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ABSTRACT

Recent advancements in offline reinforcement learning leveraged two key innova-
tions: policy extraction from behavior-regularized actor-critic (BRAC) objective
and expressive policies, such as diffusion and flow models. However, backprop-
agation through iterative sampling chains is computationally tricky and often re-
quires policy-specific solutions and careful hyperparameter tuning. We observe
that the reparameterized policy gradient of the BRAC approximately trains the
policy to replicate an ’optimal’ action. Building on this insight, we introduce
Direct Optimal Action Learning (DOAL), an efficient, effective, and versatile
framework for policy extraction from Q value functions. DOAL utilizes efficient
behavior losses native to the policy’s distribution (e.g., flow matching loss) to imi-
tate an optimized action based on Q-values. Furthermore, we demonstrate that the
traditional balancing factor between Q-loss and behavior-loss can be reinterpreted
as a mechanism for selecting a trust region for the optimal action. The trust region
reinterpretation yields a Batch-Normalizing Optimizer. This facilitates the hy-
perparameter search and makes it shareable across polices. Our DOAL framework
can be easily integrated with any existing Q-value-based offline RL methods. We
apply DOAL to Gaussian, Diffusion, and Flow policies. For Diffusion and Flow
policies, our baseline models use the MaxQ action sampling, where the number of
samples is tuned for each task. In particular, with regularized Q value estimation,
flow policies achieved the best results. On 9 OGBench tasks, our baseline models
outperformed the previous best models, and DOAL improves over strong baseline
models while simplifying hyperparameter search. On 6 Adroit tasks from D4RL,
improvement can be achieved when the Q value learning is regularized. The code
is available through Anonymous Github.

1 INTRODUCTION

Offline reinforcement learning (RL) aims at efficiently and effectively extracting policy from ex-
perience beyond the simple imitation learning(Lange et al., 2012; Levine et al., 2020). For offline
RL agents to perform better than a simple behavior cloning agent, value estimation and extracting
information from the estimated value function is the key citep park2024is. Yet, due to the lack of
interaction, agents cannot extrapolate too much to avoid the distribution shift. Hence, the success of
offline RL depends on balancing the maximization of the estimated Q value and behavior cloning
(Haarnoja et al., 2018; Wu et al., 2019; Kostrikov et al., 2022; Tarasov et al., 2023).

Meanwhile, as the scale and diversity of offline datasets continue to grow, there is an increasing need
for policies capable of modeling highly multi-modal and complex action distributions. Diffusion and
flow matching models(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b; Lipman et al.,
2023; Lu et al., 2022; Sun et al., 2025) have recently been applied to Offline RL(Janner et al., 2022;
Wang et al., 2023; Hansen-Estruch et al., 2023; Kang et al., 2023; Park et al., 2025c), and improved
the modeling capacity of policy distribution.

However, efficient policy extraction requires a reparameterized policy gradient through the Q value
function(Park et al., 2024), and it is non-trivial for distribution involving an iterative sampling pro-
cedural(Park et al., 2025c; Kang et al., 2023; Fujimoto & Gu, 2021; Tarasov et al., 2023). While
many solutions have been proposed, they usually involve some computation overhead, require care-
ful tuning of hyperparameter across environments, or are not as effective (Wang et al., 2023; Chen
et al., 2023; Kang et al., 2023; Lu et al., 2023).
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Figure 1: DOAL Framework. On the left, we have the end2end re-parameterized policy gradient
from the Q and the behavior clone loss. On the right, we have our DOAL framework, where we
extract an optimized atarget from Q, and use policy dependent efficient behavior clone loss.

In this work, we present an efficient, effective, and versatile framework for policy extraction from
Q-value functions. As shown in Figure 1, we observe that the reparameterized policy gradient
w.r.t. Behavior Regularized Actor Critic (BRAC) objective can be replaced by simple gradient w.r.t.
behavior clone loss of an optimized action. 1 In Proposition 1, we make a slightly more formal
statement about their similarity and difference when the BC loss is the Mean Squared loss.

This observation has two consequences: Direct Optimal Action Learning (DOAL) instead of
backpropagating end2end, we can optimize the action with q value and behaviour loss, then learn
the optimized action with the efficient loss function that is native to the policy distribution (e.g.,
velocity matching loss); Batch-Normalizing Optimizer if learning from Q value function is ap-
proaching a better local solution, and Q value estimations are known to be not reliable, we should
have a trust region δ for how much the optimized atarget can shift away from data distribution.
Meanwhile, it is also desirable that the shift distance be proportional to the gradient of the Q
value w.r.t. action. This can be realized by normalizing the shift with a batch average of gradi-
ent atarget = a+ δ

E(s,a)∼B[∥∇aQ(s,a)∥]∇aQ(s, a), where B is the data mini-batch.

To isolate the effects of value estimation from policy extraction, we use the Implicit Q Learning
(IQL) (Kostrikov et al., 2022). The value estimation in IQL doesn’t interact with the policy ex-
traction, making it an ideal choice for our study. Still, the learned Q-value can be used. For Gaus-
sian policy, Advantage-Weighted Regression (AWR) can use Q-value to weight actions during train-
ing (Kostrikov et al., 2022). For flow and diffusion models, we use MaxQ Sampling to select the
action with the highest Q-value from a set of sampled candidates during testing. To obtain strong
baseline models, we recognized that the sample size for action candidates is a critical, previously
neglected hyperparameter (Park et al., 2025c). Varying this number allows us to manage the inherent
trade-off between the overestimation risk in the Q-value (maximization bias) and the representative-
ness of the sample set (coverage). To obtain better performance, we further tested DOAL framework
with Q-Learning and regularized Q-Learning.

Empirically, in all, we tested over three different Q-value Empirically, we tested over three different
Q-value functions (IQL, Q-Learning, and Regularized Q-Learning) and three classes of policies
(Gaussian, flow, and diffusion models). We performed experiments in 9 default tasks on OGBench
and 6 Adroit tasks on D4RL datasets. Overall, the DOAL learned policies achieved improvement
over strong baselines on OGBench. On Adroit tasks, we observed performance gain with regularized
Q-learning. Both our baseline models and DOAL models suppress the previously best published
work, FQL (Park et al., 2025c). Importantly, for all algorithms in the same task and same value
function, the DOAL hyperparameters δ are shared, and DOAL costs one extra forward and backward
call of the Q value net, compared to baselines. In all, the DOAL framework is an efficient, effective
and versatile tool to extract polices from Q values.

2 PRELIMINARIES

We consider a Markov decision process (MDP) M = (S,A, r, p, γ, ρ0)(Sutton & Barto, 1998),
where S is the state space, A = Rd is a d-dimensional continuous action space, r(s, a) is the reward

1Notice that we are not claiming the two objectives are equivalent, but rather the BRAC and DOAL objective
both pushes the policy to produce higher valued action while being close to the action data point.
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function, p(s′ | s, a) is the transition dynamics, γ ∈ [0, 1) is the discount factor, and ρ0(s) is the
initial state distribution. In offline RL, the agent learns from a fixed dataset D = {(si, ai, s′i, ri)}Ni=1
consisting of individual transitions rather than complete trajectories. The objective is to learn a
policy πθ(a | s) that maximizes the expected discounted return J(πθ) = Eπθ

[
∑∞
t=0 γ

tr(st, at)],
while avoiding distributional shift caused by querying actions outside the support of D.

Implicit Q-Learning. IQL (Kostrikov et al., 2022) avoids querying out-of-sample actions through
expectile regression. Unlike SARSA-style methods (Brandfonbrener et al., 2021) that learn using
the next actions from the dataset, IQL learns the value function of the current policy.

The value function Vψ(s) and the Q-function Qϕ are learned via:

LV (ψ) = E(s,a)∼D [Lτ2 (Qϕ(s, a)− Vψ(s))] , LQ(ϕ) = E(s,a,r,s′)∼D

[
(r + γVψ(s

′)−Qϕ(s, a))
2
]
.

(1)

where Lτ2(u) = |τ − I(u < 0)|u2. For policy extraction, standard IQL uses Advantage-Weighted
Regression (AWR) (Peng et al., 2019):

LAWR(θ) = E(s,a)∼D [exp (β(Qϕ(s, a)− Vψ(s))) log πθ(a|s)] , (2)

where β controls the strength of the advantage weighting.

Flow Matching. Flow Matching (FM) establishes a deterministic path (pt)t∈[0,1] that continuously
transforms a simple source distribution p1 into the target behavior distribution p0, with each pt
defined over Rd (Lipman et al., 2023; 2024). 2

We adopt the most simple instantiation of FM, utilizing linear interpolation paths with uniform time
sampling (Lipman et al., 2024; Park et al., 2025c). For an action a0 ∼ π(a0), we learn a time-
dependent velocity field vθ(a, t) : Rd × [0, 1] → Rd through the following regression loss:

LFM(θ) = Ea0∼q(a0),a1∼N (0,I),t∼U [0,1]

[
∥vθ(at, t)− (a0 − a1)∥2

]
, at = (1− t)a0 + ta1 (3)

This formulation ensures training stability while admitting efficient sampling through explicit Euler
discretization of the underlying flow ODE:

at−∆t = at +∆t · vθ(at, t), ∆t =
1

N
(4)

where N represents the number of flow steps.

TrigFlow. We adapt the TrigFlow (Lu & Song, 2025) to train diffusion policy(Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2021b), defining the forward diffusion process as follows: given
a0 ∼ p(a0) and z ∼ N (0, I), the noisy sample at time t is given by

at = cos(t)a0 + sin(t)z, t ∈ [0, π2 ] (5)

with aπ/2 ∼ N (0, I). The model can be trained to minimize the prediction error:

Ldiffusion(θ) = Ea0∼p(a0),z∼N (0,I),t∼U [0,π/2]

[
∥fθ(at, t)− a0∥22

]
, (6)

fθ(at, t) = cos(t)at − sin(t) · Fθ(at, t), (7)
where Fθ is a learned network and fθ naturally satisfies the boundary condition fθ(a0, 0) = a0. We
implement a first-order DDIM(Song et al., 2021a) sampling scheme for efficient inference:

at = cos(k − t) · ak − sin(k − t) · Fθ(ak, k), (8)

where k is the previous time step. In our paper, we divide the steps evenly into 10.

Max Q Sampling. A principled strategy orthogonal to behavior-regularized actor-critic frameworks
is a resampling mechanism (Ghasemipour et al., 2021; Chen et al., 2023; Hansen-Estruch et al.,
2023; Li et al., 2025). Instead of training the action policy with Q value, Max Q sampling leverages
the estimated Qϕ in the inference time. Formally, given a proposal distribution πθ(a|s) and a target
criterion Qϕ(s, a), the Max Q sampling procedure selects the optimal action from a set of samples:

a = argmax
a(1),...,a

(nsample)
Qϕ(s, a

(i)), a(i) ∼ πθ(s) (9)

2In the usual flow matching notation p1 is the data distribution, but we want to make it consistent with
diffusion model notations.
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Behavior-Regularized Actor-Critic (BRAC). Behavior-regularized actor-critic methods form a
family of effective offline RL approaches that combine value function learning with behavior reg-
ularization (Haarnoja et al., 2018; Wu et al., 2019; Tarasov et al., 2023). The critic loss follows
equation 1. The actor loss, defined in our implementation, integrates policy improvement and be-
havior regularization:

LBRAC
π,BCLoss(θ) = E(s,a)∼D [−Qϕ(s, πθ(s)) + α · BCLoss(πθ(s), a)] , (10)

where α is a hyperparameter balancing policy improvement and behavior constraint and BCLoss is
a behavior clone loss, e.g. ∥πθ(s)−a∥2 or the velocity matching loss in the previous section. While
the BARC objective is almost necessary, it has been shown to be highly sensitive to α (An et al.,
2021; Chen et al., 2024b; Fang et al., 2025; Gao et al., 2025), requiring extensive per-task tuning.

The problem in applying Equation 10 to a diffusion/flow-based policy is the computationally costly
iterative sampling chain(Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b). There
exists many works to circumvent this issue, see Section 6 for more discussion.

Regularized-Behavior-Regularized Actor-Critic (ReBRAC).

L(ϕ) = E(s,a,r,s′,a′)∼D)

[
∥Qϕ(s,a)−

(
r + γ

(
Qϕ′(s′, πθ(s

′))− αcritic · (a′ − πθ(s
′))2

))
∥22
]
,

(11)

whereQϕ′ is target critic network and the αcritic is the critic bc coefficient. This regularized Q-value
target reduces the overestimation issue in Q-learning (Tarasov et al., 2023).

For notational simplicity, we drop the mention of noise in the main text, as that can be easily inte-
grated, or we consider a joint state s′ = (s, z) for where noise is needed.

3 DIRECT OPTIMAL ACTION LEARNING

In deep learning, there is a doctrine that all we need to train neural networks is a differentiable
loss w.r.t. the parameters (Rumelhart et al., 1995). In the context of learning policy with iterative
sampling, the computational cost becomes too high. In fact, it is not entirely clear what the learned
policy represents aside from it balances behavior regularization and expected return maximization.
We present a intuitive motivation and a formal motivation to derive our Direct Optimal Action Learn-
ing framework, and show how it can naturally yields more interpretable and robust hyperparameter
choice.

3.1 THE OPTIMAL ACTION

Intuitive Perspective. An actor policy should learn to produce actions that have high estimated
Q-values. When learning from a static dataset, this search for high-value actions should naturally be
centered around the actions already present in the data. This leads to a straightforward idea of direct
optimal action learning (DOAL): instead of indirectly learning a policy that optimizes a complex
objective, we can directly learn the optimal action itself. In related works 6, we discuss other neural
network learning methods that also follow non-conventional target matching objectives.

Formal perspective. The DOAL idea emerges from a re-interpretation of the policy gradient in
standard behavior-regularized actor-critic methods:
Proposition 1 (BRAC Objective Pursue BRAC Target). Let πθ(s) be a deterministic differentiable
policy and Qϕ(s, a) be a differentiable action-value function. Consider the behavior-regularized
objective:

LQ(θ) ≜ E(s,a)∼D
[
Qϕ(s, πθ(s))− α∥πθ(s)− a∥22

]
(12)

where α > 0 is a regularization coefficient. The gradient of this objective with respect to θ is
equivalent to the gradient of a simpler squared-error objective Ltarget(θ):

∇θLQ(θ) = ∇θLbrac target(θ) ≜ E(s,a)∼D

[
∇θ

(
−α

∥∥πθ(s)− abrac target)
∥∥2
2

)]
(13)

abrac target = a+
1

2α
∇a′Qϕ(s, a

′)
∣∣
a′=πθ(s)

(14)
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The proof is an application of the chain rule (see Appendix B). This gradient equivalence reveals
that the BRAC objective implicitly minimizes the distance between the policy’s output πθ(s) and a
target action abrac target. Under such an interpretation, a conceptual inconsistency exists. The target
abrac target is constructed by taking a gradient ascent step from the data action a, but the gradient
∇a′Qϕ is evaluated at the policy’s output πθ(s). This requires action sampling at training time and
creates a mismatch between the point of expansion (a) and the point of Q value gradient evaluation
(πθ(s)). DOAL performs the gradient ascent using the gradient evaluated at the data action a, which
would define a atarget for each data point (s, a) without sampling. Importantly, Proposition 1 shows
BRAC objective and the DOAL objective are similar but different. DOAL is a reasonable objective
for offline RL in its’ own right.

By defining the target action directly from the data and Q value, DOAL decouple the target compu-
tation from the policy being trained. The major practical benefit is that we no longer need to sample
an action during training. Consequently, we can leverage more powerful generative modeling tech-
niques to learn the action distribution, such as training flow-based models with flow matching losses
or diffusion models with their diverse loss functions.

3.2 BATCH-NORMALIZING OPTIMIZER

A challenge with BRAC-style methods is the sensitivity of the regularization coefficient α, which
often requires careful tuning across several orders of magnitude (Park et al., 2025c; Kumar et al.,
2020). Our re-interpretation of the objective as learning a target action raises a critical question:
what is the appropriate magnitude for the update from the data action a to the target action atarget?

In offline reinforcement learning, the learned Q-function is merely an estimator, and it is crucial
to remain conservative to avoid distribution shift to out-of-support actions where the Q-function
is unreliable (Kostrikov et al., 2022; Kumar et al., 2020; Tarasov et al., 2023). Therefore, instead
of an arbitrary step size dictated by α, we should define a statistical trust region for our action
optimization. We can achieve this by setting a fixed expected magnitude for the update vector
g(s, a) = atarget − a. Specifically, we desire two conditions for the update vector g(s, a):

1. The update should be in the direction of the Q-function’s gradient at the data action:
g(s, a) = C · ∇aQϕ(s, a) where C > 0.

2. The expected squared magnitude of the update over the dataset should be a constant, which
we denote as δ: E(s,a)∼D[∥g(s, a)∥2] = δ.

These two conditions uniquely determine the update vector, as shown in the following proposition.
Proposition 2 (Batch Normalized Update). To satisfy the conditions g(s, a) = C · ∇aQϕ(s, a) and
E(s,a)∼D[∥g(s, a)∥2] = δ, where δ, C > 0, the only action update vector g(s, a) is :

g(s, a) =
δ

E(s′,a′)∼D [∥∇a′Qϕ(s′, a′)∥2]
· ∇aQϕ(s, a) (15)

The proof is straightforward calculation (see Appendix C). This formulation replaces the obscure
hyperparameter α with an interpretable one, δ, which directly controls the expected squared mag-
nitude of the action update. In practice, we use the batch statistics as estimator, so we have
E(s′,a′)∼B

[
∥∇a′Qϕ(s

′, a′)∥22
]
, where B is the current mini-batch. This “batch-normalization”

of the action gradients provides a more stable and robust training target, alleviating the need
for extensive hyperparameter sweeps. We are not claiming that this batch normalized scheme
can find better atarget than not using batch-normalized gradient. In fact, if the gradient statis-
tics is stable, you can always get the same result by having g(s, a) = C · ∇aQϕ(s, a) where
C := δ

E(s′,a′)∼D[∥∇a′Qϕ(s′,a′)∥2]
. We will empirically see that optimal δ varies less than δ′.

3.3 THE DOAL OBJECTIVES

DOAL can work with any value function learning. We only alter the actor loss :
LDOAL(θ) =α · E(s,a)∼DBCLoss(πθ(s), a

target) (16)

atarget :=a+
δ

E(s′,a′)∼B [∥∇a′Qϕ(s′, a′)∥2]
· ∇aQϕ(s, a) (17)
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where BCLoss can be any distribution matching losses. In terms of computational overhead, as the
gradient ∇aQϕ(s, a) will be called explicit or implicitly at least once to extract first order structure
information from Qϕ. We still keep the α parameter from (Park et al., 2025c) for all experiments for
consistency. In ablation study in Appendix F, we find setting it to 1 is fine.

4 MAXQ SAMPLING NEEDS BALANCING

As our DOAL framework learn from optimized action based on ∇aQ(s, a), we consider models
without learning from ∇aQ(s, a) as our baseline models. In such case, Q(s, a) can still be used for
weighting the behavior clone loss and performing actions selection, as we discussed Section 2. To
have a solid baseline for comparison, we argue that nsample a crucial hyper-parameter.

When taking nsample = 1, we clearly recover the actor distribution and completely lost access
to information from Qϕ. On the other extreme, Some earlier work suggested the bigger nsample,
the better (Ghasemipour et al., 2021). However, while a∗ maximize the Q value estimator Qϕ as
nsample → +∞, there exists maximization bias such that the maximum Q value will be overesti-
mated due to noise in the estimator, and a∗ with large positive random fluctuation will be selected.
Proposition 3 (Informal). Consider countably many actions a1, a2, . . . . For each i, the Q-estimator
is independent Gaussian: Q̂(ai) ∼ N (µi, σ

2
i ), with bounded means supi µi ≤ U < ∞ and non-

trivial noise σi ≥ c > 0. Draw n i.i.d. actions from any policy with dense support and pick the one
with the largest observed Q̂. As n→ ∞:

• (i) the selected Q̂ value diverges to +∞ (driven by extreme positive noise);

• (ii) the probability of picking any true-mean maximizer tends to 0.

Proof Intuition. The maximum of m i.i.d. Gaussian draws grows like µi + σi
√
2 logm. With

infinitely many actions having σi > 0, actions with an extremely large positive fluctuation will
dominate the max, regardless of the bounded means. Thus, making nsample large pushes selection
toward noise outliers rather than actions with the highest µi, even with unbiased estimator.

The above analysis shows that increasing nsample can exacerbate the maximization bias: as
nsample → ∞, max-selection over noisy Q-estimates systematically prefers actions with large pos-
itive noise realizations, independent of the learned Q. While it is hard to precisely characterize the
resulting distribution from MaxQ sampling, the more samples we have the more data coverage we
have. In the case where action policy is value agnostic, having multiple samples is necessary to
ensure mode coverage so that Q function can provide a selection. Yet, if we sample too much, the
stochasticity in Qϕ dominates and we might get “good” actions due to overestimation rather than
being reliable. Pragmatically, nsample balances the conflict between the in-distribution behavior and
the noisy Q value estimator in the inference time.

5 EXPERIMENTS & DISCUSSION

In this section, we examine our DOAL framework. Our baseline models benefit from Qϕ(s, a)
either through advantage weighted regression or max-Q sampling without accessing to ∇Qϕ(s, a).
We analyse the time complexity of DOAL, and discuss the trust region δ selection. Other ablation
studies are presented in Appendix F.

Benchmarks We conduct a comprehensive evaluation of our method on two challenging offline RL
benchmarks: 1) The 6 Adroit/D4RL tasks with expert, human, and cloned dataset qualities. 2) 9
default tasks from the more diverse and demanding OGBench suite. We omit some tasks, as no
current algorithms can work well (Park et al., 2025c). Following Park et al. (2025c), we train on
OGbench for 1m steps, and take the average performance on 800k, 900k and 1m steps. We train on
D4RL tasks for 500k steps and test on last step.

Models We test our DOAL framework under implicit Q-learning, Q-learning and regularized Q-
learning. Our policy models include simple Gaussian policy, Multi-step Flow models and TrigFlow
models. Except the number of MaxQ sampling candidates, we follow the hyperparameters from
FQL (Park et al., 2025c) whenever possible, this includes τ in IQL and α for scaling BC loss.
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Table 1: IQL-based offline RL results. Full results on the OGBench and D4RL tasks with IQL value function.
They are the default single-task in each environment. The results are averaged over 8 seeds on D4RL and
OGBench. The IQL(tanh)*, IQL(Gauss) on OGBench, IFQL* results are collected from Flow Q learning (Park
et al., 2025c; Tarasov et al., 2022).

Simple Policies Flow Policies Diffusion Policies

Task IQL(tanh)* IQL(Gauss) DIQL IFQL* IFQL DIFQL TrigFlow DTrigFlow ETrigFlow

antmaze-large-navigate - 48 ±9 63 ±10 24 ±17 48 ±24 67 ±6 72 ±6 63 ±24 63 ±21

humanoidmaze-medium-navigate - 32 ±7 55 ±8 69 ±19 68 ±3 68 ±4 64 ±4 67 ±4 63 ±4

humanoidmaze-large-navigate - 3 ±1 10±3 6 ±2 6 ±3 8±3 7 ±2 8 ±4 6 ±3

antsoccer-arena-navigate - 3 ±2 13 ±3 16 ±9 40 ±5 40 ±6 40 ±8 41 ±4 41 ±9

cube-single-play - 85 ±8 80 ±4 73 ±3 88 ±4 90 ±3 86 ±4 88 ±2 88 ±4

cube-double-play - 1 ±1 3 ±2 9 ±5 11 ±3 21 ±4 16 ±4 22 ±3 16 ±3

scene-play - 12 ±3 37 ±10 0 ±0 40 ±23 40 ±23 43 ±16 46 ±15 50 ±12

puzzle-3x3-play - 2 ±1 5 ±1 0 ±0 5 ±1 5 ±2 7 ±2 7 ±3 8 ±2

puzzle-4x4-play - 5 ±2 10 ±2 21 ±11 23 ±7 21 ±5 26 ±5 27 ±6 26 ±4

Total - 191 276 218 329 359 361 368 359

pen-human-v1 78 54 ±6 43 ±8 71 ±12 81 ±8 68 ±8 71 ±11 69 ±13 72 ±12

pen-cloned-v1 83 66 ±7 56 ±9 80 ±11 73 ±7 74 ±7 65 ±7 67 ±8 67 ±9

pen-expert-v1 128 131 ±8 132 ±4 139 ±5 134 ±4 138 ±4 135 ±8 133 ±7 134 ±8

door-expert-v1 107 104 ±2 104 ±2 104 ±2 104 ±1 104 ±1 104 ±1 104 ±1 104 ±1

hammer-expert-v1 129 68 ±47 76 ±46 117 ±9 96 ±8 98 ±12 103 ±8 98 ±11 100 ±10

relocate-expert-v1 106 97 ±10 101 ±5 104 ±3 104 ±3 102 ±8 106 ±2 107 ±2 106 ±2

Total 631 520 518 615 592 584 584 577 583

For IQL value function, we have three representative and strong baseline algorithms with our
method: IQL, with simple Gaussian policy learned from AWR; IFQL, a flow policy with MaxQ
sampling; TrigFlow, a trigflow diffusion policy with MaxQ sampling. For each one of them, we
have the DOAL versions DIQL, DIFQL, and DTrigflow. Furthermore, we have efficient trigflow
(ETrigflow (Lu & Song, 2025; Kang et al., 2023),see Appendix D for details) that uses the BRAC
objective but uses one-step sampling from corrupted at and still use IQL for value learning.

For the Q-learning value function, our baseline model MFQL replace the IQL value learning with
Q-learning. Also, we have the DOAL version DMFQL. Furthermore, we add the ReBRAC objective
to regularize the Q learning target, and get MFReBRAC and DMFReBRAC (see Appendix D for
details). We also report the results of MFQLbptt that actually running BPTT for actor learning.

5.1 MAIN RESULTS

Table 1 shows we have very strong baseline models of IFQL and Trigflow. In particular, our nsample

tuned IFQL improved over the original IQL* significantly on OGBench. On the OGBench, on ag-
gregation, our DOAL models performed better than their baselines. Up on closer examination,
we find that those are due to one or two tasks that has significant gains‘that we high-lighted. Other-
wise, their performance is very similar. On antmaze-large, both DTrigFlow and ETrigFlow dropped
their performance. We find that there are two seeds that have very low performance (hence the large
std). For training curves see Appendix E.

On the D4RL, we re-run IQL from FQL paper. It appears that there is no performance gain from
either DOAL model or even ETrigflow. This might be due to the unreliability of IQL learned function
gradient. It should be noted that the DOAL models subsume their baselines, as one can set δ = 0
to recover the baseline or choose extremely small δ. However, even if finer search for δ can yield
higher performance, one can not rule out the selection bias. A proper way to address the inability to
extract information from Q value is to investigate (Regularized) Q-Learning based functions.

In Table 2, excluding MFQL with BPTT, 3 all our models outperform FQL. In fact, in Table 2,
MFQL outperforms FQL. This shows that effectiveness of MaxQ sampling. Furthermore, DMFQL
outperforms MFQL on OGBench but not on D4RL. This again indicates that the effectiveness of
DOAL might depend on the task or quality of Q value function. The fact, DMFReBRAC outper-
forms MFReBRAC indicates well regularized Q function can make DOAL work better. We present
MFQL with BPTT to show that while being less stable, it is not always weaker. However, the
computational complexity of BPTT is indeed much higher as we will discuss.

In Figure 4, we have the relations between MFQL,DMFQL, MFReBRAC and DMFReBRAC. We
should notice that the DOAL version can achieve the same result as their baselines by letting δ = 0,
but we do not include such choice to explicitly show that first order gradient-based policy extraction
might not always work.

3It might be possible that with better tuning on learning rates, BPTT training can achieve better performance.
Nonetheless, it shows BPTT is fragile.
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Table 2: Q-Learning based offline RL results. The results are averaged over 8 seeds . The ReBRAC*, FQL*
results are collected from Flow Q learning (Park et al., 2025c).

Simple Policies Flow Policies

Task ReBRAC(tanh)* ReBRAC(Gauss) FQL* MFQL DMFQL MFQLbptt MFReBRAC DMFReBRAC

antmaze-large-navigate 91 ±10 - 80 ±8 62 ±11 72 ±8 64 ±13 65 ±13 83 ±7

humanoidmaze-medium-navigate 16 ±9 - 19 ±12 49 ±9 44 ±13 54 ±9 53 ±14 52 ±7

humanoidmaze-large-navigate 2 ±1 - 7 ±6 8 ±3 7 ±3 6 ±2 9 ±4 8 ±2

antsoccer-arena-navigate 0 ±0 - 39 ±6 43 ±6 37 ±5 45 ±5 45 ±5 41 ±6

cube-single-play 92 ±4 - 97 ±2 95 ±1 98 ±1 62 ±37 91 ±5 99±1

cube-double-play 7 ±3 - 36 ±6 72 ±4 75 ±6 72 ±3 74 ±4 75 ±3

scene-play 50 ±13 - 76 ±9 57 ±20 90 ±10 68 ±15 57 ±12 92 ±6

puzzle-3x3-play 2 ±1 - 16 ±5 7 ±3 6 ±2 1 ±1 7 ±2 5 ±2

puzzle-4x4-play 10 ±3 - 11 ±3 24 ±3 14 ±4 0 ±0 25 ±5 12 ±3

Total 297 - 381 418 443 372 425 466

pen-human-v1 103 55 ±9 53 ±6 75 ±9 72 ±8 - 64 ±9 74 ±8

pen-cloned-v1 92 72 ±15 74 ±11 75 ±9 80 ±5 - 71 ±12 75 ±10

pen-expert-v1 152 143 ±6 142 ±6 138 ±4 130 ±8 - 140 ±9 143 ±4

door-expert-v1 106 105 ±1 104 ±1 104 ±2 104 ±1 - 105 ±8 105 ±1

hammer-expert-v1 134 131 ±1 125 ±3 126 ±3 124 ±5 - 126 ±3 126 ±1

relocate-expert-v1 108 107 ±1 107 ±1 106 ±4 104 ±4 - 106 ±1 107 ±2

Total 706 614 605 623 614 - 614 630

Importance of Regularization. On D4RL tasks in Table 2, we observe that only regularized Q
function can boost the DOAL model performance. This strongly suggests that DOAL or maybe
other gradient based policy extraction methods need the Q function to be reliable.

Importance of Tanh. Yet, our models still large behind ReBRAC that use a simple policy. We
identified another difference that is the ReBRAC used tanh nonlinearity for producing actions be-
tween [-1,1]. This might introduce useful inductive bias. Indeed, by removing it, the performance
of ReBRAC dropped. Studying how to add this nonlinear transformation after flow models is an
interesting research question for future work.

5.2 TIME COMPLEXITY

FQL IFQL DIFQL MFQL MFQL-BPTT DMFQL

Forward Policy Call 13 1 1 11 21 11
Forward Value Call 3 4 5 3 4 4

Backward Policy Call 2 1 1 1 10 1
Backward Value Call 2 2 3 1 2 2

Total Calls 20 8 10 16 37 18
Actual Time in Minutes 37 29 31 35 61 37

For MFQL, training policy net only requires 1 forward policy call. Train Q net requires sampling,
therefore 10 forward policy calls. MaxQ sampling runs many samples in parallel, so as long as it fits
to memory, it has no impact. MFQL takes 3 Value Q for Q learning and MaxQ sampling (yes, it can
reduce to 2). DMFQL only adds one forward and one backward call to get atarget compared to MFQL.
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Figure 2: Runtime and Computational Complexity . On the left side, a table presents the training time
number of function calls and actual runtime. On the right side, a regression line models the actual running time
by the number of function calls. The actual run time is on the antmaze-large task with a single A800 GPU.

Offline RL algorithms train neural networks for value functions and policy distribution. In our work,
4-layer MLP are used for all neural modules. In Figure 2, we count the number of forward and
backward calls through value and policy networks and present their total calls during the training
phase. As forward and backward calls have similar computation cost and policy and value network
share similar architectures, the sum of total calls can be used to predict the actual run time. Indeed, an
affine relation is found. The relation is not linear, because there are overheads such as data loading
and testing. One might notice that FQL’s actual run time is faster than predicted, this is because
FQL uses a one-step policy during testing. We did not include DMFReBRAC as it is the same as
DMFQL. As for the memory usage, it is bottleneck-ed by the backward policy calls that requires
storing intermediate computing states. Therefore, only BPTT version consume more memory.

5.3 CHOOSE STATISTICAL TRUST REGION δ

In OGBench (Park et al., 2025a), actions are bounded in [-1,1] box of varying dimensionality.
The statistical trust region should be related to how reliable are the Q value estimation at data
point and how well can neural network generalize. As we are using IQL for value estimation
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and the same value net in all our experiments, the only thing varying is the datasets. For OG-
Bench experiments, we choose δ from (0.03, 0.1, 0.3), and for D4RL experiments, we choose from
(0.0003, 0.001, 0.003) as we see from α in the FQL paper (Park et al., 2025c) tends to be extremely
large. See Appendix G for the exact hyperparameters.

Envs puzzle-4x4 cube-single scene-play antmaze-large-navigate
E(s′,a′)∼B [∥∇a′Qϕ(s

′, a′)∥2] 43.78 5.85 15.58 0.55
α 1000 300 300 10
δ 0.03 0.03 0.1 0.1

δ
E(s′,a′)∼B[∥∇a′Qϕ(s′,a′)∥2]

6.9e-4 5.1e-3 1.9e-3 1.8e-2

Table 3: Different Environments with the Observed Mean ||∇aQ(s, a)||, α, and δ.

In Table 3, we present a few representative environments and their average ||∇aQ(s, a)||, opti-
mal α (Park et al., 2025c) and δ we selected. As you can see the larger the gradient, the larger
the selected α. Based on our Proposition 1, we would be expecting α be inverse proportional to

δ
E(s′,a′)∼B[∥∇a′Qϕ(s′,a′)∥2]

. Indeed, this is what we observe. While α ranges across two orders of
magnitude, our hyperparameter δ is relatively stable and easier to search for.
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Figure 3: Mean Batch Normalized Gradient
Norm of DMFQL across OGbench
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DMFQLMFQL

Figure 4: The relationship between MFQL, DM-
FQL, MFReBRAC and DMFReBRAC.

In Figure 3, we can see the batch gradient normal is quite stable during training. This implies
that δ

E(s′,a′)∼B[∥∇a′Qϕ(s′,a′)∥2]
is roughly a constant for each task, therefore, one can equivalently

treating the direct gradient scaling factor as a hyperparameter and avoid the batch-normalization.
The performance would be equivalent. However, the range of this linear scaling hyperparameter
would be much wider. In Table 3, it ranges across two orders of magnitude just like α.

6 RELATED WORK

6.1 REGULARIZED VALUE ESTIMATION

In-Sample Optimization (e.g., IQL(Kostrikov et al., 2022); X-QL(Garg et al., 2023); SQL and
EQL(Xu et al., 2023) ) addresses offline RL by performing in-sample value iteration, avoiding
queries to out-of-distribution (OOD) actions and directly approximating the optimal value func-
tion; Conservative Methods (e.g., CQL (Kumar et al., 2020); EDAC(An et al., 2021); AWAC(Nair
et al., 2021); BCQ(Fujimoto et al., 2018); ReBRAC(Tarasov et al., 2023)) proposed methods that
penalizing out-of-distribution actions to prevent overestimation of Q values.

6.2 POLICY EXTRACTION FOR DIFFUSION MODELS

Accelerated Sampling Techniques. A prominent research direction focuses on accelerating the
sampling process of pre-trained generative policies. EDP (Kang et al., 2023) reformulates the re-
verse denoising process to estimate the target action a0 in a single step. While these approaches

9
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achieve notable improvements in sampling efficiency, they remain inherently heuristic. Meanwhile,
FQL (Park et al., 2025c) circumvents the sampling via a student network with one-step sampling.

Value Guidance Methods. A substantial body of work in offline RL leverages diffusion models to
approximate the behavior policy underlying the dataset. One prevalent strategy involves using the
gradient of Q-value functions to guide the action generation process: QGPO (Wang et al., 2023),
SFBC (Chen et al., 2023), EDA (Chen et al., 2024a), QVPO (Ding et al., 2024), and CFGRL(Frans
et al., 2025). An alternative, more straightforward approach modulates the policy by re-weighting
transition samples based on their estimated values (Peng et al., 2019; Frans et al., 2025).

MaxQ Sampling. MaxQ sampling has been introduced in early work with diffusion models. How-
ever, they mostly set nsample to be a large number and thought the trade-off is between computation
budget vs. quality (Wang et al., 2023; Kang et al., 2023; Park et al., 2025c). Some other work
used weighted resampling instead of MaxQ sampling(Hansen-Estruch et al., 2023), where proper
weighting can alleviate the overestimation bias. As for MaxQ sampling, Ghasemipour et al. (2021)
suggested larger nsample is better. A very recent/concurrent work on horizon reduction (Li et al.,
2025) tuned the nsample, arguing that for large nsample, the sampled distribution might deviate from
policy distribution too much. Yet, they did not discuss the over-estimation bias of the Q value.

6.3 POLICY DISTILLATION WITH REGULARIZED ACTOR-CRITIC METHODS.

Regularized value function learning has been shown to be effective (An et al., 2021; Hansen-Estruch
et al., 2023). Contemporary methods like DAC (Fang et al., 2025) and BDPO (Gao et al., 2025)
further integrate diffusion models with the regularized actor-critic framework. In particular, a con-
current work, FAC (Anonymous, 2025), builds on FQL and add carefully designed regularization on
the Q value function, achieved very strong performance.

6.4 LONG HORIZON PROBLEMS

For challenging tasks that most algorithm cannot address, like antmaze-giant-navigate, (Park et al.,
2023; 2025b; Li et al., 2025) looked at the horizon reduction issue. While this is orthogonal to our
problem, such methods might be necessary for challenging environments.

6.5 NON END2END OPTIMIZATION

Similar to our DOAL at a conceptual level, there are several alternatives to end2end back-
propagation that have been explored for neural network training. Target-Propagation. (Lee et al.,
2014; Meulemans et al., 2020) propose to compute targets rather than gradients, at each layer.
Nested-Learning. (Behrouz et al., 2025) trains neural networks with nested component-wise as-
sociative memory learning problems. It is not hard to see that their formulation can be converted
to target matching like DOAL. Nonparametric Learning. (Wang et al., 2022) provably learns a
two-layer network by matching the first layer output with the ideal second layer input.

7 CONCLUSION

In this work, we present Direct Optimal Action Learning, a framework that enables efficient and
effective learning from ∇aQ(s, a) for any policy distribution with different Q value functions. We
provide strong baselines by re-exaiming the importance of nsample in MaxQ sampling, then we
are able to show our models improved over baseline for OGBench tasks for various policies and
value functions. On Adroit tasks, improvements are observed when we use ReBrac objective. Our
experiment set up is mostly aiming at controlled study. In the future, better uncertainty aware Q
estimation should be explored, as it might further improve the statistical trust region identification.
Another important direction for diffusion/flow model training is to leveraging the squeezing layer
such as tanh transformation.
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A THE USE OF LARGE LANGUAGE MODELS

Large language models are used for polishing the texts, including equations and literature reviews.

B PROOF OF PROPOSITION 1

Proof. The proof follows from applying the chain rule. First, we compute the gradient of the regu-
larized Q-objective in equation 12:

∇θJQ(θ) = ∇θQ(s, πθ(s))−∇θ

(
α∥πθ(s)− a∥22

)
=

(
∇aQ(s, a′)

∣∣
a′=πθ(s)

)⊤
∇θπθ(s)− 2α(πθ(s)− a)⊤∇θπθ(s)

=
[
∇aQ(s, a′)

∣∣
a′=πθ(s)

− 2α(πθ(s)− a)
]⊤

∇θπθ(s)

Next, let the target action be a∗ ≜ a + 1
2α∇aQ(s, a′)

∣∣
a′=πθ(s)

. We compute the gradient of the
target-matching objective Jtarget(θ) = −α∥πθ(s)− a∗∥22:

∇θJtarget(θ) = −∇θ

(
α∥πθ(s)− a∗∥22

)
= −2α(πθ(s)− a∗)⊤∇θπθ(s)

= −2α

(
πθ(s)−

(
a+

1

2α
∇aQ(s, a′)

∣∣
a′=πθ(s)

))⊤

∇θπθ(s)

=
[
−2α(πθ(s)− a) +∇aQ(s, a′)

∣∣
a′=πθ(s)

]⊤
∇θπθ(s)

The resulting gradients are identical.
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C PROOF OF PROPOSITION 2

Proof. We are given two conditions that g(s, a) must satisfy:

1. g(s, a) ∝ ∇aQϕ(s, a)

2. E(s,a)∼D[∥g(s, a)∥2] = δ

From the first condition (proportionality), we can write g(s, a) as the gradient scaled by some con-
stant C:

g(s, a) = C · ∇aQϕ(s, a)

The constant C must be determined. We use the second condition to solve for C.

We substitute our expression for g(s, a) into the second condition:

E(s,a)∼D[∥g(s, a)∥2] = δ

E(s,a)∼D[∥C · ∇aQϕ(s, a)∥2] = δ

Using the properties of norms, we can pull the scalar C out of the L2-norm as its absolute value:

E(s,a)∼D[C · ∥∇aQϕ(s, a)∥2] = δ

Because C is a constant, we can pull it out of the expectation:

C · E(s,a)∼D[∥∇aQϕ(s, a)∥2] = δ

Now, we solve for C:

C =
δ

E(s,a)∼D[∥∇aQϕ(s, a)∥2]

Finally, we substitute this expression for C back into our original equation for g(s, a). To avoid
ambiguity with the variables of integration in the expectation, we use (s′, a′) as dummy variables
for the expectation, as shown in the proposition:

g(s, a) =

(
δ

E(s′,a′)∼D [∥∇a′Qϕ(s′, a′)∥2]

)
· ∇aQϕ(s, a)

This completes the proof.
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Algorithm 1 Direct Optimal Action Learning (DOAL)

Require: Dataset D, policy parameters θ, Q-function parameters ϕ [, Value-function parameters ψ]
1: repeat
2: Update ϕ[, ψ] using value loss of Choice
3: Update θ using Equation 16 for BCLoss of Choice
4: until convergence

D DOAL OBJECTIVES

In summary, the overall algorithm for DOAL is given in Algorithm 1. Similarly, you can replace the
line 2 in Algorithm 1 with any Q value learning algorithms. In this section, we explicitly discuss the
DOAL objectives. If one replace atarget with dataset action a, one recover the baseline model.

D.1 DIRECTED IMPLICIT Q-LEARNING (DIQL)

DIQL extends the implicit Q-learning framework by introducing a direct optimal action learning
approach that explicitly guides policy optimization through value-aware action adjustments. The
key innovation lies in replacing the action of the data set a with the optimized target action a∗ in the
policy loss, thus directly steering the policy towards high-value regions.

LDIQL
π (θ) = E(s,a)∼D

[
exp (α(Qϕ(s, a)− Vψ(s))) log πθ(a

target|s)
]
, (18)

Notice that the weighting uses the original Q(s, a) as we want to reduce computational overhead.

D.2 DIRECT IMPLICIT FLOW-Q-LEARNING (DIFQL)

Implicit Flow-Q-Learning (DIFQL) (Park et al., 2025c) builds upon the framework established by
Implicit Diffusion Q-learning (Hansen-Estruch et al., 2023). While the updates for the Q-function
and value function remain consistent with IQL (see Equation 1), IFQL distinguishes itself by em-
ploying a flow-matching objective for policy optimization, as defined by the behavior cloning loss
in Equation 3.

The policy’s behavior cloning loss in DIFQL is formulated as:

LDIFQL
π (θ) = α · Ea1∼N (0,I),t∼U [0,1]

[
∥vθ(at, t)− (atarget − a1)∥2

]
, at = (1− t)atarget + ta1

(19)

Actions are subsequently generated by sampling from the learned flow model (see Equation 4) and
the final action selection is determined by maximizing the learned Q-value function (see Equation 9).

D.3 EFFICIENT IMPLICIT TRIGFLOW Q-LEARNING (ETRIGFLOW)

We present the Efficient TrigFlow (ETrigFlow) actor objective:

LETrigFlow
π (θ) = E(s,a0,t,z)∼D

[
−Qϕ(s, fθ(at, t)) + α · ∥fθ(at, t)− a0∥22

]
(20)

where at = cos(t) · a0 + sin(t) · z and fθ(at, t) = cos(t)at − sin(t) · Fθ(at, t),

D.4 DIRECTED IMPLICIT TRIGFLOW Q-LEARNING (DTRIGFLOW)

For DTrigFlow, we build upon the policy diffusion formulation in Equation 6 and adopt the DOAL
framework:

LDTrigFlow
π (θ) = Ea0∼p(a0),z∼N (0,I),t∼U [0,π/2]

[
∥fθ(at, t)− atarget0 ∥22

]
(21)

where at = cos(t)atarget + sin(t)z.
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D.5 DIRECTED MULTISTEP FLOW Q-LEARNING (DMFQL)

The DMFQL share the same actor loss as the DIFQL, however it trains the value function through
Q learning:

L(ϕ) = E(s,a,r,s′,a′)∼D)

[
∥Qϕ(s,a)− (r + γ (Qϕ′(s′, πθ(s

′)))) ∥22
]
, (22)

where πθ(s′) is sampled from MaxQ sampling with ntarget sample

D.6 DIRECTED MULTISTEP FLOW REGULARIZED Q LEARNING (DMFREBRAC )

DMFReBRAC introduce an additional regularizor on the Q target.

L(ϕ) = E(s,a,r,s′,a′)∼D)

[
∥Qϕ(s,a)−

(
r + γ

(
Qϕ′(s′, πθ(s

′))− αcritic · (a′ − πθ(s
′))2

))
∥22
]
,

(23)
where πθ(s′) is sampled from MaxQ sampling with ntarget sample and αcritic controls the regular-
ization strength.
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E EXPERIMENT RESULTS
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Figure 5: Performance Comparison of Algorithms on the OGbench Environment.

The figures 5 illustrate the performance curves of different algorithms across various environments.
Specifically, each curve in the generated plots represents the performance trend achieved during
the training process of the corresponding algorithm in a specific environment. The vertical axis
displays the normalized return. This return is the direct evaluation result without applying any
aggregation or averaging over multiple runs (e.g., without a moving average filter of size 3). The
Antmaze Giant environment is deliberately excluded from this set of figures because the observed
performance (normalized return) in these scenes was consistently near zero (≈ 0) for all algorithms
tested, rendering the resulting plots visually uninformative.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

F ABLATION STUDY

In the following section, we present a detailed discussion on the influence of four critical hyperpa-
rameters: the max q sample nsample, the brac coefficient α, the δ in DOAL, and the ntarget sample for
sample next action in DMFQL. Given the number of hyperparameters introduced in this work, and
to rigorously demonstrate that our findings are not a consequence of aggressive ”tuning”, we adopt
a strict and transparent two-stage evaluation strategy. Below, we detail the parameter search process
and the measures taken to prevent overfitting and selection bias. All hyperparameter choices and
initial ablation studies were conducted based on runs using four fixed random seeds: 11, 22, 33, and
44. Crucially, the final, definitive results presented in the main body of this paper are derived from a
more robust set of eight independent random seeds: 111, 222, 333, 444, 555, 666, 777, and 888.

With IQL, we first choose nsample on the Trigflow model, then choose δ on the DTrigflow model.
Then, for all our models with IQL value function nsample and δ are shared.

With Q-Learning, we choose nsample on the MFQL model, and choose δ on the DMFQL model. On
D4RL tasks, we copy the αcritic from ReBRAC and tune it on OGBench.

F.1 CHOOSING nsample

Table 4 demonstrates that a larger nsample does not automatically translate into better performance.
For instance, across the majority of environments, the optimal performance is achieved at relatively
small nsample values. In contrast, increasing nsample to 64 or 128 often leads to a measurable
decline in the average success rate. Our results demonstrate that MFQL benefits significantly from
task-specific optimization of nsample.

Table 4: Comparison of MFQL Performance Across Different nsample averaging over 4 seeds

Environment nsample

1 2 4 8 16 32 64 128
antmaze-large-navigate-singletask-v0 0.050 0.655 0.695 0.560 0.330 0.265 0.140 0.125
humanoidmaze-medium-navigate-singletask-v0 0.015 0.250 0.480 0.500 0.600 0.610 0.550 0.500
humanoidmaze-large-navigate-singletask-v0 0.000 0.005 0.045 0.075 0.095 0.045 0.040 0.035
antsoccer-arena-navigate-singletask-v0 0.005 0.165 0.355 0.500 0.460 0.400 0.295 0.285
cube-single-play-singletask-v0 0.105 0.965 0.950 0.870 0.780 0.675 0.645 0.575
cube-double-play-singletask-v0 0.005 0.290 0.700 0.625 0.455 0.350 0.215 0.135
scene-play-singletask-v0 0.040 0.550 0.665 0.635 0.545 0.630 0.520 0.550
puzzle-3x3-play-singletask-v0 0.005 0.090 0.040 0.000 0.000 0.000 0.000 0.000
puzzle-4x4-play-singletask-v0 0.000 0.045 0.205 0.095 0.080 0.055 0.065 0.050

F.2 CHOOSING δ

Regarding the δ hyperparameter, our analysis primarily serves to validate the effectiveness of DOAL.
We strategically compared the performance of DMFQL using three distinct δ values: 0.03, 0.1, and
0.3. As demonstrated in the performance comparison (Figure 6), the choice of δ has a major impact
on the success rate across most environments. While we do not rule out the existence of even better
δ values, our core objective was to show that the active learning mechanism introduced by the δ
parameter is effective and necessary.

It should be noted that δ = 0 recovers the baseline model exactly, but we do not consider this a valid
hyperparameter choice.

F.3 IMPORTANCE OF BEHAVIOR CLONE COEFFICIENT α

We kept α from FQL (Park et al., 2025c) in the main experiments for controlling. In Figure 7, on
DMFQL, we compare the set α from FQL with α = 1. We found that this parameter does not matter.
In fact, one should realize α effectively controls the learning rate for actor networks and is no longer
in charge of balancing in-distribution vs. Q value. With modern optimizers like ADAM (Kingma &
Ba, 2017), such explicit weighting is not needed.
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Figure 6: Performance Comparison of DMFQL on the OGbench Environment with δ = 0.03, 0.1,
0.3 over 4 seeds.
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Figure 7: Performance Comparison of DMFQL on the OGbench Environment with alpha* from
FQL and alpha = 1 over 4 seeds.
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Figure 8: Performance Comparison of DMFQL on the OGbench Environment with target n sample
= 4 and target n sample = 1 over 4 seeds.

F.4 CHOOSING ntarget sample

The ntarget sample is necessary for computing the Bellman target value in the DMFQL Q-learning
loss:

L(ϕ) = E(s,a,r,s′,a′)∼D)

[
∥Qϕ(s,a)− (r + γ (Qϕ′(s′, πθ(s

′)))) ∥22
]
,

where πθ(s′) is an approximation of argmaxa′ Qϕ′(s′,a′). To estimate this maximum in a contin-
uous action space, we employ MaxQ sampling by drawing ntarget sample actions from the policy πθ
at state s′ and taking the maximum Q-value. While MaxQ sampling can run samples in parallel, if
the memory is full, increasing ntarget sample will significantly increase the running time. We fix the
ntarget sample = 4 for balancing computational budget and performance. In Figure 8, we observe
that ntarget sample = 4 could achieved better results than ntarget sample = 1 overall, but not always.
We acknowledge that a more exhaustive hyperparameter search might yield slightly improved re-
sults for specific environments; our primary goal was to validate the effectiveness of the DOAL
framework, not to achieve the absolute maximum score through extensive tuning.
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G HYPERPARAMETERS

Table 5: DOAL Related Hyperparameters

Task IQL-based (Regularized) QL-based

δ nsample δ nsample αcritic

antmaze-large-navigate 0.1 4 0.03 4 0.01
humanoidmaze-medium-navigate 0.1 32 0.1 32 0.01
humanoidmaze-large-navigate 0.03 8 0.03 16 0.001
antsoccer-arena-navigate 0.1 16 0.1 16 0.1
cube-single-play 0.03 32 0.03 2 0.01
cube-double-play 0.1 16 0.03 4 0.1
scene-play 0.1 32 0.1 4 0.01
puzzle-3x3-play 0.03 4 0.03 2 0.01
puzzle-4x4-play 0.03 64 0.03 4 0.01

pen-human-v1 0.001 8 0.0003 4 0.5
pen-cloned-v1 0.001 16 0.0003 32 0.5
pen-expert-v1 0.001 64 0.0003 32 0.01
door-expert-v1 0.003 2 0.003 16 0.01
hammer-expert-v1 0.003 2 0.003 4 0.01
relocate-expert-v1 0.003 2 0.0003 4 0.01

Table 5 summarizes the hyperparameters that we find. However, on D4RL tasks, we find that the
variance is high across seeds. The optimal hyperparameters are not reliable. This might be another
reason for the lack of improvement of DOAL models.

Table 6: Other Hyperparameters

Hyperparameter Value
Learning rate 0.0003
Optimizer Adam (Kingma & Ba, 2015)
Gradient steps 1000000 (OGBench), 500000 (D4RL)
Minibatch size 256
MLP dimensions [512, 512, 512, 512]
Nonlinearity GELU (Hendrycks & Gimpel, 2023)
Target network smoothing coefficient 0.005
Discount factor γ 0.99
IQL expectile 0.9
Flow steps 10
Flow time sampling distribution Unif([0, 1])
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