

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

DIRECT OPTIMAL ACTION LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Recent advancements in offline reinforcement learning leveraged two key innovations: policy extraction from behavior-regularized actor-critic (BRAC) objective and expressive policies, such as diffusion and flow models. However, backpropagation through iterative sampling chains is computationally tricky and often requires policy-specific solutions and careful hyperparameter tuning. We observe that the reparameterized policy gradient of the BRAC approximately trains the policy to replicate an 'optimal' action. Building on this insight, we introduce **Direct Optimal Action Learning (DOAL)**, an efficient, effective, and versatile framework for policy extraction from Q value functions. DOAL utilizes efficient behavior losses native to the policy's distribution (e.g., flow matching loss) to imitate an optimized action based on Q-values. Furthermore, we demonstrate that the traditional balancing factor between Q-loss and behavior-loss can be reinterpreted as a mechanism for selecting a trust region for the optimal action. The trust region reinterpretation yields a **Batch-Normalizing Optimizer**. This facilitates the hyperparameter search and makes it shareable across policies. Our DOAL framework can be easily integrated with any existing Q-value-based offline RL methods. We apply DOAL to Gaussian, Diffusion, and Flow policies. For Diffusion and Flow policies, our baseline models use the MaxQ action sampling, where the **number of samples** is tuned for each task. In particular, with regularized Q value estimation, flow policies achieved the best results. On 9 OGBench tasks, our baseline models outperformed the previous best models, and DOAL improves over strong baseline models while simplifying hyperparameter search. On 6 Adroit tasks from D4RL, improvement can be achieved when the Q value learning is regularized. The code is available through [Anonymous Github](#).

1 INTRODUCTION

Offline reinforcement learning (RL) aims at efficiently and effectively extracting policy from experience beyond the simple imitation learning([Lange et al., 2012](#); [Levine et al., 2020](#)). For offline RL agents to perform better than a simple behavior cloning agent, value estimation and extracting information from the estimated value function is the key [citep park2024is](#). Yet, due to the lack of interaction, agents cannot extrapolate too much to avoid the distribution shift. Hence, the success of offline RL depends on balancing the maximization of the estimated Q value and behavior cloning ([Haarnoja et al., 2018](#); [Wu et al., 2019](#); [Kostrikov et al., 2022](#); [Tarasov et al., 2023](#)).

Meanwhile, as the scale and diversity of offline datasets continue to grow, there is an increasing need for policies capable of modeling highly multi-modal and complex action distributions. Diffusion and flow matching models([Sohl-Dickstein et al., 2015](#); [Ho et al., 2020](#); [Song et al., 2021b](#); [Lipman et al., 2023](#); [Lu et al., 2022](#); [Sun et al., 2025](#)) have recently been applied to Offline RL([Janner et al., 2022](#); [Wang et al., 2023](#); [Hansen-Estruch et al., 2023](#); [Kang et al., 2023](#); [Park et al., 2025c](#)), and improved the modeling capacity of policy distribution.

However, efficient policy extraction requires a reparameterized policy gradient through the Q value function([Park et al., 2024](#)), and it is non-trivial for distribution involving an iterative sampling procedural([Park et al., 2025c](#); [Kang et al., 2023](#); [Fujimoto & Gu, 2021](#); [Tarasov et al., 2023](#)). While many solutions have been proposed, they usually involve some computation overhead, require careful tuning of hyperparameter across environments, or are not as effective ([Wang et al., 2023](#); [Chen et al., 2023](#); [Kang et al., 2023](#); [Lu et al., 2023](#)).

Figure 1: **DOAL Framework.** On the left, we have the end2end re-parameterized policy gradient from the Q and the behavior clone loss. On the right, we have our DOAL framework, where we extract an optimized a^{target} from Q, and use policy dependent efficient behavior clone loss.

In this work, we present an efficient, effective, and versatile framework for policy extraction from Q-value functions. As shown in Figure 1, we observe that the reparameterized policy gradient w.r.t. *Behavior Regularized Actor Critic (BRAC)* objective can be replaced by simple gradient w.r.t. behavior clone loss of an optimized action.¹ In Proposition 1, we make a slightly more formal statement about their similarity and difference when the BC loss is the Mean Squared loss.

This observation has two consequences: **Direct Optimal Action Learning (DOAL)** instead of backpropagating end2end, we can optimize the action with q value and behaviour loss, then learn the optimized action with the efficient loss function that is native to the policy distribution (e.g., velocity matching loss); **Batch-Normalizing Optimizer** if learning from Q value function is approaching a better local solution, and Q value estimations are known to be not reliable, we should have a trust region δ for how much the optimized a^{target} can shift away from data distribution. Meanwhile, it is also desirable that the shift distance be proportional to the gradient of the Q value w.r.t. action. This can be realized by normalizing the shift with a batch average of gradient $a^{\text{target}} = a + \frac{\delta}{\mathbb{E}_{(s,a) \sim \mathcal{B}}[\|\nabla_a Q(s,a)\|]} \nabla_a Q(s,a)$, where \mathcal{B} is the data mini-batch.

To isolate the effects of value estimation from policy extraction, we use the *Implicit Q Learning (IQL)* (Kostrikov et al., 2022). The value estimation in IQL doesn't interact with the policy extraction, making it an ideal choice for our study. Still, the learned Q-value can be used. For Gaussian policy, *Advantage-Weighted Regression (AWR)* can use Q-value to weight actions during training (Kostrikov et al., 2022). For flow and diffusion models, we use *MaxQ Sampling* to select the action with the highest Q-value from a set of sampled candidates during testing. To obtain strong baseline models, we recognized that the **sample size for action candidates** is a critical, previously neglected hyperparameter (Park et al., 2025c). Varying this number allows us to manage the inherent trade-off between the overestimation risk in the Q-value (maximization bias) and the representativeness of the sample set (coverage). To obtain better performance, we further tested DOAL framework with Q-Learning and regularized Q-Learning.

Empirically, in all, we tested over three different Q-value functions (IQL, Q-Learning, and Regularized Q-Learning) and three classes of policies (Gaussian, flow, and diffusion models). We performed experiments in 9 default tasks on OGBench and 6 Adroit tasks on D4RL datasets. Overall, the DOAL learned policies achieved improvement over strong baselines on OGBench. On Adroit tasks, we observed performance gain with regularized Q-learning. Both our baseline models and DOAL models suppress the previously best published work, FQL (Park et al., 2025c). Importantly, for all algorithms in the same task and same value function, the DOAL hyperparameters δ are shared, and DOAL costs one extra forward and backward call of the Q value net, compared to baselines. In all, the DOAL framework is an **efficient, effective and versatile** tool to extract polices from Q values.

2 PRELIMINARIES

We consider a Markov decision process (MDP) $\mathcal{M} = (\mathcal{S}, \mathcal{A}, r, p, \gamma, \rho_0)$ (Sutton & Barto, 1998), where \mathcal{S} is the state space, $\mathcal{A} = \mathbb{R}^d$ is a d -dimensional continuous action space, $r(s, a)$ is the reward

¹Notice that we are not claiming the two objectives are equivalent, but rather the BRAC and DOAL objective both pushes the policy to produce higher valued action while being close to the action data point.

108 function, $p(s' | s, a)$ is the transition dynamics, $\gamma \in [0, 1]$ is the discount factor, and $\rho_0(s)$ is the
 109 initial state distribution. In offline RL, the agent learns from a fixed dataset $\mathcal{D} = \{(s_i, a_i, s'_i, r_i)\}_{i=1}^N$
 110 consisting of individual transitions rather than complete trajectories. The objective is to learn a
 111 policy $\pi_\theta(a | s)$ that maximizes the expected discounted return $J(\pi_\theta) = \mathbb{E}_{\pi_\theta} [\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)]$,
 112 while avoiding distributional shift caused by querying actions outside the support of \mathcal{D} .

113 **Implicit Q-Learning.** IQL (Kostrikov et al., 2022) avoids querying out-of-sample actions through
 114 expectile regression. Unlike SARSA-style methods (Brandfonbrener et al., 2021) that learn using
 115 the next actions from the dataset, IQL learns the value function of the current policy.

116 The value function $V_\psi(s)$ and the Q-function Q_ϕ are learned via:

$$118 \quad \mathcal{L}_V(\psi) = \mathbb{E}_{(s,a) \sim \mathcal{D}} [L_2^\tau(Q_\phi(s, a) - V_\psi(s))], \quad \mathcal{L}_Q(\phi) = \mathbb{E}_{(s,a,r,s') \sim \mathcal{D}} \left[(r + \gamma V_\psi(s') - Q_\phi(s, a))^2 \right]. \quad (1)$$

121 where $L_2^\tau(u) = |\tau - \mathbb{I}(u < 0)|u^2$. For policy extraction, standard IQL uses Advantage-Weighted
 122 Regression (AWR) (Peng et al., 2019):

$$123 \quad \mathcal{L}_{\text{AWR}}(\theta) = \mathbb{E}_{(s,a) \sim \mathcal{D}} [\exp(\beta(Q_\phi(s, a) - V_\psi(s))) \log \pi_\theta(a|s)], \quad (2)$$

125 where β controls the strength of the advantage weighting.

126 **Flow Matching.** Flow Matching (FM) establishes a deterministic path $(p_t)_{t \in [0,1]}$ that continuously
 127 transforms a simple source distribution p_1 into the target behavior distribution p_0 , with each p_t
 128 defined over \mathbb{R}^d (Lipman et al., 2023; 2024).²

129 We adopt the most simple instantiation of FM, utilizing linear interpolation paths with uniform time
 130 sampling (Lipman et al., 2024; Park et al., 2025c). For an action $a_0 \sim \pi(a_0)$, we learn a time-
 131 dependent velocity field $v_\theta(a, t) : \mathbb{R}^d \times [0, 1] \rightarrow \mathbb{R}^d$ through the following regression loss:

$$132 \quad \mathcal{L}_{\text{FM}}(\theta) = \mathbb{E}_{a_0 \sim q(a_0), a_1 \sim \mathcal{N}(0, I), t \sim \mathcal{U}[0,1]} [\|v_\theta(a_t, t) - (a_0 - a_1)\|^2], \quad a_t = (1 - t)a_0 + ta_1 \quad (3)$$

134 This formulation ensures training stability while admitting efficient sampling through explicit Euler
 135 discretization of the underlying flow ODE:

$$136 \quad a_{t-\Delta t} = a_t + \Delta t \cdot v_\theta(a_t, t), \quad \Delta t = \frac{1}{N} \quad (4)$$

138 where N represents the number of flow steps.

139 **TrigFlow.** We adapt the TrigFlow (Lu & Song, 2025) to train diffusion policy (Sohl-Dickstein et al.,
 140 2015; Ho et al., 2020; Song et al., 2021b), defining the forward diffusion process as follows: given
 141 $a_0 \sim p(a_0)$ and $z \sim \mathcal{N}(0, I)$, the noisy sample at time t is given by

$$143 \quad a_t = \cos(t)a_0 + \sin(t)z, \quad t \in [0, \frac{\pi}{2}] \quad (5)$$

144 with $a_{\pi/2} \sim \mathcal{N}(0, I)$. The model can be trained to minimize the prediction error:

$$146 \quad \mathcal{L}_{\text{diffusion}}(\theta) = \mathbb{E}_{a_0 \sim p(a_0), z \sim \mathcal{N}(0, I), t \sim \mathcal{U}[0, \pi/2]} [\|f_\theta(a_t, t) - a_0\|_2^2], \quad (6)$$

$$147 \quad f_\theta(a_t, t) = \cos(t)a_t - \sin(t) \cdot F_\theta(a_t, t), \quad (7)$$

148 where F_θ is a learned network and f_θ naturally satisfies the boundary condition $f_\theta(a_0, 0) = a_0$. We
 149 implement a first-order DDIM (Song et al., 2021a) sampling scheme for efficient inference:

$$150 \quad a_t = \cos(k - t) \cdot a_k - \sin(k - t) \cdot F_\theta(a_k, k), \quad (8)$$

152 where k is the previous time step. In our paper, we divide the steps evenly into 10.

153 **Max Q Sampling.** A principled strategy orthogonal to behavior-regularized actor-critic frameworks
 154 is a resampling mechanism (Ghasemipour et al., 2021; Chen et al., 2023; Hansen-Estruch et al.,
 155 2023; Li et al., 2025). Instead of training the action policy with Q value, Max Q sampling leverages
 156 the estimated Q_ϕ in the inference time. Formally, given a proposal distribution $\pi_\theta(a|s)$ and a target
 157 criterion $Q_\phi(s, a)$, the Max Q sampling procedure selects the optimal action from a set of samples:

$$158 \quad a = \arg \max_{a^{(1)}, \dots, a^{(n_{\text{sample}})}} Q_\phi(s, a^{(i)}), \quad a^{(i)} \sim \pi_\theta(s) \quad (9)$$

161 ²In the usual flow matching notation p_1 is the data distribution, but we want to make it consistent with
 diffusion model notations.

162 **Behavior-Regularized Actor-Critic (BRAC).** Behavior-regularized actor-critic methods form a
 163 family of effective offline RL approaches that combine value function learning with behavior reg-
 164 ularization (Haarnoja et al., 2018; Wu et al., 2019; Tarasov et al., 2023). The critic loss follows
 165 equation 1. The actor loss, defined in our implementation, integrates policy improvement and be-
 166 havior regularization:

$$\mathcal{L}_{\pi, \text{BCLoss}}^{\text{BRAC}}(\theta) = \mathbb{E}_{(s, a) \sim \mathcal{D}} [-Q_\phi(s, \pi_\theta(s)) + \alpha \cdot \text{BCLoss}(\pi_\theta(s), a)], \quad (10)$$

169 where α is a hyperparameter balancing policy improvement and behavior constraint and BCLoss is
 170 a behavior clone loss, e.g. $\|\pi_\theta(s) - a\|_2^2$ or the velocity matching loss in the previous section. While
 171 the BARC objective is almost necessary, it has been shown to be highly sensitive to α (An et al.,
 172 2021; Chen et al., 2024b; Fang et al., 2025; Gao et al., 2025), requiring extensive per-task tuning.

173 The problem in applying Equation 10 to a diffusion/flow-based policy is the computationally costly
 174 iterative sampling chain (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b). There
 175 exists many works to circumvent this issue, see Section 6 for more discussion.

176 **Regularized-Behavior-Regularized Actor-Critic (ReBRAC).**

$$\mathcal{L}(\phi) = \mathbb{E}_{(\mathbf{s}, \mathbf{a}, r, \mathbf{s}', \mathbf{a}') \sim \mathcal{D}} [\|Q_\phi(\mathbf{s}, \mathbf{a}) - (r + \gamma (Q_{\phi'}(\mathbf{s}', \pi_\theta(\mathbf{s}')) - \alpha_{\text{critic}} \cdot (\mathbf{a}' - \pi_\theta(\mathbf{s}')^2))\|_2^2], \quad (11)$$

181 where $Q_{\phi'}$ is target critic network and the α_{critic} is the critic bc coefficient. This regularized Q-value
 182 target reduces the overestimation issue in Q-learning (Tarasov et al., 2023).

183 For notational simplicity, we drop the mention of noise in the main text, as that can be easily inte-
 184 grated, or we consider a joint state $s' = (s, z)$ for where noise is needed.

3 DIRECT OPTIMAL ACTION LEARNING

189 In deep learning, there is a doctrine that all we need to train neural networks is a differentiable
 190 loss w.r.t. the parameters (Rumelhart et al., 1995). In the context of learning policy with iterative
 191 sampling, the computational cost becomes too high. In fact, it is not entirely clear what the learned
 192 policy represents aside from it balances behavior regularization and expected return maximization.
 193 We present a intuitive motivation and a formal motivation to derive our Direct Optimal Action Learn-
 194 ing framework, and show how it can naturally yields more interpretable and robust hyperparameter
 195 choice.

3.1 THE OPTIMAL ACTION

196 **Intuitive Perspective.** An actor policy should learn to produce actions that have high estimated
 197 Q-values. When learning from a static dataset, this search for high-value actions should naturally be
 198 centered around the actions already present in the data. This leads to a straightforward idea of direct
 199 optimal action learning (DOAL): instead of indirectly learning a policy that optimizes a complex
 200 objective, we can directly learn the optimal action itself. In related works 6, we discuss other neural
 201 network learning methods that also follow non-conventional target matching objectives.

202 **Formal perspective.** The DOAL idea emerges from a re-interpretation of the policy gradient in
 203 standard behavior-regularized actor-critic methods:

204 **Proposition 1 (BRAC Objective Pursue BRAC Target).** *Let $\pi_\theta(s)$ be a deterministic differentiable
 205 policy and $Q_\phi(s, a)$ be a differentiable action-value function. Consider the behavior-regularized
 206 objective:*

$$\mathcal{L}_Q(\theta) \triangleq \mathbb{E}_{(s, a) \sim \mathcal{D}} [Q_\phi(s, \pi_\theta(s)) - \alpha \|\pi_\theta(s) - a\|_2^2] \quad (12)$$

207 where $\alpha > 0$ is a regularization coefficient. The gradient of this objective with respect to θ is
 208 equivalent to the gradient of a simpler squared-error objective $\mathcal{L}_{\text{target}}(\theta)$:

$$\nabla_\theta \mathcal{L}_Q(\theta) = \nabla_\theta \mathcal{L}_{\text{brac.target}}(\theta) \triangleq \mathbb{E}_{(s, a) \sim \mathcal{D}} \left[\nabla_\theta \left(-\alpha \|\pi_\theta(s) - a^{\text{brac.target}}\|_2^2 \right) \right] \quad (13)$$

$$a^{\text{brac.target}} = a + \frac{1}{2\alpha} \nabla_{a'} Q_\phi(s, a') \Big|_{a'=\pi_\theta(s)} \quad (14)$$

The proof is an application of the chain rule (see Appendix B). This gradient equivalence reveals that the BRAC objective implicitly minimizes the distance between the policy’s output $\pi_\theta(s)$ and a target action $a^{\text{brac,target}}$. Under such an interpretation, a conceptual inconsistency exists. The target $a^{\text{brac,target}}$ is constructed by taking a gradient ascent step from the data action a , but the gradient $\nabla_{a'} Q_\phi$ is evaluated at the policy’s output $\pi_\theta(s)$. This requires action sampling at training time and creates a mismatch between the point of expansion (a) and the point of Q value gradient evaluation ($\pi_\theta(s)$). DOAL performs the gradient ascent using the gradient evaluated at the data action a , which would define a a^{target} for each data point (s, a) without sampling. Importantly, Proposition 1 shows BRAC objective and the DOAL objective are *similar but different*. DOAL is a reasonable objective for offline RL in its’ own right.

By defining the target action directly from the data and Q value, DOAL decouple the target computation from the policy being trained. The major practical benefit is that we no longer need to sample an action during training. Consequently, we can leverage more powerful generative modeling techniques to learn the action distribution, such as training flow-based models with flow matching losses or diffusion models with their diverse loss functions.

3.2 BATCH-NORMALIZING OPTIMIZER

A challenge with BRAC-style methods is the sensitivity of the regularization coefficient α , which often requires careful tuning across several orders of magnitude (Park et al., 2025c; Kumar et al., 2020). Our re-interpretation of the objective as learning a target action raises a critical question: what is the appropriate magnitude for the update from the data action a to the target action a^{target} ?

In offline reinforcement learning, the learned Q-function is merely an estimator, and it is crucial to remain conservative to avoid distribution shift to out-of-support actions where the Q-function is unreliable (Kostrikov et al., 2022; Kumar et al., 2020; Tarasov et al., 2023). Therefore, instead of an arbitrary step size dictated by α , we should define a **statistical trust region** for our action optimization. We can achieve this by setting a fixed expected magnitude for the update vector $g(s, a) = a^{\text{target}} - a$. Specifically, we desire two conditions for the update vector $g(s, a)$:

1. The update should be in the direction of the Q-function’s gradient at the data action: $g(s, a) = C \cdot \nabla_a Q_\phi(s, a)$ where $C > 0$.
2. The expected squared magnitude of the update over the dataset should be a constant, which we denote as δ : $\mathbb{E}_{(s, a) \sim \mathcal{D}} [\|g(s, a)\|_2] = \delta$.

These two conditions uniquely determine the update vector, as shown in the following proposition.

Proposition 2 (Batch Normalized Update). *To satisfy the conditions $g(s, a) = C \cdot \nabla_a Q_\phi(s, a)$ and $\mathbb{E}_{(s, a) \sim \mathcal{D}} [\|g(s, a)\|_2] = \delta$, where $\delta, C > 0$, the only action update vector $g(s, a)$ is :*

$$g(s, a) = \frac{\delta}{\mathbb{E}_{(s', a') \sim \mathcal{D}} [\|\nabla_{a'} Q_\phi(s', a')\|_2]} \cdot \nabla_a Q_\phi(s, a) \quad (15)$$

The proof is straightforward calculation (see Appendix C). This formulation replaces the obscure hyperparameter α with an interpretable one, δ , which directly controls the expected squared magnitude of the action update. In practice, we use the batch statistics as estimator, so we have $\mathbb{E}_{(s', a') \sim \mathcal{B}} [\|\nabla_{a'} Q_\phi(s', a')\|_2^2]$, where \mathcal{B} is the current mini-batch. This “batch-normalization” of the action gradients provides a more stable and robust training target, alleviating the need for extensive hyperparameter sweeps. *We are not claiming that this batch normalized scheme can find better a^{target} than not using batch-normalized gradient.* In fact, if the gradient statistics is stable, you can always get the same result by having $g(s, a) = C \cdot \nabla_a Q_\phi(s, a)$ where $C := \frac{\delta}{\mathbb{E}_{(s', a') \sim \mathcal{D}} [\|\nabla_{a'} Q_\phi(s', a')\|_2]}$. We will empirically see that optimal δ varies less than δ' .

3.3 THE DOAL OBJECTIVES

DOAL can work with any value function learning. We only alter the actor loss :

$$\mathcal{L}_{\text{DOAL}}(\theta) = \alpha \cdot \mathbb{E}_{(s, a) \sim \mathcal{D}} \text{BCLoss}(\pi_\theta(s), a^{\text{target}}) \quad (16)$$

$$a^{\text{target}} := a + \frac{\delta}{\mathbb{E}_{(s', a') \sim \mathcal{B}} [\|\nabla_{a'} Q_\phi(s', a')\|_2]} \cdot \nabla_a Q_\phi(s, a) \quad (17)$$

270 where BC Loss can be any distribution matching losses. In terms of computational overhead, as the
 271 gradient $\nabla_a Q_\phi(s, a)$ will be called explicit or implicitly at least once to extract first order structure
 272 information from Q_ϕ . We still keep the α parameter from (Park et al., 2025c) for all experiments for
 273 consistency. In ablation study in Appendix F, we find setting it to 1 is fine.
 274

275 4 MAXQ SAMPLING NEEDS BALANCING

277 As our DOAL framework learn from optimized action based on $\nabla_a Q(s, a)$, we consider models
 278 without learning from $\nabla_a Q(s, a)$ as our baseline models. In such case, $Q(s, a)$ can still be used for
 279 weighting the behavior clone loss and performing actions selection, as we discussed Section 2. To
 280 have a solid baseline for comparison, we argue that n_{sample} a crucial hyper-parameter.
 281

282 When taking $n_{\text{sample}} = 1$, we clearly recover the actor distribution and completely lost access
 283 to information from Q_ϕ . On the other extreme, Some earlier work suggested the bigger n_{sample} ,
 284 the better (Ghasemipour et al., 2021). However, while a^* maximize the Q value estimator Q_ϕ as
 285 $n_{\text{sample}} \rightarrow +\infty$, there exists maximization bias such that the maximum Q value will be overestimated
 286 due to noise in the estimator, and a^* with large positive random fluctuation will be selected.
 287

288 **Proposition 3 (Informal).** *Consider countably many actions a_1, a_2, \dots . For each i , the Q-estimator
 289 is independent Gaussian: $\hat{Q}(a_i) \sim \mathcal{N}(\mu_i, \sigma_i^2)$, with bounded means $\sup_i \mu_i \leq U < \infty$ and non-
 290 trivial noise $\sigma_i \geq c > 0$. Draw n i.i.d. actions from any policy with dense support and pick the one
 291 with the largest observed \hat{Q} . As $n \rightarrow \infty$:*

- 292 • (i) the selected \hat{Q} value diverges to $+\infty$ (driven by extreme positive noise);
 293 • (ii) the probability of picking any true-mean maximizer tends to 0.

295 **Proof Intuition.** The maximum of m i.i.d. Gaussian draws grows like $\mu_i + \sigma_i \sqrt{2 \log m}$. With
 296 infinitely many actions having $\sigma_i > 0$, actions with an extremely large positive fluctuation will
 297 dominate the max, regardless of the bounded means. Thus, making n_{sample} large pushes selection
 298 toward noise outliers rather than actions with the highest μ_i , even with unbiased estimator. \square

299 The above analysis shows that increasing n_{sample} can exacerbate the maximization bias: as
 300 $n_{\text{sample}} \rightarrow \infty$, max-selection over noisy Q-estimates systematically prefers actions with large pos-
 301 itive noise realizations, independent of the learned Q . While it is hard to precisely characterize the
 302 resulting distribution from MaxQ sampling, the more samples we have the more data coverage we
 303 have. In the case where action policy is value agnostic, having multiple samples is necessary to
 304 ensure mode coverage so that Q function can provide a selection. Yet, if we sample too much, the
 305 stochasticity in Q_ϕ dominates and we might get “good” actions due to overestimation rather than
 306 being reliable. Pragmatically, n_{sample} balances the conflict between the in-distribution behavior and
 307 the noisy Q value estimator in the inference time.
 308

309 5 EXPERIMENTS & DISCUSSION

310 In this section, we examine our DOAL framework. Our baseline models benefit from $Q_\phi(s, a)$
 311 either through advantage weighted regression or max-Q sampling without accessing to $\nabla Q_\phi(s, a)$.
 312 We analyse the time complexity of DOAL, and discuss the trust region δ selection. Other ablation
 313 studies are presented in Appendix F.

314 **Benchmarks** We conduct a comprehensive evaluation of our method on two challenging offline RL
 315 benchmarks: 1) The 6 Adroit/D4RL tasks with expert, human, and cloned dataset qualities. 2) 9
 316 default tasks from the more diverse and demanding OGBench suite. We omit some tasks, as no
 317 current algorithms can work well (Park et al., 2025c). Following Park et al. (2025c), we train on
 318 OGBench for 1m steps, and take the average performance on 800k, 900k and 1m steps. We train on
 319 D4RL tasks for 500k steps and test on last step.
 320

321 **Models** We test our DOAL framework under implicit Q-learning, Q-learning and regularized Q-
 322 learning. Our policy models include simple Gaussian policy, Multi-step Flow models and TrigFlow
 323 models. Except the number of MaxQ sampling candidates, we follow the hyperparameters from
 324 FQL (Park et al., 2025c) whenever possible, this includes τ in IQL and α for scaling BC loss.

Table 1: **IQL-based offline RL results.** Full results on the OGBench and D4RL tasks with IQL value function. They are the default single-task in each environment. The results are averaged over 8 seeds on D4RL and OGBench. The IQL(tanh)*, IQL(Gauss) on OGBench, IFQL* results are collected from Flow Q learning (Park et al., 2025c; Tarasov et al., 2022).

Task	Simple Policies			Flow Policies			Diffusion Policies		
	IQL(tanh)*	IQL(Gauss)	DIQL	IFQL*	IFQL	DIFQL	TrigFlow	DTrigFlow	ETrigFlow
antmaze-large-navigate	-	48 \pm 9	63 \pm 10	24 \pm 17	48 \pm 24	67 \pm 6	72 \pm 6	63 \pm 24	63 \pm 21
humanoidmaze-medium-navigate	-	32 \pm 7	55 \pm 8	69 \pm 19	68 \pm 3	68 \pm 4	64 \pm 4	67 \pm 4	63 \pm 4
humanoidmaze-large-navigate	-	3 \pm 1	10 \pm 3	6 \pm 2	6 \pm 3	8 \pm 3	7 \pm 2	8 \pm 4	6 \pm 3
antsoccer-arena-navigate	-	3 \pm 2	13 \pm 3	16 \pm 9	40 \pm 5	40 \pm 6	40 \pm 8	41 \pm 4	41 \pm 9
cube-single-play	-	85 \pm 8	80 \pm 4	73 \pm 3	88 \pm 4	90 \pm 3	86 \pm 4	88 \pm 2	88 \pm 4
cube-double-play	-	1 \pm 1	3 \pm 2	9 \pm 5	11 \pm 3	21 \pm 4	16 \pm 4	22 \pm 3	16 \pm 3
scene-play	-	12 \pm 3	37 \pm 10	0 \pm 0	40 \pm 23	40 \pm 23	43 \pm 16	46 \pm 15	50 \pm 12
puzzle-3x3-play	-	2 \pm 1	5 \pm 1	0 \pm 0	5 \pm 1	5 \pm 2	7 \pm 2	7 \pm 3	8 \pm 2
puzzle-4x4-play	-	5 \pm 2	10 \pm 2	21 \pm 11	23 \pm 7	21 \pm 5	26 \pm 5	27 \pm 6	26 \pm 4
Total	-	191	276	218	329	359	361	368	359
pen-human-v1	78	54 \pm 6	43 \pm 8	71 \pm 12	81 \pm 8	68 \pm 8	71 \pm 11	69 \pm 13	72 \pm 12
pen-cloned-v1	83	66 \pm 7	56 \pm 9	80 \pm 11	73 \pm 7	74 \pm 7	65 \pm 7	67 \pm 8	67 \pm 9
pen-expert-v1	128	131 \pm 8	132 \pm 4	139 \pm 5	134 \pm 4	138 \pm 4	135 \pm 8	133 \pm 7	134 \pm 8
door-expert-v1	107	104 \pm 2	104 \pm 2	104 \pm 2	104 \pm 1	104 \pm 1	104 \pm 1	104 \pm 1	104 \pm 1
hammer-expert-v1	129	68 \pm 47	76 \pm 46	117 \pm 9	96 \pm 8	98 \pm 12	103 \pm 8	98 \pm 11	100 \pm 10
relocate-expert-v1	106	97 \pm 10	101 \pm 5	104 \pm 3	104 \pm 3	102 \pm 8	106 \pm 2	107 \pm 2	106 \pm 2
Total	631	520	518	615	592	584	584	577	583

For IQL value function, we have three representative and strong baseline algorithms with our method: IQL, with simple Gaussian policy learned from AWR; IFQL, a flow policy with MaxQ sampling; TrigFlow, a trigflow diffusion policy with MaxQ sampling. For each one of them, we have the DOAL versions DIQL, DIFQL, and DTrigflow. Furthermore, we have efficient trigflow (ETrigflow (Lu & Song, 2025; Kang et al., 2023), see Appendix D for details) that uses the BRAC objective but uses one-step sampling from corrupted a_t and still use IQL for value learning.

For the Q-learning value function, our baseline model MFQL replace the IQL value learning with Q-learning. Also, we have the DOAL version DMFQL. Furthermore, we add the ReBRAC objective to regularize the Q learning target, and get MFReBRAC and DMFReBRAC (see Appendix D for details). We also report the results of MFQL_{bptt} that actually running BPTT for actor learning.

5.1 MAIN RESULTS

Table 1 shows we have very strong baseline models of IFQL and Trigflow. In particular, our n_{sample} tuned IFQL improved over the original IQL* significantly on OGBench. On the OGBench, **on aggregation, our DOAL models performed better than their baselines.** Up on closer examination, we find that those are due to one or two tasks that has significant gains that we high-lighted. Otherwise, their performance is very similar. On antmaze-large, both DTrigFlow and ETrigFlow dropped their performance. We find that there are two seeds that have very low performance (hence the large std). For training curves see Appendix E.

On the D4RL, we re-run IQL from FQL paper. It appears that there is no performance gain from either DOAL model or even ETrigflow. This might be due to the unreliability of IQL learned function gradient. It should be noted that the DOAL models subsume their baselines, as one can set $\delta = 0$ to **recover** the baseline or choose extremely small δ . However, even if finer search for δ can yield higher performance, one can not rule out the selection bias. A proper way to address the inability to extract information from Q value is to investigate (Regularized) Q-Learning based functions.

In Table 2, excluding MFQL with BPTT, ³ all our models outperform FQL. In fact, in Table 2, MFQL outperforms FQL. This shows that effectiveness of MaxQ sampling. Furthermore, DMFQL outperforms MFQL on OGBench but not on D4RL. This again indicates that the effectiveness of DOAL might depend on the task or quality of Q value function. The fact, DMFReBRAC outperforms MFReBRAC indicates well regularized Q function can make DOAL work better. We present MFQL with BPTT to show that while being less stable, it is not always weaker. However, the computational complexity of BPTT is indeed much higher as we will discuss.

In Figure 4, we have the relations between MFQL, DMFQL, MFReBRAC and DMFReBRAC. We should notice that the DOAL version can achieve the same result as their baselines by letting $\delta = 0$, but we do not include such choice to explicitly show that first order gradient-based policy extraction might not always work.

³It might be possible that with better tuning on learning rates, BPTT training can achieve better performance. Nonetheless, it shows BPTT is fragile.

378 **Table 2: Q-Learning based offline RL results.** The results are averaged over 8 seeds . The ReBRAC*, FQL*
 379 results are collected from Flow Q learning (Park et al., 2025c).

Task	Simple Policies		Flow Policies					
	ReBRAC (tanh) *	ReBRAC (Gauss)	FQL*	MFQL	DMFQL	MFQL _{bpt}	MFRReBRAC	DMFReBRAC
antmaze-large-navigate	91 ±10	-	80 ±8	62 ±11	72 ±8	64 ±13	65 ±13	83 ±7
humanoidmaze-medium-navigate	16 ±9	-	19 ±12	49 ±9	44 ±13	54 ±9	53 ±14	52 ±7
humanoidmaze-large-navigate	2 ±1	-	7 ±6	8 ±3	7 ±3	6 ±2	9 ±4	8 ±2
antsoccer-arena-navigate	0 ±0	-	39 ±6	43 ±6	37 ±5	45 ±5	45 ±5	41 ±6
cube-single-play	92 ±4	-	97 ±2	95 ±1	98 ±1	62 ±37	91 ±5	99 ±1
cube-double-play	7 ±3	-	36 ±6	72 ±4	75 ±6	72 ±3	74 ±4	75 ±3
scene-play	50 ±13	-	76 ±9	57 ±20	90 ±10	68 ±15	57 ±12	92 ±6
puzzle-3x3-play	2 ±1	-	16 ±5	7 ±3	6 ±2	1 ±1	7 ±2	5 ±2
puzzle-4x4-play	10 ±3	-	11 ±3	24 ±3	14 ±4	0 ±0	25 ±5	12 ±3
Total	297	-	381	418	443	372	425	466
pen-human-v1	103	55 ±9	53 ±6	75 ±9	72 ±8	-	64 ±9	74 ±8
pen-cloned-v1	92	72 ±15	74 ±11	75 ±9	80 ±5	-	71 ±12	75 ±10
pen-expert-v1	152	143 ±6	142 ±1	138 ±4	130 ±8	-	140 ±9	143 ±4
door-expert-v1	106	105 ±1	104 ±1	104 ±2	104 ±1	-	105 ±8	105 ±1
hammer-expert-v1	134	131 ±1	125 ±3	126 ±3	124 ±5	-	126 ±3	126 ±1
relocate-expert-v1	108	107 ±1	107 ±1	106 ±4	104 ±4	-	106 ±1	107 ±2
Total	706	614	605	623	614	-	614	630

393
 394 **Importance of Regularization.** On D4RL tasks in Table 2, we observe that only regularized Q
 395 function can boost the DOAL model performance. This strongly suggests that DOAL or maybe
 396 other gradient based policy extraction methods need the Q function to be reliable.

397 **Importance of Tanh.** Yet, our models still large behind ReBRAC that use a simple policy. We
 398 identified another difference that is the ReBRAC used tanh nonlinearity for producing actions be-
 399 tween [-1,1]. This might introduce useful inductive bias. Indeed, by removing it, the performance
 400 of ReBRAC dropped. Studying how to add this nonlinear transformation after flow models is an
 401 interesting research question for future work.

403 5.2 TIME COMPLEXITY

	FQL	IFQL	DIFQL	MFQL	MFQL-BPTT	DMFQL
Forward Policy Call	13	1	1	11	21	11
Forward Value Call	3	4	5	3	4	4
Backward Policy Call	2	1	1	1	10	1
Backward Value Call	2	2	3	1	2	2
Total Calls	20	8	10	16	37	18
Actual Time in Minutes	37	29	31	35	61	37

411 For MFQL, training policy net only requires 1 forward policy call. Train Q net requires sampling,
 412 therefore 10 forward policy calls. MaxQ sampling runs many samples in parallel, so as long as it fits
 413 to memory, it has no impact. MFQL takes 3 Value Q for Q learning and MaxQ sampling (yes, it can
 reduce to 2). DMFQL only adds one forward and one backward call to get a^{target} compared to MFQL.

414 **Figure 2: Runtime and Computational Complexity .** On the left side, a table presents the training time
 415 number of function calls and actual runtime. On the right side, a regression line models the actual running time
 416 by the number of function calls. The actual run time is on the antmaze-large task with a single A800 GPU.

417 Offline RL algorithms train neural networks for value functions and policy distribution. In our work,
 418 4-layer MLP are used for all neural modules. In Figure 2, we count the number of forward and
 419 backward calls through value and policy networks and present their total calls during the training
 420 phase. As forward and backward calls have similar computation cost and policy and value network
 421 share similar architectures, the sum of total calls can be used to predict the actual run time. Indeed, an
 422 affine relation is found. The relation is not linear, because there are overheads such as data loading
 423 and testing. One might notice that FQL's actual run time is faster than predicted, this is because
 424 FQL uses a one-step policy during testing. We did not include DMFReBRAC as it is the same as
 425 DMFQL. As for the memory usage, it is bottleneck-ed by the backward policy calls that requires
 426 storing intermediate computing states. Therefore, only BPTT version consume more memory.

428 5.3 CHOOSE STATISTICAL TRUST REGION δ

429 In OGBench (Park et al., 2025a), actions are bounded in [-1,1] box of varying dimensionality.
 430 The statistical trust region should be related to how reliable are the Q value estimation at data
 431 point and how well can neural network generalize. As we are using IQL for value estimation

432 and the same value net in all our experiments, the only thing varying is the datasets. For OG-
 433 Bench experiments, we choose δ from $(0.03, 0.1, 0.3)$, and for D4RL experiments, we choose from
 434 $(0.0003, 0.001, 0.003)$ as we see from α in the FQL paper (Park et al., 2025c) tends to be extremely
 435 large. See Appendix G for the exact hyperparameters.
 436

437 Envs	438 puzzle-4x4	439 cube-single	440 scene-play	441 antmaze-large-navigate
$\mathbb{E}_{(s', a') \sim \mathcal{B}} [\ \nabla_{a'} Q_\phi(s', a')\ _2]$	43.78	5.85	15.58	0.55
α	1000	300	300	10
δ	0.03	0.03	0.1	0.1
$\mathbb{E}_{(s', a') \sim \mathcal{B}} [\ \nabla_{a'} Q_\phi(s', a')\ _2]$	6.9e-4	5.1e-3	1.9e-3	1.8e-2

Table 3: Different Environments with the Observed Mean $\|\nabla_a Q(s, a)\|$, α , and δ .

445 In Table 3, we present a few representative environments and their average $\|\nabla_a Q(s, a)\|$, opti-
 446 mal α (Park et al., 2025c) and δ we selected. As you can see the larger the gradient, the larger
 447 the selected α . Based on our Proposition 1, we would be expecting α be inverse proportional to
 448 $\mathbb{E}_{(s', a') \sim \mathcal{B}} [\|\nabla_{a'} Q_\phi(s', a')\|_2]$. Indeed, this is what we observe. While α ranges across two orders of
 449 magnitude, our hyperparameter δ is relatively stable and easier to search for.
 450

Figure 3: Mean Batch Normalized Gradient Norm of DMFQL across OGbench

Figure 4: The relationship between MFQL, DM-
 FQL, MFReBRAC and DMFReBRAC.

455 In Figure 3, we can see the batch gradient normal is quite stable during training. This implies
 456 that $\mathbb{E}_{(s', a') \sim \mathcal{B}} [\|\nabla_{a'} Q_\phi(s', a')\|_2]$ is roughly a constant for each task, therefore, one can equivalently
 457 treating the direct gradient scaling factor as a hyperparameter and avoid the batch-normalization.
 458 The performance would be equivalent. However, the range of this linear scaling hyperparameter
 459 would be much wider. In Table 3, it ranges across two orders of magnitude just like α .
 460

6 RELATED WORK

6.1 REGULARIZED VALUE ESTIMATION

475 **In-Sample Optimization** (e.g., IQL(Kostrikov et al., 2022); X-QL(Garg et al., 2023); SQL and
 476 EQL(Xu et al., 2023)) addresses offline RL by performing in-sample value iteration, avoiding
 477 queries to out-of-distribution (OOD) actions and directly approximating the optimal value function;
 478 **Conservative Methods** (e.g., CQL (Kumar et al., 2020); EDAC(An et al., 2021); AWAC(Nair
 479 et al., 2021); BCQ(Fujimoto et al., 2018); ReBRAC(Tarasov et al., 2023)) proposed methods that
 480 penalizing out-of-distribution actions to prevent overestimation of Q values.
 481

6.2 POLICY EXTRACTION FOR DIFFUSION MODELS

484 **Accelerated Sampling Techniques.** A prominent research direction focuses on accelerating the
 485 sampling process of pre-trained generative policies. EDP (Kang et al., 2023) reformulates the re-
 486 verse denoising process to estimate the target action a_0 in a single step. While these approaches

486 achieve notable improvements in sampling efficiency, they remain inherently heuristic. Meanwhile,
 487 FQL (Park et al., 2025c) circumvents the sampling via a student network with one-step sampling.
 488

489 **Value Guidance Methods.** A substantial body of work in offline RL leverages diffusion models to
 490 approximate the behavior policy underlying the dataset. One prevalent strategy involves using the
 491 gradient of Q-value functions to guide the action generation process: QGPO (Wang et al., 2023),
 492 SFBC (Chen et al., 2023), EDA (Chen et al., 2024a), QVPO (Ding et al., 2024), and CFGRL(Frans
 493 et al., 2025). An alternative, more straightforward approach modulates the policy by re-weighting
 494 transition samples based on their estimated values (Peng et al., 2019; Frans et al., 2025).

495 **MaxQ Sampling.** MaxQ sampling has been introduced in early work with diffusion models. How-
 496 ever, they mostly set n_{sample} to be a large number and thought the trade-off is between computation
 497 budget vs. quality (Wang et al., 2023; Kang et al., 2023; Park et al., 2025c). Some other work
 498 used weighted resampling instead of MaxQ sampling(Hansen-Estruch et al., 2023), where proper
 499 weighting can alleviate the overestimation bias. As for MaxQ sampling, Ghasemipour et al. (2021)
 500 suggested larger n_{sample} is better. A very recent/concurrent work on horizon reduction (Li et al.,
 501 2025) tuned the n_{sample} , arguing that for large n_{sample} , the sampled distribution might deviate from
 502 policy distribution too much. Yet, they did not discuss the over-estimation bias of the Q value.

503 6.3 POLICY DISTILLATION WITH REGULARIZED ACTOR-CRITIC METHODS.

505 Regularized value function learning has been shown to be effective (An et al., 2021; Hansen-Estruch
 506 et al., 2023). Contemporary methods like DAC (Fang et al., 2025) and BDPO (Gao et al., 2025)
 507 further integrate diffusion models with the regularized actor-critic framework. In particular, a con-
 508 current work, FAC (Anonymous, 2025), builds on FQL and add carefully designed regularization on
 509 the Q value function, achieved very strong performance.

510 6.4 LONG HORIZON PROBLEMS

512 For challenging tasks that most algorithm cannot address, like antmaze-giant-navigate, (Park et al.,
 513 2023; 2025b; Li et al., 2025) looked at the horizon reduction issue. While this is orthogonal to our
 514 problem, such methods might be necessary for challenging environments.

516 6.5 NON END2END OPTIMIZATION

518 Similar to our DOAL at a conceptual level, there are several alternatives to end2end back-
 519 propagation that have been explored for neural network training. **Target-Propagation.** (Lee et al.,
 520 2014; Meulemans et al., 2020) propose to compute targets rather than gradients, at each layer.
 521 **Nested-Learning.** (Behrouz et al., 2025) trains neural networks with nested component-wise as-
 522 sociative memory learning problems. It is not hard to see that their formulation can be converted
 523 to target matching like DOAL. **Nonparametric Learning.** (Wang et al., 2022) provably learns a
 524 two-layer network by matching the first layer output with the ideal second layer input.

525 7 CONCLUSION

528 In this work, we present Direct Optimal Action Learning, a framework that enables efficient and
 529 effective learning from $\nabla_a Q(s, a)$ for any policy distribution with different Q value functions. We
 530 provide strong baselines by re-examining the importance of n_{sample} in MaxQ sampling, then we
 531 are able to show our models improved over baseline for OGBench tasks for various policies and
 532 value functions. On Adroit tasks, improvements are observed when we use ReBrac objective. Our
 533 experiment set up is mostly aiming at controlled study. In the future, better uncertainty aware Q
 534 estimation should be explored, as it might further improve the statistical trust region identification.
 535 Another important direction for diffusion/flow model training is to leveraging the squeezing layer
 536 such as tanh transformation.

540 REFERENCES
541

542 Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline re-
543 inforcement learning with diversified q-ensemble. In A. Beygelzimer, Y. Dauphin, P. Liang,
544 and J. Wortman Vaughan (eds.), *Advances in Neural Information Processing Systems (NeurIPS)*,
545 2021.

546 Anonymous. Flow actor-critic for offline reinforcement learning. In *Submitted to The Fourteenth*
547 *International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=wuncwN7iZN>. under review.

549 Ali Behrouz, Meisam Razaviyayn, Peilin Zhong, and Vahab Mirrokni. Nested learning: The illusion
550 of deep learning architectures. In *The Thirty-ninth Annual Conference on Neural Information*
551 *Processing Systems*, 2025. URL <https://openreview.net/forum?id=nbMeRvNb7A>.

553 David Brandfonbrener, William F Whitney, Rajesh Ranganath, and Joan Bruna. Offline RL without
554 off-policy evaluation. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2021.

556 Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning
557 via high-fidelity generative behavior modeling. In *The Eleventh International Conference on*
558 *Learning Representations (ICLR)*, 2023.

559 Huayu Chen, Kaiwen Zheng, Hang Su, and Jun Zhu. Aligning diffusion behaviors with q-functions
560 for efficient continuous control. *Advances in Neural Information Processing Systems (NeurIPS)*,
561 2024a.

562 Tianyu Chen, Zhendong Wang, and Mingyuan Zhou. Diffusion policies creating a trust region for
563 offline reinforcement learning. *Advances in Neural Information Processing Systems (NeurIPS)*,
564 2024b.

566 Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and
567 Ye Shi. Diffusion-based reinforcement learning via q-weighted variational policy optimization.
568 In *The Thirty-eighth Annual Conference on Neural Information Processing Systems (NeurIPS)*,
569 2024.

570 Linjiajie Fang, Ruoxue Liu, Jing Zhang, Wenjia Wang, and Bingyi Jing. Diffusion actor-critic:
571 Formulating constrained policy iteration as diffusion noise regression for offline reinforcement
572 learning. In *The Thirteenth International Conference on Learning Representations (ICLR)*, 2025.

574 Kevin Frans, Seohong Park, Pieter Abbeel, and Sergey Levine. Diffusion guidance is a controllable
575 policy improvement operator, 2025.

576 Scott Fujimoto and Shixiang Gu. A minimalist approach to offline reinforcement learning. In
577 *Advances in Neural Information Processing Systems (NeurIPS)*, 2021.

579 Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
580 exploration. In *International Conference on Machine Learning (ICML)*, 2018.

582 Chen-Xiao Gao, Chenyang Wu, Mingjun Cao, Chenjun Xiao, Yang Yu, and Zongzhang Zhang.
583 Behavior-regularized diffusion policy optimization for offline reinforcement learning. In *Forty-*
584 *second International Conference on Machine Learning (ICML)*, 2025.

585 Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent RL
586 without entropy. In *The Eleventh International Conference on Learning Representations (ICLR)*,
587 2023.

588 Seyed Kamyar Seyed Ghasemipour, Dale Schuurmans, and Shixiang Shane Gu. Emaq: Expected-
589 max q-learning operator for simple yet effective offline and online rl. In *Proceedings of the 38th*
590 *International Conference on Machine Learning (ICML)*, 2021.

592 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
593 maximum entropy deep reinforcement learning with a stochastic actor. In *International conference on*
594 *machine learning (ICML)*, 2018.

594 Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
 595 Idql: Implicit q-learning as an actor-critic method with diffusion policies. *ArXiv*, abs/2304.10573,
 596 2023.

597 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023. URL <https://arxiv.org/abs/1606.08415>.

600 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 601 *neural information processing systems (NeurIPS)*, 2020.

602 Michael Janner, Yilun Du, Joshua B. Tenenbaum, and Sergey Levine. Planning with diffusion for
 603 flexible behavior synthesis. In *International Conference on Machine Learning (ICML)*, 2022.

605 Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for
 606 offline reinforcement learning. *Advances in Neural Information Processing Systems (NeurIPS)*,
 607 2023.

608 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *International*
 609 *Conference on Learning Representations (ICLR)*, 2015.

611 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
 612 <https://arxiv.org/abs/1412.6980>.

613 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
 614 learning. In *International Conference on Learning Representations (ICLR)*, 2022.

616 Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
 617 reinforcement learning. *Advances in neural information processing systems (NeurIPS)*, 2020.

618 Sascha Lange, Thomas Gabel, and Martin Riedmiller. *Batch Reinforcement Learning*, pp. 45–73.
 619 Springer Berlin Heidelberg, 2012.

621 Dong-Hyun Lee, Saizheng Zhang, Asja Fischer, and Yoshua Bengio. Difference target propagation.
 622 In *ECML/PKDD*, 2014. URL <https://api.semanticscholar.org/CorpusID:14218948>.

624 Sergey Levine, Aviral Kumar, G. Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
 625 review, and perspectives on open problems. *ArXiv*, abs/2005.01643, 2020.

627 Qiyang Li, Zhiyuan Zhou, and Sergey Levine. Reinforcement learning with action chunking. In
 628 *The Thirty-ninth Annual Conference on Neural Information Processing Systems*, 2025. URL
 629 <https://openreview.net/forum?id=XUks1Y96NR>.

630 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
 631 matching for generative modeling. In *The Eleventh International Conference on Learning Repre-
 632 sentations (ICLR)*, 2023.

633 Yaron Lipman, Marton Havasi, Peter Holderith, Neta Shaul, Matt Le, Brian Karrer, Ricky T. Q.
 634 Chen, David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. *arXiv*
 635 *preprint arXiv:2412.06264*, 2024.

637 Cheng Lu and Yang Song. Simplifying, stabilizing and scaling continuous-time consistency models.
 638 In *The Thirteenth International Conference on Learning Representations (ICLR)*, 2025.

639 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
 640 ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances in neural*
 641 *information processing systems (NeurIPS)*, 2022.

642 Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy
 643 prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In *Inter-
 644 national Conference on Machine Learning (ICML)*, 2023.

646 Alexander Meulemans, Francesco S. Carzaniga, Johan A. K. Suykens, João Sacramento, and Ben-
 647 jamin F. Grewe. A theoretical framework for target propagation. *ArXiv*, abs/2006.14331, 2020.
 648 URL <https://api.semanticscholar.org/CorpusID:220055614>.

648 Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
 649forcement learning with offline datasets, 2021.

650

651 Seohong Park, Dibya Ghosh, Benjamin Eysenbach, and Sergey Levine. HIQL: Offline goal-
 652conditioned RL with latent states as actions. In *Thirty-seventh Conference on Neural Information
 653 Processing Systems (NeurIPS)*, 2023.

654 Seohong Park, Kevin Frans, Sergey Levine, and Aviral Kumar. Is value learning really the main bot-
 655tleneck in offline RL? In *The Thirty-eighth Annual Conference on Neural Information Processing
 656 Systems (NeurIPS)*, 2024.

657

658 Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. OGBench: Benchmarking
 659 offline goal-conditioned RL. In *The Thirteenth International Conference on Learning Represen-
 660 tations (ICLR)*, 2025a.

661 Seohong Park, Kevin Frans, Deepinder Mann, Benjamin Eysenbach, Aviral Kumar, and Sergey
 662 Levine. Horizon reduction makes rl scalable, 2025b.

663

664 Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. In *Forty-second International
 665 Conference on Machine Learning (ICML)*, 2025c.

666 Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
 667 Simple and scalable off-policy reinforcement learning. *ArXiv*, abs/1910.00177, 2019.

668

669 David E. Rumelhart, Richard Durbin, Richard Golden, and Yves Chauvin. *Backpropagation: the
 670 basic theory*, pp. 1–34. L. Erlbaum Associates Inc., USA, 1995. ISBN 0805812598.

671

672 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 673 learning using nonequilibrium thermodynamics. In *Proceedings of the 32nd International Con-
 674 ference on Machine Learning (ICML)*, 2015.

675

676 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Inter-
 677 national Conference on Learning Representations (ICLR)*, 2021a.

678

679 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 680 Poole. Score-based generative modeling through stochastic differential equations. In *Inter-
 681 national Conference on Learning Representations (ICLR)*, 2021b.

682

683 Qiao Sun, Zhicheng Jiang, Hanhong Zhao, and Kaiming He. Is noise conditioning necessary for
 684 denoising generative models? In *Forty-second International Conference on Machine Learning
 685 (ICML)*, 2025.

686

687 R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction. *IEEE Transactions on Neural
 688 Networks*, 9(5):1054–1054, 1998.

689

690 Denis Tarasov, Alexander Nikulin, Dmitry Akimov, Vladislav Kurenkov, and Sergey Kolesnikov.
 691 CORL: Research-oriented deep offline reinforcement learning library. In *3rd Offline RL Work-
 692 shop: Offline RL as a "Launchpad"*, 2022. URL <https://openreview.net/forum?id=SyAS49bBcv>.

693

694 Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the min-
 695imalist approach to offline reinforcement learning. *Advances in Neural Information Processing
 696 Systems (NeurIPS)*, 2023.

697

698 Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
 699 class for offline reinforcement learning. In *The Eleventh International Conference on Learning
 700 Representations (ICLR)*, 2023.

701

702 Zhunxuan Wang, Linyun He, Chunchuan Lyu, and Shay B Cohen. Nonparametric learning of two-
 703 layer reLU residual units. *Transactions on Machine Learning Research*, 2022. ISSN 2835-8856.
 704 URL <https://openreview.net/forum?id=YiOI0vqJ0n>.

705

706 Yifan Wu, G. Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning. *ArXiv*,
 707 abs/1911.11361, 2019.

702 Haoran Xu, Li Jiang, Jianxiong Li, Zhuoran Yang, Zhaoran Wang, Victor Wai Kin Chan, and Xi-
703 anyuan Zhan. Offline RL with no OOD actions: In-sample learning via implicit value regulariza-
704 tion. In *The Eleventh International Conference on Learning Representations (ICLR)*, 2023.
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

756 A THE USE OF LARGE LANGUAGE MODELS
757758 Large language models are used for polishing the texts, including equations and literature reviews.
759760 B PROOF OF PROPOSITION 1
761762 *Proof.* The proof follows from applying the chain rule. First, we compute the gradient of the regu-
763 larized Q-objective in equation 12:
764

$$\begin{aligned}
 \nabla_{\theta} J_Q(\theta) &= \nabla_{\theta} Q(s, \pi_{\theta}(s)) - \nabla_{\theta} (\alpha \|\pi_{\theta}(s) - a\|_2^2) \\
 &= \left(\nabla_a Q(s, a') \Big|_{a'=\pi_{\theta}(s)} \right)^{\top} \nabla_{\theta} \pi_{\theta}(s) - 2\alpha (\pi_{\theta}(s) - a)^{\top} \nabla_{\theta} \pi_{\theta}(s) \\
 &= \left[\nabla_a Q(s, a') \Big|_{a'=\pi_{\theta}(s)} - 2\alpha (\pi_{\theta}(s) - a) \right]^{\top} \nabla_{\theta} \pi_{\theta}(s)
 \end{aligned}$$

771 Next, let the target action be $a^* \triangleq a + \frac{1}{2\alpha} \nabla_a Q(s, a') \Big|_{a'=\pi_{\theta}(s)}$. We compute the gradient of the
772 target-matching objective $J_{\text{target}}(\theta) = -\alpha \|\pi_{\theta}(s) - a^*\|_2^2$:

$$\begin{aligned}
 \nabla_{\theta} J_{\text{target}}(\theta) &= -\nabla_{\theta} (\alpha \|\pi_{\theta}(s) - a^*\|_2^2) \\
 &= -2\alpha (\pi_{\theta}(s) - a^*)^{\top} \nabla_{\theta} \pi_{\theta}(s) \\
 &= -2\alpha \left(\pi_{\theta}(s) - \left(a + \frac{1}{2\alpha} \nabla_a Q(s, a') \Big|_{a'=\pi_{\theta}(s)} \right) \right)^{\top} \nabla_{\theta} \pi_{\theta}(s) \\
 &= \left[-2\alpha (\pi_{\theta}(s) - a) + \nabla_a Q(s, a') \Big|_{a'=\pi_{\theta}(s)} \right]^{\top} \nabla_{\theta} \pi_{\theta}(s)
 \end{aligned}$$

781 The resulting gradients are identical. □
782783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 C PROOF OF PROPOSITION 2
811812 *Proof.* We are given two conditions that $g(s, a)$ must satisfy:
813814 1. $g(s, a) \propto \nabla_a Q_\phi(s, a)$
815 2. $\mathbb{E}_{(s, a) \sim \mathcal{D}}[\|g(s, a)\|_2] = \delta$
816817 From the first condition (proportionality), we can write $g(s, a)$ as the gradient scaled by some con-
818 stant C :
819

820
$$g(s, a) = C \cdot \nabla_a Q_\phi(s, a)$$

821

822 The constant C must be determined. We use the second condition to solve for C .
823824 We substitute our expression for $g(s, a)$ into the second condition:
825

826
$$\begin{aligned} \mathbb{E}_{(s, a) \sim \mathcal{D}}[\|g(s, a)\|_2] &= \delta \\ \mathbb{E}_{(s, a) \sim \mathcal{D}}[\|C \cdot \nabla_a Q_\phi(s, a)\|_2] &= \delta \end{aligned}$$

827

828 Using the properties of norms, we can pull the scalar C out of the L2-norm as its absolute value:
829

830
$$\mathbb{E}_{(s, a) \sim \mathcal{D}}[C \cdot \|\nabla_a Q_\phi(s, a)\|_2] = \delta$$

831

832 Because C is a constant, we can pull it out of the expectation:
833

834
$$C \cdot \mathbb{E}_{(s, a) \sim \mathcal{D}}[\|\nabla_a Q_\phi(s, a)\|_2] = \delta$$

835 Now, we solve for C :
836

837
$$C = \frac{\delta}{\mathbb{E}_{(s, a) \sim \mathcal{D}}[\|\nabla_a Q_\phi(s, a)\|_2]}$$

838

839 Finally, we substitute this expression for C back into our original equation for $g(s, a)$. To avoid
840 ambiguity with the variables of integration in the expectation, we use (s', a') as dummy variables
841 for the expectation, as shown in the proposition:
842

843
$$g(s, a) = \left(\frac{\delta}{\mathbb{E}_{(s', a') \sim \mathcal{D}}[\|\nabla_a Q_\phi(s', a')\|_2]} \right) \cdot \nabla_a Q_\phi(s, a)$$

844

845 This completes the proof. □
846

Algorithm 1 Direct Optimal Action Learning (DOAL)

Require: Dataset \mathcal{D} , policy parameters θ , Q-function parameters ϕ [, Value-function parameters ψ]

- 1: **repeat**
- 2: Update $\phi[\cdot, \psi]$ using value loss of Choice
- 3: Update θ using Equation 16 for BC Loss of Choice
- 4: **until** convergence

D DOAL OBJECTIVES

In summary, the overall algorithm for DOAL is given in Algorithm 1. Similarly, you can replace the line 2 in Algorithm 1 with any Q value learning algorithms. In this section, we explicitly discuss the DOAL objectives. If one replace a^{target} with dataset action a , one recover the baseline model.

D.1 DIRECTED IMPLICIT Q-LEARNING (DIQL)

DIQL extends the implicit Q-learning framework by introducing a direct optimal action learning approach that explicitly guides policy optimization through value-aware action adjustments. The key innovation lies in replacing the action of the data set a with the optimized target action a^* in the policy loss, thus directly steering the policy towards high-value regions.

$$\mathcal{L}_\pi^{\text{DIQL}}(\theta) = \mathbb{E}_{(s, a) \sim \mathcal{D}} [\exp(\alpha(Q_\phi(s, a) - V_\psi(s))) \log \pi_\theta(a^{\text{target}} | s)], \quad (18)$$

Notice that the weighting uses the original $Q(s, a)$ as we want to reduce computational overhead.

D.2 DIRECT IMPLICIT FLOW-Q-LEARNING (DIFQL)

Implicit Flow-Q-Learning (DIFQL) (Park et al., 2025c) builds upon the framework established by Implicit Diffusion Q-learning (Hansen-Estruch et al., 2023). While the updates for the Q-function and value function remain consistent with IQL (see Equation 1), IFQL distinguishes itself by employing a flow-matching objective for policy optimization, as defined by the behavior cloning loss in Equation 3.

The policy's behavior cloning loss in DIFQL is formulated as:

$$\mathcal{L}_\pi^{\text{DIFQL}}(\theta) = \alpha \cdot \mathbb{E}_{a_1 \sim \mathcal{N}(0, I), t \sim \mathcal{U}[0, 1]} [\|v_\theta(a_t, t) - (a^{\text{target}} - a_1)\|^2], \quad a_t = (1 - t)a^{\text{target}} + ta_1 \quad (19)$$

Actions are subsequently generated by sampling from the learned flow model (see Equation 4) and the final action selection is determined by maximizing the learned Q-value function (see Equation 9).

D.3 EFFICIENT IMPLICIT TRIGFLOW Q-LEARNING (ETRIGFLOW)

We present the Efficient TrigFlow (ETrigFlow) actor objective:

$$L_\pi^{\text{ETrigFlow}}(\theta) = \mathbb{E}_{(s, a_0, t, z) \sim \mathcal{D}} [-Q_\phi(s, f_\theta(a_t, t)) + \alpha \cdot \|f_\theta(a_t, t) - a_0\|_2^2] \quad (20)$$

where $a_t = \cos(t) \cdot a_0 + \sin(t) \cdot z$ and $f_\theta(a_t, t) = \cos(t)a_t - \sin(t) \cdot F_\theta(a_t, t)$,

D.4 DIRECTED IMPLICIT TRIGFLOW Q-LEARNING (DTRIGFLOW)

For DTrigFlow, we build upon the policy diffusion formulation in Equation 6 and adopt the DOAL framework:

$$\mathcal{L}_\pi^{\text{DTrigFlow}}(\theta) = \mathbb{E}_{a_0 \sim p(a_0), z \sim \mathcal{N}(0, I), t \sim \mathcal{U}[0, \pi/2]} [\|f_\theta(a_t, t) - a_0^{\text{target}}\|_2^2] \quad (21)$$

where $a_t = \cos(t)a^{\text{target}} + \sin(t)z$.

918 D.5 DIRECTED MULTISTEP FLOW Q-LEARNING (DMFQL)
919920 The DMFQL share the same actor loss as the DIFQL, however it trains the value function through
921 Q learning:
922

923
$$\mathcal{L}(\phi) = \mathbb{E}_{(\mathbf{s}, \mathbf{a}, r, \mathbf{s}', \mathbf{a}') \sim \mathcal{D}} [\|Q_\phi(\mathbf{s}, \mathbf{a}) - (r + \gamma (Q_{\phi'}(\mathbf{s}', \pi_\theta(\mathbf{s}'))))\|_2^2], \quad (22)$$

924

925 where $\pi_\theta(\mathbf{s}')$ is sampled from MaxQ sampling with $n_{\text{target_sample}}$
926927 D.6 DIRECTED MULTISTEP FLOW REGULARIZED Q LEARNING (DMFREBRAC)
928929 DMFReBRAC introduce an additional regularizor on the Q target.
930

931
$$\mathcal{L}(\phi) = \mathbb{E}_{(\mathbf{s}, \mathbf{a}, r, \mathbf{s}', \mathbf{a}') \sim \mathcal{D}} [\|Q_\phi(\mathbf{s}, \mathbf{a}) - (r + \gamma (Q_{\phi'}(\mathbf{s}', \pi_\theta(\mathbf{s}')) - \alpha_{\text{critic}} \cdot (\mathbf{a}' - \pi_\theta(\mathbf{s}'))^2))\|_2^2], \quad (23)$$

932

933 where $\pi_\theta(\mathbf{s}')$ is sampled from MaxQ sampling with $n_{\text{target_sample}}$ and α_{critic} controls the regularization strength.
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

E EXPERIMENT RESULTS

Figure 5: Performance Comparison of Algorithms on the **OGbench** Environment.

The figures 5 illustrate the performance curves of different algorithms across various environments. Specifically, each curve in the generated plots represents the performance trend achieved during the training process of the corresponding algorithm in a specific environment. The vertical axis displays the **normalized return**. This return is the direct evaluation result without applying any aggregation or averaging over multiple runs (e.g., without a moving average filter of size 3). The Antmaze Giant environment is deliberately excluded from this set of figures because the observed performance (normalized return) in these scenes was consistently near zero (≈ 0) for all algorithms tested, rendering the resulting plots visually uninformative.

1026 **F ABLATION STUDY**
 1027

1028 In the following section, we present a detailed discussion on the influence of four critical hyperpa-
 1029 rameters: the max q sample n_{sample} , the brac coefficient α , the δ in DOAL, and the $n_{\text{target.sample}}$ for
 1030 sample next action in DMFQL. Given the number of hyperparameters introduced in this work, and
 1031 to rigorously demonstrate that our findings are not a consequence of aggressive "tuning", we adopt
 1032 a strict and transparent two-stage evaluation strategy. Below, we detail the parameter search process
 1033 and the measures taken to prevent overfitting and selection bias. All hyperparameter choices and
 1034 initial ablation studies were conducted based on runs using four fixed random seeds: 11, 22, 33, and
 1035 44. Crucially, the final, definitive results presented in the main body of this paper are derived from a
 1036 more robust set of eight independent random seeds: 111, 222, 333, 444, 555, 666, 777, and 888.

1037 With IQL, we first choose n_{sample} on the Trigflow model, then choose δ on the DTrigflow model.
 1038 Then, for all our models with IQL value function n_{sample} and δ are shared.

1039 With Q-Learning, we choose n_{sample} on the MFQL model, and choose δ on the DMFQL model. On
 1040 D4RL tasks, we copy the α_{critic} from ReBRAC and tune it on OGBench.

1042 **F.1 CHOOSING n_{sample}**
 1043

1044 Table 4 demonstrates that a larger n_{sample} does not automatically translate into better performance.
 1045 For instance, across the majority of environments, the optimal performance is achieved at relatively
 1046 small n_{sample} values. In contrast, increasing n_{sample} to 64 or 128 often leads to a measurable
 1047 decline in the average success rate. Our results demonstrate that MFQL benefits significantly from
 1048 task-specific optimization of n_{sample} .
 1049

1050 Table 4: Comparison of MFQL Performance Across Different n_{sample} averaging over 4 seeds
 1051

Environment	n_{sample}							
	1	2	4	8	16	32	64	128
antmaze-large-navigate-singletask-v0	0.050	0.655	0.695	0.560	0.330	0.265	0.140	0.125
humanoidmaze-medium-navigate-singletask-v0	0.015	0.250	0.480	0.500	0.600	0.610	0.550	0.500
humanoidmaze-large-navigate-singletask-v0	0.000	0.005	0.045	0.075	0.095	0.045	0.040	0.035
antsoccer-arena-navigate-singletask-v0	0.005	0.165	0.355	0.500	0.460	0.400	0.295	0.285
cube-single-play-singletask-v0	0.105	0.965	0.950	0.870	0.780	0.675	0.645	0.575
cube-double-play-singletask-v0	0.005	0.290	0.700	0.625	0.455	0.350	0.215	0.135
scene-play-singletask-v0	0.040	0.550	0.665	0.635	0.545	0.630	0.520	0.550
puzzle-3x3-play-singletask-v0	0.005	0.090	0.040	0.000	0.000	0.000	0.000	0.000
puzzle-4x4-play-singletask-v0	0.000	0.045	0.205	0.095	0.080	0.055	0.065	0.050

1062
 1063 **F.2 CHOOSING δ**
 1064

1065 Regarding the δ hyperparameter, our analysis primarily serves to validate the effectiveness of DOAL.
 1066 We strategically compared the performance of DMFQL using three distinct δ values: 0.03, 0.1, and
 1067 0.3. As demonstrated in the performance comparison (Figure 6), the choice of δ has a major impact
 1068 on the success rate across most environments. While we do not rule out the existence of even better
 1069 δ values, our core objective was to show that the active learning mechanism introduced by the δ
 1070 parameter is effective and necessary.

1071 It should be noted that $\delta = 0$ recovers the baseline model exactly, but we do not consider this a valid
 1072 hyperparameter choice.

1073
 1074 **F.3 IMPORTANCE OF BEHAVIOR CLONE COEFFICIENT α**
 1075

1076 We kept α from FQL (Park et al., 2025c) in the main experiments for controlling. In Figure 7, on
 1077 DMFQL, we compare the set α from FQL with $\alpha = 1$. We found that this parameter does not matter.
 1078 In fact, one should realize α effectively controls the learning rate for actor networks and is no longer
 1079 in charge of balancing in-distribution vs. Q value. With modern optimizers like ADAM (Kingma &
 Ba, 2017), such explicit weighting is not needed.

Figure 6: Performance Comparison of **DMFQL** on the **OGbench** Environment with $\delta = 0.03, 0.1, 0.3$ over 4 seeds.

Figure 7: Performance Comparison of **DMFQL** on the **OGbench** Environment with α^* from FQL and $\alpha = 1$ over 4 seeds.

Figure 8: Performance Comparison of **DMFQL** on the **OGbench** Environment with target $n_{\text{sample}} = 4$ and target $n_{\text{sample}} = 1$ over 4 seeds.

F.4 CHOOSING $n_{\text{target_sample}}$

The $n_{\text{target_sample}}$ is necessary for computing the Bellman target value in the DMFQL Q-learning loss:

$$\mathcal{L}(\phi) = \mathbb{E}_{(\mathbf{s}, \mathbf{a}, r, \mathbf{s}', \mathbf{a}') \sim \mathcal{D}} [\|Q_\phi(\mathbf{s}, \mathbf{a}) - (r + \gamma (Q_\phi(\mathbf{s}', \pi_\theta(\mathbf{s}'))))\|_2^2],$$

where $\pi_\theta(\mathbf{s}')$ is an approximation of $\arg \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}')$. To estimate this maximum in a continuous action space, we employ MaxQ sampling by drawing $n_{\text{target_sample}}$ actions from the policy π_θ at state \mathbf{s}' and taking the maximum Q-value. While MaxQ sampling can run samples in parallel, if the memory is full, increasing $n_{\text{target_sample}}$ will significantly increase the running time. We fix the $n_{\text{target_sample}} = 4$ for balancing computational budget and performance. In Figure 8, we observe that $n_{\text{target_sample}} = 4$ could achieve better results than $n_{\text{target_sample}} = 1$ overall, but not always. We acknowledge that a more exhaustive hyperparameter search might yield slightly improved results for specific environments; our primary goal was to validate the effectiveness of the DOAL framework, not to achieve the absolute maximum score through extensive tuning.

1188 **G HYPERPARAMETERS**
11891190 Table 5: DOAL Related Hyperparameters
1191

1193 Task	1194 IQL-based		1195 (Regularized)		1196 QL-based
	1197 δ	1198 n_{sample}	1199 δ	1200 n_{sample}	1201 α_{critic}
1202 antmaze-large-navigate	0.1	4	0.03	4	0.01
1203 humanoidmaze-medium-navigate	0.1	32	0.1	32	0.01
1204 humanoidmaze-large-navigate	0.03	8	0.03	16	0.001
1205 antsoccer-arena-navigate	0.1	16	0.1	16	0.1
1206 cube-single-play	0.03	32	0.03	2	0.01
1207 cube-double-play	0.1	16	0.03	4	0.1
1208 scene-play	0.1	32	0.1	4	0.01
1209 puzzle-3x3-play	0.03	4	0.03	2	0.01
1210 puzzle-4x4-play	0.03	64	0.03	4	0.01
1211 pen-human-v1	0.001	8	0.0003	4	0.5
1212 pen-cloned-v1	0.001	16	0.0003	32	0.5
1213 pen-expert-v1	0.001	64	0.0003	32	0.01
1214 door-expert-v1	0.003	2	0.003	16	0.01
1215 hammer-expert-v1	0.003	2	0.003	4	0.01
1216 relocate-expert-v1	0.003	2	0.0003	4	0.01

1208 Table 5 summarizes the hyperparameters that we find. However, on D4RL tasks, we find that the
1209 variance is high across seeds. The optimal hyperparameters are not reliable. This might be another
1210 reason for the lack of improvement of DOAL models.
1211

1212 Table 6: Other Hyperparameters
1213

1214 Hyperparameter	1215 Value
1216 Learning rate	0.0003
1217 Optimizer	Adam (Kingma & Ba, 2015)
1218 Gradient steps	1000000 (OGBench), 500000 (D4RL)
1219 Minibatch size	256
1220 MLP dimensions	[512, 512, 512, 512]
1221 Nonlinearity	GELU (Hendrycks & Gimpel, 2023)
1222 Target network smoothing coefficient	0.005
1223 Discount factor γ	0.99
1224 IQLexpctile	0.9
1225 Flow steps	10
1226 Flow time sampling distribution	Unif([0, 1])