
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

UNIFYING GENERATIVE AND DENSE RETRIEVAL FOR
SEQUENTIAL RECOMMENDATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Sequential dense retrieval models utilize advanced sequence learning techniques
to compute item and user representations, which are then used to rank relevant
items for a user through inner product computation between the user and all item
representations. However, this approach requires storing a unique representa-
tion for each item, resulting in significant memory requirements as the number
of items grow. In contrast, the recently proposed generative retrieval paradigm
offers a promising alternative by directly predicting item indices using a genera-
tive model trained on semantic IDs that encapsulate items’ semantic information.
Despite its potential for large-scale applications, a comprehensive comparison be-
tween generative retrieval and sequential dense retrieval under fair conditions
is still lacking, leaving open questions regarding performance, and computation
trade-offs. To address this, we compare these two approaches under controlled
conditions on academic benchmarks and propose LIGER (LeveragIng dense re-
trieval for GEnerative Retrieval), a hybrid model that combines the strengths of
these two widely used methods. LIGER integrates sequential dense retrieval into
generative retrieval, mitigating performance differences and enhancing cold-start
item recommendation in the datasets evaluated. This hybrid approach provides
insights into the trade-offs between these approaches and demonstrates improve-
ments in efficiency and effectiveness for recommendation systems in small-scale
benchmarks.

1 INTRODUCTION

Sequential recommendation methods (Kang & McAuley, 2018b; Zhou et al., 2020), have pre-
dominantly relied on advanced sequential modeling techniques (Hochreiter & Schmidhuber, 1997;
Vaswani et al., 2017; Radford et al., 2019) to learn dense embeddings for each item and user. Using
these embeddings, the most relevant items are retrieved through maximum inner product search.
Despite its effectiveness, this approach requires comparing every item in the dataset during the re-
trieval stage, which can be computationally expensive as the number of items grows. Furthermore,
each item must be represented by a unique embedding, which needs to be learned and stored, adding
to the complexity.

In contrast, generative retrieval (Rajput et al., 2024) is a new approach, which deviates from the
embedding-centric paradigm. Instead of generating embeddings, this approach utilizes a generative
model to directly predict the item index. To better capture the sequential patterns within item inter-
actions, items are indexed by “semantic IDs” (Lee et al., 2022a), which encapsulate their semantic
characteristics. During the recommendation process, the model employs beam search decoding to
predict the semantic ID (SID) of the next item based on the user’s previous interactions. This method
not only reduces the need for storing individual item embeddings but also enhances the ability to
capture deeper semantic relationships within the data. Additionally, adjusting the temperature during
generation can naturally produce more diverse recommendations.

To distinguish the first paradigm from generative retrieval, which also leverages sequential informa-
tion, we refer to the embedding-centric paradigm in this paper as (sequential) dense retrieval. The
term dense retrieval is borrowed from the information retrieval domain (Tran & Yates, 2022), with
“sequential” added to differentiate it from other dual-encoder-based architectures Yi et al. (2019).
The generative retrieval paradigm is well-positioned for future scaling in industrial recommendation

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Predicted
Item Rep

Inner
Prod.

Beam Search Item SIDSequential
Model

Item ID

Dense Retrieval: 𝒪(N)

Generative Retrieval: 𝒪(t)

Title

Price

Brand

Category

Sequential
Model

Item Content
Information

Recall@10→
Beauty Sports Toys Steam

In-set Cold In-set Cold In-set Cold In-set Cold

Dense 0.0931 0.0823 0.0553 0.0575 0.0952 0.0496 0.2011 0.0261
TIGER 0.0601 0.0 0.0382 0.0020 0.0578 0.0 0.1898 0.0

Perf Gap 0.0330 - 0.0171 - 0.0374 - 0.0113 -

1

Figure 1: Performance Comparison Between the Implemented Generative and Dense Retrieval Methods
Across Datasets. Dense retrieval computes the inner product between predicted item representations and the en-
tire item set, scaling with O(N) and requiring storage for O(N) embeddings. In contrast, generative retrieval
stores only O(t) learnable embeddings and predicts the next item using beam search, scaling with O(tK),
where K is the beam size and t is the number of Semantic IDs. Using identical item content information, both
methods were trained on various datasets, and their performance, measured by Recall@10, is reported in the
table on the right. While the implemented generative retrieval method reduces computational and storage costs,
it shows lower performance compared to the implemented dense retrieval method in the datasets we evaluated.

systems (Singh et al., 2023), offering significant savings in storage and inference time. However,
while recent works continue to advance the dense retrieval paradigm (Hou et al., 2022c), generative
retrieval methods are increasingly being integrated with pretrained models such as LLMs (Cao et al.,
2024b) to improve item recommendation.

Despite these advancements, there is a notable lack of direct comparisons under equivalent con-
ditions, raising questions about which paradigm performs better given the same input information
and how their performance balances against storage and computation trade-offs. Given the focus
on academic benchmarks and limited resources, we narrow our study to small-scale datasets com-
monly used in research (Rajput et al., 2024; Cao et al., 2024a; Liu et al., 2024b; Li et al., 2023b; Hou
et al., 2022c; Zheng et al., 2024). Within this context, we aim to explore this question by comparing
two representative implementations of sequential generative and dense retrieval models, ensuring
consistency in input information and experimental setups.

To ensure a meaningful comparison, we made significant efforts to faithfully implement the TIGER
method following the setup described in Rajput et al. (2024), conducting extensive hyperparameter
tuning to optimize its performance. For the dense retrieval approach, we aligned its design with
TIGER to ensure consistency in input information (adopting the transductive setting (Hou et al.,
2022c)) and experimental setups. As shown in Figure 1, in our experiments, the dense retrieval
approach demonstrates stronger performance than generative retrieval on both in-set and cold-start
item predictions across the datasets we tested. Specifically, we observe that the generative retrieval
method struggles with cold-start items, achieving close-to-zero performance on most datasets except
for the Amazon Sports dataset. These observations are not entirely surprising, as dense retrieval
methods have been well-established and extensively developed over time, excelling at learning high-
quality embeddings that are particularly effective for recommendation tasks. In contrast, generative
retrieval represents a relatively new paradigm that has yet to undergo the same level of refinement
and optimization. Nonetheless, the generative retrieval approach holds significant potential (Singh
et al., 2023), and future advancements could enable it to rival or even surpass dense retrieval under
appropriate conditions.

At the current stage, to harness the strengths of both paradigms, we propose a novel hybrid model,
LIGER, that combines the computational and storage efficiencies of generative retrieval with the
robust embedding quality and ranking capabilities of dense retrieval. Our SID-based hybrid model
applies dense retrieval to a limited set of candidates generated by a generative retrieval module,
retaining the minimal storage requirements of generative retrieval while significantly improving
performance, particularly for cold-start items. Specifically, our key contributions are as follows:

• We identify and analyze two primary observed limitations of the generative retrieval
method on the small-scale academic benchmark: (1) Generative retrieval exhibits a per-
formance difference compared to dense retrieval, given the same item information input,
and (2) it tends to overfit to items encountered during training, resulting in a lower proba-
bility of generating cold-start items.

• We propose LIGER (LeveragIng dense retrieval for GEnerative Retrieval), a novel method
that synergistically combines the strengths of dense and generative retrieval to signifi-
cantly enhance the performance of generative retrieval. By integrating these methodolo-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

gies, LIGER reduces the observed performance differences between dense and generative
retrieval while improving the generation of cold-start items on the dataset we explored.

2 ANALYSIS OF GENERATIVE AND DENSE RETRIEVAL METHODS

In this section, we first introduce the generative retrieval (Rajput et al., 2024) and dense re-
trieval (Hou et al., 2022b) formula (see Section 2.1 and 2.2). Then in Section 2.2, we examine
the performance difference between generative retrieval and sequential dense retrieval methods, and
then discuss the challenges generative retrieval faces in handling item cold-start scenarios in Sec-
tion 2.4.

2.1 GENERATIVE RETRIEVAL REVIEW

The generative retrieval approach such as TIGER (Rajput et al., 2024) typically follows a two-stage
training process. The first stage involves collecting textual descriptions for each item based on
their attributes. These descriptions serve as inputs to a content model (e.g., a language encoder)
that produces item’s text embeddings, subsequently quantized by an RQ-VAE (Lee et al., 2022a)
to attribute a semantic ID for each item. Formally, for each item i ∈ I, we collect its p key-
value attribute pairs {(k1, v1), (k2, v2), . . . , (kp, vp)} and format them into a textual description:
Ti = prompt(k1, v1, · · · , kp, vp). The textual description Ti is then passed to the content model,
yielding the text representation etexti for each item. We refer readers to Rajput et al. (2024); Lee
et al. (2022a) for the training details of the RQ-VAE module. After the RQ-VAE is trained, we
obtain the m-tuple semantic ID (s1i , · · · , smi) for each item i. Notably, an m-tuple semantic ID,
with a codebook size t, can theoretically represent tm unique items.

In the second stage of training, the item text representation {etexti } and the trained RQ-VAE
model are discarded, retaining only the semantic IDs. For each interaction history indexed
by item IDs {i1, i2, · · · , in}, the item IDs are replaced with their corresponding semantic IDs:
{(s11, s21, · · · , sm1), (s12, s

2
2, · · · , sm2), · · · , (s1n, s2n, · · · , smn)}. Given the semantic IDs of the last n

items a user interacted with, the Transformer model is then optimized to predict the next semantic
ID sequence (s1n+1, s

2
n+1, · · · , smn+1).

During inference, a set of candidate items is retrieved using beam search over the trained Trans-
former, selecting items based on their semantic IDs. A visual representation of the generative re-
trieval method is provided in Figure 2 (Lower Left).

It is worth noting that although the item text representations are excluded from the second stage of
training, they still contribute to the information utilized in developing this approach. To ensure a fair
comparison, we incorporate this information into the development of a comparable dense retrieval
method in the following section, thereby accounting for the impact of these embeddings on the
overall performance.

2.2 SEQUENTIAL DENSE RETRIEVAL IN TRANSDUCTIVE SETTING

Sequential dense retrieval methods typically consist of two main components: (1) learning item
representations through sequence modeling, and (2) performing retrieval using dot-product search.
To enhance the learning of item representations, several dense retrieval methods such as Hou et al.
(2022b) employ an transductive setting, where item content information is integrated through text
representation to enable transferable representation learning.

Building on these insights, we implement the dense retrieval method as follows: For each item i, we
first obtain its text representation etexti using the procedure described in the first stage of Section 2.1.
Additionally, we retrieve the learnable item embedding ei = Embd(i) from the embedding table
Embd(·) and compute the item’s positional embedding eposi . The input embedding for each item is
then computed as:

Ei = ei + etexti + eposi ,

and the sequence of input embeddings {E1,E2, · · · ,En} is provided to the Transformer.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Bidirectional Transformer Encoder

t_5 t_23 t_55

Item 233
SID=(5, 23, 55)

t_5 t_25 t_78

Item 515
SID=(5, 25, 78)

Next Item 64
SID=(5, 25, 55)

SID

Transformer
Decoder

t_5 t_23 t_55

Item 233
SID=(5, 23, 55)

t_5 t_25 t_78

Item 515
SID=(5, 25, 78)

Next Item 64
SID=(5, 25, 55)

Item 233 Text Rep

SID

p_1 p_2 p_3 p_1 p_2 p_3SID pos

Item 515 Text RepItem rep

i_1 i_2Item pos

Next Item 64
Text Rep

Bidirectional Transformer Encoder

Item 233 Text Rep Item 515 Text Rep

i_1 i_2

Item ID

Item rep

Item pos

ID_233 ID_515

Next Item Rep …

Next Item ID
Dense Retrieval

Generative Retrieval

Transformer
Decoder

LIGER (Ours)

Bidirectional Transformer Encoder

Item 233

Title, Brand, Category, Price Text Rep

SID=(5, 23, 55)
Semantic ID Generation

Figure 2: Overview of Sequential Dense Retrieval, Generative Retrieval, and Our Hybrid Retrieval Method,
LIGER. Dense Retrieval (upper left) uses an encoder model to map item IDs and text representations into
dense embeddings, which are used to predict the next item in the sequence based on similarity. Generative
Retrieval (lower left) employs an encoder-decoder Transformer to generate the next item’s semantic ID from
the given semantic ID trajectory. These semantic IDs are derived from item features such as title, brand, price,
and category (upper right). Our proposed Hybrid Retrieval, LIGER (lower right) combines both semantic
ID input and item text representations, integrating dense and generative retrieval techniques. By taking item
positions, text representations, and semantic IDs as input, and outputs both the predicted item embedding and
the next item’s representation.
Given these n embeddings, the Transformer is trained to optimize the following objective:

Ldense(Θ, {ei}, {eposi }) = − log
exp

(
sim(Ê(Θ), en+1 + etextn+1)/τ

)
∑

i∈I exp
(

sim(Ê(Θ), ei + etexti)/τ
) ,

where Ê(Θ) represents the output embedding of the Transformer with parameter Θ, sim(·, ·) de-
notes the cosine similarity metric, τ is a temperature scaling factor, and I is the set of all items.
Figure 2 (Upper Left) provides a detailed illustration of the dense retrieval model implementation.

2.3 THE OBSERVED PERFORMANCE DIFFERENCE

As detailed in Section 2.1, the generative retrieval model leverages both item text representations and
sequential interaction information. In Section 2.2, we introduce sequential dense retrieval methods
inspired by Hou et al. (2022c), designed to fully incorporate these sources of information through-
out the training process. To ensure a fair comparison between the generative retrieval and dense
retrieval methods, we maintain consistency in model architecture, data pre-processing, and infor-
mation utilization. The specific details of our experiment setup are described in Section 4.1 and
in Appendix A.2.1. Due to the unavailability of TIGER’s codebase, we conducted an extensive
hyperparameter search, and configured the dense model’s hyperparameters to align with the tuned
TIGER settings. However these results, shown in Figure 1 (Right), indicate a performance difference
between the generative and dense retrieval methods in the datasets we evaluated.

There are notable differences between the two implemented methods: (1) Number of Embed-
dings: As discussed in Section 2.1, representing N item requires the dense retrieval method to learn
and store O(N) embeddings. In contrast, the semantic-ID-based generative retrieval method only
requires O(t) tokens, where tm ≈ N , and m is the length of the semantic ID tuple; (2) Text Rep-
resentation Input: Dense retrieval utilize the item’s text representation as additional input; and (3)
Prediction Mechanism: Dense retrieval relies on maximum inner product search in the embedding
space, whereas generative retrieval predicts the next item through next-token prediction via beam
search.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

To analyze the effect of (1), we modify the dense retrieval approach by replacing item IDs with
semantic IDs while keeping all other components unchanged. This modified method is referred to
as Dense (SID). Formally, for each item i with semantic ID (s1i , s

2
i , · · · , smi), we construct the input

embedding for each semantic ID as:

Esji
= esji

+ etexti + eposi + eposj ,

where the esji
is the learnable embedding for each semantic ID: esji = Embd(sji), and eposj is the

positional embedding for each semantic ID. The final embedding for item i is then represented as:
Ei = [Es1i

,Es2i
, · · · ,Esmi

]. During training, the cosine similarity between the predicted embedding
and item’s text representation is compared and maximized.

To examine the effect of (2), we augment TIGER with the item’s text representation, referred to as
TIGER (T). Specifically, we use the same input as described earlier and, during training, apply the
next-token prediction loss on the semantic ID tuple of the next item.

The results in Figure 3 demonstrate that incorporating semantic IDs as input in dense retrieval (Dense
(SID)) significantly reduces the performance gap with standard dense retrieval. Moreover, supple-
menting TIGER with text representation as input (TIGER (T)) yields marginal improvements over
TIGER alone; however, it still falls short of matching the performance of dense retrieval. This sug-
gests that the primary contributor to the performance gap lies in the inefficiency of the next-token
prediction loss in generating retrieved items, rather than the semantic ID representation.

Additionally, when evaluating performance on cold-start item generation (discussed in detail in the
next section), both TIGER and TIGER (T) fail, despite including text representation (Hou et al.,
2022c; Li et al., 2023b) being known to generalize to cold-start items. Notably, both dense retrieval
methods—using either item IDs or semantic IDs—exhibit non-zero performance in cold-start item
generation. This highlights a fundamental limitation of generative retrieval methods, where the
decoding process itself may impede effective cold-start generation.

0.00

0.10

0.20

In
 s

et

TIGER
TIGER (T)

Dense (SID)
Dense

Beauty Sports Toys steam
0.0

0.04

0.08

C
ol

d
st

ar
t

Figure 3: Comparison of Recall@10 on in-set and
cold-start dataset across various datasets. Dense re-
trieval methods (both ID- and SID-based) exhibit ro-
bust performance in both in-set and cold-start set-
tings. While TIGER (T) shows marginal improve-
ments over TIGER, it still lags behind the perfor-
mance of dense retrieval methods.

2.4 CHALLENGES IN COLD-START ITEM PREDICTION WITH GENERATIVE RETRIEVAL
MODELS

As partially discussed in the previous section, our investigation extends to the cold-start item genera-
tion problem, a critical issue in the dynamic environment of real-world recommendation systems. As
new items are continuously introduced, they often lack sufficient user interactions, which impedes
their predictability until a significant amount of interaction data is gathered. For dense retrieval in
the transductive setting (Hou et al., 2022c), the inclusion of item’s text representations provide some
prior information, thus partially retaining the ability to retrieve cold-start items, resulting in non-zero
performance of cold-start item prediction shown in Figure 1 and Figure 3.

Hence, a natural research question arises: Can generative retrieval models, which also leverage
item’s text representations in their process to generate semantic indices, predict cold-start items?
To address this, we analyzed the generation probabilities of cold-start items using a trained genera-
tive retrieval model and summarized the results in Figure 4 (b and c). Our findings indicate that the
model’s learned conditional probabilities tends to overfit to items seen during training, leading to a
significantly reduced capability to generate cold-start items. Specifically, we ask the model to gen-
erate K candidates using beam search, which ranks items by their generation probabilities. Among
these candidates, we define the minimum generation probability as pK . Separately, we calculate the
generation probability of the ground-truth cold-start item, denoted as p⋆. As shown in Figure 4, the
generation probability of cold-start items always falls below the threshold required for inclusion in
the beam search process (p⋆ < pK), effectively preventing these items from being retrieved. This

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

limitation highlights the challenges generative retrieval models face in generalizing to unseen items,
emphasizing the need for further research and improvements in this area.

It is worth noting that Rajput et al. (2024), propose an alternative solution to mitigate the issue of
cold-start item generation. Their approach involves setting a predefined threshold ε for cold-start
item within the retrieved candidate set of K items. This ensures that K · ε of the retrieved candi-
dates are cold-start items by excluding other candidates that have higher generation probabilities.
However, this method relies on prior knowledge of the ratio between recommended cold-start and
non-cold-start items, which may not always be available. Therefore, we argue that the challenges in
cold-start item generation persist for generative retrieval models, indicating a need for more robust
solutions that do not depend heavily on predefined parameters or assumptions.

Bidirectional Transformer Encoder

t_5 t_23 t_55

Item 233
SID=(5, 23, 55)

t_5 t_25 t_78

Item 515
SID=(5, 25, 78)

Transformer
Decoder

Next Item 64
SID=(5, 25, 55)

Item Set
* item 233, SID=(5, 23, 55)
* item 515, SID=(5, 25, 78)
* item 1042, SID=(5, 29, 7)
* …

Cold-Start Item Set
* Item 64, SID=(5, 25, 55)
* …

Next Item 1042
SID=(5, 29, 7)(a)

Item 233 Item 515 Item 64

Ground Truth:
Cold-start Item

TIGER

Item 123 Item 55

Fully Ranked Candidates

Item 36

p1 = 0.4Generation
Probability:

…

p2 = 0.1 pK = 0.01
… Item 64 …

p⋆

(b) Histogram (c) pK − p⋆
(a)

Figure 4: TIGER Fails to Generate Cold-Start Items. (a) The TIGER model generates a ranked list of can-
didates, with pK denoting the generation probability of generating the K-th ranked item over all items. The
ground-truth cold-start item has a generation probability of p⋆. (b) A histogram compares pK (for K = 10)
with p⋆ when the ground-truth item is cold-start, highlighting the disparity between them. (c) The difference
pdiff = pK − p⋆ is plotted for K = 10, 20, 40, 80. A successful generation of cold-start item occurs only when
pdiff ≤ 0, illustrating the model’s limitations in handling cold-start items.

3 METHODOLOGY

The notion that “there is no free lunch” holds true in the context of retrieval methods. As discussed
in the previous section, a performance difference is observed between the generative retrieval and
dense retrieval methods we implemented, with generative retrieval facing challenges in generating
cold-start items. The improved performance of dense retrieval, however, comes with higher storage,
learning, and inference costs. On the other hand, generative retrieval offers efficiency and the ability
to generate diverse recommendations (Rajput et al., 2024), but its performance lags behind in the
datasets we evaluated.

The trade-offs between approaches are summarized in Table 1, where N represents the total number
of items, t denotes the total number of semantic IDs, and K is the number of candidates to be re-
trieved during inference. Here, we denote the inference cost as the number of comparisons required
for each method. It is worth noting that the actual inference time depends on implementation details
and infrastructure optimization, which are beyond the scope of this work.

Table 1: Comparison of Dense Retrieval, Generative Retrieval, and Our Hybrid Retrieval Methods Across
Different Costs. Here N represents the total number of items, t denotes the total number of semantic IDs used
by generative retrieval method, and K indicates the number of candidates retrieved during inference.

Dense Retrieval Generative Retrieval LIGER (Ours)

Learnable Embedding O(N) O(t) O(t)
(Fixed) Item Text Representation O(N) - O(N)
Inference Cost O(N) O(tK) O(tK)
Cold-Start Item Generation Yes No Yes

In this section, we propose a hybrid method, called LIGER, that combines the strengths of both
approaches. Our goal is to improve upon the existing generative retrieval method: enabling it to
generate cold-start items and bridging the gap with dense retrieval. To achieve this, we integrate
text representations into the sequential model training phase of the generative retrieval method. The
associated costs of LIGER are detailed in the last column of Table 1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Formally, for each item i with semantic ID (s1i , s
2
i , · · · , smi), we construct the input embedding for

each semantic ID using the same approach as described in the ablation study in Section 2.2:
Esji

= esji
+ etexti + eposi + eposj ,

where esji is the learnable embedding for the sji semantic ID, etexti is the item’s text representation,
eposi is the positional embedding for the item, and eposj is the positional embedding for the semantic
ID. The final embedding for item i is then represented as: Ei = [Es1i

,Es2i
, · · · ,Esmi

].

During training, the model is trained on two objective: the cosine similarity loss and the next-token
prediction loss on the semantic IDs of the next item. The combined loss is formulated as:

L(Θ, {ei}, {eposi }, {eposj }) = − log
exp

(
sim(Ê(Θ), etextn+1)/τ

)
∑

i∈I exp
(

sim(Ê(Θ), etexti)/τ
) −

m∑
j=1

logP (s
j
n+1 | [E1, · · · ,En]; Θ).

The first term in the loss function ensures that the model learns to align the encoder’s output embed-
ding with the text representation of the next item using a softmax over cosine similarity. The second
term corresponds to the next-token prediction loss, where each token of the next item’s semantic
ID tuple is predicted sequentially in the decoder, conditioned on the historical input embeddings
[E1, · · · ,En]. Figure 2 (Lower Right) provides a detailed illustration of LIGER.

During inference, the decoder retrieves K items by beam search, then supplemented with cold-start
items and ranked with the encoder’s output embeddings. This design choice is based on the hypoth-
esis that cold-start items are relatively sparse compared to in-set items, as recommendation systems
periodically update themselves to incorporate newly introduced items. Therefore, we supplement
the candidates with cold-start items to ensure their inclusion, as their number is relatively small.
Details are shown in Figure 5 (left).

Algorithm 1: Inference Process
Input : Interaction sequence

{E1,E2, . . . ,En}, Cold-start items
C, Beam size K

Output: Ranked list of items Î
1. Beam search to retrieve top-K candidates:
Ibeam = TF([E1,E2, . . . ,En];K);

2. Combine with cold-start items:
Icomb = Ibeam ∪ C;

3. Rank Candidates with encoder’s output Ê:
Î = topk(sim(Ê, etexti), ∀i ∈ Icomb); # Candidates Retrieved by Gen. Ret., K

Normalized Performance Gap (Recall@10)

Figure 5: Inference Process and LIGER’s Performance in Bridging the Gap as the Number of Retrieved Can-
didates Increases. The left panel illustrates the inference process of LIGER, detailing how candidate items are
retrieved and ranked. In the algorithm, TF(·,K) denotes the Transformer generating K candidates using beam
search based on the input sequence. The right panel shows the normalized performance gap between genera-
tive and dense retrieval models across several datasets (Beauty, Sports, Toys, Steam) for the in-set Recall@10
metric. In this normalization, 0% represents the performance of the generative retrieval model, while 100%
corresponds to the performance of the dense retrieval model. The figure highlights how LIGER progressively
bridges the performance gap as the number of candidates retrieved by the generative model increases.

To demonstrate the efficacy of LIGER, we evaluate how its performance varies with the number of
candidates K retrieved by the generative retrieval. For clearer insights, we present the normalized
performance gap (NPG) in Recall@10 across various datasets. Specifically, let the performance of
LIGER with K candidates retrieved by generative retrieval be r(K), the performance of TIGER be
rTIGER, and the performance of dense retrieval be rdense. The NPG is then defined as:

NPG(K) = (r(K)−rTIGER)/(rdense−rTIGER).

We plot the NPG values for each dataset in Figure 5 (right) with varying K. The results show a con-
sistent interpolation between TIGER and the dense retrieval approach: as the number of candidates
K retrieved by the generative model increases, the likelihood of including the correct items, along
with the cold-start candidates, in the candidate set grows. Consequently, LIGER progressively im-
proves its performance on the Recall@10 metric, narrowing the gap with the dense retrieval method.
In the next section, we will demonstrate the effectiveness of our method across various datasets and

baseline methods.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4 EXPERIMENTAL SETUP AND RESULTS

In this section, we present the experimental results across various datasets and baseline methods,
showcasing the performance on both in-set and cold-start items. Specifically, we assess the cold-
start performance by testing on items that are unseen during training, which is determined by the
dataset statistics.

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate LIGER on four datasets, preprocessing them using the standard 5-core
filtering method (Zhang et al., 2019; Zhou et al., 2020). This process removes items with fewer than
5 users and users with fewer than 5 interactions. Additionally, we truncate sequences to a maximum
length of 20, retaining the most recent items. Detailed statistics of the resulting datasets are provided
in Appendix A.2.3.

• Amazon Beauty, Sports, and Toys (He & McAuley, 2016): We use the Amazon Review dataset
(2014), focusing on three categories: Beauty, Sports and Outdoors, and Toys and
Games. For each item, we construct embeddings by incorporating four key attributes: title, price,
category, and description.
• Steam (Kang & McAuley, 2018b): The dataset comprises online reviews of video games, from
which we extract relevant attributes to construct item embeddings. Specifically, we utilize the fol-
lowing attributes: title, genre, specs, tags, price, and publisher. To reduce the dataset size and make
it more manageable, we apply subsampling by selecting every 7th sequence, thereby retaining a
representative subset of the data.

When generating the item text representations, the item attributes are processed using the sentence-
T5 model Ni et al. (2021) (XXL).

Semantic ID Generation. Utilizing the text representations generated from the sentence-T5 model,
we employ a 3-layer MLP for both the encoder and decoder in the RQ-VAE Lee et al. (2022a).
The RQ-VAE features three levels of learnable codebooks, each with a dimension of 128 and a
cardinality of 256. We use the AdamW optimizer to train the RQ-VAE, setting the learning rate at
0.001 and the weight decay at 0.1. To prevent collisions (i.e., the same semantic ID representing
different items), following Rajput et al. (2024) we append an extra token at the end of the ordered
semantic codes to ensure uniqueness.

Sequential Modeling Architecture and Training Algorithm. For the generative model, we utilize
the T5 (Raffel et al., 2020) encoder-decoder model, configuring both the encoder and decoder with
6 layers, an embedding dimension of 128, 6 heads, and a feed-forward network hidden dimension
of 1024. The dropout rate is 0.2. The dense retrieval model designed in Section 2.2 employs only
the T5-encoder with 6 layers, while maintaining the same hyper-parameters. We use the AdamW
optimizer with a learning rate of 0.0003, a weight decay parameter of 0.035, and a cosine learning
rate scheduler. Additional details are presented in Appendix A.2.1.

Evaluation Metrics. We assess the model’s performance using Normalized Discounted Cumulative
Gain (NDCG)@10 and Recall@10. For dataset splitting, we adopt the leave-one-out strategy fol-
lowing (Kang & McAuley, 2018b; Zhou et al., 2020; Rajput et al., 2024), designating the last item
as the test label, the preceding item for validation, and the remainder for training. During training,
early stopping is applied based on the in-set NDCG@10 validation metric. For LIGER, which com-
prises two components: (A) the semantic ID prediction head and (B) the output embedding head,
we implement early stopping based on the performance of component (B). To ensure fair evaluation
of cold-start items, we exclude them from the RQ-VAE training to avoid data contamination.

Baselines. We compare our method against five state-of-the-art Item-ID-based dense retrieval meth-
ods: (a) SASRec (Kang & McAuley, 2018b); feature-informed methods: (b) FDSA (Zhang et al.,
2019), (c) S3-Rec (Zhou et al., 2020); and modality-based methods: (d) UnisRec (Hou et al., 2022b),
(e) Recformer (Li et al., 2023a). Descriptions and implementation details for these baselines are pro-
vided in Appendix A.2.4. We also compare LIGER against TIGER (Rajput et al., 2024), a semantic
ID-based generative retrieval method. Although subsequent works have built upon this paradigm
using large language models (LLMs) (Zheng et al., 2023; Cao et al., 2024b), they rely on pre-trained
LLMs, which are outside the scope of our comparisons.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Performance Comparison Across Baseline Methods on Amazon Beauty, Sports, Toys, and Steam
Datasets. The best performance is highlighted in bold, and the second-best performance is underlined. Our
method consistently achieves either the best or second-best performance across all datasets, closely followed
by modality-based baselines (UniSRec or RecFormer). We report LIGER’s results where generative retrieval
is used to retrieve 20 items, followed by the sequential dense retrieval.

Methods Inference Cost
NDCG@10↑ Recall@10↑

In-set Cold In-set Cold

B
ea

ut
y

SASRec O(N) 0.02179 ± 0.00023 0.0 ± 0.0 0.05109 ± 0.00042 0.0 ± 0.0
FDSA O(N) 0.02244 ± 0.00135 0.0 ± 0.0 0.04530 ± 0.00357 0.0 ± 0.0
S3-Rec O(N) 0.02279 ± 0.00058 0.0 ± 0.0 0.05226 ± 0.00229 0.0 ± 0.0
UniSRec O(N) 0.03346 ± 0.00057 0.01422 ± 0.00128 0.06937 ± 0.00110 0.03704 ± 0.00000
RecFormer O(N) 0.02880 ± 0.00085 0.01955 ± 0.00433 0.06265 ± 0.00196 0.04733 ± 0.00943
TIGER O(tK) 0.03216 ± 0.00084 0.0 ± 0.0 0.06009 ± 0.00204 0.0 ± 0.0
LIGER (Ours) O(tK) 0.04020 ± 0.00044 0.03800 ± 0.00523 0.07447 ± 0.00111 0.10082 ± 0.01285

Sp
or

ts

SASRec O(N) 0.01160 ± 0.00038 0.0 ± 0.0 0.02696 ± 0.00102 0.0 ± 0.0
FDSA O(N) 0.01391 ± 0.00162 0.0 ± 0.0 0.02699 ± 0.00312 0.0 ± 0.0
S3-Rec O(N) 0.01097 ± 0.00033 0.0 ± 0.0 0.02557 ± 0.00034 0.0 ± 0.0
UniSRec O(N) 0.01814 ± 0.00041 0.00676 ± 0.00244 0.03753 ± 0.00106 0.01559 ± 0.00447
RecFormer O(N) 0.01318 ± 0.00053 0.01797 ± 0.00000 0.02921 ± 0.00167 0.03801 ± 0.00000
TIGER O(tK) 0.01989 ± 0.00085 0.00064 ± 0.00056 0.03822 ± 0.00109 0.00195 ± 0.00169
LIGER (Ours) O(tK) 0.02430 ± 0.00075 0.02731 ± 0.00229 0.04400 ± 0.00127 0.05848 ± 0.00292

To
ys

SASRec O(N) 0.02756 ± 0.00079 0.0 ± 0.0 0.06314 ± 0.00178 0.0 ± 0.0
FDSA O(N) 0.02375 ± 0.00277 0.0 ± 0.0 0.04684 ± 0.00483 0.0 ± 0.0
S3-Rec O(N) 0.02942 ± 0.00071 0.0 ± 0.0 0.06659 ± 0.00135 0.0 ± 0.0
UniSRec O(N) 0.03622 ± 0.00056 0.01090 ± 0.00084 0.07472 ± 0.00058 0.02477 ± 0.00195
RecFormer O(N) 0.03697 ± 0.00052 0.04432 ± 0.00094 0.07971 ± 0.00170 0.10023 ± 0.00516
TIGER O(tK) 0.02949 ± 0.00049 0.0 ± 0.0 0.05782 ± 0.00163 0.0 ± 0.0
LIGER (Ours) O(tK) 0.03756 ± 0.00151 0.05231 ± 0.00531 0.07135 ± 0.00244 0.13063 ± 0.00516

St
ea

m

SASRec O(N) 0.14763 ± 0.00051 0.0 ± 0.0 0.18259 ± 0.00055 0.0 ± 0.0
FDSA O(N) 0.08236 ± 0.00152 0.0 ± 0.0 0.14773 ± 0.00234 0.0 ± 0.0
S3-Rec O(N) 0.14437 ± 0.00127 0.0 ± 0.0 0.18025 ± 0.00222 0.0 ± 0.0
UniSRec O(N) - - - -
RecFormer O(N) 0.14034 ± 0.00123 0.00120 ± 0.00037 0.17042 ± 0.00275 0.00319 ± 0.0011
TIGER O(tK) 0.15034 ± 0.00064 0.0 ± 0.0 0.18980 ± 0.00135 0.0 ± 0.0
LIGER (Ours) O(tK) 0.14951 ± 0.00158 0.00512 ± 0.00047 0.19049 ± 0.00234 0.01466 ± 0.0011

Experimental Results. The results from the benchmark datasets are presented in Table 2, where
the mean and standard deviation are calculated across three random seed runs. Traditional item-ID-
based methods, such as SASRec exhibit poor in-set performance compared to semantic-ID-based
models. However, when attribute information is included, models like FDSA and S3-Rec show
improved in-set performance. Nevertheless, their performance on cold-start items remains subpar
due to the static nature of item embeddings. In contrast, models that utilize text representations and
pre-training, such as UniSRec and RecFormer, demonstrate enhanced capabilities in handling cold-
start item scenarios. The inclusion of text embeddings during pre-training enables these models
to better handle unseen items. TIGER, which is a semantic-ID-based generative retrieval model,
outperforms item-ID-based methods in terms of in-set performance but still struggles with cold-start
item generation.

Our model, LIGER, builds upon TIGER by using semantic-ID-based inputs and combining dense
retrieval with semantic ID generation as outputs. This approach significantly improves upon the
TIGER method and enables effective generation of cold-start items. Across all datasets, our method
consistently achieves either the best or second-best performance, closely followed by modality-
based baselines such as UniSRec and RecFormer. We adopt a hybrid approach for our reporting,
where we use generative retrieval to retrieve 20 items and then rank them with cold-start items using
dense retrieval. Comprehensive result including performance of LIGER with different number of
retrieved items from generative retrieval is presented in Table 4. Additional ablation study on each
component of LIGER is present in Appendix A.4.

5 DISCUSSION

Addressing Cold-Start Items with Hybrid Retrieval Models. That generative retrieval method’s
struggle with cold-start items primarily stems from overfitting to familiar semantic IDs during train-
ing, as discussed in Section 2.4. To mitigate this issue, LIGER efficiently combines dense retrieval

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

with generative retrieval. Specifically, LIGER first generates a small set of K candidates (where
K ≪ N) using generative retrieval, which is then augmented with the cold-start item set. This
approach leverages the efficiency of generative retrieval to reduce the candidate pool while ensur-
ing cold-start items are represented. The dense retrieval component further enhances cold-start
performance by leveraging item text embeddings as prior information. As shown in Table 4, this
integration ensures that when generative retrieval retrieves fewer than N items, the model maintains
robust performance in cold-start scenarios, comparable to dense retrieval only.

Comparative Performance with Current Dense Retrieval Methods. While LIGER demonstrates
competitive performance against existing baselines, its primary objective is to strike a balance be-
tween the generative and dense retrieval frameworks. As discussed in previous sections, there are
observed performance differences between these two methods on the dataset we tested, even when
using the same input information and model architecture. The results presented in this work aim
to shed light on potential future directions for integrating these approaches, paving the way for the
development of more robust and efficient recommendation systems.

Observed Performance Differences are Contextual to Small-Scale Datasets. We want to note
that the performance differences observed in this study are influenced by various factors, in-
cluding dataset size, implementation details, and the distribution of data collected under specific
paradigms. Additionally, we are aware of industry-scale implementations of generative retrieval
paradigms (Singh et al., 2023) that outperform dense retrieval approaches in real-world settings. In
this work, our goal is not to assert a definitive performance gap between the two paradigms. In-
stead, we focused on aligning the two methods as closely as possible within the scope of academic
benchmarks, which typically use small-scale datasets. Our findings are meant to provide insights
specific to this academic setting and should not be extrapolated to large-scale, real-world applica-
tions without further investigation. We hope that these observations encourage a critical evaluation
of academic benchmark design and inspire future research to explore performance under more di-
verse and realistic conditions, while addressing the limitations of small-scale datasets commonly
used in academic studies.

6 CONCLUSION

In this work, we conducted a comprehensive comparison between dense retrieval methods and the
emerging generative retrieval approach. Our analysis revealed the limitations of dense retrieval,
including high computational and storage requirements, while highlighting the advantages of gener-
ative retrieval, which uses semantic IDs and generative models to enhance efficiency and semantic
understanding. Furthermore, we have identified the challenges faced by generative retrieval, par-
ticularly in handling cold-start items and matching the performance of dense retrieval. To address
these challenges, we introduced a novel hybrid model, LIGER, that combines the strengths of both
approaches. Our findings demonstrate that our hybrid model surpasses existing models in handling
cold-start scenarios and achieves advanced overall performance on benchmark datasets.

Looking ahead, the fusion of dense and generative retrieval methods holds tremendous potential
for advancing recommendation systems. Our research provides a foundation for further exploration
into hybrid models that capitalize on the strengths of both retrieval types. As these models con-
tinue to evolve, they will become increasingly practical for real-world applications, enabling more
personalized and responsive user experiences.

REFERENCES

Michele Bevilacqua, Giuseppe Ottaviano, Patrick Lewis, Wen tau Yih, Sebastian Riedel, and
Fabio Petroni. Autoregressive search engines: Generating substrings as document identi-
fiers. ArXiv, abs/2204.10628, 2022. URL https://api.semanticscholar.org/
CorpusID:248366293.

Yuwei Cao, Nikhil Mehta, Xinyang Yi, Raghunandan Keshavan, Lukasz Heldt, Lichan Hong, Ed H
Chi, and Maheswaran Sathiamoorthy. Aligning large language models with recommendation
knowledge. arXiv preprint arXiv:2404.00245, 2024a.

10

https://api.semanticscholar.org/CorpusID:248366293
https://api.semanticscholar.org/CorpusID:248366293

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Yuwei Cao, Nikhil Mehta, Xinyang Yi, Raghunandan H. Keshavan, Lukasz Heldt, Lichan Hong,
Ed H. Chi, and Maheswaran Sathiamoorthy. Aligning large language models with recommenda-
tion knowledge. ArXiv, abs/2404.00245, 2024b. URL https://api.semanticscholar.
org/CorpusID:268819967.

Jiangui Chen, Ruqing Zhang, J. Guo, M. de Rijke, Wei Chen, Yixing Fan, and Xueqi Cheng. Con-
tinual learning for generative retrieval over dynamic corpora. Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management, 2023. URL https:
//api.semanticscholar.org/CorpusID:261277063.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. Autoregressive entity retrieval.
arXiv preprint arXiv:2010.00904, 2020.

Gabriel de Souza Pereira Moreira, Sara Rabhi, Jeong Min Lee, Ronay Ak, and Even Oldridge.
Transformers4rec: Bridging the gap between nlp and sequential/session-based recommendation.
In Proceedings of the 15th ACM conference on recommender systems, pp. 143–153, 2021.

Chao Feng, Wu Li, Defu Lian, Zheng Liu, and Enhong Chen. Recommender forest for ef-
ficient retrieval. In Neural Information Processing Systems, 2022. URL https://api.
semanticscholar.org/CorpusID:258509354.

Jibril Frej, Marta Knezevic, and Tanja Käser. Graph reasoning for explainable cold start recom-
mendation. ArXiv, abs/2406.07420, 2024. URL https://api.semanticscholar.org/
CorpusID:270379698.

Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution of fashion trends
with one-class collaborative filtering. Proceedings of the 25th International Conference on World
Wide Web, 2016. URL https://api.semanticscholar.org/CorpusID:1964279.

Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. Session-based rec-
ommendations with recurrent neural networks. arXiv preprint arXiv:1511.06939, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computation, 9:1735–
1780, 1997. URL https://api.semanticscholar.org/CorpusID:1915014.

Yupeng Hou, Zhankui He, Julian McAuley, and Wayne Xin Zhao. Learning vector-quantized
item representation for transferable sequential recommenders. Proceedings of the ACM Web
Conference 2023, 2022a. URL https://api.semanticscholar.org/CorpusID:
253098091.

Yupeng Hou, Shanlei Mu, Wayne Xin Zhao, Yaliang Li, Bolin Ding, and Ji rong Wen. Towards
universal sequence representation learning for recommender systems. Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022b. URL https:
//api.semanticscholar.org/CorpusID:249625869.

Yupeng Hou, Shanlei Mu, Wayne Xin Zhao, Yaliang Li, Bolin Ding, and Ji-Rong Wen. Towards
universal sequence representation learning for recommender systems. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 585–593, 2022c.

Feiran Huang, Zhen Yang, Junyi Jiang, Yuan-Qi Bei, Yijie Zhang, and Hao Chen. Large language
model interaction simulator for cold-start item recommendation. ArXiv, abs/2402.09176, 2024.
URL https://api.semanticscholar.org/CorpusID:267657482.

Mengqun Jin, Zexuan Qiu, Jieming Zhu, Zhenhua Dong, and Xiu Li. Contrastive quantization based
semantic code for generative recommendation. arXiv preprint arXiv:2404.14774, 2024.

Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018 IEEE
international conference on data mining (ICDM), pp. 197–206. IEEE, 2018a.

Wang-Cheng Kang and Julian J. McAuley. Self-attentive sequential recommendation. In IEEE
International Conference on Data Mining, ICDM 2018, Singapore, November 17-20, 2018, pp.
197–206. IEEE Computer Society, 2018b. doi: 10.1109/ICDM.2018.00035.

11

https://api.semanticscholar.org/CorpusID:268819967
https://api.semanticscholar.org/CorpusID:268819967
https://api.semanticscholar.org/CorpusID:261277063
https://api.semanticscholar.org/CorpusID:261277063
https://api.semanticscholar.org/CorpusID:258509354
https://api.semanticscholar.org/CorpusID:258509354
https://api.semanticscholar.org/CorpusID:270379698
https://api.semanticscholar.org/CorpusID:270379698
https://api.semanticscholar.org/CorpusID:1964279
https://api.semanticscholar.org/CorpusID:1915014
https://api.semanticscholar.org/CorpusID:253098091
https://api.semanticscholar.org/CorpusID:253098091
https://api.semanticscholar.org/CorpusID:249625869
https://api.semanticscholar.org/CorpusID:249625869
https://api.semanticscholar.org/CorpusID:267657482

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Varsha Kishore, Chao gang Wan, Justin Lovelace, Yoav Artzi, and Kilian Q. Weinberger. Incdsi:
Incrementally updatable document retrieval. ArXiv, abs/2307.10323, 2023. URL https://
api.semanticscholar.org/CorpusID:259991824.

Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
generation using residual quantization. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11523–11532, 2022a.

Hyunji Lee, Jaeyoung Kim, Hoyeon Chang, Hanseok Oh, Sohee Yang, Vladimir Karpukhin, Yi Lu,
and Minjoon Seo. Contextualized generative retrieval. ArXiv, abs/2210.02068, 2022b. URL
https://api.semanticscholar.org/CorpusID:252715634.

Hyunji Lee, Jaeyoung Kim, Hoyeon Chang, Hanseok Oh, Sohee Yang, Vladimir Karpukhin, Yi Lu,
and Minjoon Seo. Nonparametric decoding for generative retrieval. In Annual Meeting of the As-
sociation for Computational Linguistics, 2022c. URL https://api.semanticscholar.
org/CorpusID:258959550.

Jiacheng Li, Ming Wang, Jin Li, Jinmiao Fu, Xin Shen, Jingbo Shang, and Julian McAuley. Text
is all you need: Learning language representations for sequential recommendation. Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2023a. URL
https://api.semanticscholar.org/CorpusID:258841284.

Jiacheng Li, Ming Wang, Jin Li, Jinmiao Fu, Xin Shen, Jingbo Shang, and Julian McAuley. Text is
all you need: Learning language representations for sequential recommendation. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1258–
1267, 2023b.

Yongqi Li, Nan Yang, Liang Wang, Furu Wei, and Wenjie Li. Learning to rank in generative retrieval.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 8716–8723,
2024.

Han Liu, Yin wei Wei, Xuemeng Song, Weili Guan, Yuan-Fang Li, and Liqiang Nie. Mmgrec:
Multimodal generative recommendation with transformer model. ArXiv, abs/2404.16555, 2024a.
URL https://api.semanticscholar.org/CorpusID:269362930.

Yang Liu, Yitong Wang, and Chenyue Feng. Unirec: A dual enhancement of uniformity and fre-
quency in sequential recommendations. In Proceedings of the 33rd ACM International Confer-
ence on Information and Knowledge Management, pp. 1483–1492, 2024b.

Sanket Vaibhav Mehta, Jai Gupta, Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Jinfeng Rao, Marc
Najork, Emma Strubell, and Donald Metzler. Dsi++: Updating transformer memory with new
documents. ArXiv, abs/2212.09744, 2022. URL https://api.semanticscholar.org/
CorpusID:254854290.

Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant, Ji Ma, Keith B Hall, Daniel Cer, and Yin-
fei Yang. Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models. arXiv
preprint arXiv:2108.08877, 2021.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2019. URL https://api.
semanticscholar.org/CorpusID:160025533.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan Hulikal Keshavan, Trung Vu, Lukasz
Heldt, Lichan Hong, Yi Tay, Vinh Tran, Jonah Samost, et al. Recommender systems with gener-
ative retrieval. Advances in Neural Information Processing Systems, 36, 2024.

Scott Sanner, Krisztian Balog, Filip Radlinski, Benjamin D. Wedin, and Lucas Dixon. Large lan-
guage models are competitive near cold-start recommenders for language- and item-based pref-
erences. Proceedings of the 17th ACM Conference on Recommender Systems, 2023. URL
https://api.semanticscholar.org/CorpusID:260164942.

12

https://api.semanticscholar.org/CorpusID:259991824
https://api.semanticscholar.org/CorpusID:259991824
https://api.semanticscholar.org/CorpusID:252715634
https://api.semanticscholar.org/CorpusID:258959550
https://api.semanticscholar.org/CorpusID:258959550
https://api.semanticscholar.org/CorpusID:258841284
https://api.semanticscholar.org/CorpusID:269362930
https://api.semanticscholar.org/CorpusID:254854290
https://api.semanticscholar.org/CorpusID:254854290
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:260164942

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Anima Singh, Trung Vu, Nikhil Mehta, Raghunandan Keshavan, Maheswaran Sathiamoorthy, Yilin
Zheng, Lichan Hong, Lukasz Heldt, Li Wei, Devansh Tandon, et al. Better generalization with
semantic ids: A case study in ranking for recommendations. arXiv preprint arXiv:2306.08121,
2023.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequen-
tial recommendation with bidirectional encoder representations from transformer. In Proceedings
of the 28th ACM international conference on information and knowledge management, pp. 1441–
1450, 2019.

Weiwei Sun, Lingyong Yan, Zheng Chen, Shuaiqiang Wang, Haichao Zhu, Pengjie Ren, Zhumin
Chen, Dawei Yin, Maarten Rijke, and Zhaochun Ren. Learning to tokenize for generative re-
trieval. Advances in Neural Information Processing Systems, 36, 2024.

Yi Tay, Vinh Q. Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri, Harsh Mehta, Zhen Qin, Kai
Hui, Zhe Zhao, Jai Gupta, Tal Schuster, William W. Cohen, and Donald Metzler. Transformer
memory as a differentiable search index. ArXiv, abs/2202.06991, 2022. URL https://api.
semanticscholar.org/CorpusID:246863488.

Hai Dang Tran and Andrew Yates. Dense retrieval with entity views. In Proceedings of the 31st
ACM International Conference on Information & Knowledge Management, pp. 1955–1964, 2022.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Neural Information Processing
Systems, 2017. URL https://api.semanticscholar.org/CorpusID:13756489.

Yujing Wang, Ying Hou, Hong Wang, Ziming Miao, Shibin Wu, Hao Sun, Qi Chen, Yuqing Xia,
Chengmin Chi, Guoshuai Zhao, Zheng Liu, Xing Xie, Hao Sun, Weiwei Deng, Qi Zhang, and
Mao Yang. A neural corpus indexer for document retrieval. ArXiv, abs/2206.02743, 2022. URL
https://api.semanticscholar.org/CorpusID:249395549.

Xinyang Yi, Ji Yang, Lichan Hong, Derek Zhiyuan Cheng, Lukasz Heldt, Aditee Kumthekar, Zhe
Zhao, Li Wei, and Ed H. Chi. Sampling-bias-corrected neural modeling for large corpus item
recommendations. Proceedings of the 13th ACM Conference on Recommender Systems, 2019.
URL https://api.semanticscholar.org/CorpusID:202639719.

Tingting Zhang, Pengpeng Zhao, Yanchi Liu, Victor S Sheng, Jiajie Xu, Deqing Wang, Guanfeng
Liu, Xiaofang Zhou, et al. Feature-level deeper self-attention network for sequential recommen-
dation. In IJCAI, pp. 4320–4326, 2019.

Yin Zhang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Lichan Hong, and Ed H. Chi.
A model of two tales: Dual transfer learning framework for improved long-tail item rec-
ommendation. Proceedings of the Web Conference 2021, 2020. URL https://api.
semanticscholar.org/CorpusID:226221746.

Yin Zhang, Ruoxi Wang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Lichan Hong, James
Caverlee, and Ed H. Chi. Empowering long-tail item recommendation through cross decou-
pling network (cdn). Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discov-
ery and Data Mining, 2022. URL https://api.semanticscholar.org/CorpusID:
253117145.

Bowen Zheng, Yupeng Hou, Hongyu Lu, Yu Chen, Wayne Xin Zhao, and Ji rong Wen. Adapt-
ing large language models by integrating collaborative semantics for recommendation. 2024
IEEE 40th International Conference on Data Engineering (ICDE), pp. 1435–1448, 2023. URL
https://api.semanticscholar.org/CorpusID:265213194.

Bowen Zheng, Yupeng Hou, Hongyu Lu, Yu Chen, Wayne Xin Zhao, Ming Chen, and Ji-Rong Wen.
Adapting large language models by integrating collaborative semantics for recommendation. In
2024 IEEE 40th International Conference on Data Engineering (ICDE), pp. 1435–1448. IEEE,
2024.

13

https://api.semanticscholar.org/CorpusID:246863488
https://api.semanticscholar.org/CorpusID:246863488
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:249395549
https://api.semanticscholar.org/CorpusID:202639719
https://api.semanticscholar.org/CorpusID:226221746
https://api.semanticscholar.org/CorpusID:226221746
https://api.semanticscholar.org/CorpusID:253117145
https://api.semanticscholar.org/CorpusID:253117145
https://api.semanticscholar.org/CorpusID:265213194

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang, Zhongyuan Wang,
and Ji-Rong Wen. S3-rec: Self-supervised learning for sequential recommendation with mutual
information maximization. In Proceedings of the 29th ACM international conference on informa-
tion & knowledge management, pp. 1893–1902, 2020.

A APPENDIX

A.1 RELATED WORK

Due to the page limit, we present the related work here in the Appendix.

Generative Retrieval. The concept of generative retrieval was first proposed by Tay et al. (2022)
within the domain of document retrieval. This paradigm shifts from traditional search and retrieval
methods by encoding document information directly into the weights of a Transformer model. Sub-
sequent studies (De Cao et al., 2020; Bevilacqua et al., 2022; Feng et al., 2022) have expanded on this
foundation, enhancing document retrieval through improvements in indexing (Lee et al., 2022b;c;
Wang et al., 2022), and the efficient continual database updates (Mehta et al., 2022; Kishore et al.,
2023; Chen et al., 2023).

In the realm of sequential recommendation systems, Rajput et al. (2024) is the first work to leverage
the generative retrieval techniques. The target item is directly generated given a user’s interaction
history, rather than selecting top items by ranking all relevant user-item pairs. A key challenge in
generative retrieval is striking a balance between memorization and generalization when encoding
items. To address this, semantic IDs have been proposed by leveraging RQ-VAE models (Lee et al.,
2022a; Van Den Oord et al., 2017). These models encode content-based embeddings into a compact,
discrete semantic indexer that captures the hierarchical structure of concepts within an item’s con-
tent, proving to be scalable in industrial applications (Singh et al., 2023). Recent developments (Hou
et al., 2022a) have expanded semantic-ID-based generative retrieval to include contrastive learn-
ing (Jin et al., 2024), multimodal integration (Liu et al., 2024a), tokenization techniques (Sun et al.,
2024), and learning-to-rank methods (Li et al., 2024).

Sequential Dense Recommendation. Traditional sequential dense recommender models follow
the paradigm of learning representations of users, items, and their interactions with multimodal
data. Early work (Hidasi et al., 2015) proposed architectures based on traditional Recurrent Neu-
ral Networks (RNNs), while later studies (Kang & McAuley, 2018a; Sun et al., 2019; de Souza
Pereira Moreira et al., 2021) have shifted towards the Transformer architecture to enhance perfor-
mance. Besides capturing the user-item interaction history pattern with the sequential modeling,
extra features such as item attributes (Zhang et al., 2019; Zhou et al., 2020) has been utilized to fur-
ther improve the performance. With the recent advancements in Large Language Models (LLMs),
several works have explored using these models as the backbone for recommender systems, align-
ing item representations with LLMs to improve recommendation performance (Li et al., 2023b;
Hou et al., 2022c; Cao et al., 2024a; Zheng et al., 2024). In this work, we aim to merge the sequen-
tial dense recommendation approach with generative retrieval techniques, assessing performance
gaps and computational costs, and proposing a hybrid method that combines the strengths of both
paradigms.

Cold-start Problem. Traditional challenges such as long-tail and cold-start items continue to hinder
recommendation systems. The long-tail items issue arises from skewed distributions where a few
popular items dominate user interactions (Zhang et al., 2022; 2020), while the cold-start problem
arises when new items are introduced without any historical interaction data. Recent studies (Hou
et al., 2022c; Li et al., 2023b) have shown that textual embeddings can provide a robust prior for
tackling the cold-start issue, and further improvements have been achieved by integrating pretrained
LLMs (Huang et al., 2024; Sanner et al., 2023) and knowledge graphs (Frej et al., 2024). In this
work, we explore the cold-start problem within the context of generative retrieval and propose a
hybrid method that combines dense retrieval with textual embeddings to effectively mitigate this
issue.

A.2 EXPERIMENTAL DETAILS

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 3: Dataset statistics after applying 5-core filtering to both users and items. The first three
datasets (Beauty, Sports, and Toys) are subsets of the Amazon review dataset.

Dataset # users # items # actions # cold-start items

Beauty 22,363 12,101 198,502 43
Toys and Games 19,412 11,924 167,597 56
Sports and Outdoors 35,598 18,357 296,337 81
Steam 47,761 12,012 599,620 400

A.2.1 IMPLEMENTATION DETAILS OF DENSE RETRIEVAL

In Section 4.1, we provide the TIGER implementation details. Here, we describe the implementation
details of the dense retrieval method we developed.

The dense retrieval method uses the same T5-encoder architecture, configured with 6 layers, an
embedding dimension of 128, 6 attention heads, and a feed-forward network hidden dimension
of 1024. For content embeddings, we use the same model as TIGER, sentence-T5-XXL, which
generates text embeddings in R768. To integrate these embeddings into the Transformer, we project
them down to a 128-dimensional space using a linear layer.

Following the notation in Section 2.2, once Ei is collected for each item, it is passed through a
LayerNorm layer, followed by a Dropout layer with a rate of 0.5. For the cosine similarity loss
calculation, we set the temperature parameter τ = 0.07. During training, we use the same learning
rate (0.0003), cosine learning rate scheduler, optimizer (AdamW), and weight decay (0.035) as
employed in TIGER’s training.

A.2.2 IMPLEMENTATION DIFFERENCE BETWEEN UNISREC AND OUR DENSE MODEL

Although the dense retrieval model we implemented is inspired by UniSRec Hou et al. (2022c), we
made several modifications to simplify the model and align it with the best-tuned TIGER architec-
ture. Specifically:

1. We use the same content model as TIGER: T5-XXL, whereas UniSRec uses BERT.
2. We adopt the same encoder architecture as TIGER, which consists of 6 T5 encoder lay-

ers with 6 attention heads, an embedding dimension of 128, and a feed-forward network
hidden dimension of 1024. In contrast, UniSRec uses a custom Transformer block with
2 layers, 2 attention heads, an embedding size of 300, a hidden size of 256, and different
implementations for LayerNorm and positional embeddings compared to the T5 model 1.

3. We replace UniSRec’s mixture-of-expert layer and whitening layer with a simple Linear
layer.

4. We train the dense retrieval model from scratch, whereas UniSRec relies on pretraining
using the Amazon 2018 datasets.

A.2.3 DATA STATISTICS

In Table 3, we present the statistics of the datasets used in our evaluation.

A.2.4 BASELINES

We compare our methods with five state-of-the-art Item-ID-based dense retrieval methods, includ-
ing:

1. SASRec (Kang & McAuley, 2018b). A self-attention based sequential recommendation
model that learns to predict the next item ID based on the user’s interaction history.

1https://github.com/RUCAIBox/UniSRec/blob/master/props/UniSRec.yaml

15

https://github.com/RUCAIBox/UniSRec/blob/master/props/UniSRec.yaml

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

2. FDSA (Zhang et al., 2019) [feature-informed]. This method extends SASRec by incorpo-
rating item features into the self-attention model, allowing it to leverage prior information
about cold-start items through their attributes.

3. S3-Rec (Zhou et al., 2020) [feature-informed]. A self-attention based model that utilizes
data correlation to create self-supervision signals, improving sequential recommendation
through pre-training.

4. UnisRec (Hou et al., 2022b) [modality-based]. A model that learns universal item repre-
sentations by utilizing associated description text and a lightweight encoding architecture
that incorporates parametric whitening and a mixture-of-experts adaptor. We fine-tune the
released pretrained model in the transductive setting.

5. Recformer (Li et al., 2023a) [modality-based]. A bidirectional Transformer-based model
that encodes item information using key-value attributes described by text. We fine-tune
the pre-trained model on the downstream datasets.

A.3 FULL EXPERIMENTAL RESULT

In Table 4, we present the full results on the benchmark, where our method with different number
of retrieved candidates from generative retrieval are shown.

A.4 ABLATION STUDY

LIGER combines dense retrieval and generative retrieval paradigms into a unified framework. As
described in Section 3 and illustrated in Figure 2, for each item i with semantic ID (s1i , s

2
i , · · · , smi),

we construct the input embedding for each semantic ID as:

Esji
= esji

+ etexti + eposi + eposj ,

where esji is the learnable embedding for the sji semantic ID, etexti is the item’s text representation,
eposi is the positional embedding for the item, and eposj is the positional embedding for the semantic
ID. The final embedding for item i is then represented as: Ei = [Es1i

,Es2i
, · · · ,Esmi

].

During training, the model is optimized with two objectives: the cosine similarity loss and the next-
token prediction loss on the semantic IDs of the next item: The cosine similarity loss ensures that
the model learns to align the encoder’s output embedding with the text representation of the next
item, and the next-token prediction loss supervise on the next item’s semantic ID tuple prediction
performance. To summarize, the LIGER framework is structured as follows:

1. Input: Semantic ID (SID) and item’s text representation;

2. Output: Predictions for:

(a) The next item’s semantic ID through the SID head.
(b) The next item’s text representation through the embedding head.

The ablation study investigates the impact of each component, as shown in Figure 6:

• LIGER (detach) detaches the gradient updates from the SID head in LIGER to examine the
importance of multi-objective optimization through the SID head;

• TIGER (T) removes the embedding head from LIGER, focusing solely on the SID head and
the text representation as input;

• TIGER further simplifies TIGER (T) by removing the item text representation input, reduc-
ing the model to the generative retrieval method described in Section 2.1;

• Dense (SID) removes the SID head from LIGER, retaining only the dense retrieval mecha-
nism with SID as input;

• Dense replaces the SID input with ID in Dense (SID), reducing the model to the dense
retrieval method in transductive setting, as detailed in Section 2.2.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 4: Performance Table for Amazon Beauty, Sports, Toys, and Steam Datasets Across Various Baseline
Methods. In this table, we present our method with different number of retrieved candidates K from generative
retrieval.

Datasets Methods Inference Cost
NDCG@10↑ Recall@10↑

In-set Cold In-set Cold

Beauty

SASRec O(N) 0.02179 ± 0.00023 0.0 ± 0.0 0.05109 ± 0.00042 0.0 ± 0.0
FDSA O(N) 0.02244 ± 0.00135 0.0 ± 0.0 0.04530 ± 0.00357 0.0 ± 0.0
S3-Rec O(N) 0.02279 ± 0.00058 0.0 ± 0.0 0.05226 ± 0.00229 0.0 ± 0.0
UniSRec O(N) 0.03346 ± 0.00057 0.01422 ± 0.00128 0.06937 ± 0.00110 0.03704 ± 0.00000
RecFormer O(N) 0.02880 ± 0.00085 0.01955 ± 0.00433 0.06265 ± 0.00196 0.04733 ± 0.00943
TIGER O(tK) 0.03216 ± 0.00084 0.0 ± 0.0 0.06009 ± 0.00204 0.0 ± 0.0
Ours (K = 20) O(tK) 0.0402 ± 0.00044 0.038 ± 0.00523 0.07447 ± 0.00111 0.10082 ± 0.01285
Ours (K = 40) O(tK) 0.0423 ± 0.00067 0.02815 ± 0.00525 0.07985 ± 0.00033 0.07613 ± 0.01285
Ours (K = 60) O(tK) 0.04328 ± 0.00113 0.02609 ± 0.00343 0.08207 ± 0.00101 0.07202 ± 0.00943
Ours (K = 80) O(tK) 0.04392 ± 0.00097 0.0255 ± 0.00425 0.08343 ± 0.00115 0.07202 ± 0.00943
Ours (K = 100) O(tK) 0.0443 ± 0.00101 0.02469 ± 0.00381 0.08447 ± 0.00126 0.07202 ± 0.00943
Ours (K = N) O(N) 0.04738 ± 0.00151 0.01225 ± 0.00256 0.0921 ± 0.00247 0.03704 ± 0.00617

Sports

SASRec O(N) 0.01160 ± 0.00038 0.0 ± 0.0 0.02696 ± 0.00102 0.0 ± 0.0
FDSA O(N) 0.01391 ± 0.00162 0.0 ± 0.0 0.02699 ± 0.00312 0.0 ± 0.0
S3-Rec O(N) 0.01097 ± 0.00033 0.0 ± 0.0 0.02557 ± 0.00034 0.0 ± 0.0
UniSRec O(N) 0.01814 ± 0.00041 0.00676 ± 0.00244 0.03753 ± 0.00106 0.01559 ± 0.00447
RecFormer O(N) 0.01318 ± 0.00053 0.01797 ± 0.00000 0.02921 ± 0.00167 0.03801 ± 0.00000
TIGER O(tK) 0.01989 ± 0.00085 0.00064 ± 0.00056 0.03822 ± 0.00109 0.00195 ± 0.00169
Ours (K = 20) O(tK) 0.0243 ± 0.00075 0.02731 ± 0.00229 0.044 ± 0.00127 0.05848 ± 0.00292
Ours (K = 40) O(tK) 0.02594 ± 0.00063 0.01814 ± 0.00052 0.04789 ± 0.00067 0.04191 ± 0.00338
Ours (K = 60) O(tK) 0.02672 ± 0.00067 0.01517 ± 0.00068 0.04987 ± 0.00098 0.03411 ± 0.00338
Ours (K = 80) O(tK) 0.02714 ± 0.00064 0.0127 ± 0.00096 0.05071 ± 0.00094 0.02924 ± 0.00506
Ours (K = 100) O(tK) 0.02744 ± 0.00055 0.01175 ± 0.00059 0.05141 ± 0.00087 0.02729 ± 0.00169
Ours (K = N) O(N) 0.02962 ± 0.00053 0.00581 ± 0.00238 0.05641 ± 0.00071 0.01365 ± 0.00447

Toys

SASRec O(N) 0.02756 ± 0.00079 0.0 ± 0.0 0.06314 ± 0.00178 0.0 ± 0.0
FDSA O(N) 0.02375 ± 0.00277 0.0 ± 0.0 0.04684 ± 0.00483 0.0 ± 0.0
S3-Rec O(N) 0.02942 ± 0.00071 0.0 ± 0.0 0.06659 ± 0.00135 0.0 ± 0.0
UniSRec O(N) 0.03622 ± 0.00056 0.01090 ± 0.00084 0.07472 ± 0.00058 0.02477 ± 0.00195
RecFormer O(N) 0.03697 ± 0.00052 0.04432 ± 0.00094 0.07971 ± 0.00170 0.10023 ± 0.00516
TIGER O(tK) 0.02949 ± 0.00049 0.0 ± 0.0 0.05782 ± 0.00163 0.0 ± 0.0
Ours (K = 20) O(tK) 0.03756 ± 0.00151 0.05231 ± 0.00531 0.07135 ± 0.00244 0.13063 ± 0.00516
Ours (K = 40) O(tK) 0.04021 ± 0.00157 0.03574 ± 0.00262 0.07859 ± 0.00264 0.09459 ± 0.00585
Ours (K = 60) O(tK) 0.04163 ± 0.0014 0.03173 ± 0.00149 0.08222 ± 0.00194 0.08559 ± 0.00516
Ours (K = 80) O(tK) 0.04245 ± 0.0013 0.02861 ± 0.00139 0.08375 ± 0.00187 0.0777 ± 0.00338
Ours (K = 100) O(tK) 0.04288 ± 0.0012 0.02783 ± 0.00108 0.08468 ± 0.00172 0.07658 ± 0.00195
Ours (K = N) O(tK) 0.0468 ± 0.00086 0.02149 ± 0.00202 0.09482 ± 0.00117 0.06081 ± 0.00676

Steam

SASRec O(N) 0.14763 ± 0.00051 0.0 ± 0.0 0.18259 ± 0.00055 0.0 ± 0.0
FDSA O(N) 0.08236 ± 0.00152 0.0 ± 0.0 0.14773 ± 0.00234 0.0 ± 0.0
S3-Rec O(N) 0.14437 ± 0.00127 0.0 ± 0.0 0.18025 ± 0.00222 0.0 ± 0.0
UniSRec O(N) - - - -
RecFormer O(N) 0.14034 ± 0.00123 0.00120 ± 0.00037 0.17042 ± 0.00275 0.00319 ± 0.0011
TIGER O(tK) 0.15034 ± 0.00064 0.0 ± 0.0 0.18980 ± 0.00135 0.0 ± 0.0
Ours (K = 20) O(tK) 0.14951 ± 0.00158 0.00512 ± 0.00047 0.19049 ± 0.00234 0.01466 ± 0.0011
Ours (K = 40) O(tK) 0.15138 ± 0.0011 0.00298 ± 0.00068 0.19302 ± 0.0018 0.00829 ± 0.0011
Ours (K = 60) O(tK) 0.15236 ± 0.00074 0.00258 ± 0.00109 0.19455 ± 0.00154 0.00701 ± 0.00292
Ours (K = 80) O(tK) 0.15284 ± 0.00059 0.00226 ± 0.00105 0.19522 ± 0.00143 0.00637 ± 0.00292
Ours (K = 100) O(tK) 0.15318 ± 0.00049 0.00222 ± 0.00109 0.19566 ± 0.00132 0.00637 ± 0.00292
Ours (K = N) O(tK) 0.15431 ± 6e-05 0.00175 ± 0.00082 0.19736 ± 0.00086 0.0051 ± 0.00221

Figure 7 presents the ablation results in terms of Recall@10 across four datasets: Beauty, Sports,
Toys, and Steam. The performance is analyzed with respect to the number of candidates retrieved
by the SID head (K).

First, comparing TIGER to TIGER(T), we observe that TIGER(T) consistently performs the same or
slightly better, demonstrating the positive impact of incorporating the item’s text representation as
input. However, the improvement is modest, indicating that while text representation is helpful, its
contribution alone does not significantly enhance the model’s performance.

Second, when comparing Dense retrieval with Dense (SID), the results are similar, suggesting that
the primary limitation of the dense retrieval method is not due to the type of representation used
(ID vs. SID). This highlights that the bottleneck contributing to the performance difference lies
elsewhere, possibly in the learning of SID.

LIGER, which combines TIGER and dense retrieval paradigms, exhibits a smooth interpolation be-
tween the performance of TIGER and Dense. This suggests that LIGER effectively leverages the
strengths of both approaches to achieve robust performance across datasets. Notably, when the gra-

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Seq.
Model

SID

Text Rep.

SID

Text Rep.

LIGER

Seq.
ModelSID SID

TIGER

Seq.
Model SID

TIGER (T)

SID

Text Rep.
Seq.
Model

Dense (SID)

SID

Text Rep.

Seq.
Model

Dense

ID

Text Rep.

Text Rep.

Text Rep. Seq.
Model

SID

Text Rep.

SID

Text Rep.

LIGER (detach)

i_2

Figure 6: Overview of our Ablation Study. This study examines the effects of different components within
LIGER (top middle), which integrates TIGER and semantic ID (SID)-based dense retrieval in an transductive
setting. LIGER takes both the semantic ID and item text representation as inputs, predicting the SID and
generating embeddings. We perform the following ablations to evaluate the impact of specific components: (1)
To assess the effect of multi-objective optimization, we detach the gradient updates from the SID head (bottom
middle). (2) To study the role of the embedding head, we remove it (top left). (3) To evaluate the contribution
of the item text representation input in (2), we remove it, reducing the model to TIGER (bottom left). (4) To
analyze the effect of the SID head, we remove it (top right). (5) Finally, we replace the SID with item IDs in
(4), reducing the model to standard dense retrieval in transductive setting (bottom right).

Re
ca

ll@
10

Candidates Retrieved by Gen. Ret., K

LIGER

TIGER

TIGER (T) Dense (SID)

DenseLIGER (detach)

Figure 7: Ablation Results on Recall@10 across Datasets.

dient update from the SID head is detached (LIGER(detach)), the model still performs comparably
to the standard LIGER, with the most significant drop observed on the Steam dataset. This result
implies that the SID head’s learning signal is crucial for the Steam dataset, which is of a larger scale
compared to the Amazon datasets.

Overall, these results demonstrate that LIGER strikes a balance between TIGER and dense retrieval
methods while retaining flexibility through multi-objective optimization. However, the importance
of the SID head’s gradient signals appears dataset-dependent, possibly also influenced by dataset
scales, as highlighted by the performance gap on Steam.

18

	Introduction
	Analysis of Generative and Dense Retrieval Methods
	Generative Retrieval Review
	Sequential Dense Retrieval in Transductive Setting
	The Observed Performance Difference
	Challenges in Cold-Start Item Prediction with Generative Retrieval Models

	Methodology
	Experimental Setup and Results
	Experimental Setup

	Discussion
	Conclusion
	Appendix
	Related Work
	Experimental Details
	Implementation Details of Dense Retrieval
	Implementation Difference Between UniSRec and our Dense Model
	Data Statistics
	Baselines

	Full Experimental Result
	Ablation Study

