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Abstract001

While coreference resolution is attracting more002
interest than ever from computational litera-003
ture researchers, representative datasets of fully004
annotated long documents remain surprisingly005
scarce. In this paper, we introduce a new anno-006
tated corpus of three full-length French novels,007
totaling over 285,000 tokens. Unlike previous008
datasets focused on shorter texts, our corpus ad-009
dresses the challenges posed by long, complex010
literary works, enabling evaluation of corefer-011
ence models in the context of long-distance012
reference chains. We present a modular coref-013
erence resolution pipeline that allows for fine-014
grained error analysis. We show that our ap-015
proach is competitive with state-of-the-art mod-016
els and scales effectively to long documents.017
Finally, we demonstrate its usefulness to in-018
fer the gender of fictional characters, showcas-019
ing its relevance for both literary analysis and020
downstream natural language processing tasks.021

1 Introduction022

Coreference Resolution (CR)—the task of identi-023

fying and grouping textual mentions that refer to024

the same entity (e.g., a person, an organization, a025

place)—is a fundamental component of natural lan-026

guage processing (NLP). It underpins downstream027

applications such as information extraction (Yao028

et al., 2019), text summarization (Liu et al., 2021),029

and machine translation (Vu et al., 2024). Over the030

past decades, significant progress has been made031

in CR, evolving from rule-based multi-sieve sys-032

tems to end-to-end neural models, encoder-decoder033

architectures, and large language models based034

approaches, all contributing to improvements on035

benchmark datasets (Porada et al., 2024).036

These models have long been trained and evalu-037

ated solely on generic datasets such as OntoNotes038

(Hovy et al., 2006). As CR drew attention in other039

fields, it became evident that models trained on040

general datasets underperformed when applied to041

domain-specific tasks. To address this flaw, dedi- 042

cated datasets have been developed, covering areas 043

such as biomedical (Lu and Poesio, 2021) and en- 044

cyclopedic data (Ghaddar and Langlais, 2016). 045

Driven by the availability of extensive digitized 046

collections, literary texts have emerged as a key 047

subject of computational studies and digital human- 048

ities (Moretti, 2013). A large part of such research 049

focuses on characters, considered a fundamental 050

aspect of fiction works. The study of characters is 051

essential for analyzing narrative structures, plot de- 052

velopment or conducting diachronic studies. More 053

specifically, CR is crucial for applications such as 054

quote attribution (Vishnubhotla et al., 2023), char- 055

acter archetypes inference (Bamman et al., 2014), 056

and social networks extraction (Elson et al., 2010). 057

Additionally, it has been employed to study the rep- 058

resentation and behavior of characters according to 059

their gender (van Zundert et al., 2023). 060

As outlined by Roesiger et al. (2018), literary 061

texts present unique challenges for CR, including 062

character evolution throughout the narrative and 063

the prevalence of dialogues involving multiple par- 064

ticipants. They also contain a high proportion of 065

pronouns and nested mentions. Complex narrative 066

structures—such as letters, flashbacks, and sudden 067

narrator interventions—further complicate the task. 068

Additionally, authors often rely on readers’ contex- 069

tual understanding rather than explicit statements, 070

creating ambiguities when linking mentions. 071

To address these challenges, annotated datasets 072

have been developed, covering multiple languages 073

and genres, from classical novels and fantasy tales 074

to contemporary literature. These resources en- 075

able training and evaluating in-domain coreference 076

resolution models, leading to steady performance 077

improvements (Martinelli et al., 2024). Despite vis- 078

ible progress on benchmarks, current state-of-the- 079

art CR models still struggle with full-scale literary 080

texts, limiting usefulness for downstream applica- 081

tions (Vishnubhotla et al., 2023). 082
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A key factor contributing to this limitation lies083

in the scarcity of fully annotated long documents.084

Most existing datasets consist of short excerpts or085

relatively brief texts. Since coreference annotation086

is labor-intensive and costly, there exists a trade-087

off between annotating a larger number of short088

documents or a smaller number of long ones.089

We argue that the lack of representative datasets090

for long literary texts is a major obstacle to effec-091

tively scaling CR models. This work aims to bridge092

this gap, and our contributions are as follows:093

• an annotated dataset of character coreference for094

three full-length French novels spanning three095

centuries, showcasing the feasibility of combin-096

ing automatic mention detection with manual097

coreference annotation.098

• A modular CR pipeline scalable to long doc-099

uments, enabling fine-grained error analysis100

and achieving competitive with cross-language101

benchmarks.102

• A comprehensive study of the impact of docu-103

ment length on CR performance.104

• A case study on character gender inference using105

CR models.1106

2 Related Work107

2.1 Coreference Models108

Coreference resolution has undergone several109

paradigm shifts (Poesio et al., 2023), evolving from110

rule-based, linguistically informed models tested111

on limited examples to data-driven statistical ap-112

proaches enabled by the creation of large annotated113

datasets such as those from the Message Under-114

standing Conference (MUC) and the Automatic115

Content Extraction (ACE) shared tasks (Grishman116

and Sundheim, 1995; Doddington et al., 2004).117

The adoption of neural network-based models,118

beginning with Wiseman et al. (2015), marked sig-119

nificant progress. The introduction of end-to-end120

models by Lee et al. (2017, 2018), further advanced121

CR by jointly detecting mention spans and resolv-122

ing coreference, eliminating the need for external123

parsers and handcrafted mention detection mod-124

els. Building on this foundation, higher-order infer-125

ence (HOI) strategies and entity-level models were126

developed to refine entity representations during127

inference and leverage cluster-level information.128

However, as highlighted by Xu and Choi (2020),129

the performance gains from these strategies have130

1All code and data will be made publicly available.

been marginal compared to the substantial improve- 131

ments achieved by the use of more powerful en- 132

coders like ELMo, BERT and DeBERTaV3. 133

Alternative approaches using encoder-decoder 134

architectures and large language models have 135

been proposed, framing CR as sequence-to- 136

sequence (Hicke and Mimno, 2024) or question- 137

answering (Wu et al., 2020; Gan et al., 2024) 138

tasks. While these methods show promising re- 139

sults, they are computationally intensive and do not 140

scale efficiently to longer documents or resource- 141

constrained scenarios. 142

Ultimately, the development and evaluation of 143

CR models remain deeply tied to the availability 144

of annotated datasets, which continue to drive the 145

direction of research in this field. 146

2.2 Existing Datasets 147

While MUC and ACE laid the foundation for coref- 148

erence datasets, OntoNotes has since become the 149

primary benchmark for CR. Published in 2006 150

(Hovy et al.) and regularly updated, OntoNotes 151

has been used in the CoNLL shared tasks (Pradhan 152

et al., 2011, 2012). Its latest version (Weischedel 153

et al., 2013) spans multiple languages (English, 154

Chinese and Arabic), and genres, including conver- 155

sations, news, web, and religious texts. The English 156

part contains 1.6M tokens across 3,943 documents, 157

averaging 467 tokens per document. OntoNotes 158

does not contains singleton mentions—those that 159

do not corefer with any other mention. 160

The growing interest for large literature corpora 161

has driven the development of dedicated annotated 162

datasets. The late 2010s saw the emergence of the 163

first literary CR datasets, beginning with DROC 164

(Krug et al., 2018), including samples from 90 165

German novels annotated with character corefer- 166

ence chains. With over 393,000 tokens (averaging 167

4,368 tokens per document), DROC remains the 168

largest literary CR dataset to date. The RiddleCoref 169

dataset (van Cranenburgh, 2019) followed, cover- 170

ing excerpts from 21 contemporary Dutch novels, 171

though it is not publicly available due to copyright 172

restrictions. Bamman et al. (2020) released Lit- 173

Bank, consisting of the first 2,000 tokens from 100 174

English novels. This dataset covers six entity cat- 175

egories (persons, faculties, locations, geopolitical, 176

organizations and vehicles). Other datasets include 177

FantasyCoref (Han et al., 2021), KoConovel cover- 178

ing 50 full-length Korean short stories (Kim et al., 179

2024), and LitBank-fr (Mélanie et al., 2024). This 180

last dataset is noteworthy in that it covers longer 181
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Lang. Domain Doc. Tokens Tokens / Doc.
Avg. Max.

Annotated Datasets
OntoNotesen (Weischedel et al., 2013) English Non-literary 3,493 1,600,000 467 4,009
DROC (Krug et al., 2018) German Fiction 90 393,164 4,368 15,718
RiddleCoref (van Cranenburgh, 2019) Dutch Fiction 21 107,143 5,102 -
LitBank (Bamman et al., 2020) English Fiction 100 210,532 2,105 3,419
FantasyCoref (Han et al., 2021) English Fantasy 214 367,891 1,719 13,471
KoCoNovel (Kim et al., 2024) Korean Fiction 50 178,000 3,578 19,875
LitBank-fr (Mélanie et al., 2024) French Fiction 28 275,360 9,834 30,987
Target Datasets
Standard Ebooks2 English Fiction 770 82,855,210 107,604 1,105,964
Chapitres (Leblond, 2022) French Fiction 2,960 240,971,614 81,409 878,645
Contribution
Ours French Fiction 3 285,176 95,058 115,415

Table 1: Comparison of coreference annotation datasets: OntoNotes (English section), fiction datasets, and target
datasets across languages.

excerpts of text—averaging 9,834 tokens and up to182

30,987 for the longest document.183

Despite these resources, extrinsic evaluations re-184

veal that CR models perform poorly on full-length185

documents (van Zundert et al., 2023). Studies con-186

sistently show that performance degrades with in-187

creasing document length (Joshi et al., 2019; Tosh-188

niwal et al., 2020; Shridhar et al., 2023). This repre-189

sents a major challenge given that practical applica-190

tions involve digitized collections such as Project191

Gutenberg or Wikisource, where documents fre-192

quently exceed 90,000 tokens and can reach up to193

a million as illustrated in Table 1.194

While some initiatives annotate entire books,195

they often diverge from standard guidelines. He196

et al. (2013) annotated Pride and Prejudice but197

focused solely on proper mentions. Similarly,198

van Zundert et al. (2023) labeled character aliases199

across 170 novels, omitting pronouns and noun200

phrases. Other datasets, such as QuoteLi3 (Muzny201

et al., 2017) and PNDC (Vishnubhotla et al., 2022),202

include coreference annotations for speakers and203

direct speech but lack broader character coverage.204

To the best of our knowledge, the only CR results205

reported on a document of substantial length (37k206

tokens) come from Guo et al. (2023), but they omit207

singletons, plural mentions, and nested entities.208

These observations underscore the need for an209

annotated corpus of full-length literary documents.210

Such a resource will enable more robust evaluation211

and improvement of CR models, addressing the gap212

between current datasets and intended applications.213

2standardebooks.org

3 New Dataset 214

We selected three average-length French novels 215

spanning three centuries, resulting in a total of 216

285,176 tokens. We chose to annotate coreference 217

for character mentions only for several reasons. 218

First, most downstream tasks in literary NLP fo- 219

cus on characters. Second, previous work shows 220

that characters account for the majority of anno- 221

tated mentions—83.1% and 83.5% in LitBank and 222

LitBank-fr, respectively. Restricting annotations to 223

character mentions allows us to leverage the 31,570 224

mentions already annotated in LitBank-fr to train a 225

highly accurate mention detection model. 226

For consistency and interoperability, we strictly 227

adhere to the annotation guidelines established by 228

Mélanie et al. (2024) for French. We annotate all 229

mentions referring to a character, including pro- 230

nouns, nominal phrases, proper nouns, singletons 231

and nested entities. Coreference links capture strict 232

identity relations between mentions. 233

3.1 Mentions Detection Model 234

While Mélanie et al. (2024) report strong results 235

for mention detection, we opted to retrain our 236

own model. Our approach builds on a stacked 237

BiLSTM-CRF architecture inspired by Ju et al. 238

(2018), leveraging contextual token embeddings 239

from CamemBERTLARGE (Martin et al., 2020). We 240

achieved an improvement of 4.99 in F1-score on 241

the test set from LitBank-fr (Table 2). To assess 242

generalization performance, we also conducted a 243

leave-one-out cross-validation (LOOCV). Details 244

of the model architecture and hyperparameters are 245

available in the Appendix A. 246
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Model P R F1 Support
Mélanie et al.
(test set)

85.0 92.1 88.4 4,061

Ours (test set) 91.29 95.59 93.39 4,061
Ours (LOOCV) 90.72 93.52 92.05 31,570

Table 2: Comparison of mention detection perfor-
mance.

Coreference annotation is usually carried out in247

two stages: annotating the mention spans, then link-248

ing mentions referring to the same entity together.249

Given our model’s 92.05 F1-score, we consider its250

performance sufficient to automate the first opera-251

tion, significantly reducing annotation time.252

3.2 Coreference Annotation253

Coreference annotation is performed manually,254

building upon the automatically detected mentions.255

A single trained annotator reviews the text, assigns256

entity identifiers to each mention, corrects errors257

from the mention detection step, deleting spurious258

mentions, adding missed ones, and adjusting incor-259

rect boundaries. This process ensures that both the260

mentions and the coreference are considered gold261

annotations at the end.262

Several coreference annotation tools have been263

developed in recent years (Stenetorp et al., 2012;264

Yimam et al., 2013; Vala et al., 2016; Muzny et al.,265

2017). We use SACR, an open-source, browser-266

based interface developed by Oberle (2018). This267

tool meets our requirements, allowing efficient pro-268

cessing of long texts, tracking a large number of269

entities and handling nested mentions.270

In practice, mention detection errors are rare and271

mainly involve difficult cases, such as ambiguous272

mentions (animals with agentivity, appositions, re-273

flexive pronouns), nested mentions and other edge274

cases. This confirms the feasibility of leveraging275

automatic mention detection to accelerate corefer-276

ence annotation. We estimate the manual annota-277

tion of a 100,000-token text to take around 30 to278

40 hours.279

3.3 Dataset Statistics280

Table 3 summarizes key statistics from our dataset.281

The entity spread refers to the distance between the282

first and the last mention of an entity (Toshniwal283

et al., 2020). This metric highlights a key speci-284

ficity of literary texts, characters can be referred to285

thousands times over several hundred pages, com-286

prising thousands of tokens.287

Average Mentions / Doc. 13,178
Singletons Ratio 1.15%
Coreference Chains / Doc. 159
Average Mentions / Chain 82
Maximum Mentions / Chain 4,932
Average Entity Spread (tokens) 17,529
Maximum Entity Spread (tokens) 115,369

Table 3: Dataset statistics summary.

Another important metric for characterizing 288

coreference is the distance to the nearest antecedent 289

(Han et al., 2021). For each mention, we locate the 290

previous mention belonging to the same corefer- 291

ence chain and measure the difference in terms of 292

mention positions. Bamman et al. (2020) analyzed 293

the distribution of distance to nearest antecedent 294

for proper nouns, noun phrases and pronouns. We 295

replicate their experiment and report similar results. 296

While 95% of pronouns appear within 7 mentions 297

of their last antecedent, this distance can reach up 298

to 270 mentions for proper nouns and noun phrases. 299

This observation calls for distinct handling of pro- 300

nouns, common, and proper nouns during corefer- 301

ence resolution. We also notice that the last 1% of 302

proper and common noun mentions exhibit a dis- 303

tance of over 1,700 mentions, presenting a signifi- 304

cant challenge for coreference resolution. The full 305

distribution of antecedent distances can be found 306

in the Appendix B. 307

3.4 Corpus Merging 308

Since we followed the guidelines from Mélanie 309

et al. (2024), the newly annotated dataset is fully 310

compatible with the character annotations from the 311

LitBank-fr dataset. It allows us to merge the two 312

datasets, resulting in a combined dataset containing 313

31 documents and 71,105 character mentions. 314

This merged dataset becomes the largest anno- 315

tated literary coreference dataset in terms of tokens 316

(560,536), average document length (18,081 to- 317

kens), and maximum document length (115,415 318

tokens). Unless otherwise specified, all results pre- 319

sented in this paper pertain to this merged corpus, 320

which we refer to as Long-LitBank-fr. 321

4 Coreference Resolution 322

Several coreference resolution pipelines are avail- 323

able off-the-shelf, such as the CoreferenceRe- 324

solver module from Spacy3, Fastcoref (Otmaz- 325

gin et al., 2022) and AllenNLP (Gardner et al., 326

3https://spacy.io/api/coref
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2018). BookNLP (Bamman et al., 2020), is a327

pipeline performing, among other, mentions de-328

tection and coreference resolution for English. A329

French adaptation, BookNLP-fr, was developed by330

Mélanie et al. (2024) and trained on the LitBank-331

fr dataset. The BookNLP pipelines implement an332

end-to-end coreference resolution model (Ju et al.,333

2018), which makes them impractical to modify334

and conduct detailed error analysis.335

Diverging from recent trends of end-to-end ar-336

chitectures, we propose to implement coreference337

resolution as a modular pipeline, facilitating the338

study of each component’s role and enabling fine-339

grained error analysis.340

4.1 Pipeline Description341

The mention-pair-based coreference resolution342

pipeline is composed of the following modules :343

Mention Detection: We use the mention detection344

module discussed previously. We retrained it on345

the merged corpus, achieving an increase of 2.31346

points in F1-score (94.33). As mention detection347

significantly impacts overall CR performance, we348

make it possible to bypass the errors introduced by349

this module by using gold mentions as input to the350

mention-pair encoder.351

Considered Antecedents: To address the quadratic352

complexity of considering all antecedents, re-353

cent approaches introduce hyperparameters to uni-354

formly limit the number of considered antecedents355

(Thirukovalluru et al., 2021; Wu et al., 2020). In-356

spired by Bamman et al. (2020) and supported by357

our observations regarding antecedent distance, we358

adopt a mention-type-specific approach. We limit359

the number of antecedents to 30 for pronouns and360

300 for proper and common nouns.361

Mention Pair Encoder: Mention-pairs are en-362

coded by concatenating the representations of the363

two mentions with a feature vector that includes364

attributes such as gender, grammatical person, and365

the distance between the mentions. For multi-token366

mentions, the representation is calculated as the av-367

erage of the first and last tokens embeddings.368

Mention Pair Scorer: Encoded mention-pairs are369

passed into a feedforward neural network trained370

to predict whether two mentions refer to the same371

entity. Additional details about the features, model372

architecture and training parameters are provided373

in the Appendix C.374

Antecedent Ranker: Following Wiseman et al.375

(2015), candidate antecedents are ranked accord- 376

ing to their predicted scores. During inference, the 377

highest-scoring antecedent is selected unless all 378

scores fall below a 0.5 threshold, in which case the 379

null antecedent is assigned. 380

Entity Clustering: The default strategy for linking 381

mentions into entity clusters is to scan the docu- 382

ment from left to right, each new mention is ei- 383

ther merged into the cluster of its best-ranked an- 384

tecedent or left as a standalone entity. Coreference 385

chains are defined as the set of mentions in a clus- 386

ter. 387

We explore additional strategies to address spe- 388

cific challenges and improve overall performance. 389

Handling Limited Antecedents: Limiting the 390

number of considered antecedents can lead to split 391

coreference chains. A common strategy in literary 392

texts is to link all matching proper nouns at the 393

document level, along with their derivatives. While 394

previous works have been using hand-crafted sets 395

of aliases to link proper mentions (Bamman et al., 396

2020), we leverage local mention-pairs scoring to 397

perform coreference resolution at the document 398

scale. Let’s say that all local predictions involv- 399

ing mentions of "Sir Ralph Brown" and "Raphael" 400

are coreferent, we propagate this decision to all 401

mention-pairs at the global scale, bridging the gap 402

between a mention and an antecedent that would 403

otherwise be out of the range of locally considered 404

antecedents. 405

Leveraging Non-Coreference Predictions: While 406

most mention-pair models focus on positive coref- 407

erence links, the cross-entropy loss used during 408

training involves that they are equally trained to 409

predict non-coreference. We propose leveraging 410

high-confidence non-coreference predictions to pre- 411

vent later incorrect cluster merging. Mention-pairs 412

containing a coordinating conjunction, such as 413

“[Ralph] and [Mr. Delmare]”, are a strong indi- 414

cation of non-coreference between these two men- 415

tions, which can be used to prevent the merging of 416

these two entities at document level. This approach 417

is combined with an "easy-first" clustering strategy 418

(Clark and Manning, 2016), which processes men- 419

tions in order of confidence rather than left-to-right, 420

thus delaying harder decisions. 421

The addition of these two strategies is refered 422

to as the easy-first, global proper mentions coref- 423

erence approach. Its effectiveness is evaluated in 424

subsequent experiments. 425
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4.2 Evaluation Metrics426

We evaluate CR performance using MUC (Vilain427

et al., 1995), B3 (Bagga and Baldwin, 1998), and428

CEAFe (Luo, 2005) scores. For overall perfor-429

mance assessment we report the average F1-score430

of the three metrics which we refer to as the CoNLL431

F1-score (Pradhan et al., 2012). We use the scorer432

implementation by Grobol.4433

4.3 Document Length434

While Poot and van Cranenburgh (2020) investi-435

gated the impact of document length on CR by436

truncating documents to different sizes, we adopt a437

splitting approach. This allows us to evaluate CR438

performance on more text excerpts.439

Given a target sample size of L tokens, we first440

select all documents from our corpus that exceed441

this length. Each selected document is then split442

into non-overlapping samples, each containing L443

tokens. CR is performed independently on each444

sample, and the results are averaged across all sam-445

ples of a given document. To compute the overall446

CR score, we calculate the macro-average across447

all retained documents.448

4.4 Coreference Resolution Results449

4.4.1 Mention-Pairs Scorer Results450

The mention-pairs scorer, evaluated using leave-451

one-out cross-validation with gold mention spans,452

achieved an overall accuracy of 88.10%. As453

shown in Table 4, performance disparities between454

classes reflect the underlying class imbalance, with455

significantly higher precision and recall for non-456

coreferent pairs (class 0). Notably, most errors457

occurred for mention pairs where the scorer’s con-458

fidence is low (∼ 0.5) (see Appendix D). As we459

use the highest ranked antecedent strategy, not all460

scorer decisions are used during entity clustering,461

mitigating the number of wrong decisions consid-462

ered.463

Coref. P R F1 Support
0 92.31 93.18 92.74 5.52M (82%)
1 68.49 65.62 67.02 1.25M (18%)

Table 4: Mention-pairs scorer performance on Long-
LitBank-fr corpus. Precision (P), Recall (R).

4https://github.com/LoicGrobol/scorch

4.4.2 Highest Ranked Antecedent 464

After sorting antecedents, the correct antecedent 465

was predicted in 88.05% of cases, highlighting the 466

effectiveness of this approach. Errors occurred for 467

8,496 mentions (11.95%). In 1,478 cases (2.08%), 468

the range of considered antecedents is too narrow, 469

leaving true antecedents out of reach. For these 470

mentions, the null antecedent is assigned approxi- 471

mately half the time, while an unrelated antecedent 472

is assigned in the other half. 473

In 7,018 cases (9.87%), the true antecedent is 474

within reach, but the model incorrectly assigned a 475

different antecedent in nearly 90% of instances. In 476

the remaining 10%, the null antecedent is wrongly 477

predicted. 478

The additional global proper mentions corefer- 479

ence strategy aims at reducing both types of errors, 480

by bridging the gap between proper mentions and 481

their long distance antecedent, and by limiting clus- 482

tering of mentions that are believed to be distinct 483

from local mention-pair scores. 484

4.4.3 Entity Clustering Strategies 485

The global proper mentions strategy leads to an 486

overall gain in performance measured by CoNLL 487

F1-score of 2 points. We observe a slight drop for 488

MUC, but a significant improvement on both B3 489

and CEAFe, suggesting an enhancement of the CR 490

both from a mention-level and entity-level.

Strategy MUC B3 CEAFe CoNLL
Left to Right
(Baseline) 94.66 64.39 61.28 73.44

Easy-first
Global Proper CR

94.47
(-0.19)

69.26
(+4.87)

62.58
(+1.30)

75.44
(+2.00)

Table 5: Coreference resolution for Long-LitBank-fr
corpus. Average F1-scores. Gold mentions.

491
These scores reflect the average performances 492

of this strategy on the full Long-LitBank-fr corpus 493

(averaging 18,081 tokens per document). However 494

it is best suited to long texts that present both the 495

risk of out-of-reach antecedent, and sufficient lo- 496

cal evidence on proper mentions-pairs to propagate 497

document-wide decisions. In the following sec- 498

tion we examine the impact of document length on 499

coreference resolution performances. 500

4.4.4 Influence of Document Length 501

From Figure 1, we observe that the overall CR per- 502

formance decreases with document length. Much 503

of the performance loss is observed in the lower 504

range. This is critical for literary CR, and might 505
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Figure 1: Impact of document length on coreference resolution performance. Gold mentions.

well explain why coreference resolution models506

trained and evaluated on documents of limited507

length (2k to 10k tokens), have been deceiving508

when used for downstream tasks on full length doc-509

uments (∼ 90k tokens).510

The proper mentions global coreference strat-511

egy consistently outperform the vanilla left-to-right512

method. Performance gains is mostly negligible for513

short documents (< 2k tokens), but becomes signif-514

icant and stable beyond, reaching +3 points on the515

CoNLL F1-score. This shows the effectiveness of516

our approach for handling CR in longer documents.517

4.4.5 Comparison to Other Benchmarks518

While comparing results across different corpora519

and languages can be challenging, we chose to do520

so in order to benchmark the performance of our521

pipeline with existing systems. Given that docu-522

ment length is critical in CR, we ensure that all523

model comparisons are conducted on corpora with524

similar average token counts.525

For French coreference resolution, our new526

pipeline significantly outperforms the model pro-527

posed by Mélanie et al. (2024) on their test set.528

In cross-corpus and cross-language benchmarks,529

our model consistently surpasses existing baselines,530

with performance gains strongly correlated with531

document length—reaching an improvement of532

+23 points on texts averaging 37,000 tokens. The 533

only case where our model falls short of state-of- 534

the-art results is in comparison to Thirukovalluru 535

et al. (2021). This is due to their use of Span- 536

BERT, a high-performing encoder, well-suited for 537

CR. Given the scarcity of French pretrained models 538

and the absence of a SpanBERT equivalent, future 539

work should explore using larger multilingual mod- 540

els to bridge this gap. 541

Additionally, Table 6 illustrates the impact of 542

using predicted mentions as input to the scorer, 543

leading to an overall performance drop of 7%, this 544

result is consistent with previous publications. 545

546

While this experiment reveals performance limi- 547

tations exacerbated by document length, the com- 548

monly used CR metrics (MUC, B3, CEAFe) have 549

been criticised for presenting systematic flaws. Al- 550

ternative metrics such as LEA (Moosavi and Strube, 551

2016) and BLANC (Recasens and Hovy, 2011) 552

have been proposed as better aligned with linguistic 553

intuitions. Others have argued for extrinsic evalua- 554

tion methods (O’Keefe et al., 2013; Vishnubhotla 555

et al., 2023), where CR is assessed based on its 556

contribution to downstream tasks, such as classifi- 557

cation, which are often easier to evaluate. 558

We examine the usefulness of our CR pipeline 559

for predicting the gender of fictional characters. 560

Corpus Model Mentions Tokens / Doc MUC B3 CEAFe CoNLL
LitBank-fr (test-set) Mélanie et al. 2024 Gold 2,000 88.0 69.2 71.8 76.4
LitBank-fr (test-set) Ours Gold 2,000 92.43 70.67 75.59 79.56
LitBank (English) Bamman et al. 2020 Gold 2,105 88.5 72.6 76.7 79.3
LitBank-fr (LOOCV) Ours Gold 2,105 91.93 74.6 75.35 80.63
LitBank (English) Bamman et al. 2020 Predicted 2,105 84.3 62.73 57.3 68.1
LitBank (English) Thirukovalluru et al. 2021 Predicted 2,105 89.50 78.21 67.59 78.44
LitBank-fr (LOOCV) Ours Predicted 2,105 84.58 74.77 63.30 73.21
KoCoNovel (Korean) Kim et al. 2024 Predicted 3,578 71.06 57.33 44.19 57.53
Long-LitBank-fr (LOOCV) Ours Predicted 3,578 88.31 68.79 47.17 68.09
G. Orwell, Animal Farm Guo et al. 2023 Predicted 37,000 - - - 36.3
Long-LitBank-fr (LOOCV) Ours Predicted 37,000 92.79 52.35 32.89 59.34

Table 6: Comparison of CR performance with other work on literary coreference with predicted and gold mentions.
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5 Gender Prediction Case study561

As mentioned, studies gravitating around character562

gender have attracted substantial attention from563

computational humanities researchers (Underwood564

et al., 2018). A critical part of such studies lies in565

the ability to accurately predict the gender of as566

many character mentions as possible in order to get567

representative results.568

Early works relied on heuristics to infer gender569

from explicit clues (he, Mrs, the old man), achiev-570

ing high precision (90%) but lower recall (30-50%).571

This is due to the high proportion of ambiguous572

mentions in literary texts involving first and second573

person pronouns, indefinite pronouns, as well as574

ambiguous nouns. Recent works leverages CR for575

broader gender prediction (Vianne et al., 2023).576

5.1 Data Preparation577

We use the Long-Litbank-fr corpus. Starting with578

the 71,106 character mentions, we discard single-579

tons (2.74%) and plural mentions (9.84%). We580

manually annotate the gender of the remaining581

62,162 mentions at the entity level. We adopt a582

binary approach to gender (male, female). Works583

of fiction are subject to play on characters’ gen-584

der, such as gender revelation or asymmetry of585

knowledge between characters. To assign character586

gender we adopt the omniscient perspective (Kim587

et al., 2024), refering to the knowledge one have at588

the end of the entire book. After annotation, we dis-589

card chains whose gender cannot be annotated with590

certainty, leaving us with 804 entities and 61,852591

mentions (86.99% of all mentions).592

5.2 Prediction Pipeline593

To predict the gender of character mentions we im-594

plement a multi-stage solution:595

Heuristic rules: assign gender based on heuristics596

from explicit gender clues (pronouns, noun phrases,597

articles, adjectives).598

First-name database: determine the gender of599

proper mentions using a statistical database of first600

names given to children born in France between601

1900 and 2023.5602

Coreference propagation: resolve coreference,603

compute the male/female ratio of processed men-604

tions, and assign the majority gender to all men-605

tions within the coreference chain.606

5Database from the French National Institute of Statistics
and Economic Studies (INSEE).

We compare our results with those of Naguib 607

et al. (2022) who used a similar combination of 608

heuristic rules and CR to infer character gender. 609

5.3 Case Study Results 610

Coreference resolution significantly improves re- 611

call compared to rule-based methods. While heuris- 612

tics achieve high precision (>98%), they suffer 613

from low recall (37-47%), reflecting the signifi- 614

cant number of mentions whose gender cannot be 615

inferred without additional context. 616

Our approach outperforms the baseline by lever- 617

aging sophisticated heuristic rules, a first-names 618

database, and a more effective CR pipeline. Al- 619

though CR slightly reduces precision—a conse- 620

quence of clustering errors—the substantial recall 621

gain makes it a robust method overall. 622

Male Female
P R P R

Baseline
Naguib et al. 2022

95.00 45.00 97.00 58.00

Heuristic Rules 99.77 36.97 98.85 46.67
+ First-name data 99.77 38.35 98.82 47.41
+ Coreference 95.35 91.55 90.37 93.40

Table 7: Mentions gender prediction performance. Pre-
cision (P), Recall (R).

6 Conclusion 623

We highlight critical limitations in coreference 624

resolution (CR) for literary texts, particularly the 625

scarcity of representative datasets, limiting the pos- 626

sibility to train and evaluate models tailored for 627

literary computational studies. To bridge this gap, 628

we release an annotated corpus of character coref- 629

erence chains for three full-length French novels 630

spanning three centuries (285,000+ tokens). We 631

introduce a modular CR pipeline tailored for long 632

documents, integrating global coreference propa- 633

gation for proper nouns and an easy-first cluster- 634

ing approach. After carrying out a detailed error 635

analysis of each component, we study the impact 636

of document length on overall coreference perfor- 637

mance. Our approach is competitive with existing 638

state-of-the-art models, demonstrating good perfor- 639

mance on longer texts. To demonstrate practical 640

value, we apply it to character gender inference, 641

significantly improving recall over rule-based base- 642

lines while maintaining high precision, and out- 643

performing other CR-based approach. This study 644

underscores the need for robust datasets and well- 645

evaluated models to advance literary CR research. 646
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Limitations647

While our dataset is among the largest annotated648

literary datasets in terms of tokens (285,000), it is649

limited by the fact that it only contains three doc-650

uments. This implies that it does not encompass651

the full diversity of time periods, literary move-652

ments, and genres within French literature. This653

limitation may impact the generalizability of the654

coreference resolution (CR) models trained on this655

dataset. The proposed Long-LitBank-fr corpus re-656

sulting from the concatenation with the LitBank-fr657

dataset mitigates this issue by increasing diversity658

and improving the potential for model generaliza-659

tion.660

Another limitation is that we focused solely on661

annotating coreference chains for characters. Some662

downstream applications may require resolving663

coreference for other entity types (e.g., geograph-664

ical entities, events). Since our annotations are665

restricted to characters, a model trained exclusively666

on this data may not easily transfer to tasks involv-667

ing other entity types. In such cases, enriching the668

annotations would be necessary for broader appli-669

cability.670

Furthermore, our study is limited to French-671

language texts, and we did not explore cross-672

lingual generalization of our pipeline. Expand-673

ing the dataset to include full documents in other674

languages could improve its applicability. This675

could be achieved through annotation transfer or676

by leveraging multilingual models, which would677

help reduce the cost of manual annotation.678

Finally, while extrinsic evaluation is not the pri-679

mary focus of this work, we have only begun to680

assess our pipeline through its application to charac-681

ter gender inference. A more comprehensive evalu-682

ation of the models’ suitability for full-document683

literary analysis would require additional extrinsic684

assessments, such as network extraction or quote685

attribution.686
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A Mention Detection Model1079

The mention detection module consists of two1080

stacked BiLSTM-CRF models, each trained on a1081

different nesting level of mentions. During infer-1082

ence, predicted spans from both models are com-1083

bined. If two mention spans overlap, the span with1084

the lower prediction confidence is discarded.1085

BERT embeddings: The raw text is split into1086

overlapping segments of length L (the maximum1087

embedding model context window) with an over-1088

lap of L/2 to maximize the context available for1089

each token. Each segment is passed through the1090

CamemBERTLARGE model, and we retrieve the last1091

hidden layer as the token representations (1024 di-1092

mensions). The final token embedding is computed1093

as the average from overlapping segments. We do1094

not fine-tune CamemBERT for this task.1095

BIOES tag prediction: For each sentence,1096

token representations are passed through the1097

BiLSTM-CRF model, which outputs a sequence1098

of BIOES tags: B-PER (Beginning of mention), I-1099

PER (Inside), E-PER (End), S-PER (Single-token1100

mention), and O (Outside).1101

A.1 Model Architecture1102

• Locked Dropout (0.5) applied to embeddings1103

for regularization.1104

• Projection Layer: Highway network mapping1105

1024 → 2048 dimensions.1106

• BiLSTM Layer: Single bidirectional LSTM1107

(256 hidden units per direction).1108

• Linear Layer: Maps 512-dimensional BiLSTM1109

outputs to BIOES label scores.1110

• CRF Layer: Enforces structured consistency in1111

predictions.1112

A.2 Model Training1113

• Data Splitting: Leave-One-Out Cross-1114

Validation (LOOCV) with an 85%/15%1115

train-validation split.1116

• Batch Size: 16 sentences per batch.1117

• Optimization: Adam optimizer (lr = 1.4 ×1118

10−4, weight decay = 10−5).1119

• Learning Rate Scheduling: ReduceLROn-1120

Plateau (factor = 0.5, patience = 2).1121

• Average Training Epochs: 20.1122

• Hardware: Trained on a single 6GB Nvidia1123

RTX 1000 Ada Generation GPU.1124

B Nearest Antecedent Distribution 1125

Figure 2: Distance to nearest antecedent for mentions
of different type.

C Coreference Resolution Model 1126

C.1 Model Architecture 1127

• Model Input: 2,165-dimensional vector, com- 1128

posed of concatenated: 1129

– CamemBERT embeddings: Maximum con- 1130

text embeddings for both mentions (2 × 1,024 1131

= 2,048 dimensions). 1132

– Mention Features (106 dimensions): 1133

* Mention length. 1134

* Position of the mention’s start token in the 1135

sentence. 1136

* Grammatical category (pronoun, common 1137

noun, proper noun). 1138

* Dependency relation of the mention’s head 1139

(one-hot encoded). 1140

* Gender (one-hot encoded). 1141

* Number (one-hot encoded). 1142

* Grammatical person (one-hot encoded). 1143

– Mention Pair Features (11 dimensions): 1144

* Distance between mention IDs. 1145

* Distance between start and end tokens of 1146

mentions. 1147

* Sentence and paragraph distance. 1148

* Difference in nesting levels. 1149

* Ratio of shared tokens between mentions. 1150

* Exact text match (binary). 1151

* Exact match of mention heads (binary). 1152
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* Match of syntactic heads (binary).1153

* Match of entity types (binary).1154

• Hidden Layers:1155

– Three fully connected layers.1156

– 1,900 hidden units per layer with ReLU activa-1157

tion.1158

– Dropout rate of 0.6 for regularization.1159

• Final Layer:1160

– Linear layer mapping from 1,900 dimensions1161

to a single scalar score.1162

– Output: Continuous value between 0 (not1163

coreferent) and 1 (coreferent).1164

C.2 Model Training1165

• Data Splitting: Leave-One-Out Cross-1166

Validation (LOOCV) with an 85%/15%1167

train-validation split.1168

• Batch Size: 16,000 mention-pairs per batch.1169

• Optimization: Adam optimizer (lr = 4.0 ×1170

10−4, weight decay = 10−5).1171

• Antecedent Candidates:1172

– 30 for pronouns.1173

– 300 for common and proper nouns.1174

• Hardware: Trained on a single 6GB Nvidia1175

RTX 1000 Ada Generation GPU.1176

D Mention-Pairs Scorer Error1177

Distribution1178

Figure 3: Error Rate by Mention-pair Predicted Score
Range.

E Annotated Dataset Details 1179

Year Author Text Tokens
1731 Antoine-François Prévost Manon Lescaut 71,219
1832 George Sand Indiana 115,415
1923 Delly Dans les ruines 98,542

Table 8: Annotated Dataset Details
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