question:
what is the appropriate magnitude for the update from the data action a to the target action atarget?

In offline reinforcement learning, the learned Q-function is merely an estimator, and it is crucial
to remain conservative to avoid distribution shift to out-of-support actions where the Q-function
is unreliable (Kostrikov et al., 2022; Kumar et al., 2020; Tarasov et al., 2023). Therefore, instead
of an arbitrary step size dictated by α, we should define a statistical trust region for our action
optimization. We can achieve this by setting a fixed expected magnitude for the update vector
g(s, a) = atarget − a. Specifically, we desire two conditions for the update vector g(s, a):

1. The update should be in the direction of the Q-function’s gradient at the data action:
g(s, a) ∝ ∇aQϕ(s, a).

2. The expected squared magnitude of the update over the dataset should be a constant, which
we denote as δ: E(s,a)∼D[∥g(s, a)∥2] = δ.

These two conditions uniquely determine the update vector, as shown in the following proposition.
Proposition 2 (Batch Normalized Update). To satisfy the conditions g(s, a) ∝ ∇aQϕ(s, a) and
E(s,a)∼D[∥g(s, a)∥2] = δ, the action update vector g(s, a) is defined as:

g(s, a) =
δ

E(s′,a′)∼D [∥∇a′Qϕ(s′, a′)∥2]
· ∇aQϕ(s, a) (14)

where δ > 0 is a hyperparameter representing the desired expected squared magnitude of the action
update, and the expectation in the denominator is computed over a batch of data.

This formulation replaces the obscure hyperparameter α with an interpretable one, δ, which di-
rectly controls the expected squared magnitude of the action update. In practice, we use the batch
statistics as estimator, so we have E(s′,a′)∼B

[
∥∇a′Qϕ(s

′, a′)∥22
]
, where B is the current mini-batch.

This “batch-normalization” of the action gradients provides a more stable and robust training target,
alleviating the need for extensive hyperparameter sweeps.

Why α varies so much? On a flip-side, tuning α in BRAC is similar to finding our statistical trust
region. Therefore, as the reward function varies across environments, the gradients of Q varies a lot.
This factor means even actions all live in a box, the statistical trust regions are of similar size, the
optimal α could still vary hugely.

3.3 THE DOAL OBJECTIVES

In this paper, we use IQL for value estimation. However, this is not an necessity, we make this
choice for better controlled study of policy extraction. We only alter the actor loss :

JDOAL(θ) =α · E(s,a)∼DBCLoss(πθ(s), a
target) (15)

atarget :=a+
δ

E(s′,a′)∼B [∥∇a′Qϕ(s′, a′)∥2]
· ∇aQϕ(s, a) (16)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Direct Optimal Action Learning (DOAL) with IQL
Require: Dataset D, policy parameters θ, Q-function parameters ϕ, , Value-function parameters ψ

1: repeat
2: Update ϕ, ψ using Implicit Q Learning as inEquation 1
3: Update θ using Equation 15 for BCLoss of Choice
4: until convergence

where BCLoss can be any distribution matching losses. In terms of computational overhead, as the
gradient ∇aQϕ(s, a) will be called explicit or implicitly at least once to extract first order structure
information from Qϕ. The DOAL objective is at least as efficient as any algorithms that utilize
∇aQϕ(s, a). Notice that we still keep the α parameter, because we believe this parameter also
controls the learning rate of actor. We copy this parameter from Park et al. (2025c) for all our
experiments. In summary, the overall algorithm for DOAL is given in Algorithm 1.

4 MAXQ SAMPLING NEEDS BALANCING

As our DOAL framework learn from optimized action based on ∇aQ(s, a), we consider models
without learning from ∇aQ(s, a) as our baseline models. In such case, Q(s, a) can still be used for
weighting the behavior clone loss and performing actions selection, as we discussed Section 2 and
Section2. To have a solid baseline for comparison, we argue that nsample a crucial hyper-parameter
that were previously overlooked.

When taking nsample = 1, we clearly recovered the actor distribution and completely lost access
to information from Qψ . On the other extreme, Some earlier work suggested the bigger nsample,
the better (Ghasemipour et al., 2021). However, while a∗ maximize the Q value estimator Qψ as
nsample → +∞, there exists maximization bias such that the maximum Q value will be overesti-
mated due to noise in the estimator. While we are interested in the maximizer a∗ not the maximized
Q value, this still is problematic.

Proposition 3 (Informal). Consider countably many actions a1, a2, For each i, the Q-estimator
is independent Gaussian: Q̂(ai) ∼ N (µi, σ

2
i), with bounded means supi µi < ∞ and infinitely

many actions having nontrivial noise (σi ≥ c > 0). Draw n i.i.d. actions from any policy with full
support and pick the one with the largest observed Q̂. As n→ ∞: (i) the selected action eventually
leaves every fixed finite set (its index drifts to infinity); (ii) the selected Q̂ value diverges to +∞
(driven by extreme positive noise); (iii) the probability of picking any true-mean maximizer tends to
0.

Proof Intuition. The maximum of m i.i.d. Gaussian draws grows like µi + σi
√
2 logm. With in-

finitely many actions having σi > 0, some action will realize an extremely large positive fluctuation
and dominate the max, regardless of the bounded means. Thus, making nsample very large pushes se-
lection toward noise outliers rather than toward actions with the highest µi, even when the estimator
is unbiased.

The above analysis shows that increasing nsample can exacerbate maximization bias: as nsample →
∞, max-selection over noisy Q-estimates systematically prefers actions with large positive noise
realizations, independent of the learned Q.

While it is hard to precisely characterize the resulting distribution from MaxQ sampling, the more
samples we have the more data coverage we have. In the case where action policy is value agnostic,
having multiple samples is necessary to ensure mode coverage so that Q function can provide a
selection. Yet, if we sample too much, the stochasticity in Qψ dominates and we might get ”good”
actions due to overestimation rather than being reliable.

Pragmatically, nsample balances the conflict between the in distribution behaviour and Q value esti-
mator in the inference time. To our knowledge, this is an overlooked issue in the literature, where
the consensus is that the nsample is trading off between computation and accuracy. . As we will show
in the experiments, this indeed improved our baseline models significantly.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 1: Full offline RL results. We present the full results on the OGBench and D4RL tasks. They
are the default single-task in each environment. The results are averaged over 4 seeds on D4Rl and 3 seeds
on OGBench. The ReBRAC*, IQL*, FQL*, IFQL* results are collected from Flow Q learning(Park et al.,
2025c).We treat each return statement as an independent output and compute the standard deviation across all
such outputs, rather than only considering the last three return values as in the original approach.

Gaussian Policies Flow Policies Diffusion Policies

Task ReBRAC* IQL* DIQL FQL* IFQL* IFQL DIFQL Trigflow TrigflowQL DTrigflow

antmaze-large-navigate 91 ±10 48 ±9 66 ±10 80 ±8 24 ±17 66 ±26 77 ±17 51 ±28 81 ±10 77 ±24

antmaze-giant-navigate 27 ±22 0 ±0 0 ±0 4 ±5 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0

humanoidmaze-medium-navigate 16 ±9 32 ±7 52 ±9 19 ±12 69 ±19 67 ±32 56 ±7 63 ±8 67 ±5 65 ±7

humanoidmaze-large-navigate 2 ±1 3 ±1 8 ±3 7 ±6 6 ±2 7 ±10 9 ±4 6 ±5 6 ±6 6 ±6

antsoccer-arena-navigate 0 ±0 3 ±2 13 ±8 39 ±6 16 ±9 38 ±12 31 ±16 63 ±18 34 ±6 35 ±18

cube-single-play 92 ±4 85 ±8 80 ±3 97 ±2 73 ±3 11 ±27 18 ±4 89 ±4 87 ±4 19 ±25

cube-double-play 7 ±3 1 ±1 6 ±25 36 ±6 9 ±5 11 ±27 18 ±4 14 ±26 15 ±25 19 ±25

scene-play 50 ±13 12 ±3 28 ±7 76 ±9 0 ±0 22 ±12 58 ±26 45 ±18 58 ±12 61 ±18

puzzle-3x3-play 2 ±1 2 ±1 0 ±0 16 ±5 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0 0 ±0

puzzle-4x4-play 10 ±3 5 ±2 10 ±1 11 ±3 21 ±11 25 ±1 20 ±7 20 ±6 4 ±3 24 ±5

pen-human-v1 103 78 50 ±14 53 ±6 71 ±12 71 ±8 70 ±1 68±13 68 ±12 64 ±8

pen-cloned-v1 103 83 59 ±3 74 ±11 80 ±11 76 ±13 85 ±12 65 ±4 60 ±4 60 ±6

pen-expert-v1 152 128 125 ±7 142 ±6 139 ±5 138 ±2 136 ±5 135 ±3 135 ±4 141 ±5

door-expert-v1 106 107 103 ±4 104 ±1 104 ±2 104 ±2 102 ±2 104 ±2 104 ±2 102 ±2

hammer-expert-v1 134 129 106 ±44 125 ±3 117 ±9 97 ±17 120 ±6 93 ±16 100 ±12 97 ±18

relocate-expert-v1 108 106 100 ±4 107 ±1 104 ±3 103 ±5 103 ±7 104 ±2 103 ±2 103 ±3

5 EXPERIMENTS & DISCUSSION

In this section, we empirically examine the effectiveness of our DOAL framework for extracting
information from ∇aQϕ(s, a). Our baseline models still benefit from Qϕ(s, a) either through ad-
vantage weighted regression or max-Q sampling. We also compare against efficient diffusion policy
learning Kang et al. (2023).

Benchmarks We conduct a comprehensive evaluation of our method on two challenging offline RL
benchmarks: 1) The D4RL 6 Gymnasium tasks, focusing on the complex pen, hammer, relocate, and
door environments with expert, human, and cloned dataset qualities. 2) 9 tasks from the more diverse
and demanding OGBench suite. To ensure a fair comparison with reward-maximizing algorithms,
we utilize the variant of OGBench.The selection of this 6+9 tasks are due to the fact, no current
simple algorithms can work well.

Models We have three representative and strong baseline algorithms with our method: IQL, A
popular implicit constraint algorithm; IFQL, A flow-based policy learning method; TrigFlow, our
proposed efficient generative policy. For each one of them, we have the DOAL versions DIQL,
DIFQL, and DTrigflow (see Appendix A.3 for details). Furthermore, we have TrigflowQL that uses
the BRAC objective but uses one-step sampling a′ = fθ(at, t) = cos(t)at − sin(t) · Fθ(at, t), from
corrupted at.

All our models use the same IQL hyperparameters for training Q value function, therefore we are
only comparing policy extraction . Environment dependent hyperparams δ, nsample are searched
based on Trigflow and DTrigflow, but shared across algorithms δ, α, nsample.

Evaluation Following Park et al. (2025c) average last three for OGbench 1m steps, the last one for
adroit 500k last. For each environment and algorithm, we report the normalized score as defined
by the respective benchmark. We train multiple seeds for each run, but the seed is shared across
algorithms, we aim at providing a stable and representative measure of relative performance.

5.1 MAIN RESULTS

The first observation we can made from Table 1 is that we made really strong baseline models of
IFQL and Trigflow. In particular, our number of samples tuned IFQL improved over the original
paper results significantly on OGBench. On the D4RL, the results are less clear. As those tasks are
highly random in its’ own. In our prelimnary experiments. We re-run testing with the same model,
and we observed over 20 std across different runs. The adroit benchmark needs more investigation
to useful for algorithm evaluation.

There is no clear advantage between our models Dtrigflow and TrigflowQL. As for comparing
against other models, while we are not aiming at pushing the most performative model, 2 we ob-

2There are many recent works that train flow/diffusion with additional consistency constraints that could
further stabilize the training.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

tained a very strong results. It is still clear that Rebrac model has advantage in many tasks. However,
as we discussed we pick IQL for controlled study, it is possible to adopt Rebarc in the future. In par-
ticular, the behaviour regularized target could be similarly approched by DOAL framework. While
it is not shown here, many runs actually achieved much higher performance during the training then
collapsed. Yet, we are not able to identify a conjecture for explanation yet. We will publish the
wandb log with associated code after the anonymous period.

5.2 HYPERPARAMETER SEARCH

We use a single set of hyperparameters (including the untuned regularization coefficient α that serves
as learning rate controller for our purpose) for each environment across all augmented algorithms
(DIQL, DFQL, DTrigFlow). To ensure fairness, we also apply this same set of environment-specific
hyperparameters to the original base algorithms (IQL, FQL, TrigFlow) when run on that environ-
ment. This design choice demonstrates that our performance gains are not from extensive hyperpa-
rameter tuning but from the stable optimization dynamics of the DOAL framework itself. All other
network architecture and training details (e.g., learning rates) are kept consistent with the original
implementations of the base algorithms.

Max Q sampling nsample To identifying the best number of samples, we run Trigflow for three
seeds. Then only do the re-testing with the last epoch saved model with different nsample. We
attempted (1,2,4,8,16,32,63,128) but very rarely, we have over 32 as the optimal. In Table 2, we
have three selected environments where mid-range number of nsample is preferred. In fact, in
Ghasemipour et al. (2021) , their experiments also find cases where larger nsample hurts.

Envs 1 2 4 8 16 32 64 128
cube-double-play 0 1 9 15 17 13 13 13
scene-play-v0 1 10 43 47 57 54 45 40
puzzle-3x3-play 0 2 5 9 5 6 2 1

Table 2: Success Rates of Sample Checkpoint with Different nsample

Choose Statistical Trust Region δ For choosing a candidates for δ. In OGBench Park et al. (2025a),
actions are bounded in [-1,1] box of varying dimensionality. The statistical trust region should be
related to how reliable are the Q value estimation at data point and how well can neural network gen-
eralize. As we are using IQL for value estimation and the same value net in all our experiments, the
only thing varying is the datasets. For OGBench experiments, we choose δ from (0.03, 0.1, 0.3), and
for d4rl experiments, we choose from (0.003, 0.01, 0.03) as we see from α in the FQL paper Park
et al. (2025c) tends to be extremely large. See the Anonymous Github for the exact hyperparam-
eter. In Table 3, we present a few representative environments and their average ||∇aQ(s, a)||,

Envs pen-cloned-v1 pen-expert-v1 scene-play antmaze-large-navigate
||∇aQ(s, a)|| 279.99 64.99 15.58 0.55
α 10000 3000 300 10
δ 0.03 0.003 0.03 0.1

Table 3: Sample Environments with the Observed Mean ||∇aQ(s, a)||, α, and δ.

optimal α Park et al. (2025c) and δ we selected. As you can see the larger the gradient, the larger
the selected α and it ranges across three orders of magnitude. Meanwhile, our hyperparameter δ is
relatively stable and easier to search for.

6 RELATED WORK

The training of multi-step generative policies (e.g., diffusion or flow models) in offline reinforcement
learning presents significant computational challenges, predominantly stemming from the need for
backpropagation through time (BPTT) during policy gradient estimation. Recent work has demon-
strated the efficacy of diffusion models as expressive policy classes (Frans et al., 2025). We now crit-
ically examine existing methodological paradigms to delineate the fundamental limitations imposed

8

https://anonymous.4open.science/r/iclr2026-7144

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

by BPTT, thereby contextualizing the conceptual novelty of our Direct Optimal Action Learning
(DOAL) framework.

Long Horizon Challenge Problems For challenging tasks that most algorithm cannot address, like
antmaze-giant-navigate, (Park et al., 2025b) looked at the the horizon reducation issue. While this
is orthogonal to the our problem, but such methods might be necessary for offline RL to work in
challenging environments.

Accelerated Sampling Techniques. A prominent research direction focuses on accelerating the
sampling process of pre-trained generative policies. Methods such as Efficient Diffusion Policy
(EDP) (Kang et al., 2023) reformulate the reverse denoising process to estimate the target action
a0 in a single step. While these approaches achieve notable improvements in sampling efficiency,
they remain inherently approximate, as they seek to mimic the output of a computationally intensive
multi-step generative procedure. In contrast, DOAL fundamentally circumvents this approximation
by directly regressing toward the analytically computed optimal action a∗. Our approach not only
matches the sampling efficiency of accelerated methods but also provides a more stable and tar-
geted learning signal, being grounded in a principled one-step optimization objective derived from
regularized policy improvement.

Value Guidance Methods. A substantial body of work in offline RL leverages diffusion models to
approximate the behavior policy underlying the dataset. One prevalent strategy involves using the
gradient of Q-value functions to guide the action generation process. This includes techniques such
as Q gradient guidance oor energy-based guidance paradigms, exemplified by QGPO (Wang et al.,
2023), SFBC (Chen et al., 2023), EDA (Chen et al., 2024a), and QVPO (Ding et al., 2024). An
alternative, more straightforward approach modulates the policy by re-weighting transition samples
based on their estimated values, as seen in advantage-weighted regression (AWR). A common draw-
back of these guidance-based techniques is their reliance on delicate hyperparameter tuning (e.g.,
guidance scales) to balance the often competing objectives of data fidelity and value maximization,
resulting in a complex and sometimes unstable optimization landscape.

DOAL presents a fundamentally simpler and more cohesive alternative. It collapses the aforemen-
tioned complexity into a single, unified objective derived from a closed-form regularized policy
improvement step. The key hyperparameter admits a clear interpretation as a trust-region radius, en-
abling a stable and interpretable interpolation between conservative imitation and aggressive value
maximization without resorting to ad-hoc guidance heuristics.

Policy Distillation and Actor-Critic Methods. A third category of approaches focuses on distilling
a more efficient policy from value estimates or planning results. This lineage distill the outcomes of
planning procedures using value ensembles (An et al., 2021; Hansen-Estruch et al., 2023). Contem-
porary methods like DAC (Fang et al., 2025) and BDPO (Gao et al., 2025) further integrate diffusion
models within an actor-critic framework.

DOAL distinguishes itself through its conceptual and computational directness. The target action
atarget is computed analytically in a single step, eliminating the need for iterative distillation or
complex optimization. This not only reduces computational burden but also provides a cleaner and
more direct learning signal by precisely targeting the optimal action prescribed by the current policy
and value function. Our DOAL framework presents a fourth, fundamentally distinct approach by
completely decoupling the optimal action computation from policy learning.

7 CONCLUSION

In this work, we present Direct Optimal Action Learning, a framework that enables efficient and
effective learning from ∇aQ(s, a) for any policy distribution. We provide strong baselines by re-
exaiming the importance of nsample in MaxQ sampling, then we are able to show our models im-
proved over baseline in most cases. Our experiment set up is mostly aiming at controlled study, so
we rely on IQL. In the future, uncertainty aware Q estimation should be important to explore, as it
might further improve the statistical trust region identification.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline re-
inforcement learning with diversified q-ensemble. In A. Beygelzimer, Y. Dauphin, P. Liang,
and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems (NeurIPS),
2021.

David Brandfonbrener, William F Whitney, Rajesh Ranganath, and Joan Bruna. Offline RL without
off-policy evaluation. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning
via high-fidelity generative behavior modeling. In The Eleventh International Conference on
Learning Representations (ICLR), 2023.

Huayu Chen, Kaiwen Zheng, Hang Su, and Jun Zhu. Aligning diffusion behaviors with q-functions
for efficient continuous control. Advances in Neural Information Processing Systems (NeurIPS),
2024a.

Tianyu Chen, Zhendong Wang, and Mingyuan Zhou. Diffusion policies creating a trust region for
offline reinforcement learning. Advances in Neural Information Processing Systems (NeurIPS),
2024b.

Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and
Ye Shi. Diffusion-based reinforcement learning via q-weighted variational policy optimization.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems (NeurIPS),
2024.

Linjiajie Fang, Ruoxue Liu, Jing Zhang, Wenjia Wang, and Bingyi Jing. Diffusion actor-critic:
Formulating constrained policy iteration as diffusion noise regression for offline reinforcement
learning. In The Thirteenth International Conference on Learning Representations (ICLR), 2025.

Kevin Frans, Seohong Park, Pieter Abbeel, and Sergey Levine. Diffusion guidance is a controllable
policy improvement operator, 2025.

Scott Fujimoto and Shixiang Gu. A minimalist approach to offline reinforcement learning. In
Advances in Neural Information Processing Systems (NeurIPS), 2021.

Chen-Xiao Gao, Chenyang Wu, Mingjun Cao, Chenjun Xiao, Yang Yu, and Zongzhang Zhang.
Behavior-regularized diffusion policy optimization for offline reinforcement learning. In Forty-
second International Conference on Machine Learning (ICML), 2025.

Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. Emaq: Expected-
max q-learning operator for simple yet effective offline and online rl. In Proceedings of the 38th
International Conference on Machine Learning (ICML), 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning (ICML), 2018.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies. ArXiv, abs/2304.10573,
2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems (NeurIPS), 2020.

Michael Janner, Yilun Du, Joshua B. Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In International Conference on Machine Learning (ICML), 2022.

Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for
offline reinforcement learning. Advances in Neural Information Processing Systems (NeurIPS),
2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In International Conference on Learning Representations (ICLR), 2022.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in neural information processing systems (NeurIPS), 2020.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch Reinforcement Learning, pp. 45–73.
Springer Berlin Heidelberg, 2012.

Sergey Levine, Aviral Kumar, G. Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. ArXiv, abs/2005.01643, 2020.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In The Eleventh International Conference on Learning Repre-
sentations (ICLR), 2023.

Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky T. Q.
Chen, David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. arXiv
preprint arXiv:2412.06264, 2024.

Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
In The Thirteenth International Conference on Learning Representations (ICLR), 2025.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
ode solver for diffusion probabilistic model sampling in around 10 steps. Advances in neural
information processing systems (NeurIPS), 2022.

Seohong Park, Kevin Frans, Sergey Levine, and Aviral Kumar. Is value learning really the main bot-
tleneck in offline RL? In The Thirty-eighth Annual Conference on Neural Information Processing
Systems (NeurIPS), 2024.

Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. OGBench: Benchmarking
offline goal-conditioned RL. In The Thirteenth International Conference on Learning Represen-
tations (ICLR), 2025a.

Seohong Park, Kevin Frans, Deepinder Mann, Benjamin Eysenbach, Aviral Kumar, and Sergey
Levine. Horizon reduction makes rl scalable, 2025b.

Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. In Forty-second International
Conference on Machine Learning (ICML), 2025c.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. ArXiv, abs/1910.00177, 2019.

David E. Rumelhart, Richard Durbin, Richard M. Golden, and Yves Chauvin. Backpropaga-
tion: the basic theory. 1995. URL https://api.semanticscholar.org/CorpusID:
60753175.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Proceedings of the 32nd International Con-
ference on Machine Learning (ICML), 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations (ICLR), 2021a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In Interna-
tional Conference on Learning Representations (ICLR), 2021b.

Qiao Sun, Zhicheng Jiang, Hanhong Zhao, and Kaiming He. Is noise conditioning necessary for
denoising generative models? In Forty-second International Conference on Machine Learning
(ICML), 2025.

R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction. IEEE Transactions on Neural
Networks, 9(5):1054–1054, 1998.

11

https://api.semanticscholar.org/CorpusID:60753175
https://api.semanticscholar.org/CorpusID:60753175

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the min-
imalist approach to offline reinforcement learning. Advances in Neural Information Processing
Systems (NeurIPS), 2023.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. In The Eleventh International Conference on Learning
Representations (ICLR), 2023.

Yifan Wu, G. Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning. ArXiv,
abs/1911.11361, 2019.

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

Large language models are used for polishing the texts, including equations and literature reviews.

A.2 PROOF OF EQUATION 11

Proof. The proof follows from applying the chain rule. First, we compute the gradient of the regu-
larized Q-objective in equation 11:

∇θJQ(θ) = ∇θQ(s, πθ(s))−∇θ

(
α∥πθ(s)− a∥22

)
=

(
∇aQ(s, a′)

∣∣
a′=πθ(s)

)⊤
∇θπθ(s)− 2α(πθ(s)− a)⊤∇θπθ(s)

=
[
∇aQ(s, a′)

∣∣
a′=πθ(s)

− 2α(πθ(s)− a)
]⊤

∇θπθ(s)

Next, let the target action be a∗ ≜ a + 1
2α∇aQ(s, a′)

∣∣
a′=πθ(s)

. We compute the gradient of the
target-matching objective Jtarget(θ) = −α∥πθ(s)− a∗∥22:

∇θJtarget(θ) = −∇θ

(
α∥πθ(s)− a∗∥22

)
= −2α(πθ(s)− a∗)⊤∇θπθ(s)

= −2α

(
πθ(s)−

(
a+

1

2α
∇aQ(s, a′)

∣∣
a′=πθ(s)

))⊤

∇θπθ(s)

=
[
−2α(πθ(s)− a) +∇aQ(s, a′)

∣∣
a′=πθ(s)

]⊤
∇θπθ(s)

The resulting gradients are identical.

A.3 DOAL OBJECTIVES

A.3.1 DIRECTED IMPLICIT Q-LEARNING (DIQL)

DIQL extends the implicit Q-learning framework by introducing a direct optimal action learning
approach that explicitly guides policy optimization through value-aware action adjustments. The
key innovation lies in replacing the dataset action a with the optimized target action a∗ in the policy
loss, thereby directly steering the policy towards high-value regions.

LDIQL
π (θ) = E(s,a)∼D

[
exp (αactor(Qϕ(s, a)− Vψ(s))) log πθ(a

target|s)
]
, (17)

Notice the weighting is using the original Q(s, a) as we want to reduce computational overhead.

A.3.2 DIRECT IMPLICIT FLOW-Q-LEARNING (DIFQL)

Implicit Flow-Q-Learning (DIFQL) (Park et al., 2025c) builds upon the framework established by
Implicit Diffusion Q-learning (Hansen-Estruch et al., 2023). While the updates for the Q-function

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

and value function remain consistent with IQL (see Equation 1), IFQL distinguishes itself by em-
ploying a flow-matching objective for policy optimization, as defined by the behavior cloning loss
in Equation 3.

The policy’s behavior cloning loss in DIFQL is formulated as:

LDIFQL
π (θ) = α · Ea1∼N (0,I),t∼U [0,1]

[
∥vθ(at, t)− (atarget − a1)∥2

]
, at = (1− t)atarget + ta1

(18)

Actions are subsequently generated by sampling from the learned flow model (see Equation 4) and
the final action selection is determined by maximizing the learned Q-value function (see Equation 9).

A.3.3 DIRECTED IMPLICIT TRIGFLOW-Q-LEARNING (DTRIGFLOW)

Following Equation 6 and adopt DOAL, we have

LDTrigflow(θ) = Ea0∼p(a0),z∼N (0,I),t∼U [0,π/2]

[
∥fθ(at, t)− atarget0 ∥22

]
, at = cos(t)atarget+sin(t)z

(19)

A.3.4 TRIGFLOW-Q-LEARNING (TRIGFLOWQL)

For TrigflowQL, we have the following:

LTrigflowQL
π (θ) = E(s,a0,t,z)∼D

[
−Qϕ(s, fθ(at, t)) + α ·

[
∥fθ(at, t)− a0∥22

]]
at = cos(t)a0+sin(t)z

(20)

13

	Introduction
	Preliminaries
	Direct Optimal Action Learning
	The Optimal Action
	Batch-Normalizing Optimizer
	The DOAL Objectives

	MaxQ Sampling needs Balancing
	Experiments & Discussion
	Main Results
	Hyperparameter Search

	Related Work
	Conclusion
	Appendix
	The Use of Large Language Models
	Proof of equation 11
	DOAL Objectives
	Directed Implicit Q-Learning (DIQL)
	Direct Implicit Flow-Q-Learning (DIFQL)
	Directed Implicit TrigFlow-Q-Learning (DTrigflow)
	TrigFlow-Q-Learning (TrigflowQL)

