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ENTROPIC COVARIANCE MODELS

BY PIOTR ZWIERNIKa

Department of Statistical Sciences, University of Toronto, apiotr.zwiernik@utoronto.ca

In covariance matrix estimation, one of the challenges lies in finding a
suitable model and an efficient estimation method. Two commonly used mod-
elling approaches in the literature involve imposing linear restrictions on the
covariance matrix or its inverse. Another approach considers linear restric-
tions on the matrix logarithm of the covariance matrix. In this paper, we
present a general framework for linear restrictions on different transforma-
tions of the covariance matrix, including the mentioned examples. Our pro-
posed estimation method solves a convex problem and yields an M -estimator,
allowing for relatively straightforward asymptotic and finite sample analysis.
After developing the general theory, we focus on modelling correlation ma-
trices and on sparsity. Our geometric insights allow to extend various recent
results in covariance matrix modelling. This includes providing unrestricted
parametrizations of the space of correlation matrices, which is alternative to
a recent result utilizing the matrix logarithm.

1. Introduction. Estimating the covariance matrix is a fundamental problem in many
fields, including multivariate statistics, spatial statistics, finance, and machine learning. The
literature offers a wide range of models that have been considered for this purpose; e.g.
Anderson (1970); Jennrich and Schluchter (1986); Boik (2002); Pourahmadi (2013). One
popular approach involves exploiting linear restrictions on factors in a decomposition of Σ
or its transformation Pourahmadi (2011). For instance, in linear structural equation models,
specific entries of the matrix L in the LDL decomposition Σ´1 “ LDLJ are set to zero.

Since modelling via the LDL decomposition heavily relies on the variable ordering in the
system, as an alternative, linear restrictions can be directly imposed on the covariance matrix
Σ or some transformation of it; e.g. Anderson (1970); Dempster (1972); Sturmfels and Uhler
(2010). This approach has gained attention due to the prevalence of such structures in multi-
ple applications. Examples include Toeplitz matrices or block-Toeplitz matrices in time series
and spatial statistics Anderson (1978), linear structures encoded by trees in Brownian motion
tree models Zwiernik, Uhler and Richards (2017), and other types of symmetries Szatrowski
(2004). Gaussian graphical models, which enforce sparsity on the inverse of Σ, and their
colored versions have also been widely used in multivariate statistics and machine learning
Dempster (1972); Lauritzen (1996); Højsgaard and Lauritzen (2008). These models are pop-
ular due to their interpretability, as the entries of Σ and its inverse correspond to correlations
or partial correlations.

Another type of restriction considered in the literature involves linear constraints on the
matrix logarithm of the covariance matrix Leonard and Hsu (1992); Chiu, Leonard and Tsui
(1996); Battey (2017). While the interpretation of such constraints is generally less clear,
these models have gained popularity because modelling the matrix logarithm logpΣq does
not require handling the positivity constraints. When Σ is diagonal, these models can
be viewed as extensions of classical log-linear models for heterogeneous variances. The
matrix logarithm of the covariance matrix has found applications in stochastic volatil-
ity models, medical imaging, spatial statistics, and quantum geometry Kawakatsu (2006);
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Ishihara, Omori and Asai (2016); Asai and So (2015); Bauer and Vorkink (2011); Zhu et al.
(2009); LeSage and Pace (2007); Pavlov, Sturmfels and Telen (2022).

Notably, the fact that the matrix logarithm of a covariance matrix is an unrestricted
symmetric matrix has important theoretical implications. For instance, in recent work
Archakov and Hansen (2021) have shown that the logarithm of the correlation matrix has
properties similar to Fisher’s Z-transformation. Having an unrestricted parametrization of
correlation matrices is considered a major breakthrough in temporal modelling of correlation
matrices, which is critical in the GARCH approach. Leveraging similar ideas, we provide
an unrestricted parameterization of Gaussian graphical models and various other covariance
models, which may be of independent interest. In this context, we propose to study the map-
ping Σ ÞÑ Σ ´ Σ´1 as a more tractable alternative to the matrix logarithm.

Main goals of this paper: The research on the matrix logarithm has motivated the
exploration of linear restrictions on more general functions of the covariance matrix. In
this statistical context, functions such as the matrix logarithm are treated as link func-
tions, analogous to generalized linear models (GLMs) Pourahmadi (2011); Zou et al. (2017);
Lin, Müller and Park (2023). Our paper contributes to the development of a GLM method-
ology and a data-based framework for modelling covariance matrices, building on the work
initiated by Anderson, Pourahmadi, and others. The main goals of this paper are twofold:

(i) To propose a general framework for modelling covariance matrices that allows for effi-
cient estimation procedures based on convex optimization.

(ii) To enhance the understanding of the geometry of covariance matrices and show how
convexity simplifies the statistical analysis.

We now briefly describe how these goals are approached.
Entropic covariance models (informal): Our general insight is similar to the construc-

tion of generalized exponential families and matrix nearness problems Grünwald and Dawid
(2004); Dhillon and Tropp (2008), albeit applied to covariance matrices in a broader sense
than previously explored. The key idea is to utilize the gradient mapping ∇F pΣq of a gen-
eral strictly convex and differentiable function defined on the positive definite cone. This
mapping induces a one-to-one transformation of covariance matrices, and we impose affine
(or general convex) restrictions on the result of this transformation. Affine constraints can
arise from regression of the covariance matrix (or its transformation) on auxiliary informa-
tion Zou et al. (2017); Lin, Müller and Park (2023), specific symmetry patterns Szatrowski
(2004), or sparsity Dempster (1972); Hastie, Tibshirani and Wainwright (2015).

For a concrete example, consider the set of 3 ˆ 3 covariance matrices Σ such that
L “ logpΣq satisfies L13 “ 0. This example appears later in Section 6.2. Models with zero
restrictions on logΣ have been recently studied in Rybak and Battey (2021); Pavlov (2023).
Here the main problem is that simple constraints in L translate to complicated constraint in
Σ, which may potentially complicate the estimation process. This is one of the problems we
fully address in this article.

Estimation under linear constraints: Estimating models under linear restrictions on the
inverse covariance matrix is relatively straightforward. Let X P Rnˆm be the data matrix
with independent rows coming from a mean zero distribution with covariance Σ. A natural
approach is to optimize the Gaussian log-likelihood, which, up to additive constants, is given
by

(1) ℓpKq “ n
2
log detpKq ´ n

2
trpSnKq, Sn “ 1

n
X

J
X,

where K “ Σ´1 satisfies the given constraints Anderson (1970); Sturmfels and Uhler (2010);
Barratt and Boyd (2022). This optimization problem is convex since ℓpKq is a strictly con-
cave function of K, and the constraints are linear in K. However, in the case of lin-
ear constraints on Σ, a canonical estimation approach is less obvious, and the Gaussian
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log-likelihood becomes multimodal Zwiernik, Uhler and Richards (2017). This has moti-
vated research on alternative estimation methods Anderson (1973); Christensen (1989);
Sturmfels, Timme and Zwiernik (2019); Améndola and Zwiernik (2021). One natural ap-
proach is to replace the maximum likelihood estimator (MLE) with the least squares esti-
mator, which minimizes }Σ ´ Sn}2F over all Σ in the given linear subspace.

In this paper, by utilizing the Bregman divergence Bregman (1967), we generalize
both the least squares approach for estimating under linear restrictions on Σ and the
problem of minimizing ℓpKq for restrictions that are linear in K. Bregman matrix di-
vergences have been used for matrix estimation and matrix approximation problems;
e.g. Dhillon and Tropp (2008); Ravikumar, Wainwright and Lafferty (2010); Cai and Zhou
(2012); Llorens-Terrazas and Brownlees (2022). However, in these papers, Bregman diver-
gence was used to analyze existing covariance models. Here, it is studied in the context of
new models and to provide more insight in covariance matrix geometry.

For every entropic model the resulting loss function is strictly convex, and its Hessian does
not depend on the data. This is similar to the negative log-likelihood function in exponential
families, making the theoretical analysis of this estimator rather straightforward following the
elegant work of Niemiro (1992). In particular, we show that our proposed estimator, which
we call the Bregman estimator, is consistent and asymptotically normal.

Geometry of entropic models: One of the contributions of this paper is providing new
insights into the geometry of various covariance models that explain and sometimes greatly
generalize existing results. One example is a far reaching generalization of Theorem 1 in
Archakov and Hansen (2021), which provides an unrestricted parametrization for correlation
matrices; see Section 5.2. Another class of insights is related with the Jordan algebras of
symmetric matrices, which we discuss in Section 6.4. These results explain why for cer-
tain entropic models the maximum likelihood estimator is available in closed form; e.g.
LeSage and Pace (2007). We expect these results will greatly improve our understanding of
the linear models on the matrix logarithm of Σ and other entropic models.

The article is organized as follows. Section 2 provides a brief overview of the necessary
background in convex analysis and introduces the main definitions and running examples.
Our proposed estimation method is presented in Section 3, where we also demonstrate the
convexity of the underlying optimization problem. Section 4 presents basic statistical anal-
yses of the resulting estimator. Section 5 investigates the geometry of entropic models in
connection with convex analysis and mixed parametrization. In Section 6, we present various
general results that contribute to our understanding of this model class. Specifically, Sec-
tion 6.1 proposes simple numerical algorithms, and Section 6.2 focuses on sparsity patterns.
Section 6.3 provides some motivation for modelling under linear restrictions on higher pow-
ers of Σ´1. Finally, Section 6.4 provides insights into a particular type of linear constraints
that define Jordan algebras.

2. Preliminaries and definitions. Let Sm denote the real vector space of symmetric
m ˆ m matrices, and let Sm` and S

m

` represent the subsets of matrices that are positive def-
inite and positive semidefinite, respectively. We equip Sm with the standard inner product
xA,By “ trpABq and the induced Frobenius norm }A}F “

a
xA,Ay.

2.1. Convex functions on Sm. By ConvpSmq denote the set of convex functions F :

Sm Ñ R Y t`8u that are not identically equal to `8 (these are called sometimes proper
convex functions). The domain of F P ConvpSmq is the nonempty set dompF q “ tA P Sm :

F pAq ă `8u. By ConvpSmq denote the class of all functions in ConvpSmq that are lower
semicontinuous on Sm — these are also known as closed convex functions. Recall that F
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is lower semicontinuous if the lower level-set tA : F pAq ď tu is closed for all t P R. Be-
cause convex functions are always continuous in the interior of their domain, this involves
conditions on how F behaves on the boundary of domF 1.

Reserve a special notation Em for functions F : Sm Ñ R Y t`8u such that:

(i) F P ConvpSmq,
(ii) Sm` Ď dompF q Ď S

m
` or equivalently intpdompF qq “ Sm` ,

(iii) F is strictly convex and continuously differentiable on Sm` .

In this paper we only consider functions on Sm that belong to the class Em

REMARK 2.1. If F satisfies only (i) and (iii), we replace F pAq with

F pAq ` i
S
m

`

pAq, where i
S
m

`

pAq “
#
0 if A P S

m
` ,

`8 otherwise.

Because S
m

` is closed and convex, i
S
m

`

P ConvpSmq, and so also F pAq` i
S
m

`

pAq P ConvpSmq.

Moreover, the interior of the domain of F pAq ` i
S
m

`

pAq is Sm` . For brevity we often include
the indicator function only implicitly.

A special subclass of functions in Em are functions that satisfy in addition:

(iv) }∇F pΣkq} Ñ 8 for any sequence pΣkq in Sn` that converges to the boundary of Sm` .

If F P Em satisfies (iv), we say that F is essentially smooth.
In our running examples below we define the function F pΣq for Σ P Sm` , The function is

then extended by lower semicontinuity to the boundary of S
m
` , and it is equal to `8 for all

other points. The following are our running examples:

(A) FApΣq “ ´ logdetΣ (B) FBpΣq “ 1

2
trpΣ2q

(C) FCpΣq “ ´ trpΣ ´ ΣlogΣq (D) FDpΣq “ trpΣ´1q
and the details on the lower semicontinuous extension are provided in Appendix A.2. The
function ´FA is called the Gaussian entropy. The function 2FB is the squared Frobenius
norm of Σ. The function ´FC is the von Neumann entropy. Both (B) and (D) can be easily
generalized:

(B’) FB,ppΣq “ 1

p
trpΣpq for p ě 1 (D’) FD,ppΣq “ 1

p
trpΣ´pq for p ě 0.

Note that pFB,p is the p-Schatten norm of Σ raised to power p, FB,ppΣq “ 1

p
}Σ}pp, where

denoting by λ1, . . . , λm the eigenvalues of Σ P Sm` we have

(2) }Σ}p “ p

b
λ
p
1

` . . . ` λ
p
m.

Although we try to keep our theory as general as possible, we note that all our running
examples are spectral functions of the form F pΣq “ trpφpΣqq where φ : R Ñ R and the
notation φpΣq means the corresponding matrix function; see, e.g., Higham (2008). We call
such functions spectral sums.

We will later show that examples (A), (C), and (D) are also essentially smooth. In example
(C) this is quite surprising because the function itself extends to S

m
` (see Appendix A.2).

1We refer to Rockafellar (1970); Hiriart-Urruty and Lemaréchal (2012) as good references for convex analysis.
Chapter 5 of Barndorff-Nielsen (1978) provides a good exposition of the most statistically-relevant results from
Rockafellar (1970). Our discussion of Bregman divergences is closely related to Bauschke and Borwein (1997)
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2.2. Entropic covariance models. We are now ready to describe our set-up. The main
object in our analysis is the gradient ∇F of F . We start with the following well-known fact.

LEMMA 2.2. If F P Em, then ∇F : Sm` Ñ Sm defines a one-to-one function on Sm` .

PROOF. Fix A P Sm and note that the function xA,Σy ´ F pΣq is strictly concave and
continuously differentiable on Sm` . Thus, if its maximum in Sm` exists, it must be a stationary
point and so it must satisfy ∇F pΣq “ A. By convexity it must be the unique such point. This
shows that for each A P Sm there exists at most one point Σ P Sm` such that ∇F pΣq “ A.

Our modelling technique is to apply the transformation ∇F pΣq and impose restrictions on
it. It is useful to denote

(3) L
m
` :“ ∇F pSm` q.

Lemma 2.2 motivates the following definition.

DEFINITION 2.3 (Linear Entropic Covariance Model). Fix an affine subspace L Ď Sm.
The corresponding linear entropic model is

MF pLq :“ tΣ P S
m
` : ∇F pΣq P Lu “ L X L

m
` .

In the definition we implicitly assumed that MF pLq is non-empty. This is a recurrent
assumption of this paper.

ASSUMPTION 1: The mapping F P Em and the subspace L Ď Sm satisfy L X Lm
` ‰ H.

Some interesting examples of the function F are given by popular matrix entropy functions
like the negative Gaussian entropy (A) and the negative von Neumann entropy (C) (hence the
name). For now, F is relevant for us only through the mapping ∇F pΣq, which defines a
suitable reparametrization of the covariance matrix. In the following examples, we refer to
Proposition A.3 for a simple technique to compute ∇F pΣq “ ∇ trpφpΣqq by computing the
derivative of φ. The functions φA, φB , φC , φD were defined in (30)-(33).

EXAMPLE 2.4 (A). If x ą 0 then φ1
Apxq “ ´ 1

x
and so ∇FApΣq “ ´Σ´1 by Propo-

sition A.3. The model MFA
pLq is described by all Σ P Sm` such that ´Σ´1 P L. Here

Lm
` “ ´Sm` and we use the notation L

´1

` to refer to this model. Models of this form are
classically known in statistics Dempster (1972); Anderson (1973); see also the introduction
for a more comprehensive literature overview.

Although linear restrictions on the inverse covariance matrix have many applications, there
are important areas (e.g. signal processing) where it is more natural to impose linear symme-
try restrictions directly on the covariance matrix. This leads to our second example.

EXAMPLE 2.5 (B). If x ą 0 then φ1
Bpxq “ x and so ∇FBpΣq “ Σ. The correspond-

ing entropic model is given by all Σ P Sm` such that Σ P L. Here Lm
` “ Sm` and we denote

this model by L`. This imposes linear restrictions on the covariance matrix as discussed in
the introduction. This example can be generalized to the p-th Schatten norm of Σ P Sm` ,
∇FB,ppΣq “ Σp´1, which allows us to model linear restrictions on an arbitrary positive
power of Σ.
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F pΣq ∇F pΣq F˚pLq DF pS,Lq
´ log detpΣq ´Σ´1 ´m ´ log detp´Lq ´ log detpp´LqSq ` trpp´LqS ´ Imq

1

2
}Σ}2F Σ 1

2
trpL2q 1

2
}L ´ S}2F

trpΣ´1q ´Σ´2 ´2 trp
?

´Lq trpS´1q ´ 2 trp
?

´Lq ` trpp´LqSq

´ trpΣ ´ ΣlogpΣqq logpΣq trpeLq ´ trpS ´ S logpSqq ` trpeLq ´ trpLSq
1
p}Σ}pp, p ě 1 Σp´1 1

q }L}qq , q “ p
p´1

1
p}S}pp ` 1

q }L}qq ´ trpLSq
1
p }Σ´1}pp, p ą 0 ´Σ´p´1 ´1

q } ´ L}qq , q “ p
p`1

1
p }S´1}pp ´ 1

q } ´ L}qq ` trpp´LqSq

TABLE 1
Our running examples with the corresponding gradients, conjugate functions, and the Bregman divergence.

This setting is however completely general and, as we argue below, it is a natural
framework to discuss the generalized models for covariance matrices Pourahmadi (2000);
Zou et al. (2017); Lin, Müller and Park (2023). Example (C) again links to a model well stud-
ied in the literature.

EXAMPLE 2.6 (C). If x ą 0 then φ1
Cpxq “ logpxq and so ∇FCpΣq “ logpΣq. The model

is given by all Σ such that logpΣq P L. This imposes linear restrictions on the matrix loga-
rithm of the covariance matrix. Denote this model by eL. One of the reasons, why this model
is useful is because every matrix L P Sm is a matrix logarithm of some Σ P Sm` . In other
words, Lm

` “ Sm. In the introduction we provide an extensive literature overview for this
model. Some further theoretical justification will be given in Section 5.

We discuss one more example whose relevance will be explained later.

EXAMPLE 2.7 (D). If x ą 0 then φ1
Dpxq “ ´ 1

x
and so ∇FDpΣq “ ´Σ´2. The model

is given by all Σ P Sm` such that Σ´2 P L. Denote this model by L
´2

` . This example has a
straightforward generalization: ∇FD,ppΣq “ ´Σ´p´1 for any p ě 0, which allows to impose
linear restrictions on powers of Σ´1. In Section 6.3 we motivate such zero restrictions.

All our examples are summarized in Table 1. The gradient is given in the second column
and the other columns will be discussed in detail later.

2.3. Dual construction of MF pLq. We note the following dual construction. Suppose
π : Sm Ñ Rd, for some d ě 1 is an affine. In the spirit of (generalized) exponential families
Barndorff-Nielsen (1978); Grünwald and Dawid (2004), we refer to π as a sufficient statis-
tics. Given b P Rd, consider the optimization problem

(4) minimize F pΣq ´ xA0,Σy subject to πpΣq “ b,

where A0 P Sm is a fixed matrix. If F P Em then this problem has at most one optimal solution
in Sm` . Since the set Sm` X tΣ : πpΣq “ bu is relatively open (in the affine subspace tΣ :

πpΣq “ bu), this optimal point pΣ, if exists, must satisfy the regular first order conditions:
we must have that πppΣq “ b and, for every U P Sm such that πpUq “ 0, it must hold that
x∇F ppΣq ´ A0,Uy “ 0, that is, the directional derivatives in all permitted directions must be
zero. In other words,

(5) ∇F pΣq ´ A0 P kerpπqK “: L0.

Note that this equation and the affine space L :“ A0 ` L0 do not depend on the vector b and
so the condition ∇F pΣq P L describes all such potential optimizers.
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PROPOSITION 2.8. A point pΣ P Sm` solves (4) for some b P Rd if and only if ∇F ppΣq P L.

PROOF. The right direction was argued above. If ∇F ppΣq P L then take b :“ πppΣq. Now
pΣ clearly is an optimum of (4) for this b.

For example, if L is given by zero restrictions on some coordinates, we get an explicit link
to positive definite completion problems.

EXAMPLE 2.9 (Positive definite completion). Fix a graph G on m nodes and edge set
E. We allow G to have self-loops that is edges from i to i. Let π : Sm Ñ R|E| be given
by πpΣq “ ppΣijqijPEq. In this case kerpπq is the set of symmetric matrices with zeros on
the entries corresponding to the edges of G. Thus, L0 is the set of symmetric matrices with
zero entries for all non-edges of G: L0 “ tL P Sm : Lij “ 0 if ij R Eu. Given S P Sm` , the
solution to (5) with b :“ πpSq and A0 “ 0 is the unique matrix pΣ that agrees with S on all
the entries ij P E and such that pL “ ∇F ppΣq is zero on the complementary entries.

3. The Bregman estimator. Consider data X1, . . . ,Xn from a centered distribution with
a covariance matrix Σ0 in an entropic model MF pLq. Throughout the paper we make the
following assumption.

ASSUMPTION 2: Σ0 P Sm` and ∇F pΣ0q P L.

We can estimate the covariance matrix using the Gaussian log-likelihood (1). In the case of
non-Gaussian data, this log-likelihood is considered as one of the suitable loss functions. This
gives an asymptotically statistically optimal procedure as long as all fourth order cumulants
of the underlying distribution vanish Browne (1974). For the model L´1

` in Example 2.4 this
approach is canonical not only because it leads to an efficient estimator but also because it
requires solving a convex optimization problem. Indeed, the Gaussian log-likelihood in (1) is
a strictly concave function in K “ Σ´1.

The problem for the general entropic model MF pLq is that optimizing the Gaussian
log-likelihood may be quite complicated since the linear constraints in L “ ∇F pΣq trans-
late into non-linear constraints in K. This observation has motivated a lot of research
on the estimation of linear covariance models L`. One valid solution is to use the dual
MLE, which provides an efficient alternative to the MLE Christensen (1989); Kauermann
(1996); Lauritzen and Zwiernik (2022); Améndola and Zwiernik (2021). Alternatively, the
least squares estimator or generalized least squares estimator has also been used Browne
(1974).

3.1. Definition of the Bregman estimator. In this section, we propose an estimation pro-
cedure for linear entropic models, which offers a natural alternative to the MLE. It generalizes
the use of Gaussian likelihood for linear concentration models L´1

` and the least squares es-
timation for linear covariance models L`. An important ingredient of our statistical analysis
is the Bregman divergence:

(6) DF pS,Σq “ F pSq ´ F pΣq ´ x∇F pΣq, S ´ Σy.
Note that one of the characterizations of strict convexity for differentiable functions over Sm`
assures that DF pS,Σq ě 0 for all S P Sm` with equality if and only if S “ Σ.

Let Sn be the sample covariance matrix defined in (1). Our proposed estimator is obtained
by minimizing the Bregman divergence DF pSn,Σq over the entropic model MF pLq.
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DEFINITION 3.1. The Bregman estimator pΣ (if exists) is the global minimizer of
DF pSn,Σq subject to ∇F pΣq P L X Lm

` .

Note that this is different than the regular Bregman projection, for which the minimiza-
tion is with respect to the first argument; Bauschke and Borwein (1997); Dhillon and Tropp
(2008); Llorens-Terrazas and Brownlees (2022).

There are two crucial aspects regarding the underlying optimization problem that we will
formally state later in this section. Firstly, in Theorem 3.7, we demonstrate that DF pSn,Σq
is a strictly convex function of ∇F pΣq P Lm

` . Secondly, in Theorem 3.13, we establish that
if F P Em is essentially smooth, then the optimum always exists whenever Sn P Sm` . In such
cases, there is no explicit need to impose the restriction ∇F pΣq P Lm

` as first-order optimiza-
tion methods will naturally remain within Sm` . Before formally proving these assertions, we
will examine some examples.

EXAMPLE 3.2 (A). In the Gaussian entropy example we have

DFA
pSn,Σq “ ´ log detpSnΣ

´1q ` trpSnΣ
´1 ´ Imq,

which is just the standard Kullback-Leibler divergence between two mean zero Gaussian
distributions, with covariances Sn and Σ respectively. Here a potential issue arises when Sn

is not positive definite. The standard approach is to drop the FApSnq term, which anyway
does not depend on Σ, and work with the Gaussian log-likelihood directly.

EXAMPLE 3.3 (B). In the Frobenius norm example we have

DFB
pSn,Σq “ FBpSnq ´ FBpΣq ´ xΣ, Sn ´ Σy “ 1

2
}Σ ´ Sn}2F .

Thus, minimizing DFB
pSn,Σq over Σ P L` simply gives the orthogonal projection of Sn on

L if this projection is positive definite. Note that in this example FB is not essentially smooth.

The next example proposes a new way of estimating parameters in models that are linear
in logpΣq. This provides an alternative to the maximum likelihood estimation considered in
Chiu, Leonard and Tsui (1996).

EXAMPLE 3.4 (C). In the von Neumann case we have

DFC
pSn,Σq “ ´ trpSn ´ Sn logpSnqq ` trpΣ ´ ΣlogpΣqq ´ xlogpΣq, Sn ´ Σy

“ ´ trpSn ´ Sn logpSnqq ` trpΣ ´ Sn logΣq.

The next example provides some curious connections to empirical score matching loss.

EXAMPLE 3.5 (D). In our last example given by FDpΣq “ trpΣ´1q, we have

DFD
pSn,Σq “ trpS´1

n q ´ trpΣ´1q ` xΣ´2, Sn ´ Σy
“ trpS´1

n q ´ 2 trpΣ´1 ´ Σ´1SnΣ
´1q.

Note that this function is convex in Σ´1 and it corresponds to the empirical score matching
loss of Lin, Drton and Shojaie (2016).
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3.2. Convexity of the underlying optimization problem. We next analyze DF pSn,Σq as
a function of L “ ∇F pΣq. The conjugate of F pΣq is

(7) F ˚pLq :“ sup
ΣPSm

txΣ,Ly ´ F pΣqu.

The third column of Table 1 contains the convex conjugates for our leading examples. Note
that we use notation }L}q introduced in (2) also if q ă 1, in which case this is formally not a
norm. Explicit calculations for spectral functions could be done by utilizing Theorem 2.3 in
Lewis (1996a). For the special case of spectral sums we use Lemma A.5.

Understanding the domain of F ˚ in general may be complicated but showing that it con-
tains Lm

` “ ∇F pSm` q, as in the examples above, is straightforward. In the next proposition
we collect several known results.

PROPOSITION 3.6. If F P Em then (a) F ˚ P ConvpSmq, (b) F ˚ is continuously differ-

entiable on intdompF ˚q, (c) Lm
` Ď dompF ˚q, and (d) F ˚ is strictly convex on each convex

subset of Lm
` .

PROOF. Statements (a), (b), and (d) follow from Theorem E.1.1.2, Theorem E.4.1.1, and
Theorem E.4.1.2 in Hiriart-Urruty and Lemaréchal (2001). To prove (c), note that if S P Sm`
and L “ ∇F pSq then xΣ,Ly ´ F pΣq is strictly concave and well-defined over Sm` . Since S

is a stationary point it must be the optimum.

To illustrate Proposition 3.6 and how it is subtle, consider the situation in (34). We have
dompF ˚

Bq “ Sm (as calculated in Appendix A.3) and the function is continuously differen-
tiable everywhere (part (b)), however it is not strictly convex everywhere. Since in this case
Lm

` “ Sm` , we confirm that F ˚ is strictly convex on this smaller subset (part (d)).
Directly by definition F pΣq ` F ˚pLq ´ xL,Σy ě 0 for all Σ,L P Sm. However, for

any Σ P Sm` and L P Lm
` we also have the following equivalence; see Corollary E.1.4.4 in

Hiriart-Urruty and Lemaréchal (2001)

(8) F pΣq ` F ˚pLq ´ xL,Σy “ 0 ðñ L “ ∇F pΣq ðñ Σ “ ∇F ˚pLq.
In particular, the second equivalence shows that ∇F and ∇F ˚ are inverses of each other. In
other words, L “ ∇F pΣq if and only if Σ “ ∇F ˚pLq.

THEOREM 3.7. If F P Em then the function DF pS,∇F ˚pLqq takes the form

(9) DF pS,∇F ˚pLqq “ F pSq ` F ˚pLq ´ xL,Sy.
In particular, DF pS,∇F ˚pLqq is differentiable both in S P Sm` and in L P intpLm

` q and it is

strictly convex in S on Sm` and in L on every convex subset of Lm
` .

PROOF. First note that by the first equivalence in (8) we getF ˚p∇F pΣqq “ x∇F pΣq,Σy´
F pΣq. Thus,

DF pS,Σq “ F pSq ´ F pΣq ` x∇F pΣq,Σ ´ Sy “ F pSq ` F ˚p∇F pΣqq ´ x∇F pΣq, Sy.
Expressing this in L “ ∇F pΣq we get (9), which is strictly convex and differentiable in
L P Lm

` by Proposition 3.6.

REMARK 3.8. Slightly abusing notation, from now on, we will write DF pS,Lq to re-
fer to DF pS,∇F ˚pLqq. This notation is also used in the last column of Table 1, where the
corresponding Bregman divergences computed above are expressed in terms of L.
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We mention an important observation that follows from the fact that F ˚˚ “ F if F P Em.

LEMMA 3.9. If F P Em then DF pS,Lq “ DF˚pL,Sq.

In analogy to the log-likelihood function, we equivalently solve

(10) maximize g npLq :“ ´F ˚pLq ` xL,Sny subject to L P L X L
m
` .

We easily see that the gradient of gn is well defined on Lm
` and

∇gnpLq “ ´∇F ˚pLq ` Sn.

The KKT conditions are easy to obtain.

THEOREM 3.10. Suppose that Lm
` is open. The optimum in (10), if exists, is uniquely

given by the pair ppΣ, pLq P Sm` ˆ Lm
` with pL “ ∇F ppΣq satisfying

(11) pL P L and pΣ ´ Sn P L
K.

PROOF. First note that ∇F ˚pLq “ Σ by (8). Since Lm
` is open, LXLm

` is relatively open,
and so pL P L X Lm

` is optimal if and only if the gradient is orthogonal to L.

PROPOSITION 3.11. Let A0 P L. The dual problem to (10) is

(12) minimize F pΣq ´ xA0,Σy subject to Σ ´ Sn P L
K.

PROOF. This is a convex problem over a relatively open set LK X Sm` . The optimum, if
exists, must be a stationary point: pΣ ´ Sn P LK and ∇F ppΣq ´ A0 P pLKqK. Note that LK is
the linear space orthogonal to the affine space L and so pLKqK is the linear space parallel to
L. Since A0 P L we recover the condition pL “ ∇F ppΣq P L. This is exactly the same as (11),
which proves that the problem in (12) is equivalent to the problem in (10).

Another important consequence of this characterization is the following well-known ver-
sion of the Pythagorean theorem. We provide proof for completeness.

PROPOSITION 3.12. Fix an affine subspace L Ă Sm and suppose that pΣ is the minimizer

of DF pS,Lq for L P L and let pL “ ∇F ppΣq P L. Then for every L P L

DF pS,Lq “ DF pS, pLq ` DF ppΣ,Lq.

PROOF. Writing down both sides in terms of F and F ˚ and using the fact that F ppΣq `
F ˚ppLq “ xpΣ, pLy by (8), we see that it is enough to show that xpL ´ L, pΣ ´ Sy “ 0 but this
follows from the fact that pΣ ´ S P LK.

3.3. The advantageous essentially smooth case. We now explain the significance of es-
sentially smooth functions in our analysis. It is worth noting that for spectral sums F pΣq “
trpφpΣqq, essential smoothness corresponds to a similar condition on φ: limxÑ0` |φ1pxq| “
`8. We observe that FA, FC , and FD are essentially smooth, whereas FB is not. This dis-
tinction has a crucial implication for optimizing the Bregman divergence.

In convex analysis, when F P Em is essentially smooth, the pair pF,Sm` q is referred to as
being of Legendre type. This falls under a broader definition, which we will not provide here
(see page 258 in Rockafellar (1970)), and all the relevant findings in Rockafellar (1970) are
expressed in this terminology.
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THEOREM 3.13. If F P Em is essentially smooth then intpdompF ˚qq “ Lm
` . In particu-

lar Lm
` is open. Moreover, if Sn P Sm` and dompF ˚q “ Lm

` , then the optimum of gnpLq over

L P L X Lm
` exists.

PROOF. The first statement follows from Theorem 26.5 in Rockafellar (1970) and the fact
that pF,Sm` q is of Legendre type. Now, if S P Sm` then the unrestricted optimum of g npLq
over Lm

` is pL “ ∇F pSq. The fact that g npLq is uniquely optimized over Lm
` implies that

every level-set tL P Sm : g npLq ě tu is convex and compact (c.f. Proposition B.3.2.4 in
Hiriart-Urruty and Lemaréchal (2001)). As dompF ˚q “ Lm

` is open, all these level sets are
contained in Lm

` . Since L X Lm
` ‰ H, eventually, one of these level sets will have a non-

empty intersection with L and this intersection will contain the constrained optimum.

Recall that examples (A), (C), and (D) are all essentially smooth. By calculations in Ap-
pendix A.3 we have that dompF ˚

Aq “ dompF ˚
Dq “ ´Sm` and dompF ˚

Cq “ Sm are all open and
so Theorem 3.13 will apply in these cases. For a quick illustration why essential smoothness
is necessary consider the following example.

EXAMPLE 3.14. Let m “ 3 and consider the function FB in (31) with ∇FBpΣq “ Σ.
Suppose L is given by a single equation L13 “ 0. Consider two matrices

Sn “

»
—–
1 2

3

2

3

2

3
1 2

3

2

3

2

3
1

fi
ffifl and pΣ “

»
—–
1 2

3
0

2

3
1 2

3

0 2

3
1

fi
ffifl .

Note that Sn is positive definite, pL “ pΣ P L, pΣ´Sn P LK. However, pΣ is not positive definite
and so it cannot be a solution to (10). This does not contradict Theorem 3.13 because FB is
not essentially smooth.

REMARK 3.15. If S R Sm` the optimum in Theorem 3.13 may still exist. When
this happens is however a much more sophisticated question, which depends on F ,
S, and L. In the case of Gaussian graphical models this has been extensively stud-
ied Buhl (1993); Uhler (2012); Gross and Sullivant (2018); Blekherman and Sinn (2019);
Bernstein, Blekherman and Sinn (2020); Bernstein et al. (2021). Our paper suggest that a
similar question could be studied for examples (C) and (D) and other examples introduced
later.

We discuss how to numerically solve problems (10) and (12) in Section 6.1.

4. Basic statistical analysis. In this section we use explicitly the parametrization of the
affine space L defining the entropic model:

Lpθq “ A0 `
dÿ

i“1

θiAi θ “ pθ1, . . . , θdq P R
d,

where A0,A1, . . . ,Ad are fixed matrices that may depend on external information. We as-
sume that this parametrization is one-to-one, or, in other words, dimpLq “ d. In this way, we
can work directly with the parameter vector θ rather than the affine subspace L Ď Sm. To
keep the notation compact, we write g npθq for g npLpθqq.
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4.1. Consistency and asymptotic Gaussianity. Consider a random sample X1, . . . ,Xn

from a zero mean distribution with positive definite covariance matrix Σ0 “ ∇F ˚pL0q with
L0 “ Lpθ0q for some θ0 P Rd. The estimator obtained by solving (10) is a convex M-estimator
and the standard asymptotic theory, as presented in Haberman (1989); Niemiro (1992), can
be applied. Indeed, define m :Rd ˆ Rm Ñ RY t`8u by

mpθ,xq “ F ˚pLpθqq ´ xJLpθqx
then maximizing g npθq is equivalent to minimizing the strictly convex function

(13) Mnpθq “ 1

n

nÿ

i“1

mpθ,Xiq “ F ˚pLpθqq ´ xLpθq, Sny “ ´gnpθq.

The corresponding minimizer pθn is still called the Bregman estimator for MF pLq although
now the estimator depends on the choice of basis A0,A1, . . . ,Ad.

Note that ESn “ Σ0 and the function

(14) Mpθq :“ EMnpθq “ F ˚pLpθqq ´ trpLpθqΣ0q
is strictly convex in the interior of its domain. We have

dompMq “ tθ P R
d : Lpθq P dompF ˚qu Ě tθ : Lpθq P L

m
` u “: Θ`

and we assume θ0 P Θ`. Note that if Lm
` is open, so is Θ`. Theorem 1 in Niemiro (1992)

immediately gives the following result.

PROPOSITION 4.1. Suppose F P Em and EpSnq “ Σ0 P Sm` . The Bregman estima-

tor pθn in MF pLq is a consistent estimator of θ0, where θ0 is the unique point such that

∇F ˚pLpθ0qq “ Σ0.

The main reason, why such nice results exist follows from the fundamental property of
convex functions that pointwise convergence implies uniform convergence; see also Theo-
rem II.1 in Andersen and Gill (1982).

If we assume existence of higher order moments, we obtain a stronger conclusion. Let

(15) hpθ,xq “ ∇θmpθ,xq “ rxΣpθq ´ xxJ,Aiysdi“1.

PROPOSITION 4.2. If the distribution of X has finite moments up to order 2r (equiv.

E}hpθ,Xq}r ă 8) for some r ě 1 then for every ǫ ą 0

Ppsup
kěn

}pθk ´ θ0} ą ǫq “ opn1´rq, n Ñ 8.

The proof follows immediately from Theorem 2 in Niemiro (1992).
We now turn to proving asymptotic Gaussianity. Denoting S “ VpX1X

J
1

q to be the co-
variance of X1X

J
1

we get

(16) VpSnq “ 1

n2

nÿ

i“1

VpXiX
J
i q “ 1

n
S.

Note that S is a covariance of a matrix valued random variable. Similarly as in the standard
vector-valued case, S is a positive semidefinite and self-adjoint linear map from Sm to Sm so
that for all A,B P Sm we have

xA,SAy ě 0 and xA,SBy “ xSA,By.
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The notation SA denotes the action of the linear mapping S : Sm Ñ Sm on A; see, for exam-
ple, Section 2 and Appendix A in Lauritzen (2023).

A corollary from Theorem 3.10 is that the Hessian ∇2Mnpθq of Mnpθq does not depend
on the data and it is equal to the Hessian of Mpθq. We use the notation

(17) Ipθq “ ∇
2Mnpθq “ ∇

2Mpθq P S
d,

which is the counterpart of the Fisher information matrix in exponential families. Since Mpθq
is strictly concave in Θ`, for every fixed θ, Ipθq is a positive definite matrix. We write I0 for
Ipθ0q.

THEOREM 4.3. Denote by pθn the Bregman estimator obtained under data Sn generated

from a mean zero distribution with positive definite covariance ESn “ Σ0 “ ∇F ˚pLpθ0qq
and such that VpSnq “ 1

n
S (the fourth order moments are assumed finite). Then

?
nppθn ´ θ0q dÝÑ Nmp0,I´1

0
ΩI´1

0
q,

where Ωij “ xAi,SAjy for all i, j “ 1, . . . ,m.

PROOF. By Theorem 4 in Niemiro (1992)
?
nppθn ´ θ0q “ ´I

´1

0

?
n∇Mnpθ0q ` oP p1q.

It is then enough to show that
?
n∇Mnpθ0q dÑ Nmp0,Ωq. We have∇Mnpθ0q “ 1

n

ř
i hpθ0,Xiq,

where the function hpθ,xq was defined in (15). We have

Ehpθ0,Xq “ rxΣ0 ´ EXXJ,Aiysdi“1 “ 0

and since the fourth moments exist, the central limit theorem gives that
?
n∇Mnpθ0q con-

verges in distribution to Np0,Ωq.

4.2. Finite sample bounds. Obtaining finite sample bounds is also rather straightforward
but we need to be more careful about the existence of the estimator. In this section, we always
assume that the solution to (10) exists; see Theorem 3.13 for some sufficient conditions.

Denote gpωq “ EpMnpθ0 ` ωq ´ Mnpθ0qq so that, by (14),

gpωq “ F ˚pLpθ0 ` ωqq ´ F ˚pL0q ´ trpΣ0pLpθ0 ` ωq ´ L0qq.
This function is strictly convex in the interior of its domain, nonnegative, and gp0q “ 0. Since
Σ0 is positive definite, 0 lies in the interior of the domain of g at least whenever Lm

` is open.
Define ∆pnq P Rd as

(18) ∆
pnq
i “ xSn ´ Σ0,Aiy for i “ 1, . . . , d.

LEMMA 4.4. If pθn is the Bregman estimator based on the sample covariance matrix Sn

from the true distribution corresponding to parameter θ0 then for every n ě 1 and for every

ǫ ą 0

Pp}pθn ´ θ0} ď ǫq “ Pp∆pnq P ∇gpǫB2qq,
where B2 “ tx P Rd : }x} ď 1u. It also holds that ∇gp0q “ 0.
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PROOF. Recall the definition of Mnpθq in (13). We have

Mnpθ0 ` ωq ´ Mnpθ0q “ gpωq ´ trppSn ´ Σ0qpLpθ0 ` ωq ´ L0qq.
and trppSn ´ Σ0qpLpθ0 ` ωq ´ L0qq “ xω,∆pnqy, which gives

Mnpθ0 ` ωq ´ Mnpθ0q “ gpωq ´ xω,∆pnqy.
By the definition of the convex conjugate, the optimal value of Mnpθ0 ` ωq ´ Mnpθ0q, if
exists, is obtained for pω “ pθn ´ θ0 “ ∇g˚p∆pnqq. Note that ∇g˚p0q “ 0 simply by the fact
that 0 is the global minimizer of g. We get

Pp}pθn ´ θ0} ď ǫq “ Pp∇g˚p∆pnqq P ǫB2q “ Pp∆pnq P ∇gpǫB2qq,
where we used the fact that ∇g and ∇g˚ are inverses of each other. Now the claim easily
follows.

Define for ǫ ą 0:

κ8pǫq :“ inf
}ω}“1

}∇gpǫωq}8 ą 0.

Since ∇g is continuous and ∇gpωq “ 0 if and only if ω “ 0, it is clear that κ8pǫq is bounded
away from zero for any ǫ ą 0. In fact, we have the following basic lemma.

LEMMA 4.5. If g is strongly convex in ǫB2 with modulus c then κ8pǫq ą c

2
?
d

for every

ǫ ą 0.

PROOF. By definition of strong convexity in ǫB2, for all ω P B2

gp0q ě gpǫωq ` x∇gpǫωq,´ǫωy ` c
2
ǫ}ω}2.

Using the fact that }ω} “ 1, gp0q “ 0, and g ě 0 we get that for every ǫ ą 0

(19) x∇gpǫωq, ωy ě 1

ǫ
gpǫωq ` c

2
ą c

2
.

Note that }x}8 “ supyPB1
xx, yy (B1 is the ℓ1-ball) and so x∇gpǫωq, ω

}ω}1 y ď }∇gpǫωq}8.
Thus, dividing (19) by }ω}1 we get that

}∇gpǫωq}8 ą c

2}ω}1
ď c

2
?
d
,

where the last inequality follows from the fact that }ω}1 ď
?
d}ω}.

From the definition of κ8pǫq, it directly follows that:

(20) P
`
∆pnq P ∇gpǫB2q

˘
ě P

`
}∆pnq}8 ď κ8pǫq

˘
.

If the distribution of the sample has a bounded support, finite sample bounds for }∆pnq}8 can
be easily obtained using maximal inequalities for sub-Gaussian random variables. However,
this strategy is not applicable in the Gaussian case. The following method is an alternative
approach that has the potential for extension to other situations.

THEOREM 4.6. Fix F P Em, an affine subspaceL, and the corresponding entropic model

MF pLq. Suppose X1, . . . ,Xn is a random sample from Np0,Σ0q with ∇F pΣ0q P L. If pθn is

the corresponding Bregman estimator of the true parameter θ0 then

Pp}pθn ´ θ0} ą ǫq ď
#
2d expt´κ2

8
pǫqn

8β2 u if 0 ď κ8pǫq ď β2

γ
,

2d expt´κ8pǫqn
4γ

u if κ8pǫq ą β2

γ
.

where β “ maxk“1,...,d }Ak}F , γ “ maxk“1,...,d }Ak} (Frobenius and spectral norms).
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PROOF. By Lemma 4.4, equation (20), and the union bound, we get

(21) Pp}pθn ´ θ0} ą ǫq ď Pp}∆pnq}8 ą κ8pǫqq ď
dÿ

k“1

Pp|∆pnq
k | ą κ8pǫqq.

We will bound each term on the right of (21). Given Σ0 and A1, . . . ,Ad P Sm denote the
eigenvalues of

?
Σ0Ak

?
Σ0 by

λjk “ λjp
a

Σ0Ak

a
Σ0q P R.

If X „ Np0,Σ0q then XJAkX “ řm
j“1

λjkZ
2
j , where Z „ Nmp0, Imq. Thus, for every Xi

in our sample we have

∆
pnq
k “ 1

n

nÿ

i“1

pXJ
i AkXi ´ trpΣ0Akqq “ 1

n

nÿ

i“1

mÿ

j“1

λjkpZ2

ij ´ 1q,

where Zij „ Np0,1q are all independent of each other. Since each Z2
ij ´ 1 is a sub-

exponential random variable with parameters pν,αq “ p2,4q (e.g. Example 2.8 in Wainwright

(2019)) then ∆
pnq
k is sub-exponential with parameters pν˚, α˚q with

ν˚ “

gffe
nÿ

i“1

mÿ

j“1

4 1

n
λ2

jk “ 2?
n

gffe
mÿ

j“1

λ2

jk “ 2?
n

}Ak}F ď 2β?
n
.

and

α˚ “ 4

n
max

j“1,...,m
|λjk| “ 4

n
}Ak} ď 4γ

n
.

This follows from the standard result that if Y1, . . . , YN are independent sub-exponential
with parameters pνi, αiq, then for any fixed vector u P RN , the linear combination

ř
i uiYi is

sub-exponential with parameters p
bř

i u
2

i ν
2

i ,maxiαiq. Standard sub-exponential tail bound
(Proposition 2.9 in Wainwright (2019)) imply then that

Pp|∆pnq
k | ě tq ď

#
2e

´ t2n

8β2 if 0 ď t ď β2

γ
,

2e
´ tn

8γ if t ą β2

γ
.

The result follows by taking t “ κ8pǫq and using (21).

To conclude our discussion of the statistical properties of the Bregman estimator, we
note that our set-up is flexible and Sn could be replaced with any other reasonable es-
timator. This may be particularly relevant in modelling heavy-tailed distributions; e.g.
Lugosi and Mendelson (2019). If the replacement for Sn is an M-estimator then our method
still results in an M-estimator and the theory of Section 4.1 applies.

5. Mixed convex constraints. It is evident that our analysis extends to models defined
by arbitrary (closed) convex restrictions in L “ ∇F pΣq, preserving the convex nature of the
problem stated in equation (10). However, in certain scenarios a portion of the restrictions
may be easier expressed in Σ, while another part is better represented in L. We now explore
how to handle such situations and present several theoretical implications. Our findings heav-
ily rely on the geometric considerations underlying the mixed parametrization in exponential
families Barndorff-Nielsen (1978), as well as the study of the mixed convex exponential fam-
ily setup of Lauritzen and Zwiernik (2022).
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5.1. Mixed parametrization. Consider a split of Σ P Sm into two parts ΣA and ΣB and
the corresponding split L “ pLA,LBq. For example, ΣA could consist of all the diagonal en-
tries of Σ and ΣB be the off-diagonal entries. In this section we consider models that are given
by convex restrictions on ΣA and convex restrictions on LB ; see Lauritzen and Zwiernik
(2022) for the special case ∇FA “ ´Σ´1. For example, modelling correlations is used com-
monly in econometric GARCH models. In a recent paper, Archakov and Hansen (2021) con-
sidered a model in which Σii “ 1 for all i “ 1, . . . ,m and potential further linear restrictions
are imposed on the off-diagonal entries of L “ logΣ. Another example could be to impose
non-negativity restrictions on some entries of Σ and zero restrictions on the complementary
entries of L.

For a given subset of entries of a symmetric matrix, we consider the set of its values that
allow for a positive definite completion

pSm` qA :“ tΣA : Σ “ pΣA,ΣBq P S
m
` u.

We have a similar definition for Lm
` “ ∇F pSm` q

pLm
` qB :“ tLB : L “ pLA,LBq P L

m
` u.

THEOREM 5.1. Let F P Em be essentially smooth with L “ ∇F pΣq. Then there is a

one-to-one map between Σ P Sm` and pΣA,LBq P pSm` qA ˆ pLm
` qB .

The relevant theory was conveniently outlined in Sections 5.3 and 5.4 of Barndorff-Nielsen
(1978) and applied to study mixed parametrizations in exponential families.

PROOF. The proof of this result is essentially the same as the Theorem 5.34 in
Barndorff-Nielsen (1978). Our result is however slightly different as we do not assume that
dompF q is open. The proof easily adapts however because pF,Sm` q is of Legendre type (see
the discussion preceding Theorem 3.13).

Like in the standard exponential families, the most surprising part of this result is the
following conclusion.

PROPOSITION 5.2 (Variational independence). Assume conditions of Theorem 5.1 and

let Σ P Sm` , L P Lm
` . There exists a unique positive definite matrix pΣ that agrees with Σ on

A-entries and such that pL “ ∇F ppΣq agrees with L on the B-entries.

For general F P Em the conclusion of Theorem 5.1 does not hold. A counterexample can
be recovered from Example 3.14. Take ΣA “ pΣ11,Σ22,Σ33,Σ12,Σ23q and LB “ L13. Take
Σ to be Sn from Example 3.14 and let L be the identity matrix. The corresponding pΣA,LBq
is the matrix pΣ in Example 3.14 but this one is not positive definite.

Perhaps it is also useful to see explicitly how this result works in a smaller example when
Theorem 5.1 can be applied.

EXAMPLE 5.3. Consider example (A) with ∇FApΣq “ ´Σ´1. Let m “ 2 and consider
the split ΣA “ pΣ11,Σ22q, LB “ ´pΣ´1q12. Here pS2`qA “ p0,8q2 and pS2`qB “ R. Suppose
Σ11 “ Σ22 “ 1 and denote x “ Σ12 and y “ pΣ´1q12. The claim is that y can be chosen
arbitrarily but here it follows clearly because y “ ´x{p1´x2q is a one-to-one mapping from
p´1,1q to R.
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5.2. Unrestricted parametrization of correlations and other models. Motivated by tem-
poral modelling of correlation matrices, Archakov and Hansen (2021) studied ways to map
the set of correlation matrices in Sm` into a Euclidean space Rmpm´1q{2. It is not immedi-
ately obvious that such a mapping exists but the fact that logΣ maps Sm` to Sm suggested
a natural strategy. Their main result states that for any selection of the off-diagonal entries
of L “ logpΣq there is a unique correlation matrix R such that logR has precisely those
off-diagonal entries.

Our starting point here is that this result is a special case of our Theorem 5.1. Indeed, FC P
Em is essentially smooth and so this theorem applies. Take ΣA to be the vector containing
the diagonal entries of Σ and LB to be the vector containing the off-diagonal entries of
L “ logpΣq. Then there is a one-to-one map from Σ P Sm` to pΣA,LBq P pSm` qA ˆ pLm

` qB .
In particular, we can fix ΣA P pSm` qA to be the vector of ones and LB P pLm

` qB to be an
arbitrary real vector to get Theorem 1 in Archakov and Hansen (2021). Note also that in this
case Lm

` “ Sm and so

(22) pSm` qA “ p0,8qm and pLm
` qB “ R

mpm´1q{2.

We generalize this result in two ways by first providing a simpler map that also offers
an unrestricted parametrization of the set of correlation matrices and, then, by showing how
similar ideas can be used for other covariance models.

For the first result we observe that the essential part of the above construction was not that
Lm

` “ Sm (which motivated using the matrix logarithm) but that pLm
` qB “ Rmpm´1q{2. This

latter condition can be obtained for simpler transformations.

PROPOSITION 5.4. Suppose that F P Em is essentially smooth and LB consists of all

off-diagonal entries of L “ ∇F pΣq. If pLm
` qB “ Rmpm´1q{2 then for an arbitrary vector LB ,

there exists a unique correlation matrix R such that ∇F pRq has precisely these off-diagonal

entries.

Note that when L “ ´Σ´1, it is always possible to choose the off-diagonal entries arbi-
trarily and adjust the diagonal entries to ensure the negative definiteness of L. Consequently,
despite the fact that Lm

` “ ´Sm` , we find that pLm
` qB “ Rmpm´1q{2, which implies that the

matrix inverse serves as an unconstrained parameterization for correlation matrices.

COROLLARY 5.5. For any choice of the off-diagonal entries there exists a unique corre-

lation matrix R whose inverse has precisely these off-diagonal entries.

A clear advantage of working with the inverse is that this is a well-understood algebraic
map with efficient methods to compute it. Explicit numerical procedures are provided in
Améndola and Zwiernik (2021); Llorens-Terrazas and Brownlees (2022). This can also be
done using the techniques discussed in Section 6.1. To see how it works, let L be the set
of all L P Sm with fixed off-diagonal entries LB . Then LK is the set of matrices with zeros
on the diagonal. Take A0 to be any matrix in L and Sn “ Im. Solving the dual problem in
Proposition 3.11 we obtain the unique pΣ with ones on the diagonal and such that pL P L. In
the particular case of L “ ´Σ´1 this corresponds to computing the dual MLE subject to the
constraints Σii “ 1 for i “ 1, . . . ,m but exactly the same approach for logpΣq, which was
exploited in Archakov and Hansen (2021).

Our second contribution in this section is to observe that similar ideas can be applied for
other models. One particular example is the model given by zeros in Σ or its inverse. Suppose
that ΣA is some fixed collection of off-diagonal entries of Σ and fix ΣA “ 0. We again look
for a situation when pLm

` qB is the Euclidean space.
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The simplest approach is to take F such that Lm
` “ Sm, which again points to the matrix

logarithm. However, theoretical analysis of this situation is quite hard and it would advanta-
geous to have a more tractable alternative.

PROPOSITION 5.6. Consider the map FEpΣq “ ´ logdetpΣq` λ
2
trpΣ2q for some λ ą 0.

Then F P Em is essentially smooth and ∇FEpΣq “ λΣ ´ Σ´1 maps bijectively Sm` to Sm.

PROOF. The underlying function φE is ´ logpxq ` λ
2
x2 when x ą 0 and `8 for all other

x. It is strictly convex and differentiable in p0,`8q. Moreover, φ1
Epxq “ λx ´ 1{x and so

|φ1
Epxq| Ñ 8 as x Ñ 0`. This shows that FE P Em is essentially smooth. As φE maps

p0,`8q to R, the result follows.

The new mapping can be used and analyzed in various creative ways. Not to overload this
paper, we will report on this and relating findings in a separate note.

5.3. Estimation under mixed convex constraints. Suppose now that we fix closed convex
restrictions CA on ΣA and convex restrictions CB on LB . Thus, the model is given by

(23) tΣ P S
m : ΣA P CA X pSm` qA and LB P CB X pLm

` qBu.
We propose the following 2-step method to fit a model given by convex restriction on ΣA and
convex restrictions on LB .

(S1) Minimize the Bregman divergence DF pSn,Lq “ F pSnq ` F ˚pLq ´ xL,Sny subject to
LB P CB X pLm

` qB . This is a convex optimization problem and denote the corresponding
unique optimizer (if exists) by pL.

(S2) Given pL, minimize the Bregman divergence DF pΣ, pLq “ F pΣq `F ˚ppLq ´ xpL,Σy sub-
ject to ΣA P CA X pSm` qA. This is again a convex optimization problem and denote the
corresponding minimizer by qΣ.

It is clear immediately by construction that qΣA satisfies the given constraints on ΣA. We also
have the following more surprising result.

PROPOSITION 5.7. Let qL “ ∇F pqΣq then qLB “ pLB P CB . In other words, qΣ lies in the

model (23).

PROOF. If the optimum qΣ in (S2) exists, by convexity of the function and the underlying
CA X pSm` qA, qΣ must satisfy

xqL ´ pL,Σ ´ qΣy ě 0 for all Σ s.t. ΣA P CA.

Since Sm` is open, a small perturbation qΣ ` T also lies in Sm` . Assuming that TA “ 0 we can
even conclude that qΣA ` TA P CA. Since T with TA “ 0 is small but otherwise arbitrary, we
conclude that qLB “ pLB . Moreover, pLB P CB because pL solves (S1).

According to Proposition 5.7, our procedure yields a point satisfying both types of con-
straints by solving two convex problems (S1) and (S2). Some statistical properties of the
corresponding estimator can also be obtained following Section 4 above and Section 6 in
Lauritzen and Zwiernik (2022). Let the Bregman estimator (BE) be the estimator rΣ obtained
by minimizing the Bregman divergence DF pSn,Σq subject to ΣA P CA and LB P CB (this
is in general a non-convex optimization problem). In a way analogous to Theorem 6.1 in
Lauritzen and Zwiernik (2022) and with essentially the same proof, we expect that the esti-
mations rΣn and qΣn are asymptotically equivalent, in the sense that

?
nprΣn ´ qΣnq “ oP p1q.

The importance of this comes from the fact that the Bregman estimator is an M-estimator and
so its asymptotics under general restrictions is quite well understood Geyer (1994).
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6. Some other considerations. Our modelling setting raises further questions, which
require careful study. In this section we briefly describe some of these problems.

6.1. Numerical optimization. We start by discussing an algorithm to solve the prob-
lem (10) or the dual problem (12). In the specific example when F pΣq “ ´ logdetΣ there
exist numerous approaches including coordinate descent and block-coordinate algorithms.
Since second order information is in general hard to obtain for most choices of F (c.f.
Lewis and Sendov (2001)), we propose a first-order method.

The simplest solution is to perform the gradient descent algorithm for the dual problem
(12): minimize F pΣq ´ xA0,Σy subject to Σ ´ Sn P LK. Note that if L is a linear subspace,
we can take A0 “ 0, which simplifies the formulas below.

We initiate the algorithm at Σp0q “ Sn, which is dually feasible. The gradient of F pΣq is
L ´ A0. Denote by ΠK

L
pL ´ A0q the orthogonal projection of L ´ A0 P Sm to LK. We move

from Σptq to Σpt`1q using the formula

Σpt`1q “ Σptq ´ stΠ
K
LpLptq ´ A0q.

If Σptq is feasible, that is, if Σptq ´ Sn P LK then Σpt`1q is also feasible. We can use the step
size st using backtracking, assuring in this way that the value of the function increases at
each step. Since F is strictly convex, this algorithm eventually converges to the optimum.
This follows from the fact that the projected gradient descent is a special case of proximal
gradient algorithms; see Section 10.4 in Beck (2017) for relevant results.

Alternatively, it is possible to solve the primal problem (10). We start by any feasible
Lp0q P L. Then, at each iterate Lptq, we project the gradient ´Σptq ` Sn onto L. We denote
this projection by ΠL. Then we move

(24) Lpt`1q “ Lptq ´ stΠLpΣptq ´ Snq.
Again, the step size can be chosen using backtracking. Note that here in some situations the
choice of a starting point L0 may be problematic.

The main bottleneck in all these cases is that in each step we need to map between Σ and L.
This requires computing the spectral decomposition and so the complexity is at least Opm3q,
which may be prohibitive if m is very large. In the special case, when F pΣq “ trpφpΣqq is a
spectral sum, Han, Avron and Shin (2018) proposed to study the stochastic gradient descent
based on stochastic truncation of the Chebyshev expansion of F (or its conjugate). This and
other techniques to approximate F are discussed in Section 4.4 of Higham (2008).

Another possible approach is to employ an iterative projection algorithm as discussed by
Dhillon and Tropp (2008), which is structurally similar to iterative proportional scaling in
exponential families. Observe that minimizer of DF pS,Lq over the hyperplane H given by
xB,Ly “ c must satisfy pΣ ´ S “ λB for some λ P R. Equivalently, we can solve the one-
dimensional problem

(25) minimize F pS ` λBq ´ λc λ P R.

Suppose now that L “ Şk
i“1

Hi, where Hi is a hyperplane xBi,Ly “ ci. We could iteratively
“project” on H1, . . . ,Hk by minimizing the Bregman divergence. Thus, we could run an
iterative algorithm that starts with Σp0q “ S and for t ě 0

(26) Lpt`1q “ arg min
LPHi

DF pΣptq,Lq, Σpt`1q “ ∇F ˚pLpt`1qq,

where i cycles around t1, . . . , ku. Each step relies on solving the corresponding one-
dimensional problem in (25) with B “ Bi and c “ ci. The following result justifies this
algorithm.
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PROPOSITION 6.1. If F P Em is essentially smooth and S P Sm` then the algorithm in

(26) converges to the global optimum.

The result follows directly from the analogous proof in Section 4 in Dhillon and Tropp
(2008). By Lemma 3.9, DF pS,Lq “ DF˚pL,Sq and we apply their result for DF˚pL,Sq.
The assumptions are satisfied because pF ˚,Lm

` q is of Legendre type if and only if pF,Sm` q
is; see Theorem 26.5 in Rockafellar (1970).

EXAMPLE 6.2. For illustration, we show how this could be used in the case when
F pΣq “ ´ log detpΣq ` 1

2
trpΣ2q. Fix a graph G and consider the linear space

LG “ tL P S
m : Lij “ 0 if i ‰ j and ij R Eu.

In this case the hyperplanes on which we project are defined by c “ 0 and B “ eie
J
j ` eje

J
i

for i ‰ j and ij R G. In the t-th iteration we try to minimize F pΣptq ` λpeieJ
j ` eje

J
i qq

with respect to λ P R. Let A “ ti, ju and C “ t1, . . . ,muzti, ju. We write ΣA|B :“ ΣA,A ´
ΣA,BΣ

´1

B,BΣB,A. It is useful to observe that standard Schur complement arguments give that

detpΣptq ` λpeieJ
j ` eje

J
i qq “ detpΣptq

B,Bq ¨ det
ˆ
Σ

ptq
A|B `

„
0 λ

λ 0

˙
.

Moreover,

1

2
trppΣptq ` λpeieJ

j ` eje
J
i qq2q “ 1

2
trppΣptqq2q ` 2λΣ

ptq
ij ` λ2.

Denote W “ Σ
ptq
A|B P S2. Then

d

dλ
F pΣptq ` λpeieJ

j ` eje
J
i qq “ 2λ ` 2W12

detpΣptq
A|Bq ´ 2λW12 ´ λ2

` 2Σ
ptq
ij ` 2λ.

Equating this to zero results in a cubic polynomial equation, which can be solved exactly.

6.2. Sparsity and positive definite completion. One important concept that has been ex-
tensively studied in high-dimensional statistics is sparsity Hastie, Tibshirani and Wainwright
(2015). In the context of covariance matrix estimation, Gaussian graphical models have
proven to be particularly successful.

EXAMPLE 6.3 (Gaussian graphical models). The multivariate Gaussian distribution
Nmp0,Σq forms an exponential family with canonical parameter K “ Σ´1. Given a sam-
ple X1, . . . ,Xn from this model, the sufficient statistics is Sn “ 1

n

řn
i“1

XiX
J
i . Denote the

entries of Sn by Sij . Fix a graph G with m nodes and edges E. Gaussian graphical models
are given by imposing zero restrictions on some off-diagonal entries of K “ Σ´1

MpGq “ tΣ P S
m
` : pΣ´1qij “ 0 for ij R Eu.

This model is an exponential family itself. The canonical parameters are ppKiiqmi“1
, pKijqijPEq

and the sufficient statistics is ppSiiqmi“1
, pSijqijPEq.

Gaussian graphical models have made a significant impact on multivariate statistics and are
commonly used even for non-Gaussian data. The elegant SKEPTIC approach introduced by
Liu et al. (2012) allows to extend the Gaussian setting to Gaussian copulas with minimal loss
of efficiency and no loss of interpretability. However, Gaussian graphical models are also rou-
tinely employed beyond this favourable scenario. In such cases, the Gaussian log-likelihood
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is considered a suitable loss function, and the zero restrictions correspond to conditional in-
dependence assumptions, albeit under the assumption of linear conditional independence.
Interestingly, as demonstrated in Rossell and Zwiernik (2020), some distributional settings,
such as elliptical distributions, preserve certain non-linear conditional independence infor-
mation even when partial correlations vanish.

Zero restrictions on Σ have also been explored in the literature, leading to the covariance
graph model Pearl and Wermuth (1994); Kauermann (1996); Chaudhuri, Drton and Richardson
(2007); Drton and Richardson (2008). More recently, zero restrictions on logpΣq have been
considered in Battey (2017, 2019); Rybak and Battey (2021), with additional geometric mo-
tivations presented in Pavlov (2023). In Section 6.3, we introduce a new model that imposes
zero restrictions on Σ´2 or more generally on Σ´p for p ě 1. All of these models fall under
the category of entropic models.

Known sparsity: If the sparsity is defined by a graph G, we denote the corresponding
linear subspace by LG:

LG :“ tL P S
m : Lij “ 0 if ij R Eu.

Note that we can take A0 “ 0 in this case. The next result follows from Corollary 3.11.

PROPOSITION 6.4. Let Sn be the sample covariance matrix and consider the problem of

maximizing g npLq subject to L P LG X Lm
` . The dual problem is to minimize F pΣq subject

to Σij “ Sij for all ij P E.

EXAMPLE 6.5. Suppose m “ 3 and suppose that L13 “ 0 is the only constraint defining
LG. Let S P S3` be given by

S “

»
–
4 1 2

1 4 3

2 3 4

fi
fl with G “ 1‚ ´ 2‚ ´ 3‚ and pΣ “

»
–
4 1 ?

1 4 3

? 3 4

fi
fl .

By Proposition 6.4, irrespective of the form of F , the Bregman estimator pΣ is equal to S on
all the entries apart from the entries p1,3q and p3,1q. The KKT conditions require that

p∇F ppΣqq13 “ 0.

We now show how this equation can be solved for our four running examples together with
the new example FEpΣq “ FApΣq`FBpΣq introduced in Proposition 5.6. For ∇FA “ ´Σ´1

we get pΣ13 “ S12S
´1

22
S23 “ 3

4
. For ∇FBpΣq “ Σ, pΣ13 “ 0 as the resulting pΣ is positive

definite (c.f. Example 3.14). If F pΣq is the negative von Neumann divergence, we need to
rely on numerical computations developed in Section 6.1 obtaining

pΣ “

»
–
4.0000 1.0000 0.4298

1.0000 4.0000 3.0000

0.4298 3.0000 4.0000

fi
fl pL “ logppΣq “

»
–
1.3520 0.2721 0.0000

0.2721 0.9305 0.9806

0.0000 0.9806 0.9695

fi
fl .

For ∇FDpΣq “ ´Σ´2, pΣ13 “ 1

3
p64 ´

?
3754q « 0.91. Finally, for ∇FEpΣq “ Σ ´ Σ´1,

pΣ13 « 0.105.

Unknown sparsity: If we are interested in models where ∇F pΣq is sparse but the zero
pattern is unknown, it is natural to consider the optimization problem

(27) minimize F ˚pLq ´ xL,Sny ` λ
ÿ

i‰j

|Lij |
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for some λ ą 0. This is a straightforward generalization of the graphical LASSO approach
Yuan and Lin (2007); Friedman, Hastie and Tibshirani (2008) and related methods that have
been applied to covariance graph models Bien and Tibshirani (2011), and sparse matrix log-
arithms Deng and Tsui (2013). The dual to this problem is a simple modification of (12).

PROPOSITION 6.6. If F P Em then the dual problem (27) is to minimize F pΣq subject to

Σij ´ Sij P r´λ,λs for all i ‰ j.

The proof idea is essentially taken from Banerjee, Ghaoui and d’Aspremont (2008).

PROOF. First note that λ
ř

i‰j |Lij| can be rewritten as maxΓxΓ,Ly, where Γ is a sym-
metric matrix with zeros on the diagonal and ´λ ď Γij ď λ for all i ‰ j. It follows that

min
L

F ˚pLq ´ xL,Sny ` λ
ÿ

iăj

|Lij | “ min
L

max
Γ

F ˚pLq ´ xL,Sn ´ Γy

“ max
Γ

min
L

F ˚pLq ´ xL,Sn ´ Γy

“ max
Γ

F ˚p∇F pSn ´ Γqq ´ x∇F pSn ´ Γq, Sn ´ Γy

“ max
Γ

´F pSn ´ Γq,

where swapping max and min in the second line passes to the dual problem, and in the third
line we use that ∇F and ∇F ˚ are inverses of each other. In the last line we used (8) and the
fact that F ˚˚ “ F , which follows because F is lower semicontinuous. Thus, as claimed, the
problem can be rewritten as: minimize F pΣq subject to ´λ ď Σij ´Sij ď λ for all i ‰ j.

REMARK 6.7. A similar reformulation can be found for the general GOLAZO algorithm
of Lauritzen and Zwiernik (2022), which is suitable for handling a range of elementwise
constraints on L.

6.3. Sparsity in higher powers. One way to motivate the model that imposes zero restric-
tions on the entries of the higher-order powers of Σ´1 is to observe that zeros in Σ´2 give us
some structural information in the context of Gaussian directed acyclic graph models, which
complements the interpretation for zeros in Σ´1 given by Pearl and Wermuth (1994).

Consider a directed acyclic graph (DAG) G whose nodes represent components of the
random vector X “ pX1, . . . ,Xmq. We say that the distribution of X lies in a Gaussian linear
structural model over G if

Xi “
ÿ

jÑiPG
λijXj ` εi,

where λij P R and εi is independent of Xj for each parent j of i in G, and the εi’s are
mutually independent. Denote by Λ P Rmˆm the matrix with entries λij if j Ñ i in G and
zero otherwise. Then the covariance matrix Σ of X satisfies

Σ “ pI ´ Λq´1ΩpI ´ Λq´J,

where Ω is the diagonal covariance matrix of ε. Taking the inverse we get K “ LΩ´1LJ (see
e.g. Proposition 2.1 in Sullivant, Talaska and Draisma (2010)), where L “ pI ´ ΛqJ, and so
Lij “ 0 unless i “ j or i Ñ j in the underlying DAG.
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DEFINITION 6.8. Let p P N. A p-zig-zag path between i and j in a DAG G is any path
of the form

i “ w0 Ñ u1 Ð w1 Ñ u2 Ð w2 Ñ ¨ ¨ ¨ Ð wp´1 Ñ up Ð wp “ j.

Note that each p-zig-zag path contains p “right” and p “left” arrows. A p-zig-zag is called
degenerate if some edges are contracted, where by contracting an edge we mean removing
the corresponding arrow and equating both nodes.

For example, an edge i Ñ j is a degenerate p-zig-zag path for every p ě 1. If a path is a
p-zig-zag path for some p then it is a degenerate q-zig-zag path for every q ą p.

EXAMPLE 6.9. Consider the DAG in Figure 1. Here A is connected by a 1-zig-zag path
to F and by a degenerate 1-zig-zag path to B. However, there is no 1-zig-zag path between
A and any other node. There is no 2-zig-zag path between A and D (every path has at three
arrows going in one direction). Any two nodes are linked by a (degenerate) 3-zig-zag path.

Note that if there is a p-zig-zag path between i and j in G and Xi KKXj |XS for some
subset of nodes S Ď t1, . . . ,muzti, ju then |S| ě p because S must in particular contain all
nodes u1, . . . , up in the zig-zag.

PROPOSITION 6.10. If there is no (possibly degenerate) 2-zig-zag path between i and j

then pK2qij “ 0. More generally, if there is no (possibly degenerate) p-zig-zag path between

i and j then pKpqij “ 0.

The proof of this result follows simply by taking K “ LΩ´1LJ and writing the formula
for the pi, jq-th entry of Kp. For example,

pK2qij “ pLΩ´1LJLΩ´1LJqij “
ÿ

u,v,w

LiuLvuLvwLjw

ΩuuΩww
.

If there is no (possibly degenerate) 2-zig-zag between i and j then each productLiuLvuLvwLjw

must be zero.

6.4. Jordan algebras. Suppose that L Ď Sm is a linear space and that it satisfies

(28) @A,B P L AB ` BA P L.

Such a linear subspace is called a Jordan algebra of symmetric matrices Jensen (1988). It is
obvious that if A P L then A2 P L (or An P L in general for n ě 1). This condition is in fact
equivalent to (28) by the fact that L is a linear subspace and by the identity AB ` BA “
pA ` Bq2 ´ A2 ´ B2.
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Szatrowski showed in a series of papers Szatrowski (1978, 1980, 2004) that the MLE for
linear Gaussian covariance models has an explicit representation, i.e., it is a known linear
combination of entries of the sample covariance matrix, if and only if L forms a Jordan
algebra. Furthermore, Szatrowski proved that for this restrictive model class the MLE is the
arithmetic mean of the corresponding elements of the sample covariance matrix and that
Anderson’s scoring method Anderson (1973) yields the MLE in one iteration when initiated
at any positive definite matrix in the model.

The relevance of this set-up to our considerations comes from the following result.

PROPOSITION 6.11. Suppose F P Em takes the form F pΣq “ trpφpΣqq for a function φ

that is analytic in p0,`8q. Suppose L is a linear subspace which satisfies (28) and Im P L,

then Σ P L X Sm` if and only if ∇F pΣq P L X Lm
` .

PROOF. Since φ is analytic on p0,`8q, φ1 is also analytic and we can take its series
expansion around 1:

φ1pxq “
ÿ

ně0

cnpx ´ 1qn for some cn P R, n ě 0.

In consequence, if Σ P L and L satisfies (28) with Im P L then pΣ ´ Imqn P L for all n ě 1

and so

φ1pΣq “ c0Im `
ÿ

ně1

cnpΣ ´ Imqn P L.

This shows the right implication. For the left implication we use the fact that φ2pxq ą 0 (strict
convexity) and so φ1 is strictly increasing. The inverse of φ1 is also analytic by the Lagrange
Inversion Theorem. Now we can apply exactly the same argument as above to the inverse of
φ1.

Szatrowski (2004) also gives an overview of interesting linear restrictions that correspond
to Jordan algebras. Perhaps the most interesting is given by patterns that are invariant under
a permutation subgroup; see also RCOP models defined in Højsgaard and Lauritzen (2008).
An extreme version of this is when invariance is under the full symmetric group.

EXAMPLE 6.12. Consider the correlation model with an additional restriction that all
off-diagonal entries are equal to each other. This is known as the equicorrelation model
Améndola and Zwiernik (2021). In Proposition 2 of Archakov and Hansen (2021), it was
shown that the logarithm of an equicorrelation matrix has equal off-diagonal entries. This
result is a special case of Proposition 6.11 by observing that the set of matrices with equal
diagonal entries and equal off-diagonal entries forms a Jordan algebra.

The following example was motivated by spatial modelling and it has been less studied in
the literature.

EXAMPLE 6.13. Consider the subspace

L “ tL P S
m : Dα P R s.t. L1m “ α1mu.

This L satisfies conditions of Proposition 6.11. The MESS model LeSage and Pace (2007)
assumes logΣ P L. Their main motivation for studying this model is that the Gaussian log-
likelihood can be explicitly maximized. This again is a special case of the general result on
models defined by Jordan algebras.
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APPENDIX A: SPECTRAL FUNCTIONS

A.1. General results. Establishing convexity of a general function F : Sm Ñ RYt`8u
and computing its gradient may be in general complicated. We note however that are our
running examples are spectral functions Lewis (1996a); Watkins (1974). For reader’s conve-
nience we briefly mention relevant results and definitions.

DEFINITION A.1. A function F : Sm Ñ RYt`8u is a spectral function if F pUJΣUq “
F pΣq for all Σ P Sm and orthogonal U . In particular, F pΣq depends on the eigenvalues of Σ
only.

Associated with any spectral function is a symmetric real-valued function f : Rm Ñ R Y
t`8u. Specifically, we define fpλq “ F pdiagpλqq, where diagpλq is the diagonal matrix
with λ “ pλ1, . . . , λmq on the diagonal. Denote by λpΣq “ pλ1pΣq, . . . , λmpΣqq the spectrum
of Σ and by

ΛpΣq “ diagpλpΣqq
the diagonal matrix with pλ1, . . . , λmq on the diagonal. The spectral functions are precisely
those of the form F pΣq “ F pΛpΣqq “ fpλpΣqq. The following important result appears as
Corollary 2.4 in Lewis (1996a); see also Davis (1957).

THEOREM A.2. If f :Rm Ñ R Y t`8u is a symmetric, closed convex function then the

associated spectral function F : Sm Ñ R Y t`8u defined by F pΣq “ fpλpΣqq is a closed

convex function.

Computing the gradient of a spectral function F also relies on computing the gradient of
f . The following result will be useful; see Corollary 3.2 Lewis (1996a).

THEOREM A.3. Suppose that the function f : Rm Ñ R Y t`8u is a symmetric, closed

convex function. If F is the associated spectral function and Σ “ UΛpΣqUJ for an orthogo-

nal matrix U then for every Σ in the interior of the domain of F

∇F pΣq “ U diagp∇fpλpΣqqqUJ.

We leave it as an exercise to confirm this result for our running examples in Table 1. We
also note that this result is true more generally for spectral functions that are not convex; see
Theorem 1.1 in Lewis (1996b). The computation of the second order derivatives is generally
much more complicated Lewis and Sendov (2001).

It is worth noting that all our examples have a special form

(29) fpλq “
mÿ

i“1

φpλiq

for some smooth function φ :R Ñ RYt`8u. For example, ´ log detpΣq “ ´ řm
i“1

logλipΣq
and 1

2
trpΣ2q “ 1

2

řm
i“1

λ2
i pΣq. Using the matrix function notation (e.g. Higham (2008)) we

can write it more elegantly as F pΣq “ trpφpΣqq. Such functions are also sometimes called
spectral sums. The following follows from Theorem A.3.

PROPOSITION A.4. Suppose that φ is differentiable in p0,`8q. Then, for every Σ P Sm` ,

we get ∇ trpφpΣqq “ φ1pΣq.
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A.2. Running examples. Many results in this paper rely on the fact that the underlying
function F is lower semicontinuous. As we said earlier, we normally define F over Sm` and
then we extend it to Sm` by taking the lower semicontinuous closure. We now explain how
this works for our running examples.

Suppose that φ is a proper convex function. Taking trpφpΣqq ` i
S
m

`

pΣq in Remark 2.1 cor-

responds to adding to φ the indicator of the closed interval r0,`8q. Here the semicontinuous
closure is easy to calculate directly. Thus, the functions φ : R Ñ RY t`8u that we consider
in this paper take the form

(i) φpxq “ `8 for x ă 0; (ii) φpxq ă `8 for x ą 0; (iii) φp0q “ lim
xÑ0`

φpxq.

We have dompφq “ p0,`8q or dompφq “ r0,`8q depending on whether the limit in (iii) is
finite or not.

Now we can present our running examples more formally. In example (A) we have:

(30) φApxq “
#

´ logpxq x ą 0

`8 x ď 0
, FApΣq “

#
´ logdetpΣq Σ P Sm`
`8 Σ R Sm`

.

and so dompFAq “ Sm` . In example (B):

(31) φBpxq “
#

1

2
x2 x ě 0

`8 x ă 0
, FBpΣq “

#
1

2
trpΣ2q Σ P S

m

`
`8 Σ R S

m
`
.

and so dompFBq “ S
m
` . Note that limxÑ0` φBpxq “ 0 so x “ 0 lies in the domain of φB .

Here the extension was rather trivial because 1

2
x2 is well defined for all x P R. Example (C)

is slightly more subtle:

(32) φCpxq “

$
’&
’%

´xp1 ´ logpxqq x ą 0

0 x “ 0

`8 x ă 0

, FCpΣq “
#

´ trpΣ ´ ΣlogpΣqq Σ P Sm`
`8 Σ R S

m
`

and so dompFCq “ S
m
` . Note that we did not write explicitly what is the value of the map on

the boundary of S
m
` . This function, similarly to the pseudoinverse, takes the spectral decom-

position Σ “ UΛUJ and applies the transformation φC only to the non-zero eigenvalues in
Λ leaving the zero eigenvalues unchanged. Finally, in example (D):

(33) φDpxq “
#

1

x
x ą 0

`8 x ď 0
, FDpΣq “

#
trpΣ´1q Σ P Sm`
`8 Σ R Sm`

and so dompFDq “ Sm` .

A.3. Convex conjugate. Suppose F is a spectral function we define its conjugate dual
as in (7). By Theorem 2.3 in Lewis (1996a), if f is the symmetric function associated to F

then F ˚ is equal to the spectral function defined by the conjugate dual of f . In the special
case of spectral sums, f satisfies (29) for some φ :R Ñ R. It is straightforward to see that

f˚pyq “ sup
xPRm

txx, yy ´
mÿ

i“1

φpxiqu “
mÿ

i“1

φ˚pyiq.

In other words, we have the following result.

LEMMA A.5. If F pΣq “ trpφpΣqq for some φ :R Ñ R then F ˚pLq “ trpφ˚pLqq.
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In example (A), φA is given in (30) and

φ˚
Apyq “ sup

xPR
txy ´ φpxqu “ sup

xą0

txy ` logpxqu “
#

´1 ´ logp´yq if y ă 0,

`8 otherwise.

This calculation shows that

F ˚
ApLq “

#
´m ´ log detp´Lq if L P ´Sm` ,

`8 otherwise
, dompF ˚

Aq “ ´S
m
` “ ∇FApSm` q.

Similarly, φB is given in (31) and

φ˚
Bpyq “ sup

xě0

txy ´ 1

2
x2u “

#
1

2
y2 if y ě 0,

0 otherwise.

In particular,

(34) F ˚
BpLq “

#
1

2
trpL2q if L P S

m

` ,

0 otherwise.
, dompF ˚

Bq “ S
m Ą ∇FBpSm` q “ S

m
`

In example (C), φC is given by (32) and

φ˚
Cpyq “ maxt0, sup

xą0

txy ` x ´ x logpxquu “ ey.

In particular, F ˚
CpLq “ exppLq and dompF ˚

Cq “ Sm “ ∇FCpSm` q. Finally, φD is given in
(33) and its conjugate is

φ˚
Dpyq “ sup

xą0

txy ´ 1

x
u “

#
´2

?´y if y ă 0

`8 otherwise

and we have

F ˚
DpLq “

#
´2 trp

?
´Lq if L P ´Sm`

`8 otherwise.
, dompF ˚

Dq “ ´S
m
` “ ∇FDpSm` q.
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