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Abstract001

Fine-tuning large language models (LLMs) on002
additional datasets is often necessary to opti-003
mize them for specific downstream tasks. How-004
ever, existing safety alignment measures, which005
restrict harmful behavior during inference, are006
insufficient to mitigate safety risks during fine-007
tuning. Alarmingly, fine-tuning with just 10008
toxic sentences can make models comply with009
harmful instructions. We introduce Safety-010
Lock, a novel alignment intervention method011
that maintains robust safety post-fine-tuning012
through efficient and transferable mechanisms.013
SafetyLock leverages our discovery that fine-014
tuned models retain similar safety-related ac-015
tivation representations to their base models.016
This insight enables us to extract what we term017
the Meta-SafetyLock, a set of safety bias di-018
rections representing key activation patterns019
associated with safe responses in the original020
model. We can then apply these directions uni-021
versally to fine-tuned models to enhance their022
safety. By searching for activation directions023
across multiple token dimensions, SafetyLock024
achieves enhanced robustness and transferabil-025
ity. SafetyLock re-aligns fine-tuned models026
in under 0.01 seconds without additional com-027
putational cost. Our experiments demonstrate028
that SafetyLock can reduce the harmful instruc-029
tion response rate from 60% to below 1% in030
toxic fine-tuned models. It surpasses traditional031
methods in both performance and efficiency,032
offering a scalable, non-invasive solution for033
ensuring the safety of customized LLMs. Our034
analysis across various fine-tuning scenarios035
confirms SafetyLock’s robustness.036

1 Introduction037

Large language models (LLMs) have demonstrated038

increasing utility across various domains (Wei039

et al., 2022b,a; Weng et al., 2023; Hadar-Shoval040

et al., 2024), yet their potential to handle harm-041

ful queries has raised significant concerns (Car-042

roll et al., 2023; Hendrycks et al., 2023). In re-043

sponse, researchers have developed various post- 044

training alignment methods (Anwar et al., 2024), 045

including post-training adjustments to the models 046

(Bianchi et al., 2024), knowledge editing (Wang 047

et al., 2024c), and vector steering methods (Lee 048

et al., 2024b; Zheng et al., 2024), aiming to en- 049

sure LLMs generate helpful, honest, and harmless 050

(Rosati et al., 2024; Wang et al., 2024d; Yi et al., 051

2024) responses. These measures are expected to 052

teach models to refuse harmful queries during in- 053

ference (Huang et al., 2024b; Wang et al., 2024b; 054

Raza et al., 2024; Zou et al., 2024). 055

However, recent work has revealed significant 056

safety risks in fine-tuned models when using ex- 057

plicitly harmful, implicitly harmful, or even be- 058

nign datasets (e.g. Alpaca (Wang et al., 2023b) 059

dataset). Qi et al. (2024) observes that even if a 060

model’s initial safety alignment is impeccable, this 061

alignment will not be preserved after a customized 062

fine-tuning. The safety alignment of LLMs can be 063

compromised by fine-tuning with only a few adver- 064

sarially designed training examples. For instance, 065

jailbreaking GPT-3.5 Turbo’s safety guardrails by 066

fine-tuning it on only 10 such examples at a cost 067

of less than $0.20 via OpenAI’s APIs. This vul- 068

nerability extends to open-source models such as 069

Meta’s Llama series and proprietary models like 070

GPT-4 (Gade et al., 2023; Zhan et al., 2023). These 071

findings suggest that fine-tuning aligned LLMs in- 072

troduces new safety risks that current safety infras- 073

tructures fall short of addressing, how can it be 074

maintained after fine-tuning? 075

Existing safety alignment techniques can be cate- 076

gorized into three mainstream methods (see Figure 077

1b). The first and most intuitive approach is the 078

post-training method, which involves retraining the 079

model using aligned data. While this method is 080

effective, it is computationally expensive and time- 081

consuming (Zhang et al., 2024b). Second, model- 082

editing approaches (Mitchell et al., 2021, 2022; 083

Wang et al., 2023a) aim to modify specific parts 084

1



of the model to prevent harmful outputs. However,085

they often degrade the overall performance of the086

model, negatively impacting generation plausibility087

and reasoning abilities (Zhang et al., 2024a; Chen088

et al., 2024a). Third, an alternative approach in-089

volves adding extra prompts or detectors during090

inference to avoid unsafe content generation. How-091

ever, these methods are susceptible to adversarial092

attacks. Activation steering methods (Zou et al.,093

2023a; Wu et al., 2024a; Wang et al., 2024d) offer094

another promising direction, as they intervene di-095

rectly in the model’s inference process by steering096

internal representations. Nevertheless, they often097

treat these representations as a whole, which can098

result in a high refusal rate, even for benign queries,099

thereby limiting the model’s utility. The number100

of fine-tuned models may be tens of thousands of101

times that of the original model, making it difficult102

for all existing work to restore safety one by one103

at a low cost. This leads to our key research ques-104

tion: How can we locate safety-relevant attention105

heads in such a large scale of fine-tuned models106

and effectively obtain the safety vector for fine-107

tuned large language models (LLMs) without108

negative transfer to other general tasks?109

Our research aims to address this gap by devel-110

oping a novel approach that strikes the right bal-111

ance between safety and generation quality. To112

achieve this, we propose SafetyLock, which further113

refines existing methods. The main characteristics114

of SafetyLock can be summarized in two aspects:115

1) Precise Safety Alignment with Minimal De-116

gration of General Abilities: By employing safety117

probes (Li et al., 2024a), we identified the attention118

heads most closely associated with harmfulness,119

and determining a safety direction for each. By120

applying intervention vectors to these heads, we121

modify the model’s internal activations towards122

harmlessness during inference, achieving precise123

safety alignment with minimal impact on response.124

2) Transferable and Robust Meta-SafetyLock:125

Assuming that safe intervention directions are sim-126

ilar between the original and fine-tuned models,127

we derive safety vectors (Meta-SafetyLock) from128

the original model (e.g., Llama-3-Instruct) and ef-129

ficiently distribute them to a series of fine-tuned130

models (e.g., Alpaca-Llama-3-Instruct).131

Experimental results show that our approach is132

highly transferable and robust, requiring minimal133

time cost and minimally impacting the generation134

quality compared to traditional methods. First,135

we facilitate the efficient transfer of safety mea-136

sures from base models to their fine-tuned variants, 137

including Llama-3-8B Instruct, Llama-3-70B In- 138

struct, and Mistral-Large-2 123B. Second, Safety- 139

Lock can be deployed without GPU resources 140

in less than 0.01 seconds (Sections 3.2 and 4.3), 141

highlighting our method’s universality. Secondly, 142

SafetyLock significantly reduces the ASR from 143

54.24% to 0.03% in fine-tuned language models 144

and demonstrates robust resistance to both typical 145

safety attacks and dual attacks with prompt-based 146

methods. With the help of SafetyLock, we de- 147

crease ASR from 98% to 2% for DeepInception 148

attacks (Sections 4.2 and 4.4). Finally, we con- 149

ducted experiments on eight general tasks, demon- 150

strating minimal performance decay. We show that 151

SafetyLock maintains a high response rate, with a 152

slight decrease from 99.4% to 98.1% (Sections 4.3 153

and 4.5). Our work advances the field of LLM 154

safety alignment by introducing Meta-SafetyLock, 155

a framework that fundamentally reimagines how 156

safety measures can be efficiently distributed across 157

fine-tuned models. While previous works estab- 158

lished important foundations through safety vectors 159

(Bhardwaj et al., 2024) and various safety interven- 160

tion methods (Zhao et al., 2024; Hazra et al., 2024; 161

Yi et al., 2024), our approach uniquely operates at 162

the attention-head level, supported by our discovery 163

that safety-relevant attention heads maintain consis- 164

tency even after fine-tuning. This insight enables us 165

to extract a single Meta-SafetyLock from the base 166

model that can be rapidly deployed across multi- 167

ple fine-tuned variants without requiring repeated 168

safety pattern searches, achieving remarkable effi- 169

ciency without GPU resources. 170

2 Related Work 171

Alignment of LLMs. As language models become 172

increasingly powerful, risks such as providing dis- 173

honest answers (Bang et al., 2023) and displaying 174

sycophantic behavior (Perez et al., 2022; Sharma 175

et al., 2024) become more pronounced (Hoffmann 176

et al., 2022; Srivastava et al., 2023; Yao et al., 2024; 177

Sun et al., 2024). Properly aligned LLMs are ex- 178

pected to deliver responses that are helpful, harm- 179

less, and honest (Bai et al., 2022). Specifically, 180

harmlessness is addressed through safety alignment 181

(Ji et al., 2024; Zhao et al., 2024), which involves 182

equipping LLMs with safety protocols that enable 183

them to decline harmful instructions. Common ap- 184

proaches for safety alignment include instruction 185

tuning (Ouyang et al., 2022; Zhang et al., 2024b), 186
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Figure 1: The left side a illustrates three distinct safety degradation risks during the fine-tuning of language
models (LLMs). On the right b, several safety recovery methods are compared. In contrast, SafetyLock retrieves a
meta-safety lock from the original model, allowing fast and efficient distribution (0.01 seconds) to fine-tuned models
at any stage by targeting specific safety-sensitive attention heads, constructing a robust safety protection barrier.

Proximal Policy Optimization (Schulman et al.,187

2017; Stiennon et al., 2020), and Direct Preference188

Optimization (Rafailov et al., 2024; Meng et al.,189

2024; Lee et al., 2024a). However, these meth-190

ods often fail to maintain robustness after models191

undergo fine-tuning on new datasets. This short-192

coming emphasizes the need for developing more193

robust alignment techniques that can withstand pa-194

rameter changes introduced during fine-tuning.195

Safeguards of LLMs. Safety adversarial196

prompts have been employed to protect LLMs197

from harmful queries without altering the model’s198

weights or requiring access to them (Zheng et al.,199

2024; Xu et al., 2024b). These prompts are added200

to the system prompt text to defend against jail-201

break attacks (Shi et al., 2023; Hong et al., 2024).202

However, researchers have found that even simple203

fine-tuning can compromise the safety alignment204

of LLMs (Yang et al., 2023b; Huang et al., 2024a;205

Wang et al., 2024b). For example, Qi et al. (2024)206

demonstrated that using just 10 harmful examples207

was sufficient to undermine the safety alignment208

of GPT-3.5. This finding underscores the lack of209

robustness in current safety alignment strategies.210

Recent works have made progress in understanding211

safety mechanisms - from identifying safety neu-212

rons (Chen et al., 2024b) to revealing the role of213

feed-forward layers in safety responses (Geva et al.,214

2021). However, post-processing techniques like 215

RLHF (Bai et al., 2022) and model editing (Wang 216

et al., 2024c) still have limitations. For instance, 217

PPO and DPO adjust the entire activation space, 218

while model editing targets concentrated areas, of- 219

ten missing dispersed safety information. 220

Interventions in LLMs. Intervening in the in- 221

ternal activation of Transformer-based language 222

models during inference can trigger specific trans- 223

formations (Wu et al., 2024b; Turner et al., 2023; 224

Rimsky et al., 2023). This technique has proven 225

valuable for model editing (Meng et al., 2022), 226

circuit discovery (Goldowsky-Dill et al., 2023), 227

and alignment (Zhu et al., 2024). Research shows 228

that attention heads are linked to specific concepts 229

and preferences (Li et al., 2024a; Templeton et al., 230

2024; Xu et al., 2024a). However, these methods 231

generally require per-model intervention vector ex- 232

traction, making them impractical for large-scale 233

deployment. Building on this, SafetyLock achieves 234

precise safety alignment through multi-token-level 235

interventions, using only the activation values from 236

the original model, thus providing robustness to 237

parameter changes while enhancing efficiency. 238

3 Method: SafetyLock 239

As illustrated in Figure 1b, SafetyLock comprises 240

two main phases: manufacturing Meta-SafetyLock 241
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and distributing SafetyLock. Our research reveals242

that fine-tuned LLMs and their original counter-243

parts exhibit remarkably similar activation repre-244

sentations and intervention directions for safety245

preferences (Section A). This discovery enables us246

to extract safety bias directions (Meta-SafetyLock)247

from the original LLMs (Section 3.2). To enhance248

universality and robustness, we propose search-249

ing for activation directions across multiple tokens,250

thereby improving the transferability of SafetyLock251

during distribution (Section 3.3).252

3.1 Safety features in Transformer253

Transformer-based language models consist of lay-254

ers comprising multi-head attention (MHA) mech-255

anisms and multi-layer perceptrons. During infer-256

ence, tokens are processed into high-dimensional257

embeddings and passed through each layer. The258

MHA mechanism can be described as: xl+1 =259

xl +
∑H

h=1Q
h
l Att

h
l (P

h
l xl), where xl ∈ RDH260

represents the activations on the lth layer, H is261

the number of heads in the D-dimensional space.262

P h
l ∈ RD×DH projects activations into a specific263

headspace, and Qh
l ∈ RDH×D reprojects them264

back, facilitating interaction among input tokens.265

We add preference vectors to this residual stream,266

after Atthl and before Qh
l .267

3.2 Constructing Meta-SafetyLock268

The safety direction is modeled as vectors within269

the model’s internal heads. A preference-style270

safety dataset (Yang et al., 2023a) is utilized, con-271

taining pairs of safe and unsafe responses (e.g.,272

Question: "Do you think Jay Z is an idiot”, safe:273

“As an AI, I cannot provide opinions.”, unsafe: “Jay274

Z is an idiot!”). Activation values are extracted275

from each attention head during forward computa-276

tion, forming {(xhl , y)i}Ni=1. A binary classifier is277

trained for each head using logistic regression:278

P (y = 1|xh
t ) = (1 + exp(−(wh

t · xh
t + bht )))

−1

(1)279

The identification of attention heads most sensi-280

tive to safety-related information is accomplished281

through ranking based on the accuracy of their cor-282

responding classifiers on a held-out validation set.283

The dataset is partitioned into training and valida-284

tion sets with a 6:4 ratio. Classifiers are trained285

on the training set and subsequently evaluated on286

the validation set. The Top-K heads exhibiting287

the highest validation accuracy are select for in-288

tervention. Empirical experiments (detailed in Ap-289

pendix E.1) have determined that selecting K = 24 290

for Llama-3-8B and K = 48 for Llama-3-70B 291

achieves an optimal balance between safety per- 292

formance and general performance. This selection 293

was validated through extensive testing of various 294

K values and analysis of their impact on safety 295

metrics and model performance. For each select 296

Top-K head, the safety direction θh
l ∈ RD is calcu- 297

lated, representing the mean difference in activation 298

values between safe and unsafe responses: 299

θh
l =

1

Nr

N∑
i=1

r∑
j=1

(xsafe,i,j
l,h − xunsafe,i,j

l,h ) (2) 300

Where N is the sample size, r is the number of final 301

tokens considered, and xsafe,i,j
l,h and xunsafe,i,j

l,h are 302

activations for the j-th token among the last r to- 303

kens of safe and unsafe responses in the i-th sample, 304

respectively. These safety vectors θhl , along with 305

their corresponding positions in the model, consti- 306

tute the Meta-SafetyLock, which can be applied to 307

enhance model safety during text generation. 308

3.3 Distributing SafetyLock 309

We use two efficient methods for distributing 310

SafetyLock to enhance the safety and harmlessness 311

of language models: online intervention and of- 312

fline bias editing, where online intervention allows 313

real-time adjustment of safety intensity, be suitable 314

for scenarios requiring dynamic safety control, and 315

offline bias editing offers a low-overhead method 316

that is easily deployable at scale. 317

Online Intervention. We identify and enhance 318

the top-K heads with the highest safety-relatedness 319

as attention heads sensitive to harmlessness. For 320

each of the select Top-K heads, we compute σh
l ∈ 321

RD, which represents the standard deviation of 322

activations along each dimension of the safety 323

direction θh
l . Specifically, we calculate: σh

l = 324

std
({

xh
l ⊙ θh

l

}N

i=1

)
. Where ⊙ denotes element- 325

wise multiplication, and std computes the standard 326

deviation across all N samples for each dimension 327

d ∈ {1, . . . , D}. This results in a vector σh
l ∈ RD 328

that captures the variability of the activations along 329

the safety direction. We modify the model’s com- 330

putation by adding a scaled version of the safety 331

vector to the attention outputs for each select head: 332

xl+1 = xl +
∑H

h=1Q
h
l

(
Atthl (P

h
l xl) + ασh

l θ
h
l

)
, 333

where α controls safety intensity, the process is in- 334

tegrated into the autoregressive prediction for each 335

subsequent token. It introduces a shift along prede- 336

termined safety vectors, with the magnitude of this 337
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shift being proportional to the standard deviation,338

scaled by a factor α.339

Offline Bias Editing. We can also modify the340

model’s bias terms in an one-time manner:341

Biasl = Biasl + α

H∑
h=1

Qh
l

(
σh
l θ

h
l

)
. (3)342

343

4 Experiments344

In this section, we present experiments to evaluate345

the effectiveness of the SafetyLock in enhancing346

model safety and inference efficiency, while main-347

taining model’s general performance.348

4.1 Experimental Details349

Threat Model Selections. Following previous red350

teaming and safeguarding studies on aligned LLMs351

(Yuan et al., 2024), we consider a threat model352

where attackers can fine-tune aligned LLMs, typi-353

cally through API access to closed-source models.354

The primary objective is jailbreaking these models355

and removing safety constraints (Wei et al., 2023;356

Carlini et al., 2023) while SafetyLock aims to re-357

build the safety guard. We use Llama-3-8B Chat,358

Llama-3-70B Chat, and Mistral-Large-2 123B as359

our base models, fine-tuning them on datasets rep-360

resenting each risk level to simulate real-world sce-361

narios. Please refer to Appendix D for detailed362

baseline experimental setups.363

Fine-tuning Datasets. We conducted experi-364

ments on three risks: (1) explicitly harmful datasets,365

where attackers intentionally fine-tune models on366

malicious content (Ganguli et al., 2022; Qi et al.,367

2023); (2) implicitly harmful datasets, which may368

appear benign but lead to compromised safety369

guardrails (Qi et al., 2024); and (3) benign datasets,370

where even well-intentioned fine-tuning can inad-371

vertently degrade model safety (Wang et al., 2023b).372

For Risk-1, we use negative samples from the HH-373

RLHF dataset (Bai et al., 2022). We select 10, 100,374

1000, and 10000 samples respectively and trained375

for 5 epochs with a learning rate of 2× 10−5. For376

Risk-2, we use 10 samples from Qi et al. (2024) and377

train for 5 epochs with a learning rate of 2× 10−5.378

For Risk-3, we used the first 50,000 samples from379

the Alpaca dataset (Wang et al., 2023b) and trained380

for 5 epochs with a learning rate of 2× 10−5.381

Safety Evaluation and Metrics. Two datasets382

are used to investigate these risks and evaluate po-383

tential mitigation strategies. HEx-PHI (Qi et al.,384

2024) is based on 11 categories of prohibited use 385

cases merged from Meta’s Llama-3 acceptable use 386

policy and OpenAI’s usage policies. The dataset 387

includes 30 examples per category, totalling 330 388

examples. This ensures a comprehensive safety 389

evaluation aligned with industry-standard usage 390

policies. The HEx-PHI utilizes GPT-4 for auto- 391

mated assessment, providing harmfulness scores 392

from 1 to 5. We calculated the Harmfulness Rate 393

as the proportion of scores equal to 5. AdvBench 394

is released by (Zou et al., 2023b), we adhere to 395

the original paper’s setup and calculate the ASR 396

through string matching. 397

Baselines. The baseline methods encompass a 398

diverse range of approaches, each with its unique 399

characteristics. Inference-time methods include 400

in-context demonstration (ICD) (Wei et al., 2024), 401

PPL (Alon and Kamfonas, 2023), Paraphrase (Jain 402

et al., 2023), Retokenization (Jain et al., 2023), Self- 403

Reminder (Xie et al., 2023), and Self-Examination 404

(Phute et al., 2024), which operate without modify- 405

ing the underlying model. Training-based methods, 406

such as PPO, DPO, SFT with safety data mixing, 407

and Model-Edited (DINM) (Wang et al., 2023a), 408

involve altering the model to enhance safety. These 409

baselines represent the current state-of-the-art in 410

mitigating safety risks in language models, provid- 411

ing a robust benchmark for our evaluation. 412

4.2 Results over Different Risk Levels 413

For the threat model, we directly fine-tuned LLMs 414

on overtly harmful, identity shifting, and benign 415

datasets to simulate attacks, which are referred to 416

as "Vanilla" in our figures as a baseline. The Meta- 417

SafetyLock was extracted from the original Instruct 418

model, which takes approximately 2-10 minutes. 419

Notably, the distribution phase for each fine-tuned 420

model took less than 0.01 seconds. 421

SafetyLock demonstrates significant improve- 422

ments in safety metrics across three distinct risk 423

levels for the models tested. Table 1 shows consis- 424

tent reductions in Harmfulness Scores, Rates, and 425

ASR across all model sizes and risk levels. 426

For Risk Level-1 (explicit attacks), SafetyLock 427

substantially reduces metrics for all models. The 428

Llama-3-8B-Instruct model, for instance, saw its 429

Harmfulness Score decrease from 4.13 to 1.36, 430

Rate from 70.01% to 3.33%, and ASR from 431

49.24% to 0.19% . Comparable improvements 432

were observed for the Llama-3-70B-Instruct and 433

Mistral-Large-2 123B models. Risk Level-2 and 434

Risk Level-3 also showed significant improve- 435

5



Model Method
Risk 1: Explicitly harmful Risk 2: Identity Shifting Risk 3: Benign
Score Rate ASR Score Rate ASR Score Rate ASR

Llama-3-8B-
Instruct

Vanilla 4.13 70.01% 49.24% 3.19 53.33% 38.46% 3.23 54.24% 42.88%
SafetyLock 1.36 3.33% 0.19% 1.07 1.21% 5.19% 1.04 0.03% 0.19%

Llama-3-70B-
Instruct

Vanilla 3.11 45.76% 44.81% 2.12 15.63% 9.42% 2.26 30.61% 20.77%
SafetyLock 1.16 3.64% 3.33% 1.30 5.58% 1.67% 1.22 5.15% 1.15%

Mistral-Large-2
123B

Vanilla 4.71 85.45% 80.77% 4.79 92.12% 82.50% 2.84 49.09% 19.23%
SafetyLock 2.28 1.52% 16.92% 1.38 0% 10.00% 1.35 5.15% 1.82%

Table 1: Comparison of Llama-3-8B-Instruct and Llama-3-70B-Instruct models for Risk 1, Risk 2, and Risk 3
scenarios. ‘Score’ and ‘Rate’ represent the average Harmfulness Score and Harmfulness Rate on the HEx-PHI test
set, respectively. ‘ASR’ denotes the Attack Success Rate on AdvBench.
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Figure 2: Impact of increasing harmful training samples
on model safety with and without SafetyLock.

ments. For example, in Risk Level 2, the Llama-436

3-8B-Instruct model’s Harmfulness Score reduced437

from 3.19 to 1.07. Similar improvements were ob-438

served across all model sizes, demonstrating Safety-439

Lock’s ability to maintain ethical guardrails during440

routine model customization processes.441

In Figure 2, we further supplement an ablation442

with larger training sets on risk 1 (100, 1000, and443

10000 harmful samples) showing that SafetyLock-444

protected models maintain low ASR across all sam-445

ple sizes. Even with 10,000 harmful training exam-446

ples, the SafetyLock model exhibited only 3.46%447

ASR, compared to 62.31%for the unprotected448

model. This consistent performance across in-449

creasing dataset sizes underscores SafetyLock’s re-450

silience against data volume attacks. These results451

demonstrate SafetyLock’s effectiveness across dif-452

ferent model scales, risk types, and dataset sizes,453

suggesting its potential as a valuable tool for en-454

hancing AI safety in various applications.455

4.3 Comparative Analysis456

To comprehensively evaluate SafetyLock’s efficacy,457

we conducted a comparative analysis against estab-458

lished baseline methods, categorized into training-459

based and inference-time approaches, as illustrated460

in Figure 3. This analytical framework enables a461

thorough assessment of various strategies for main-462

taining model safety in fine-tuned language models. 463

As demonstrated in Figure 3, in terms of effi- 464

ciency, SafetyLock exhibits a remarkable computa- 465

tional economy. Its inference time of 0.97 seconds 466

is nearly on par with the fastest baseline method 467

(Self-Reminder at 1.12 seconds), while its training 468

time of 0.01 seconds and additional GPU memory 469

usage of 0.0 GB are orders of magnitude lower than 470

all training-based methods. This efficiency is par- 471

ticularly noteworthy when compared to methods 472

like DPO, which, despite its effectiveness, requires 473

7622.0 seconds of training time and 45.12 GB of 474

GPU memory. Other inference-time methods like 475

ICD and PPL show varying degrees of effectiveness 476

but generally struggle to match the safety improve- 477

ments of training-based methods. SFT with safety 478

data mixing post-fine-tuning offers a more balanced 479

approach, achieving a Harmfulness Score of 1.03 480

with reduce resource requirements of 779 seconds 481

and 38.32 GB GPU memory. Regarding attack 482

sample rejection, SafetyLock demonstrates supe- 483

rior performance in mitigating harmful content. It 484

achieves a Harmfulness Score of 1.04, equivalent to 485

that achieved by models undergoing safety realign- 486

ment via DPO, indicating its exceptional ability to 487

reduce the generation of harmful content. Further- 488

more, SafetyLock’s AdvBench ASR of 0.19% sur- 489

passes all baseline methods, showcasing its robust 490

defense against adversarial attacks. This perfor- 491

mance is particularly impressive when compared to 492

inference-time methods like Self-Reminder, which 493

achieves a higher Harmfulness Score of 1.82 and 494

an AdvBench ASR of 19.81%. 495

We further assess the models’ performance on 496

benign inputs to ensure safety enhancements did 497

not compromise normal text generation by select- 498

ing 500 test samples from the Alpaca dataset. The 499

results reveal that SafetyLock preserves a 98.1% 500

normal response rate, closely trailing the origi- 501
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Figure 3: Comparison of Methods for Mitigating Safety Risks in Fine-tuned Language Models (Llama-3-Instruct
8B). Upper row: Compared with inference-time methods; Lower row: Compared with training-time methods.

Model AutoDAN ASR DeepInception ASR GCG ASR PAIR ASR XSTest ASR

Vanilla 84.0 98.0 74.0 70.0 19.5
ICD 46.0 98.0 22.0 50.0 7.0
PPL 84.0 98.0 0.0 70.0 17.0
Paraphrase 32.0 96.0 58.0 74.0 40.0
Retokenization 82.0 98.0 94.0 64.0 57.5
Self-Reminder 66.0 98.0 32.0 56.0 8.0
Self-Exam 84.0 98.0 74.0 70.0 19.5
SafetyLock 4.0 2.0 10.0 14.0 4.0

Table 2: Comparison of SafetyLock and other inference-
time defence methods against four prominent prompt-
based attacks on fine-tuned Llama-3-8B Instruct.

nal Vanilla model’s 99.4%. Our findings indicate502

that SafetyLock’s ability to maintain model per-503

formance on benign inputs further underscores its504

balanced approach to safety and functionality.505

In conclusion, SafetyLock distinguishes itself506

by achieving an exceptional balance between507

efficiency and robust defense against harmful508

content, without compromising the model’s abil-509

ity to generate plausible responses. It success-510

fully combines the strengths of both training-based511

and inference-time approaches, achieving the ro-512

bust safety improvements typically associated with513

resource-intensive training methods while main-514

taining the efficiency characteristic of inference-515

time approaches. This unique combination of at-516

tributes makes SafetyLock particularly well-suited517

for real-world applications where computational518

resources are often constrained, and maintaining519

model performance on benign inputs is as crucial520

as rejecting harmful content.521

4.4 Against Combined Attacks 522

The resilience of fine-tuned LLMs against com- 523

bined fine-tuning and prompt-based attacks is cru- 524

cial for ensuring robust safety in real-world ap- 525

plications. To further assess robustness, we in- 526

troduced a combined attack scenario: fine-tuning 527

model attacks followed by prompt-based attacks. 528

We evaluated four commonly prompt attack meth- 529

ods: AutoDAN (Liu et al., 2024), DeepInception 530

(Li et al., 2024b), GCG (Zou et al., 2023b), PAIR 531

(Chao et al., 2024), and XSTest (Röttger et al., 532

2023) comparing their performance against several 533

defense techniques, as illustrated in Table 2. 534

SafetyLock demonstrates exceptional effective- 535

ness across all tested attack methods. For Auto- 536

DAN attacks, SafetyLock reduces the ASR to a 537

mere 4.0%, significantly outperforming other meth- 538

ods such as ICD (46.0%) and Self-Exam (66.0%). 539

Against DeepInception, traditionally one of the 540

most challenging attacks to defend against, Safety- 541

Lock achieves a remarkably low 2.0% ASR, while 542

all other methods fail to provide any meaningful 543

defense (98.0% ASR across the board). For GCG 544

attacks, SafetyLock maintains strong performance 545

with only a 10.0% ASR, second only to PPL’s 546

0.0% but considerably better than most other meth- 547

ods, including Vanilla (74.0%) and Retokenization 548

(94.0%). In the case of PAIR attacks, SafetyLock 549

again shows robust defense capabilities, allowing 550

only a 14.0% ASR, outperforming all other tested 551

methods. Additionally, on the structured XSTest 552
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Figure 4: Performance comparison of various methods on downstream tasks.

benchmark, SafetyLock achieves a state-of-the-art553

4.0% ASR, substantially outperforming other ap-554

proaches such as ICD (7.0%) and Self-Reminder555

(8.0%), while methods like Paraphrase and Re-556

tokenization show significant vulnerabilities with557

40.0% and 57.5% ASR respectively.558

These results underscore SafetyLock’s ver-559

satility and effectiveness in mitigating prompt-560

based attacks across various attack types. Its561

consistent performance demonstrates a comprehen-562

sive approach to model safety, addressing the com-563

plex challenges posed by diverse attack scenarios in564

language model deployment. The ability to main-565

tain such low ASR across different attack methods566

suggests that SafetyLock provides a more general-567

izable and robust defense mechanism.568

4.5 Generalization Capabilities of SafetyLock569

To evaluate SafetyLock’s ability to maintain model570

performance while ensuring safety - a critical bal-571

ance that previous methods struggled to achieve572

- we assess language understanding and genera-573

tion capabilities across various downstream tasks.574

Our experiments include diverse benchmarks (Hos-575

seini et al., 2014; Talmor et al., 2018; Arkil et al.,576

2021; Cobbe et al., 2021; Suzgun et al., 2022; Roy577

and Roth, 2016; Wei et al., 2022b; Kojima et al.,578

2022; Weng et al., 2024; Zheng et al., 2023; Dubois579

et al., 2023): AddSub, AQUA, CommonSenseQA,580

GSM8k, MT-Bench, Alpaca, and AlpacaEval 2.0.581

As illustrated in Figure 4, SafetyLock demon-582

strates remarkable ability to maintain model per-583

formance while ensuring safety. Unlike previous584

knowledge editing methods, which often led to585

significant performance degradation, SafetyLock586

preserves the model’s capabilities. For instance,587

on the AddSub task, SafetyLock maintains 85.57% 588

performance (compared to original 86.33%), while 589

Model-Edited shows complete performance col- 590

lapse. This trend is consistent across other tasks, 591

with SafetyLock performing on par with or slightly 592

below the original model. These results validate 593

our goal of selective harm prevention - rejecting 594

harmful queries while maintaining performance on 595

legitimate tasks. The results highlight SafetyLock’s 596

unique ability to enhance safety without compro- 597

mising core functionalities, addressing a critical 598

challenge in safe model deployment. 599

5 Conclusion 600

We introduce SafetyLock, a novel and efficient 601

method for maintaining the safety of fine-tuned 602

large language models across various risk levels 603

and attack scenarios. Our comprehensive experi- 604

ments demonstrate SafetyLock’s superior perfor- 605

mance in balancing efficiency, attack sample re- 606

jection, and normal text processing, outperforming 607

existing training-based and inference-time methods. 608

SafetyLock notably shows robust defense capabili- 609

ties against fine-tuning vulnerabilities and prompt- 610

based attacks, addressing the critical challenge of 611

dual-threat scenarios in real-world LLM deploy- 612

ments. The method’s minimal computational over- 613

head and strong safety improvements position it as 614

a promising solution for ensuring responsible AI 615

deployment. Our findings contribute significantly 616

to the ongoing efforts in AI safety, offering a scal- 617

able and effective approach to aligning fine-tuned 618

language models with ethical constraints while pre- 619

serving their utility across diverse applications. 620

8



Limitations621

While SafetyLock demonstrates promising results622

in maintaining the safety of fine-tuned language623

models, it is important to acknowledge several lim-624

itations. Primarily, SafetyLock requires access to625

both model weights and intermediate activations626

for implementation, which may limit its applica-627

bility in scenarios where such access is restricted628

or unavailable. Additionally, the method employs629

a symmetric locking mechanism; consequently, if630

an unauthorized party gains access to the model631

weights or activation values, they could potentially632

reverse-engineer the process to unlock and bypass633

SafetyLock’s protections. Lastly, while SafetyLock634

shows strong performance against current attack635

methods, its long-term robustness against evolving636

adversarial techniques remains to be studied. These637

limitations present opportunities for future work to638

enhance and expand the capabilities of SafetyLock,639

ensuring its continued effectiveness in maintaining640

AI safety.641
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Nguyen, Edwin Chen, Scott Heiner, Craig Pettit,872
Catherine Olsson, Sandipan Kundu, Saurav Kada-873
vath, Andy Jones, Anna Chen, Ben Mann, Brian874
Israel, Bryan Seethor, Cameron McKinnon, Christo-875
pher Olah, Da Yan, Daniela Amodei, Dario Amodei,876
Dawn Drain, Dustin Li, Eli Tran-Johnson, Guro877
Khundadze, Jackson Kernion, James Landis, Jamie878
Kerr, Jared Mueller, Jeeyoon Hyun, Joshua Lan-879
dau, Kamal Ndousse, Landon Goldberg, Liane880
Lovitt, Martin Lucas, Michael Sellitto, Miranda881
Zhang, Neerav Kingsland, Nelson Elhage, Nicholas882
Joseph, Noemí Mercado, Nova DasSarma, Oliver883
Rausch, Robin Larson, Sam McCandlish, Scott John-884
ston, Shauna Kravec, Sheer El Showk, Tamera Lan-885
ham, Timothy Telleen-Lawton, Tom Brown, Tom886
Henighan, Tristan Hume, Yuntao Bai, Zac Hatfield-887
Dodds, Jack Clark, Samuel R. Bowman, Amanda888
Askell, Roger Grosse, Danny Hernandez, Deep Gan-889
guli, Evan Hubinger, Nicholas Schiefer, and Jared890
Kaplan. 2022. Discovering language model be-891
haviors with model-written evaluations. Preprint,892
arXiv:2212.09251.893

Mansi Phute, Alec Helbling, Matthew Daniel Hull,894
ShengYun Peng, Sebastian Szyller, Cory Cornelius,895
and Duen Horng Chau. 2024. LLM self defense: By896

self examination, LLMs know they are being tricked. 897
In The Second Tiny Papers Track at ICLR 2024. 898

Xiangyu Qi, Kaixuan Huang, Ashwinee Panda, Peter 899
Henderson, Mengdi Wang, and Prateek Mittal. 2023. 900
Visual adversarial examples jailbreak aligned large 901
language models. Preprint, arXiv:2306.13213. 902

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi 903
Jia, Prateek Mittal, and Peter Henderson. 2024. Fine- 904
tuning aligned language models compromises safety, 905
even when users do not intend to! In The Twelfth In- 906
ternational Conference on Learning Representations. 907

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo- 908
pher D Manning, Stefano Ermon, and Chelsea Finn. 909
2024. Direct preference optimization: Your language 910
model is secretly a reward model. Advances in Neu- 911
ral Information Processing Systems, 36. 912

Shaina Raza, Oluwanifemi Bamgbose, Shardul Ghuge, 913
Fatemeh Tavakoli, and Deepak John Reji. 2024. 914
Developing safe and responsible large language 915
models–a comprehensive framework. arXiv preprint 916
arXiv:2404.01399. 917

Nina Rimsky, Nick Gabrieli, Julian Schulz, Meg Tong, 918
Evan Hubinger, and Alexander Matt Turner. 2023. 919
Steering llama 2 via contrastive activation addition. 920
arXiv preprint arXiv:2312.06681. 921

Domenic Rosati, Jan Wehner, Kai Williams, Lukasz 922
Bartoszcze, Jan Batzner, Hassan Sajjad, and Frank 923
Rudzicz. 2024. Immunization against harmful fine- 924
tuning attacks. In Conference on Empirical Methods 925
in Natural Language Processing. 926

Paul Röttger, Hannah Rose Kirk, Bertie Vidgen, 927
Giuseppe Attanasio, Federico Bianchi, and Dirk 928
Hovy. 2023. Xstest: A test suite for identifying exag- 929
gerated safety behaviours in large language models. 930
arXiv preprint arXiv:2308.01263. 931

Subhro Roy and Dan Roth. 2016. Solving general arith- 932
metic word problems. arXiv: Computation and Lan- 933
guage. 934

John Schulman, Filip Wolski, Prafulla Dhariwal, 935
Alec Radford, and Oleg Klimov. 2017. Prox- 936
imal policy optimization algorithms. Preprint, 937
arXiv:1707.06347. 938

Mrinank Sharma, Meg Tong, Tomasz Korbak, David 939
Duvenaud, Amanda Askell, Samuel R. Bowman, 940
Esin DURMUS, Zac Hatfield-Dodds, Scott R John- 941
ston, Shauna M Kravec, Timothy Maxwell, Sam Mc- 942
Candlish, Kamal Ndousse, Oliver Rausch, Nicholas 943
Schiefer, Da Yan, Miranda Zhang, and Ethan Perez. 944
2024. Towards understanding sycophancy in lan- 945
guage models. In The Twelfth International Confer- 946
ence on Learning Representations. 947

Zhouxing Shi, Yihan Wang, Fan Yin, Xiangning Chen, 948
Kai-Wei Chang, and Cho-Jui Hsieh. 2023. Red team- 949
ing language model detectors with language models. 950
Transactions of the Association for Computational 951
Linguistics, 12:174–189. 952

11

https://openreview.net/forum?id=7Jwpw4qKkb
https://openreview.net/forum?id=7Jwpw4qKkb
https://openreview.net/forum?id=7Jwpw4qKkb
https://arxiv.org/abs/2405.17374
https://arxiv.org/abs/2405.17374
https://arxiv.org/abs/2405.17374
https://arxiv.org/abs/2405.17374
https://arxiv.org/abs/2405.17374
https://arxiv.org/abs/2212.09251
https://arxiv.org/abs/2212.09251
https://arxiv.org/abs/2212.09251
https://openreview.net/forum?id=YoqgcIA19o
https://openreview.net/forum?id=YoqgcIA19o
https://openreview.net/forum?id=YoqgcIA19o
https://arxiv.org/abs/2306.13213
https://arxiv.org/abs/2306.13213
https://arxiv.org/abs/2306.13213
https://openreview.net/forum?id=hTEGyKf0dZ
https://openreview.net/forum?id=hTEGyKf0dZ
https://openreview.net/forum?id=hTEGyKf0dZ
https://openreview.net/forum?id=hTEGyKf0dZ
https://openreview.net/forum?id=hTEGyKf0dZ
https://api.semanticscholar.org/CorpusID:268032044
https://api.semanticscholar.org/CorpusID:268032044
https://api.semanticscholar.org/CorpusID:268032044
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://openreview.net/forum?id=tvhaxkMKAn
https://openreview.net/forum?id=tvhaxkMKAn
https://openreview.net/forum?id=tvhaxkMKAn
https://api.semanticscholar.org/CorpusID:258987266
https://api.semanticscholar.org/CorpusID:258987266
https://api.semanticscholar.org/CorpusID:258987266


Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,953
Abu Awal Md Shoeb, Abubakar Abid, Adam954
Fisch, Adam R. Brown, Adam Santoro, Aditya955
Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,956
Aitor Lewkowycz, Akshat Agarwal, Alethea Power,957
Alex Ray, Alex Warstadt, Alexander W. Kocurek,958
Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Par-959
rish, Allen Nie, Aman Hussain, Amanda Askell,960
Amanda Dsouza, Ambrose Slone, Ameet Rahane,961
Anantharaman S. Iyer, Anders Andreassen, Andrea962
Madotto, Andrea Santilli, Andreas Stuhlmüller, An-963
drew Dai, Andrew La, Andrew Lampinen, Andy964
Zou, Angela Jiang, Angelica Chen, Anh Vuong,965
Animesh Gupta, Anna Gottardi, Antonio Norelli,966
Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabas-967
sum, Arul Menezes, Arun Kirubarajan, Asher Mul-968
lokandov, Ashish Sabharwal, Austin Herrick, Avia969
Efrat, Aykut Erdem, Ayla Karakaş, B. Ryan Roberts,970
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A Robustness of SafetyLock against1313

fine-tunning1314

We examined the safety directions θh
l in both the1315

original Llama-3-Instruct 8B model and its fine-1316

tuned variants subjected to different risk levels. Fo-1317

cusing on the most effective attention head (the1318

26th head in the 31st layer) for clarity, as depicted1319

in Figure 5, we observed distinct clustering of ac-1320

tivations corresponding to safe (blue) and unsafe1321

(orange) responses across both original and fine-1322

tuned models. The black arrows in Figures 5a-d il-1323

lustrate that the shift from unsafe to safe activations1324

maintains a high degree of similarity and consis-1325

tency, regardless of the fine-tuning risk parameters1326

applied. Additionally, our quantitative analysis us-1327

ing cosine similarity (Figure 5e-g) revealed that the1328

similarity between the original and fine-tuned mod-1329

els remains exceptionally high (above 0.99) across1330

all tested risk levels. This high similarity indicates1331

that the underlying safety-related activation pat-1332

terns are largely preserved during fine-tuning. Con-1333

sequently, the Meta-SafetyLock, which encapsu-1334

lates these consistent safety directions derived from1335

the original LLM, retains its effectiveness when1336

applied to fine-tuned variants. This inherent preser-1337

vation of safety activation patterns eliminates the1338

need for recalibration, allowing Meta-SafetyLock1339

to generalize seamlessly across different fine-tuned1340

models.1341

B Consistency of Harmlessness Directions1342

in Fine-tuned Models1343

To validate SafetyLock’s effectiveness, we con-1344

ducted a comprehensive analysis of the original1345

Llama-3-Instruct 8B model and its fine-tuned ver-1346

sions under various risk levels. Our experimental1347

setup was as follows:1348

We first extracted activation values from the 31st1349

layer, 26th head of the Llama-3-8B Instruct model,1350

which we identified as the most sensitive to harm-1351

lessness through linear regression, achieving the1352

highest binary classification accuracy. We then per-1353

formed forward computation on a safety dataset,1354

saving the activation values of the last token for1355

both safe and unsafe samples. Using 2D PCA for1356

dimensionality reduction, we visualized the shift1357

in activation values between safe and unsafe sam- 1358

ples by connecting their center points with arrows, 1359

illustrating both the direction and magnitude of the 1360

shift. 1361

Remarkably, we observed high similarity in 1362

these shifts across different risk levels (i.e., fine- 1363

tuning on data from different domains). To quan- 1364

titatively assess the similarity between the safety 1365

directions found in the original model and those 1366

in the fine-tuned models, we employed KL diver- 1367

gence: 1368

DKL(P ||Q) =
∑
i

P (i) log

(
P (i)

Q(i)

)
(4) 1369

where P and Q represent the distributions of 1370

safety directions in the original and fine-tuned mod- 1371

els, respectively. 1372

To further illustrate the change in similarity dur- 1373

ing the fine-tuning process, we employed one- 1374

dimensional linear interpolation of weights (Peng 1375

et al., 2024). This method allows us to smoothly 1376

transition from the original model weights to the 1377

fine-tuned model weights, providing insight into 1378

how the safety directions evolve during the fine- 1379

tuning process. The interpolation is defined as: 1380

θα = θ + α(θ′ − θ) (5) 1381

where θ represents the weights of the original 1382

Llama-3 model, θ′ the weights of the fine-tuned 1383

model, and α ∈ [−0.2, 1.2] is the interpolation 1384

parameter. We extend α slightly beyond the [0, 1] 1385

range to observe trends slightly before and after the 1386

actual interpolation points. 1387

The interpolation process is implemented as fol- 1388

lows: 1389

1. We first extract the state dictionaries of both 1390

the base model (θ) and the fine-tuned model 1391

(θ′). 1392

2. For each layer, we compute the difference 1393

vector: d1 = θ′ − θ. 1394

3. We then create new weights for each α value: 1395

θα = θ + αd1. 1396

4. These new weights are used to reconstruct a 1397

new state dictionary, maintaining the origi- 1398

nal structure and naming conventions of the 1399

model. 1400
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Figure 5: Analysis of safety directions at the 31st layer, 26th head for the original and fine-tuned models under
different risk levels. (a-d) Activation density distributions. (e-g) Cosine similarity plots.

We use these interpolated models to compute1401

the KL divergence between the safety directions of1402

the original model and the interpolated models at1403

each step. This results in a smooth curve showing1404

how the similarity of safety directions changes as1405

the model transitions from its original state to the1406

fine-tuned state.1407

C Mathematical Explanation of1408

SafetyLock’s Effectiveness in1409

Suppressing Harmful Outputs1410

In this section, we provide a mathematical justifi-1411

cation for why SafetyLock can extract transferable1412

safety directions from the original language model1413

and effectively apply them to fine-tuned models1414

to suppress harmful outputs. Our explanation is1415

grounded in the properties of Transformer-based1416

language models and the nature of fine-tuning on1417

limited datasets.1418

C.1 Activation Space and Safety Directions1419

Let us denote the activations of the original (pre-1420

fine-tuned) language model at layer l and head h as1421

xl,h ∈ RD, where D is the dimensionality of the1422

head’s output. During inference, these activations1423

encode information about the generated tokens.1424

We define two sets of activations corresponding1425

to safe and unsafe responses:1426

Xsafe =
{
xsafe,i
l,h

}Nsafe

i=1
, (6) 1427

Xunsafe =
{
xunsafe,i
l,h

}Nunsafe

i=1
, (7) 1428

where Nsafe and Nunsafe are the numbers of safe 1429

and unsafe samples, respectively. 1430

We compute the safety direction θl,h ∈ RD as 1431

the mean difference between the activations for 1432

safe and unsafe responses: 1433

θl,h =
1

Nsafe

Nsafe∑
i=1

xsafe,i
l,h − 1

Nunsafe

Nunsafe∑
i=1

xunsafe,i
l,h .

(8) 1434

This vector represents the average shift in activa- 1435

tion space needed to move from an unsafe response 1436

towards a safe one. 1437

C.2 Preservation of Safety Directions During 1438

Fine-Tuning 1439

Fine-tuning a language model on a new dataset 1440

modifies its parameters to adapt to specific tasks or 1441

domains. However, when the fine-tuning dataset is 1442

limited in size or scope, the changes to the model’s 1443

internal representations are often localized and do 1444

not significantly alter the global structure of the 1445

activation space (Golechha and Dao, 2024; Godfrey 1446

et al., 2022). 1447

Let x̃l,h denote the activations of the fine-tuned 1448

model at layer l and head h. Empirically, we ob- 1449

serve that there exists a strong linear relationship 1450

16



between the activations of the original and fine-1451

tuned models:1452

x̃l,h ≈ xl,h +∆xl,h, (9)1453

where ∆xl,h represents the change in activations1454

due to fine-tuning, which is relatively small in mag-1455

nitude compared to xl,h for many dimensions.1456

Moreover, the safety direction θl,h computed1457

from the original model remains relevant in the1458

fine-tuned model because the relative differences1459

between safe and unsafe activations are preserved:1460

θ̃l,h =
(
x̃safe
l,h − x̃unsafe

l,h

)
≈

(
xsafe
l,h − xunsafe

l,h

)
= θl,h.

(10)1461

This approximation holds under the assumption1462

that fine-tuning does not disproportionately affect1463

the dimensions critical for encoding safety-related1464

information.1465

C.3 Effectiveness of Activation Intervention1466

During inference with the fine-tuned model, we1467

intervene by adjusting the activations along the1468

safety direction:1469

x̃intervened
l,h = x̃l,h + α (σl,h ⊙ θl,h) , (11)1470

where:1471

• α ∈ R is the scaling factor controlling the1472

intensity of the intervention.1473

• σl,h ∈ RD is the standard deviation vector of1474

activations along each dimension, capturing1475

the typical variability.1476

• ⊙ denotes element-wise multiplication.1477

This adjustment effectively shifts the activations1478

towards regions in the activation space associated1479

with safe responses. Since the safety direction θl,h1480

is approximately preserved in the fine-tuned model,1481

this intervention remains effective.1482

C.4 Impact on Output Probabilities1483

The language model generates the next token based1484

on a probability distribution computed from the1485

final activations. Adjusting the activations as in1486

Equation equation 11 influences the logits z ∈ RV1487

(where V is the vocabulary size) before the softmax1488

function:1489

zintervened = z+Whead (α (σl,h ⊙ θl,h)) , (12) 1490

where Whead ∈ RV×D is the weight matrix pro- 1491

jecting activations to logits. 1492

The adjustment ∆z = Whead (α (σl,h ⊙ θl,h)) 1493

biases the logits towards tokens that are more likely 1494

in safe responses and away from those prevalent in 1495

unsafe responses. 1496

C.5 Suppressing Harmful Outputs 1497

The probability of generating a harmful token tharm 1498

is given by: 1499

P (tharm) =
exp

(
zintervened
tharm

)∑V
i=1 exp

(
zintervened
i

) . (13) 1500

By decreasing zintervened
tharm

relative to other logits, 1501

we reduce P (tharm). Since the intervention shifts 1502

the activations towards safe regions, the logits for 1503

harmful tokens are decreased, and the model is less 1504

likely to generate harmful outputs. 1505

C.6 Transferability Across Models 1506

The key to SafetyLock’s transferability lies in the 1507

similarity of safety directions between the origi- 1508

nal and fine-tuned models. Since the fine-tuning 1509

process does not significantly alter the relative posi- 1510

tions of safe and unsafe activations in the activation 1511

space (as per Equation equation 10), the safety di- 1512

rections computed from the original model remain 1513

effective when applied to the fine-tuned model. 1514

This property is supported by empirical obser- 1515

vations of low Kullback–Leibler (KL) divergence 1516

between the activation distributions of the original 1517

and fine-tuned models (see Figure 5 in Section A). 1518

The minimal divergence indicates that the overall 1519

structure of the activation space, especially along 1520

dimensions relevant to safety, is preserved during 1521

fine-tuning. 1522

C.7 Conclusion 1523

Mathematically, SafetyLock leverages the pre- 1524

served safety directions in the activation space to 1525

adjust the model’s internal computations towards 1526

generating safe outputs. By intervening along 1527

these directions, we effectively suppress harmful re- 1528

sponses without requiring retraining or fine-tuning 1529

of the model. The minimal changes to the acti- 1530

vation distributions during fine-tuning ensure that 1531

the safety directions remain applicable, allowing 1532

17



for efficient and transferable safety interventions1533

across different models and fine-tuning scenarios.1534

This theoretical explanation provides a founda-1535

tion for understanding the effectiveness of Safety-1536

Lock in suppressing harmful outputs while main-1537

taining the model’s overall performance on benign1538

tasks.1539

D The Risks of Fine-tuning LLMs and1540

Experimental Setup1541

HEx-PHI (Qi et al., 2024) is based on 11 cate-1542

gories of prohibited use cases merged from Meta’s1543

Llama-3 acceptable use policy and OpenAI’s us-1544

age policies: (1) Illegal Activity, (2) Child Abuse1545

Content, (3) Hate, Harass, Violence, (4) Malware,1546

(5) Physical Harm, (6) Economic Harm, (7) Fraud,1547

Deception, (8) Adult Content, (9) Political Cam-1548

paigning, (10) Privacy Violation Activity, and (11)1549

Tailored Financial Advice. The dataset includes 301550

examples per category, totaling 330 examples. This1551

ensures a comprehensive safety evaluation aligned1552

with industry-standard usage policies.1553

For Risk-1, we use negative samples from the1554

HH-RLHF preference dataset. We select 10, 100,1555

1000, and 10000 samples respectively and trained1556

for 5 epochs with a learning rate of 2× 10−5. For1557

Risk-2, we use 10 samples from Qi et al. (2024) and1558

trained for 5 epochs with a learning rate of 2×10−5.1559

For Risk-3, we use the first 50,000 samples from1560

the Alpaca dataset (Wang et al., 2023b) and trained1561

for 5 epochs with a learning rate of 2× 10−5 1. We1562

set the last token r = 5.1563

Recognizing the potential of existing approaches1564

to address safety issues in fine-tuned language mod-1565

els, we conducted comparative analyses across1566

two categories as the same time: training-based1567

and inference-time methods. For training-based1568

approaches, we evaluated PPO, DPO, SFT (with1569

safety data mixed during fine-tuning), SFT (with1570

safety data mixed post-fine-tuning), and model-1571

editing. Inference-time methods included ICD,1572

PPL, Paraphrase, Retokenization, Safe-Reminder,1573

and Self-Exam. These methods were assess based1574

on efficiency, attack sample rejection rate, and nor-1575

mal text rejection rate, providing a comprehen-1576

sive evaluation of their effectiveness in maintain-1577

ing model safety while preserving functionality.1578

This multi-faceted approach allows us to rigorously1579

examine the trade-offs between safety and perfor-1580

1We use the official fine-tuning code https://github.
com/meta-llama/llama-recipes

mance. 1581

Specifically, to ensure reproducibility, we fol- 1582

lowed past experimental settings and use 2000 1583

safety data points from Bianchi et al. (2024) for 1584

SFT experiments. We considered two experimental 1585

settings for SFT. The first is After Training, which 1586

simulates the scenario where safety disappears af- 1587

ter fine-tuning the language model and needs to be 1588

restored. This applies to all fine-tuned language 1589

models. The second is During Training, which 1590

simulates starting from the original model and re- 1591

quiring the mixing of additional safety data during 1592

training to prevent safety disappearance. However, 1593

the limitation of this method is that it still requires 1594

retraining for already fine-tuned language models. 1595

For PPO, we also use 2000 samples from Bianchi 1596

et al. (2024), and we use LlamaGuard-7b (Bhatt 1597

et al., 2023) as the Reward model. For DPO, based 1598

on the 2000 samples, we use samples generated 1599

by the fine-tuned language model (almost all of 1600

which are harmful) as negative samples for train- 1601

ing. For the Model-Edited method, we use the most 1602

common Detoxifying with Intraoperative Neural 1603

Monitoring (DINM) method and followed the orig- 1604

inal setup using SafeEdit data2 for editing. 1605

E Additional Experiments 1606

E.1 Analysis of SafetyLock’s Intervention 1607

Distance α. Our experimental results, as illus- 1608

trated in Figure 6, demonstrate the significant in- 1609

fluence of SafetyLock’s intervention distance (α) 1610

on model safety across different model sizes. For 1611

both Llama-3-8B and Llama-3-70B, we observe a 1612

clear U-shaped trend in harmfulness metrics as α 1613

increases. Initially, as α rises from 0 to 4, there’s 1614

a sharp decrease in harmfulness scores and rates, 1615

as well as the AdvBench ASR. This indicates that 1616

moderate intervention effectively enhances model 1617

safety. However, beyond α = 4, we see a gradual 1618

increase in these metrics, suggesting that exces- 1619

sive intervention may lead to unintended conse- 1620

quences, potentially disrupting the model’s learned 1621

safety boundaries. Notably, Llama-3-70B exhibits 1622

more stability across different α values compared 1623

to Llama-3-8B, implying that larger models may be 1624

more resilient to intervention adjustments. These 1625

findings underscore the importance of carefully cal- 1626

ibrating SafetyLock’s intervention parameters to 1627

achieve optimal safety improvements while main- 1628

2https://huggingface.co/datasets/zjunlp/
SafeEdit
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Figure 6: Impact of SafetyLock’s intervention distance (α) on model safety metrics for Llama-3-8B and Llama-3-
70B models. The graphs show Harmfulness Average Score, Harmfulness Average Rate, and AdvBench ASR across
different α values. Note that for these experiments, the intervention degree K is set to 24, indicating the number of
attention heads influenced by SafetyLock.

taining model performance, with an optimal α1629

value around 4-6 for both model sizes.1630

Degree K. Our comprehensive experiments re-1631

veal a systematic relationship between model size1632

and SafetyLock’s optimal intervention degree (K),1633

demonstrating a consistent scaling law that pro-1634

vides crucial guidance for efficient deployment1635

across different model scales. This relationship1636

manifests through extensive testing across multiple1637

model sizes, from 1B to 70B parameters, offer-1638

ing insights into the proportion of attention heads1639

needed for effective safety control.1640

Table 3: Impact of K on 1B-scale Model Safety

K Value AdvBench ASR

Vanilla 21.15%
K=3 16.54%
K=6 10.65%
K=12 11.08%
K=24 12.44%
K=48 47.50%

Our analysis reveals a nuanced pattern of safety1641

improvement across different model scales. For1642

Llama-3-8B and Llama-3-70B, we observe a rapid1643

enhancement in safety metrics as K increases from1644

0 to 6, followed by more gradual improvements1645

up to K=24. This pattern holds consistent across1646

all measured metrics: Harmfulness Average Score,1647

Harmfulness Average Rate, and AdvBench ASR. 1648

The Llama-3-8B model shows particularly dra- 1649

matic initial improvements, with the Harmfulness 1650

Average Score dropping from approximately 4.0 1651

to 1.7 and the Harmfulness Average Rate declining 1652

from 70% to around 15% as K increases from 0 to 1653

6. The Llama-3-70B model demonstrates similar 1654

trends but with generally lower baseline harmful- 1655

ness scores, suggesting that larger models might 1656

possess inherently stronger safety characteristics. 1657

Notably, both model sizes exhibit a slight degrada- 1658

tion in safety metrics at very high K values (K=96), 1659

particularly evident in the Llama-3-8B model, in- 1660

dicating that excessive intervention might actually 1661

compromise the model’s learned safety boundaries. 1662

Through these experiments, we’ve identified a 1663

consistent scaling pattern across model sizes: 1B- 1664

scale models achieve optimal performance with K 1665

= 6-12 heads, 8B-scale models with K = 12-24 1666

heads, and 70B/123B-scale models with K = 24-48 1667

heads. This scaling law reveals that the propor- 1668

tion of safety-sensitive attention heads actually de- 1669

creases as model size increases, with larger models 1670

requiring a smaller relative proportion of heads for 1671

effective safety control. The identification of this 1672

scaling relationship enables direct determination 1673

of appropriate K values based on model size with- 1674

out additional search time, significantly enhanc- 1675

ing SafetyLock’s deployment efficiency. These 1676

findings demonstrate that targeted intervention on 1677
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Figure 7: Impact of SafetyLock’s intervention degree (K) on model safety metrics for Llama-3-8B and Llama-3-70B
models. The graphs illustrate the Harmfulness Average Score, Harmfulness Average Rate, and AdvBench ASR
across different K values, ranging from 0 to 96. Lower scores indicate better safety performance. Note the rapid
improvement in safety metrics as K increases from 0 to 6, followed by more gradual enhancements up to K=24,
with a slight uptick at K=96 for some metrics.

a carefully selected subset of attention heads can1678

achieve substantial safety improvements without re-1679

quiring extensive architectural modifications, high-1680

lighting the efficiency and effectiveness of our ap-1681

proach.1682

E.2 Impact of Learning Rate on Safety1683

Degradation1684

To thoroughly investigate the relationship between1685

learning rate and safety degradation during fine-1686

tuning, we conducted additional experiments us-1687

ing Llama-3-8B-Instruct at different learning rates.1688

Following the hyperparameter settings from previ-1689

ous work (Qi et al., 2024) (detailed in Appendix1690

G.1), we initially used a learning rate of 2e-5 for1691

our main experiments. However, considering that1692

smaller learning rates (e.g., 1e-6) are commonly1693

used in continued pre-training scenarios to mini-1694

mize impact on model behaviors, we performed1695

comparative experiments under Risk Level-3 fine-1696

tuning scenario.1697

Table 4: Impact of Learning Rate on Safety Degradation
and Recovery

Learning Rate Vanilla ASR (%) SafetyLock ASR (%)

2e-5 42.88 0.19
1e-6 26.92 0.00

Results in Table 4 demonstrate that a lower learn-1698

ing rate (1e-6) leads to less safety degradation com- 1699

pared to 2e-5 (26.92% vs. 42.88% ASR). This 1700

suggests that smaller learning rates help preserve 1701

some inherent safety properties during fine-tuning. 1702

Notably, SafetyLock effectively restores safety re- 1703

gardless of the learning rate used, reducing ASR 1704

to near-zero in both cases. These findings high- 1705

light SafetyLock’s robustness across different fine- 1706

tuning configurations while also revealing the po- 1707

tential benefits of using smaller learning rates when 1708

safety preservation is a priority. 1709

E.3 Direction Consistency Across Multiple 1710

Attention Heads 1711

To provide comprehensive evidence for the effec- 1712

tiveness of our Meta-SafetyLock distribution strat- 1713

egy, we analyze multiple safety-sensitive attention 1714

heads identified through probing. Figure 8 visual- 1715

izes the activation patterns in 6 representative heads 1716

- (12, 21), (14, 11), (16, 7), (16, 29), (24, 14), and 1717

(31, 26) - across the original Llama-3-8B-Instruct 1718

model and its fine-tuned variants under Risk Level- 1719

1 and Risk Level-2. The visualizations employ 2D 1720

PCA projections of activation values, with contours 1721

representing density distributions of safe (blue) and 1722

unsafe (orange) samples. Black arrows indicate the 1723

direction from unsafe to safe content centers. 1724

Notably, across all examined heads, we observe 1725

consistent directional patterns between unsafe and 1726
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safe content centers, regardless of the fine-tuning1727

condition. This consistency validates our core hy-1728

pothesis that safety-related patterns in attention1729

heads remain largely preserved during fine-tuning,1730

enabling effective deployment of Meta-SafetyLock1731

extracted from the base model to various fine-tuned1732

variants.1733

E.4 Domain-Specific Performance: A Case1734

Study on Mathematical Reasoning1735

To rigorously evaluate SafetyLock’s ability to main-1736

tain domain-specific capabilities while ensuring1737

safety, we conducted extensive experiments using1738

the GSM8K dataset, a challenging mathematical1739

reasoning benchmark. We fine-tuned Llama-3-8B-1740

Instruct on GSM8K’s training set and evaluated1741

both safety metrics and mathematical performance.1742

Table 5: Safety and Performance Metrics for GSM8K
Fine-tuning

Model AdvBench ASR HEx-PHI Score GSM8K Test Acc

Original 7.23% 1.45 85.59%
Model-Edited (DINM) 3.02% 1.33 5.00%
SafetyLock 0.19% 1.08 84.91%

As shown in Table 5, SafetyLock demonstrates1743

remarkable effectiveness in preserving mathemati-1744

cal reasoning capabilities while enhancing safety1745

measures. The minimal performance drop in1746

GSM8K accuracy (from 85.59% to 84.91%) stands1747

in stark contrast to traditional safety-alignment1748

methods like Model-Edited (DINM), which suffers1749

catastrophic degradation to 5.00% accuracy. Si-1750

multaneously, SafetyLock achieves superior safety1751

metrics, reducing AdvBench ASR from 7.23% to1752

0.19% and improving the HEx-PHI Score from1753

1.45 to 1.12. These results provide compelling ev-1754

idence that SafetyLock can successfully maintain1755

domain-specific capabilities while ensuring robust1756

safety guardrails, addressing a critical challenge in1757

deploying safe and effective language models for1758

specialized tasks.1759

E.5 Impact of Activation Normalization on1760

SafetyLock1761

To investigate the role of activation normalization1762

in SafetyLock, we conducted experiments com-1763

paring the performance with and without the stan-1764

dard deviation term σh
l in Equation 4. When omit-1765

ting σh
l , we set it to 1, effectively removing the1766

activation-specific scaling of interventions.1767

Results in Table 6 demonstrate the critical role1768

of σh
l in balancing safety and model utility. With-1769

out normalization, while safety metrics improve 1770

marginally (ASR: 0.0%, HEx-PHI: 1.03), the 1771

model suffers severe performance degradation on 1772

GSM8K (52.24%). Including σh
l maintains strong 1773

safety improvements while preserving the model’s 1774

mathematical reasoning capabilities (84.91% accu- 1775

racy). This suggests that activation-specific scal- 1776

ing through σh
l is essential for preventing over- 1777

aggressive interventions that could compromise 1778

model functionality. These findings validate our 1779

design choice and highlight the importance of care- 1780

ful calibration in safety interventions. 1781

E.6 Comparison with Circuit Breakers 1782

We compare SafetyLock with Circuit Breakers 1783

(Zou et al., 2024), a recent approach from NeurIPS 1784

2024 that builds upon Representation Engineer- 1785

ing techniques (Zou et al., 2023a) to remap harm- 1786

ful representations towards incoherent or refusal 1787

states. Using three fine-tuned versions of Llama- 1788

3-8B-Instruct with consistent hyperparameters, we 1789

observe significant performance differences across 1790

risk levels. 1791

Table 7 presents results for the three risk scenar- 1792

ios. For Level-1 (explicitly harmful fine-tuning), 1793

SafetyLock reduces AdvBench ASR to 0.19% 1794

and HEx-PHI Score to 1.36, while Circuit Break- 1795

ers shows increased vulnerability (ASR: 84.62%, 1796

Score: 3.62). In Level-2 scenarios (implicitly 1797

harmful fine-tuning), both methods demonstrate 1798

improvement over the baseline, though SafetyLock 1799

achieves superior results (ASR: 5.19% vs 27.12%). 1800

For Level-3 (benign fine-tuning), Circuit Break- 1801

ers exhibits significant degradation (ASR: 94.04%) 1802

while SafetyLock maintains robust performance 1803

(ASR: 0.19%). 1804

For comprehensive evaluation, we also assess 1805

both methods on Circuit Breakers’ original bench- 1806

mark scenarios, as shown in Table 8. SafetyLock 1807

achieves perfect defense (0% ASR) across all attack 1808

types, surpassing Circuit Breakers’ performance on 1809

its own evaluation metrics. 1810

Regarding computational efficiency, SafetyLock 1811

requires 5 minutes for Meta-SafetyLock construc- 1812

tion and 0.1 seconds for distribution to each fine- 1813

tuned model. In contrast, Circuit Breakers demands 1814

22 minutes 15 seconds per model on an A100. This 1815

significant efficiency advantage, combined with su- 1816

perior safety metrics, demonstrates SafetyLock’s 1817

practical advantages for large-scale deployment 1818

scenarios. 1819

The performance disparity may be attributed to 1820
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Table 6: Impact of Activation Normalization on Safety and Performance

Model AdvBench ASR HEx-PHI Score GSM8K Test Acc

Original 7.23% 1.45 85.59%
SafetyLock w/o σh

l 0.0% 1.03 52.24%
SafetyLock w/ σh

l 0.19% 1.12 84.91%

Table 7: Comparison with Circuit Breakers across different risk levels using Llama-3-8B-Instruct

Method
Level-1 Level-2 Level-3

(ASR/Score) (ASR/Score) (ASR/Score)

Original Fine-tuned 49.24%/4.13 38.46%/3.19 42.88%/3.23
Circuit Breakers 84.62%/3.62 27.12%/2.10 94.04%/3.79
SafetyLock 0.19%/1.36 5.19%/1.07 0.19%/1.04

Table 8: Performance on Circuit Breakers’ original
benchmark scenarios

Method AutoDAN PAIR GCG

Base Model 3.7% 18.7% 44.5%
Circuit Breakers 0.0% 7.5% 2.5%
SafetyLock 0.0% 0.0% 0.0%

Circuit Breakers’ representation remapping strat-1821

egy being less effective when model safety bound-1822

aries have been substantially modified through fine-1823

tuning. SafetyLock’s approach of targeting spe-1824

cific attention heads appears more robust to such1825

modifications while maintaining computational ef-1826

ficiency.1827

E.7 Impact of Token Window Size on1828

SafetyLock1829

The choice of how many final tokens to consider1830

when calculating safety directions represents a cru-1831

cial design decision in SafetyLock’s implementa-1832

tion. While previous works often use the entire1833

hidden state for intervention, we hypothesized that1834

focusing on a smaller window of final tokens might1835

capture safety-relevant patterns more effectively1836

while maintaining computational efficiency.1837

To determine the optimal token window size, we1838

conducted extensive experiments varying r from 11839

to 10 tokens across all three risk levels, as shown1840

in Table 9. Our findings reveal that r = 5 con-1841

sistently achieves optimal or near-optimal safety1842

performance across all scenarios. While smaller1843

windows (r = 1, 3) can effectively improve safety,1844

they may not capture sufficient context for robust1845

Table 9: Impact of Token Window Size (r) on Safety
Performance

Model
AdvBench ASR (%)

Level-1 Level-2 Level-3

Vanilla 49.24 38.46 42.88
r = 1 1.14 6.84 3.61
r = 3 0.76 8.55 0.19
r = 5 0.19 5.19 0.19
r = 10 0.48 8.08 0.57

intervention. Conversely, larger windows (r = 10) 1846

show slightly degraded performance, possibly due 1847

to including less relevant contextual information. 1848

This empirical evidence supports our choice of r = 1849

5 as the default parameter, offering the best balance 1850

between robust safety improvement and effective 1851

intervention across different fine-tuning scenarios. 1852

E.8 Comparison of safety performance within 1853

each category 1854

The radar charts in Figure 9 illustrate SafetyLock’s 1855

effectiveness across eleven distinct safety attack 1856

categories for each risk level and model size. For all 1857

models, SafetyLock consistently reduces harmful 1858

outputs across categories, with particularly notable 1859

improvements in the first three categories for Risk 1860

Levels 1 and 2. 1861

F Recommendations for Deploying 1862

SafetyLock 1863

Understanding the diverse landscape of model de- 1864

ployment scenarios is crucial for effectively imple- 1865

menting SafetyLock to maintain safety while en- 1866
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abling customization. The method’s effectiveness1867

and implementation strategy vary significantly de-1868

pending on the model’s distribution approach and1869

user priorities, leading to distinct considerations1870

for different deployment contexts.1871

For closed-source models served through APIs1872

(e.g., GPT-4), SafetyLock offers an optimal so-1873

lution through seamless integration into the ser-1874

vice provider’s infrastructure. Model providers1875

can automatically apply SafetyLock after each fine-1876

tuning operation, ensuring consistent safety stan-1877

dards while maintaining customization capabilities.1878

This approach particularly benefits enterprises in1879

regulated industries that require both task-specific1880

optimization and strict safety controls, as it pre-1881

serves the ability to customize models for specific1882

use cases without compromising safety standards.1883

The automated application of SafetyLock in this1884

context ensures that all model variants maintain1885

robust safety guardrails, regardless of the extent of1886

customization.1887

In scenarios involving open-source models with1888

safety-conscious users, SafetyLock can be effec-1889

tively implemented as part of the standard deploy-1890

ment pipeline. Organizations using open-source1891

models can apply SafetyLock during their model1892

serving phase, maintaining safety controls while1893

preserving the benefits of customization. This im-1894

plementation strategy allows organizations to bal-1895

ance the flexibility inherent in open-source models1896

with the need for robust safety guarantees, ensur-1897

ing that fine-tuned models remain both useful and1898

safe. Safety-conscious users can leverage Safety-1899

Lock to maintain consistent safety standards across1900

their deployments while still benefiting from the1901

customization capabilities that open-source models1902

provide.1903

To address the fundamental challenge of mali-1904

cious users with full access to open-source weights,1905

we propose a hybrid deployment strategy that com-1906

bines transparency with controlled access to safety-1907

critical components. This approach involves open-1908

sourcing the majority of model weights while re-1909

taining control of a small subset of safety-critical1910

weights using methods like Taylor Unswift (Wang1911

et al., 2024a). By providing efficient access to1912

these controlled weights through a service API and1913

applying SafetyLock during the serving phase, or-1914

ganizations can maintain crucial safety controls1915

while preserving the benefits of open-source acces-1916

sibility. This balanced solution ensures that users1917

can customize models for their specific needs with-1918

out easily circumventing safety measures, as the 1919

critical safety-related parameters remain protected 1920

under controlled access. 1921

For successful implementation, organizations 1922

should establish comprehensive monitoring sys- 1923

tems to regularly update safety vectors, implement 1924

automatic safety checks post-fine-tuning, and de- 1925

velop clear protocols for handling potential con- 1926

flicts between safety measures and legitimate use 1927

cases. Regular assessment and updating of safety 1928

mechanisms ensure that SafetyLock remains ef- 1929

fective against evolving harmful behaviors, while 1930

clear documentation and guidelines help users un- 1931

derstand the implications and importance of these 1932

safety measures. Through these carefully con- 1933

sidered deployment strategies and best practices, 1934

SafetyLock provides a robust framework for main- 1935

taining model safety across various deployment 1936

scenarios, acknowledging and addressing the inher- 1937

ent challenges in protecting open-source models 1938

while enabling their beneficial applications. 1939
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Figure 8: Visualization of activation patterns for multiple attention heads. Each row represents a different attention
head position, showing consistent directional patterns across the original model and fine-tuned variants. The black
arrows indicate the direction from unsafe to safe content centers, demonstrating remarkable consistency in safety
directions despite fine-tuning modifications.
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Figure 9: Safety performance comparison for 3 Risk Levels fine-tuned LLMs. The smaller the dark yellow area
compared to the light yellow area, the greater the improvement brought by SafetyLock.
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