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ABSTRACT

Recent research in deep learning optimization reveals that many neural network
architectures trained using gradient descent with practical step sizes, η, exhibit an
interesting phenomenon where the top eigenvalue of the Hessian of the loss func-
tion, λH1 increases to and oscillates about the stability threshold, 2

η . The two parts
of the trajectory are referred to as progressive sharpening and edge of stability.
The oscillation in λH1 is accompanied by a non-monotonically decreasing train-
ing loss. In this work, we study the Edge of Stability phenomenon in a two-layer
rank-1 linear model for the binary classification task with linearly separable data
to minimize logistic loss. By capturing the core training dynamics of our model as
a low-dimensional system, we rigorously prove that Edge of Stability behavior is
not possible in the simplest one datapoint setting. We also empirically show that,
with two datapoints, it is possible for Edge of Stability to occur and point out the
source of the oscillation in λH1 and non-monotonic training loss. We also give new
approximations to λH1 for such models. Lastly, we consider an asymptotic setting,
in the limit as the margin converges to 0, and provide empirical results that suggest
the loss and sharpness trajectories may exhibit stable, perpetual oscillation.

1 INTRODUCTION

To optimize modern deep neural networks, algorithms such as stochastic gradient descent (SGD) and
adaptive optimizers, such as Adam (Kingma & Ba, 2017), have become the go-to choice. However,
the foundation for both algorithms, gradient descent, is not fully understood. In scenarios with a
small learning rate η, gradient descent is well-understood via the descent lemma (Nesterov et al.):
Lemma 1.1. For some function f(θ), if λmax

(
∇2f(θ)

)
≤ β and θt+1 = θt − η∇f(θt), then

f (θt+1) ≤ f(θt)− η
(
1− η

2
β
)
||∇f(θt)||2

The descent lemma suggests that one should choose learning rate η to be close to 1/β, where β
is an upperbound on the “sharpness” (largest eigenvalue of the Loss Hessian). However, recently
efforts to understand neural network training with gradient descent with practical learning rates have
revealed some interesting behavior. In particular, work by Cohen et al. (2021) reveals that many
standard neural network architectures exhibit trajectories that can be broken down into two phases
(see Figure 1(b)). Phase 1, denoted as Progressive Sharpening, is the regime where the sharpness
increases until it reaches past the stability threshold 2

η . Then, it enters phase 2, denoted as Edge of
Stability (EOS), where the sharpness hovers around the stability threshold 2

η and the loss function in
question decreases non-monotonically. This common training behavior has attracted much attention
from the research community and has inspired theoretical research aimed at studying simple, low
dimensional models with similar behavior as well as more general characterizations for this sort of
training dynamics. However, since much of the analysis on these models is done using regression-
type losses, our understanding of Edge of Stability in classification losses, such as logistic loss, is
still limited.

1.1 OUR CONTRIBUTIONS

In this work, we build upon the contributions of Wu et al. (2023) and Kalra et al. (2025) by studying
Edge of Stability behavior in a two-layer rank-1 linear neural network trained to minimize logistic
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Figure 1: Sharpness and loss trajectories for 3 different models. Top row represents sharpness;
bottom row represents training loss. The 3 models from left to right are our model with 1 datapoint
(a)(d), 2 datapoints (b)(e) and a 4-layer feedforward ReLU network trained on a 1000 datapoint,
linearly separable subset of the MNIST dataset (c)(f).

loss with gradient descent under some initialization assumptions. By distilling model dynamics to
a low-dimensional system, we partition the system’s phase space and prove that, under the simplest
setting of one training datapoint, our model does not exhibit Edge of Stability.

However, by adding another datapoint to our training dataset, we empirically show that our model
can exhibit Edge of Stability behavior. We provide an example of the loss and sharpness dynamics
of our model in both dataset settings compared to more realistic neural network in Figure 1.

In our analysis of the two-datapoint setting, we determine the source of the Edge of Stability be-
havior and explain why it does not exist in the single datapoint setting. Furthermore, we investigate
an asymptotic case in the two datapoint setting, where we consider the limit as the margin for the
dataset approaches 0. Based on simulations of our low-dimensional system, we believe it is possible
for the system to exhibit perpetual stable oscillation in both the sharpness and loss.

We further provide a detailed comparison with the two-layer linear model studied in the regression
setting (Kalra et al., 2025). Our comparison reveals that the condition under which Edge of Stability
occurs in our model is more subtle than in the regression setting, since the parameter iterates of our
model move between two nullclines of our low-dimensional system whereas the regression setting
iterates move between an unstable axis. While the analysis in the regression setting (Kalra et al.,
2025) relies on the trace of the Loss Hessian as a surrogate for the sharpness, we provide a closed-
form formula of the sharpness in our single training datapoint setting and a low-error approximation
of the sharpness in our two training datapoint setting.

2 RELATED WORK

Oscillations in overall convergent loss during training have been observed in a number of prior works
[(Lewkowycz et al., 2020), Jastrzebski et al. (2020), (Wu et al., 2018), (Xing et al., 2018), (Arora
et al., 2018), (Li et al., 2022)]. Cohen et al. (2021) formalized this observation in their empirical
study of many neural network architectures and training objectives, denoting it as Edge of Stability.

We first note a number of works that analyze Edge of Stability for general functions. Ma et al.
(2022) use subquadratic approximations of loss functions to explain the mechanism behind Edge
of Stability training dynamics. Arora et al. (2022) prove Edge of Stability behavior for normalized
gradient descent on a smooth loss function with time-dependent learning rate and gradient descent

2
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on the square root of a smooth loss function with constant learning rate. Damian et al. (2023)
identify the third-order term in the Taylor expansion of a loss function as a source of implicit bias
for gradient descent that prevents divergence in the Edge of Stability regime. We also note research
by Rosca et al. (2023) and Cohen et al. (2025) that develops continuous time tools to study the
oscillatory dynamics in sharpness and loss observed with gradient descent training in the Edge of
Stability regime. We note that Cohen et al. (2025) also show how their approach can be extended to
adaptive optimizers, such as RMSProp.

Next, we discuss works that study Edge of Stability for particular models. We first note some
works [(Wang et al., 2022), (Song & Yun, 2023), (Kalra et al., 2025)] that focus on studying two-
layer linear networks in the regression setting. Wang et al. (2022) focus on studying sharpness
dynamics by assuming direct correlation of the sharpness with the norm of the output layer. Song &
Yun (2023) prove that the gradient descent trajectories observed to minimize a convex, 1-lipschitz,
even loss align with the bifurcation diagram of a one-dimensional iterated map. Kalra et al. (2025)
conduct fixed point analysis on the two-layer linear neural network and show that it can exhibit
Edge of Stability behavior and period-doubling route to chaos. Besides two-layer linear networks,
we also note that Zhu et al. (2023b) theoretically study the training dynamics of a 4-layer linear
scalar network under a coupled initialization and prove the Edge of Stability behavior in a large
local region.

For logistic loss, Wu et al. (2023) develop a new technique to study the implicit bias of logistic
regression in the Edge of Stability regime and prove that it is guaranteed to converge, unlike expo-
nential loss. Liu et al. (2023) prove the existence of the “catapult phase” in two-layer linear models
on non-separable data with logistic loss. In comparison, we note that our work focuses on the sepa-
rable data setting, points out the source of the Edge of Stability behavior, and studies an asymptotic
case.

We defer further discussion of prior works to Appendix B.

3 PRELIMINARIES AND NOTATION

In this section, we introduce our two-layer linear model, some definitions, and the training dataset
settings that we study.

3.1 TWO-LAYER RANK-1 LINEAR MODEL

A standard two-layer linear network would map x to qTMx. However, in such cases the only rele-
vant component in M would be a rank-1 component that is aligned with q. Motivated by the results
in Ji & Telgarsky (2019), where they prove the asymptotic convergence of the weight matrices in
a deep linear network (trained to minimize logistic loss) to rank-1 matrices with specific alignment
properties, we break M into a rank 1 matrix uvT to have a clearer understanding of its alignment
behavior.

The model we study, f : Rd → R, is parameterized by u ∈ Rh, q ∈ Rh, and v ∈ Rd, where
fq,u,v(x) = qTuvT x. For clarity, we denote d as the dimension of our input x, where x ∈ Rd is
the feature vector and h as the width of our model’s hidden linear layer, uvT . For a binary label
y ∈ {±1}, we consider the standard logistic loss L : R2h+d → R on our training dataset (xi, yi)

N
i=1

using gradient descent with constant learning rate η. We use a standard way to express the logistic
loss for a datapoint (xi, yi) as L = log(1 + exp(−f(yixi)).
At time-step t, the loss for our model is as follows:

L(qt, ut, vt) =

N∑
i=1

log
(
1 + exp(−qTt utvTt yixi)

)
The iterated map for our parameters u, q, and v are also shown below.

qt+1 = qt + η ut

N∑
i=1

(
1 + exp(qTt utv

T
t yixi)

)−1
vTt yixi,

3
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ut+1 = ut + η qt

N∑
i=1

(
1 + exp(qTt utv

T
t yixi)

)−1
vTt yixi,

vt+1 = vt + η qTt ut

N∑
i=1

(
1 + exp(qTt utv

T
t yixi)

)−1
yixi

To further simplify the model, we assume that model parameters q and u start from the same initial-
ization, similar to the setup of Zhu et al. (2023b). With this initialization assumption, we make the
following claim.
Claim 3.1. If q and u start from the same initialization (i.e., u0 = q0), then, for any time t > 0,
ut = qt.

We defer the proof of the claim to Appendix C.

3.2 DEFINITIONS

Now we give the formal definition for sharpness:

Definition 1 (Sharpness). Consider θ =
[
qT uT vT

]T
. We define sharpness, λH1 , as the largest

algebraic eigenvalue of the Hessian of loss function L, λmax(∇2
θL).

In order to define Edge of Stability, we rely on the property that the loss value oscillates in the Edge
of Stability regime. We start by defining the local maximum of the loss.
Definition 2 (Local Maximum). For a discrete-time one-dimensional dynamical system n, we say
the nt (n a time t ∈ N, t > 0) is a local maximum if nt−1 < nt and nt+1 < nt.

With the local maximum, we argue a trajectory is in Edge of Stability regime if the loss has multiple
local maxima.
Definition 3 (Edge of Stability). Consider training a neural network using gradient descent with
step size η to minimize loss L. If there exists some local region during training (for discrete time-
steps k, l ∈ N, l ≥ k + 4) where the loss L trajectory has n ≥ 2 local maxima at times ti for
i ∈ {t1, ..., tn} such that k < t1 < ... < tn < l, then we say the model exhibits Edge of Stability
behavior.

We also note that the non-monotonic behavior of the loss function we describe in our Edge of
Stability definition is often accompanied by the sharpness oscillating or hovering about the stability
threshold 2

η .

In our analysis, the main tool is to reduce the model to a lower dimensional equivalent system, and
consider nullclines of system’s components – boundaries where a component stays the same after a
single iteration.
Definition 4 (Nullcline). Consider an r-dimensional discrete-time dynamical system n, such that
such that the iterated map for it is nt+1 = f(nt), where f(nt) = (f1(nt), ..., fr(nt)) and nt =
(n1,t, ..., nr,t). For component i ∈ {1, .., r}, we define the nullcline of ni,t as the set of points {nt}
such that fi(nt)− ni,t = 0.

3.3 DATA SETUP

One Training Datapoint (N = 1) In this setting, our training dataset (xi, yi)
N
i=1 is simply (x, y),

where label y ∈ {±1}.

Two Training Datapoints (N = 2) In this setting, our training dataset (xi, yi)Ni=1 is
(x1, 1), (x2,−1). We focus on the following range of parameters for this setting which often leads
to Edge of Stability behavior in experiments.

1. ||x1||2 = ||x2||2 = 1

2. 0.99 ≤ xT1 x2 < 1

4
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3. there exists w∗ ∈ Rd s.t. wT
∗ y1x1 > 0 and wT

∗ y2x2 > 0

4. 0.10 ≤ η ≤ 0.20

3.4 FIXED POINT ANALYSIS

After constructing the low-dimensional systems for each dataset setting, we find and determine the
stability of the fixed points. To find the fixed points, we first find the nullclines with respect to each
component in the system. After finding the nullclines for each component, we find the points where
the nulllclines for all the components of the system intersect. Those are our fixed points. We then
determine the stability properties of the fixed points by forming the Jacobian of the system J and
analyzing its eigenvalues λJi . If all the eigenvalues at a particular fixed point satisfy |λJi | < 1, then
we say that fixed point is stable. If all the eigenvalues at a particular fixed point satisfy |λJi | > 1,
then we say that fixed point is unstable. Lastly, if all the eigenvalues at a particular fixed point satisfy
|λJi | = 1, then we say that fixed point is marginally stable.

4 ANALYSIS OF GRADIENT DESCENT DYNAMICS

In this section, we analyze the dynamics of our model in the one and two datapoint settings based on
the low dimensional systems we derive. Using the fixed point stability analysis, we present our main
theoretical result that, in the single datapoint setting, our model does not exhibit Edge of Stability
and describe a sufficient trajectory that produces Edge of Stability behavior in the two datapoint
case. We also present our findings in an asymptotic case that we study in the two datapoint setting.

4.1 SINGLE TRAINING DATAPOINT (N = 1)

To understand the dynamics of the single training datapoint setting, we first observe that the dy-
namics can be completely captured by two quantities, ∥qt∥22 and vTt yx. This is because, under our
initialization assumption, ut = qt, which we know from Claim 3.1. So, we get that qTt ut = ∥qt∥22.
Since we are also dealing with only one datapoint, the component of vt that is orthogonal to x does
not affect the updates of the parameters in the model. This allows us to study the training dynamics
of the model as a 2-dimensional system with variables ∥qt∥22 and vTt yx.

In our analysis, we focus on the part of the phase space where ∥qt∥22 > 0 since ∥qt∥22 = 0 is a fixed
point. We first show that vTt yx is strictly increasing in Lemma 4.1.
Lemma 4.1. For any k, l ∈ N such that l > k and ||qk||22 > 0, vTl yx > vTk yx.

For ∥qt∥22, our analysis shows two important nullclines, which are vTt yx = 0 and(
1 + exp

(
∥qt∥22vTt yx

))−1
vTt yx = − 2

η . The derivation of the nullclines and fixed points can be
found in Appendix C.1.1. We also provide a visual representation of these nullclines in Figure 2.
Using these nullclines, we partition the phase space into 3 disjoint regions, which we denote as re-
gions 1, 2, and 3. Since ∥qt∥22vTt yx is the primary component in the loss for this setting, and we
know that ∥qt∥22vTt yx grows (i.e., the loss shrinks) in the next time step if the system is in regions 1
and 2 according to corollaries 4.1.1 and 4.1.2, we further divide region 3 into regions 3.1 and 3.2.
We define region 3.1 and region 3.2 such that ∥qt∥22vTt yx grows and shrinks in the next time step,
respectively.
Corollary 4.1.1. For any k, l ∈ N such that l > k, if ||qk||22 > 0, vTk yx ≥ 0, then ||ql||22vTl yx >
||qk||22vTk yx.

Corollary 4.1.2. For any k ∈ N, if ||qk||22 > 0, vTk yx satisfies

− 2
η <

(
1 + exp

(
||qk||22vTk yx

))−1
vTk yx < 0, then ||qk+1||22vTk+1yx > ||qk||22vTk yx.

By analyzing the dynamics of our system in each region, we prove the following theorem.
Theorem 4.2 (No Edge of Stability in the One Datapoint Setting). Consider our two-layer rank-1
linear model trained to minimize logistic loss on a single datapoint (x, y), where y = ±1, using
gradient descent with learning rate η. Under any initialization such that ∥q0∥22 > 0, our loss
trajectory will contain at most one local maximum.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
||qt||22

6

4

2

0

2

4

vT t
yx

= 0.70, ||x||2 = 1.0, y=1

Figure 2: This is the phase space diagram for our one datapoint system for the case where η = 0.70,
∥x∥22 = 1, and y = 1. The blue dashed curves represent the nullclines for ∥qt∥22, where region 1 is
above the top blue curve, region 2 is between both blue curves, and regions 3.1 and 3.2 are below the
bottom blue curve. The red dashed curve represents the boundary where ∥qt∥22vTt yx shrinks inside
the curve (region 3.2) and grows outside the curve (region 3.1). Since ∥qt∥22 = 0 is also a fixed point
of the system, we denote the solid black line portion as ∥qt∥22 = 0 being stable, and the dashed black
line portion as ∥qt∥22 = 0 being unstable. We also include normalized vectors of the gradient field,
shown as grey arrows, to provide some intuition for possible trajectories.

We defer the proof of the lemma, corollaries, and theorem in this section to Appendix C.1.3.

4.2 TWO TRAINING DATAPOINTS (N = 2)

In the two datapoint setting, we note that the dynamics can be captured by three quantities, ∥qt∥22,
vTt (x1 − x2), and vTt (x1 + x2). As in the single datapoint case, with our initialization, we know
that ut = qt from Claim 3.1. So, qTt ut = ∥qt∥22. However, since we have two datapoints, we
observe the updates to the parameters of our model are affected by vTt x1 and vTt x2. However, we
find vTt (x1 − x2) and vTt (x1 + x2) are more meaningful than vTt x1 and vTt x2, since vTt (x1 − x2)
and vTt (x1 + x2) represent the alignment of parameter vt in the max-margin (x1 − x2) and max-
margin complement (x1 + x2) directions, respectively. Furthermore, we can reconstruct vTt x1 and
vTt x2 from vTt (x1 − x2) and vTt (x1 + x2). For conciseness, we define mt = vTt (x1 − x2) and
ct = vTt (x1 + x2). So, we can study our model’s training dynamics as the 3-dimensional system(
∥qt∥22, ct,mt

)
. Similar to the single datapoint case, we find that ∥qt∥22 = 0 is a fixed point of our

system, so we focus on the system’s behavior for ∥qt∥22 > 0. And, similar to vTt yx in the single
datapoint setting, we prove that mt is a strictly increasing component in Claim 4.3.
Claim 4.3. For any k, l ∈ N such that l > k and ||qk||22 > 0, ml > mk.

We defer the proof of this claim to Appendix C.2.

From our analysis of ∥q∥22, we define two of its nullclines below,(
1 + exp

(
1

2
∥qt∥22 (mt + ct)

))−1

(mt + ct) +

(
1 + exp

(
1

2
∥qt∥22 (mt − ct)

))−1

(mt − ct) = b,

for b ∈ {0,− 4
η}. For convenience, we denote ∥qt∥22 nullcline 1 for b = 0 and ∥qt∥22 nullcline 2 for

b = − 4
η . However, unlike the single datapoint setting, we have the additional component, ct. In our

analysis, we find that the system can move away from the ct = 0 plane for ∥qt∥22 >
√

8

η(1+xT1 x2)
and move towards otherwise. To understand how “far” this repelling behavior reaches, we derive the
following closed-form boundary, where, if the system is in the interior of the boundary, |ct| grows.(
1 + exp

(
1

2
∥qt∥22 (mt − |ct|)

))−1

−
(
1 + exp

(
1

2
∥qt∥22 (mt + |ct|)

))−1

=
2|ct|

η∥qt∥22
(
1 + xT

1 x2
)

We provide visuals for the ∥qt∥22 nullclines and |ct| growth boundary in Figure 3. The derivation for
nullclines, |ct| growth boundary, and fixed points can be found in Appendix C.2.1.
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Figure 3: For a slice of of the 3-dimensional phase at ∥qt∥22 = 9.0 for the case where η = 0.20 and
xT1 x2 = 0.9991, we show the nullclines of ∥qt∥ and the |ct| growth boundary. In (a), the blue dashed
lines represent the nullclines of ∥qt∥22, where the bottom blue curve is nullcline 2 and the blue curve
above it is nullcline 1. In (b), we provide zoomed-in view for the red dashed curve shown in a) that
represents the |ct| growth boundary.

Compared to the single datapoint case, where we proved Edge of Stability was not possible, we
empirically observe Edge of Stability behavior in the two datapoint setting, as shown in the Figure 4.
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Figure 4: We show the sharpness (a), training loss (b), system values (c), α (i.e., |ct|
mt

) (d), and
“location” of the system relative to ∥qt|22 to nullcline 1 (nC q1 = 0) and |ct| the growth boundary

(gB c = 0) (e) for η = 0.13, xT
1 x2 = 0.9991, ∥q0∥22 = 1.05

√
8

0.13·1.9991 , c0 = 0.02, m0 = 0.01.
We also show the similarity between our sharpness approximation and the true sharpness.

Now, we explain how the trajectory in Figure 4 produces Edge of Stability behavior. We do so
by explaining the first oscillation in loss. We defer our explanation of the sharpness dynamics in
Figure 4 to Appendix C.2.3 using the sharpness approximation we derived in Appendix C.2.2. To
explain the first oscillation in loss, we first split the initial trajectory into four phases based on the
sign of nC q1 and gB c in Figure 4(e).

In the initial part of the trajectory, we see that the system is inside ∥qt∥22 nullcline 1 and the |ct|
growth boundary (nC q1 > 0, gB c > 0), which we denote as phase 1. Then, the system is outside
∥qt∥22 nullcline 1, but still inside the |ct| growth boundary (nC q1 < 0, gB c > 0), which we denote
as phase 2. In phase 3, we see that the system is outside both ∥qt∥22 nullcline 1 and the |ct| growth

7
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boundary (nC q1 < 0, gB c < 0). Lastly, in phase 4, the system is inside ∥qt∥22 nullcline 1, but still
outside the |ct| growth boundary (nC q1 > 0, gB c < 0).

To explain the loss trajectory, we first rewrite our loss using αt = |ct|
mt

(see Figure 4(d)) as shown
below.

L = log

(
1 + exp

(
−1

2
(1− αt) ∥qt∥22mt

))
+ log

(
1 + exp

(
−1

2
∥qt∥22mt (1 + αt)

))
In the first phase, we observe ∥qt∥22 and αt grow. During the first few iterations of this phase, we
observe a decrease in loss. From our rewritten loss above, we see that for small αt > 1, ∥qt∥22mt

needs to be larger in order for the loss to increase. We observe that ∥qt∥22mt is not large enough
for the first few steps even as αt increases. Once αt and ∥qt∥22mt grow large enough, then the loss
increases for the remainder of phase 1. In the second phase of the trajectory, we observe αt increase
and ∥qt∥22 shrink. The loss begins to decrease, since ∥qt∥22mt is shrinking due to ∥qt∥22. After this,
in the third phase of the system’s trajectory, we observe ∥qt∥22 and αt shrink, and this causes the
loss to continue to decrease. Once the system enters the fourth phase, ∥qt∥22 begins to grow and αt

continues to shrink. We continue to see decreases in loss due to the shrinkage of αt.

Following this last phase, we observe that ∥qt∥22 continues to grow and αt continues to shrink until
the system is inside the |ct| growth boundary (gB c > 0), where we enter phase 1 again. Once this
happens, the cycle repeats. We note that the dampening in the oscillations for both loss and sharpness
is likely the result of the growth of mt, which constrains the magnitude of αt (see Figure 4(d)).

We attribute the Edge of Stability behavior observed above to ct. Compared to our single data-
point setting, the ct component in the two-datapoint setting provides a means for the system to
oscillate between ∥qt∥22 nullcline 1 (i.e., nC q1 changes signs), causing oscillations in ∥qt∥22, which
causes oscillations in the loss. We provide additional experiments for the two datapoint setting in
Appendix C.2.4.

4.2.1 ASYMPTOTIC CASE (XT
1 X2 → 1)

5.0 5.2 5.4 5.6 5.8 6.0
||qt||22

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

|c
t|

= 0.20, m=0.45

Figure 5: For m = 0.45 and η = 0.20, we show the first 14 steps of a trajectory starting close the
intersection point between ∥qt∥22 nullcline 1 and the |ct| growth boundary. We denote the starting
point as the cyan star the 14th step as the black diamond, with cyan arrows pointing to subsequent
iterates and a black arrow from iterate 13 to 14.

We further study an asymptotic case, where we consider the limit as xT1 x2 → 1. This is meant to
consider the behavior of our model as the margin for our dataset approaches 0. In this limit, our
system reduces to 2 dimensions in terms of ∥qt∥22, ct, where mt becomes a constant based on initial-
ization. Results from the simulations conducted for this case can be found in Appendix C.2.5. From
the simulations, we find cases where our asymptotic system remains localized, jumping between
a specific set of values producing a trajectory “band”. From these cases, we focus on a particular
set of instances with m = 0.45 and η = 0.2, where, in the trajectory tail, the system is localized
appears around the point where the ∥qt∥22 nullcline 1 intersects with the |ct| growth boundary. Upon
further investigation, we find that, under a similar hyperparameter setting, initializing close to the
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intersection point seems to generate a stable elliptical orbit, as shown in Figure 5. Based on the
figure, we formulate a conjecture below.

Conjecture 4.3.1. There exists some η,m > 0 where, if the system (∥qt∥22, |ct|) is initialized at
some ϵ > 0 distance from the intersection point of ∥qt∥22 nullcline 1 and the |ct| growth boundary,
then it will enter and remain in a stable orbit around the intersection point.

5 DIFFERENCE BETWEEN SQUARED LOSS AND LOGISTIC LOSS

Based on our analysis, we highlight some of the differences between our two layer rank-1 linear
model to minimize logistic loss and the two-layer linear model studied by Kalra et al. (2025) to
minimize mean squared loss.

Training Dataset Size Kalra et al. (2025) highlight that Edge of Stability can occur in a two-layer
linear model even with a single training datapoint, as long as the corresponding label y ̸= 0. How-
ever, in our work, we find that Edge of Stability does not occur with only a single training datapoint.
The simplest setting we found for Edge of Stability in our model was with two training datapoints.

Existence of critical learning rate ηc Furthermore, Kalra et al. (2025) state that Edge of Stability
occurs in their setting once the learning rate η crosses some critical learning rate ηc. In our work,
we claim that the occurrence of the Edge of Stability relies on more than just crossing some ηc. We
find that it is necessary for xT

t x2 to be above some critical threshold,
(
xT
t x2
)
c
. While we know that

for any choice of η and xT
t x2, there exists a region of the phase space where the system moves away

from the ct = 0 plane, our model is not guaranteed to exhibit Edge of Stability behavior for xT
t x2

that is not large enough. Intuitively, we know that a large xT
t x2 corresponds to a smaller optimal

margin of separation, since the datapoints are “harder” to distinguish. The small margin would
then constrain the growth of mt, requiring more iterations to escape the region where the ct = 0
is unstable (assuming initialization in this region). This allows the system to movement across the
∥qt∥22 nullclines for sufficient iterations until mt becomes large enough. So, the faster growth rate
of mt with smaller xT1 x2 may cause the system to “escape” the ct growth region quite early during
training, resulting in no sufficient oscillations in |ct| or ∥qt∥22 to produce to oscillations in the loss or
sharpness.

Edge of Stability Source In the regression setting, Kalra et al. (2025) claim that Edge of Stability
occurs when a fixed point, defined as the line where the residual of their model is 0 for appropriate
values of the Loss Hessian trace (zero-loss line), becomes unstable. The instability of the zero-loss
line causes oscillations in the residual that cause the parameters to move towards the Edge of Stabil-
ity manifold. In our classification setting, we find an analogous condition, where Edge of Stability
can occur when our 3-dimensional system enters the region where the ct = 0 plane is unstable and
remains there for a sufficient number of training steps. However, we find that oscillations in |ct| that
produce movement of the system in and out of ∥qt∥22 nullcline 1 causes Edge of Stability behavior.
This is because oscillations of the system about ∥qt∥22 nullcline 1 causes ∥qt∥22 to oscillate, and we
find that ∥qt∥22 is a significant component in the sharpness based on our interpretable approximation
in Appendix C.2.2.

6 CONCLUSION AND FUTURE DIRECTIONS

In this work, we study the behavior of a two-layer rank-1 linear neural network to minimize logistic
loss on linearly separable data. In this setting, we prove that with one datapoint the model does
not display Edge of Stability behavior. We also show that with two datapoints, our model exhibits
Edge of Stability. Furthermore, we extend our two datapoint setting to an asymptotic case where
the margin approaches 0 and provide evidence that supports the possibility for perpetual stable
oscillation in the loss and sharpness.

The main open problem is to prove the Edge of Stability behavior for the two datapoint setting
rigorously and generalize it to more general settings, such as multiple linearly separable datapoints.
We hope our analysis, together with the approximation of sharpness in Appendix C.2.2, provides a
starting point for understanding Edge of Stability behavior in logistic losses for more complicated
models.

9
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A USE OF LARGE LANGUAGE MODELS

In this work, we used a Large Language Model to assist our sharpness derivations. Specifically, we
used the Large Language Model to realize how similarity transforms could be applied to the Loss
Hessian and the impact of the rank-2 perturbation in the Loss Hessian for the two datapoint setting.
We also used the Large Language Model to look for resources related to eigenvalue approximation
under perturbation, where the model recommended a book (Stewart & Sun, 1990) from which we
learned about Cauchy Interlacing Theorem.

B ADDITIONAL RELATED WORKS

We continue our discussion of related works in this section. First, we discuss some additional works
on general functions. Kong & Tao (2020) show that, under large learning rates and certain loss
functions, gradient descent exhibits chaotic behavior leading it to converge to a distribution rather
than a local minimizer. Lyu et al. (2022) show that a model with some form of normalization (batch
normalization, layer normalization, etc.) and weight decay can enter the Edge of Stability regime,
where the implicit bias induced drives the model to reduce sharpness. Ahn et al. (2022) discuss
the causes and main features of unstable convergence (Edge of Stability) based on the evolution
of gradient descent iterates, loss, and sharpness. Kreisler et al. (2023) identify the gradient-flow
sharpness (GFS) as a monotonically decreasing quantity in gradient descent training and study how,
in scalar neural networks, the decrease of the GFS below the stability threshold causes the loss to
decrease at an exponential rate. Wang et al. (2023) attribute the occurrence of non-trivial training
dynamics, such as Edge of Stability, to loss functions that satisfy certain regularity conditions along
with gradient descent and sufficiently large learning rates. Bartlett et al. (2023) study sharpness-
aware minimization (SAM) for convex quadratic and non-quadratic objectives. In the latter case,
they show that the oscillations observed during training are essentially gradient descent steps on the
spectral norm of the Hessian, where SAM represents the derivative of the sharpness. Cohen et al.
show that the Edge of Stability phenomenon can carry over to adaptive optimizers, such as Adam,
by considering the maximum eigenvalue of a preconditioned Loss Hessian. Long & Bartlett (2024)
derive the Edge of Stability threshold for sharpness-aware minimization (SAM) and experimentally
observe SAM operating in the Edge of Stability regime. Chen et al. (2024a) prove that, for twice-
differentiable loss functions, gradient descent is forward-invariant. The authors also show that for
initialization outside the forward-invariant set will oscillate for several iterations until entering the
forward invariant set containing a local minimum.

Next, we continue the discussion of works focused on specific models. Pedregosa et al. (2022) show
that quadratic regression models trained to minimize a quartic loss function exhibit both Progressive
Sharpening and Edge of Stability. Chen & Bruna (2023) use two-step gradient updates to analyze
matrix factorization and single-neuron ReLU networks for a range of learning rates where gradient
descent dynamics hover around minimizers. Ahn et al. (2023) show that a 2-layer ReLU network can
exhibit Edge of Stability behavior and prove that, with learning rates not sufficiently large enough,
the network can fail to learn a nonzero first-layer bias, which is essential for useful implicit biases
that can lead to better generalization. Even et al. (2023) study the implicit bias of 2-layer diagonal
linear neural networks trained with gradient descent (GD) and stochastic gradient descent (SGD)
using large step sizes. They show that the implicit bias discrepancy between SGD and GD is am-
plified with learning rates that induce Edge of Stability behavior. Noci et al. (2024) study sharpness
dynamics in the context of learning rate transfer for neural networks in the rich regime and in the
Neural Tangent Kernel to indicate feature learning. Zhu et al. (2023a) show that quadratic models
used the approximate shallow feedforward ReLU networks exhibits a “catapult phase” when trained
with sufficiently large learning rates and demonstrate improved generalization following the “cata-
pult phase”. Chen et al. (2024b) show that phase retrieval and a cubic iterated map representing a
two-layer neural network with quadratic activations, fixed output layer, and orthogonal data exhibit
five phases of training, including Edge of Stability.

C MODEL ANALYSIS

In this section, we provide additional information for our study of the single and two datapoint
settings including sharpness derivations, fixed point analysis, and additional experiment results.
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First, we prove Claim 3.1, which is essential for our analysis in both dataset settings.

Proof of Claim 3.1. Assume u0 = q0. We prove the claim by induction. First, we prove the base
case for u1 and q1.

u1 − q1 = u0 + η q0

N∑
i=1

(
1 + exp(qT0 u0v

T
0 yixi)

)−1
vT0 yixi

−

(
q0 + η u0

N∑
i=1

(
1 + exp(qT0 u0v

T
0 yixi)

)−1
vT0 yixi

)

= u0 − q0 − η (u0 − q0)

N∑
i=1

(
1 + exp(qT0 u0v

T
0 yixi)

)−1
vT0 yixi

= 0 since u0 = q0

Next, we prove the inductive step. Assume uk = qk. Then, for uk+1 and qk+1, we see the following.

uk+1 − qk+1 = uk + η qk

N∑
i=1

(
1 + exp(qTk ukv

T
k yixi)

)−1
vTk yixi

−

(
qk + η uk

N∑
i=1

(
1 + exp(qTk ukv

T
k yixi)

)−1
vTk yixi

)

= uk − qk − η (uk − qk)

N∑
i=1

(
1 + exp(qTk ukv

T
k yixi)

)−1
vTk yixi

= 0 since uk = qk

C.1 SINGLE DATAPOINT SETTING (N = 1)

C.1.1 FIXED POINT ANALYSIS

Recall from Section 4 that can study the dynamics of our model in the single datapoint setting as the
system, (∥qt∥22, vTt yx). In this section, we derive the fixed points for our system, (∥qt∥22, vTt yx). We
make the following claims.
Claim C.1 (Nullclines of ∥qt∥22). The nullclines of ∥qt∥22 are as follows: ∥qt∥22 = 0, vTt yx = 0,(
1 + exp

(
∥qt∥22vTt yx

))−1
vTt yx = − 2

η , and ∥qt∥22vTt yx → ∞.

Claim C.2 (Fixed points for (∥qt∥22, vTt yx) system). The fixed points for the system of two variables,
∥qt∥22 and vTt yx are ∥qt∥22vTt yx → ∞ and ∥qt∥22 = 0, where ∥qt∥22vTt yx → ∞ is marginally stable
and ∥qt∥22 = 0 is stable only if −4

η < vTt yx < 0.

First, we prove Claim C.1.

Proof of Claim C.1. First, we define the iterated map of ∥qt∥22.

∥qt+1∥22 = ∥qt∥22 + 2η
(
1 + exp

(
∥qt∥22vTt yx

))−1 ∥qt∥22vTt yx + η2
(
1 + exp

(
∥qt∥22vTt yx

))−2 ∥qt∥22
(
vTt yx

)2
= ∥qt∥22

(
1 + η

(
1 + exp

(
∥qt∥22vTt yx

))−1
vTt yx

)2
To solve for the nullclines, we solve for ∥qt+1∥22 − ∥qt∥22 = 0, which is equivalent to solv-
ing
(
1 + exp

(
∥qt∥22vTt yx

))−1
(
2 + η

(
1 + exp

(
∥qt∥22vTt yx

))−1
vTt yx

)
∥qt∥22vTt yx = 0. From the
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factors, we see that the nullclines are ∥qt∥22 = 0, vTt yx = 0,
(
1 + exp

(
∥qt∥22vTt yx

))−1
vTt yx = − 2

η ,

and ∥qt∥22vTt yx → ∞ to get
(
1 + exp

(
∥qt∥22vTt yx

))−1
= 0.

Next, we proceed with the fixed point stability analysis.

Proof of Claim C.2. From Claim C.1, we already have the nullclines for ∥qt∥22. So, we find the
nullclines of vTt yx. First, we define the iterated map for vTt yx.

vTt+1yx = vTt yx + η
(
1 + exp

(
∥qt∥22vTt yx

))−1 ∥qt∥22∥yx∥22

We solve for the nullclines as follows.

0 = vTt+1yx − vTt yx = η
(
1 + exp

(
∥qt∥22vTt yx

))−1 ∥qt∥22∥yx∥22
0 =

(
1 + exp

(
∥qt∥22vTt yx

))−1 ∥qt∥22 since ∥yx∥22 is a constant

So, we get that the nullclines are ∥qt∥22 = 0 and ∥qt∥22vTt yx → ∞. Then, we see that the intersection
of the nullclines for ∥qt∥22 and vTt yx shows that the fixed points are ∥qt∥22 = 0 and ∥qt∥22vTt yx → ∞.

To analyze the stability properties of the fixed points, we find the eigenvalues for the Jacobian of the
system (∥qt∥22, vTt yx). First, we define the Jacobian as follows.

J(∥qt+1∥22, vTt+1yx) =

∂∥qt+1∥2
2

∂∥qt∥2
2

∂∥qt+1∥2
2

∂vT
t yx

∂vT
t+1yx

∂∥qt∥2
2

∂vT
t+1yx

∂vT
t yx


Then, we solve for the partial derivatives.

∂vTt+1yx
∂vTt yx

= 1− η
(
1 + exp

(
∥qt∥22vTt yx

))−2
exp

(
∥qt∥22vTt yx

)
∥qt∥42∥yx∥22

∂vTt+1yx
∂∥qt∥22

= η
(
1 + exp

(
∥qt∥22vTt yx

))−1 ∥yx∥22 − η
(
1 + exp

(
∥qt∥22vTt yx

))−2
exp

(
∥qt∥22vTt yx

)
∥qt∥22vTt yx∥yx∥22

∂∥qt+1∥22
∂vTt yx

= 2η
(
1 + exp

(
∥qt∥22vTt yx

))−1 ∥qt∥22 + 2η2
(
1 + exp

(
∥qt∥22vTt yx

))−2 ∥qt∥22vTt yx

− 2η
(
1 + exp

(
∥qt∥22vTt yx

))−2
exp

(
∥qt∥22vTt yx

)
∥qt∥42vTt yx

− 2η2
(
1 + exp

(
∥qt∥22vTt yx

))−3
exp(∥qt∥22vTt yx)∥qt∥42

(
vTt yx

)2
∂∥qt+1∥22
∂∥qt∥22

= 1 + 2η
(
1 + exp

(
∥qt∥22vTt yx

))−1
vTt yx + η2

(
1 + exp

(
∥qt∥22vTt yx

))−2 (
vTt yx

)2
− 2η

(
1 + exp

(
∥qt∥22vTt yx

))−2
exp

(
∥qt∥22vTt yx

)
∥qt∥22

(
vTt yx

)2
− 2η2

(
1 + exp

(
∥qt∥22vTt yx

))−3
exp

(
∥qt∥22vTt yx

)
∥qt∥22

(
vTt yx

)3
We first consider the fixed point ∥qt∥22vTt yx → ∞. We see that the Jacobian reduces to the following.

J(∥qt+1∥22, vTt+1yx) =
[
1 0
0 1

]
Since the both eigenvalues for the Jacobian are 1, ∥qt∥22vTt yx → ∞ is marginally stable.

Next, we consider the fixed point ∥qt∥22 = 0. The Jacobian reduces to the following.

J(∥qt+1∥22, vTt+1yx) =

[
1 + ηvTt yx +

η2(vT
t yx)

2

4 0
η
2∥yx∥22 1

]
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The eigenvalues for the Jacobian are 1 and 1 + ηvTt yx +
η2(vT

t yx)2

4 . This means that a segment of
the vTt yx axis is stable. We solve for the segment below.

− 1 < 1 + ηvTt yx +
η2(vTt yx)2

4
< 1

−8

η2
<

(
4

η
+ vTt yx

)
vTt yx < 0

Since the −8
η2 lower bound is not tight, we get that the condition is satisfied for −4

η < vTt yx < 0.

C.1.2 SHARPNESS DERIVATION

In this section, we derive a closed-form formula for the sharpness and the other eigenvalues of the
Loss Hessian. We first make the following claim about the sharpness.
Claim C.3 (Closed-Form for Sharpness in One Datapoint Setting). The sharpness for the model in
the one datapoint setting is

1

2
ψt∥qt∥42∥yx∥22 −

1

2
ϕtv

T
t yx + ψt∥qt∥22

(
vTt yx

)2
+

√√√√√√
1

4
ψ2
t ∥qt∥82∥yx∥42 −

7

2
ϕtψt∥qt∥42vTt yx∥yx∥22 + ψ2

t ∥qt∥62
(
vTt yx

)2 ∥yx∥22

+
1

4
ϕ2t
(
vTt yx

)2 − ϕtψt∥qt∥22
(
vTt yx

)3
+ ψ2

t ∥qt∥42
(
vTt yx

)4
+ 2ϕ2t∥qt∥22∥yx∥22

where ϕt =
(
1 + exp

(
∥qt∥22vTt yx

))−1
and ψt =

(
1 + exp

(
∥qt∥22vTt yx

))−2
exp

(
∥qt∥22vTt yx

)
.

Proof. To solve for the sharpness, we first define the Loss Hessian. For θt = (qt, ut, vt), we have

∇θtL(qt, ut, vt) =


∂2L(qt,ut,vt)

∂qt∂qTt

∂2L(qt,ut,vt)

∂qt∂uT
t

∂2L(qt,ut,vt)

∂qt∂vT
t

∂2L(qt,ut,vt)

∂ut∂qTt

∂2L(qt,ut,vt)

∂ut∂uT
t

∂2L(qt,ut,vt)

∂ut∂vT
t

∂2L(qt,ut,vt)

∂vt∂qTt

∂2L(qt,ut,vt)

∂vt∂uT
t

∂2L(qt,ut,vt)

∂vt∂vT
t


We solve for the eigenvalues using the technique developed by Singh & Hofmann (2024). First,
we solve for det (∇θtL(qt, ut, vt)− λI2h+d) = 0. We form the matrix ∇θtL(qt, ut, vt) − λI2h+d

below.

∇θtL(qt, ut, vt)− λI2h+d

=

 ψt

(
vTt yx

)2
utu

T
t − λIh −ϕtvTt yxIh + ψt

(
vTt yx

)2
utq

T
t

(
−ϕt + ψtq

T
t utv

T
t yx

)
utyxT

−ϕtvTt yxIh + ψt

(
vTt yx

)2
qtu

T
t ψt

(
vTt yx

)2
qtq

T
t − λIh

(
−ϕt + ψtq

T
t utv

T
t yx

)
qtyxT(

−ϕt + ψtq
T
t utv

T
t yx

)
yxuTt

(
−ϕt + ψtq

T
t utv

T
t yx

)
yxqTt ψt

(
qTt ut

)2
xxT − λId


With our initialization assumption (i.e., u0 = q0, then ut = qt by Claim 3.1) ∇θtL(qt, ut, vt) −
λI2h+d reduces to

=

 ψt

(
vTt yx

)2
qtq

T
t − λIh −ϕtvTt yxIh + ψt

(
vTt yx

)2
qtq

T
t

(
−ϕt + ψt∥qt∥22vTt yx

)
qtyxT

−ϕtvTt yxIh + ψt

(
vTt yx

)2
qtq

T
t ψt

(
vTt yx

)2
qtq

T
t − λIh

(
−ϕt + ψt∥qt∥22vTt yx

)
qtyxT(

−ϕt + ψt∥qt∥22vTt yx
)
yxqTt

(
−ϕt + ψt∥qt∥22vTt yx

)
yxqTt ψt∥qt∥42xxT − λId


Based on the pattern introduced in the ∇θtL(qt, ut, vt)−λI2h+d by the initialization assumption, we
perform two similarity transforms. We first defineA = ψt

(
vTt yx

)2
qtq

T
t −λIh,B = −ϕtvTt yxIh+

ψt

(
vTt yx

)2
qtq

T
t , C =

(
−ϕt + ψt∥qt∥22vTt yx

)
qtyxT , and D = ψt∥qt∥42xxT − λId. Then, we can

rewrite ∇θtL(qt, ut, vt)− λI2h+d as  A B C
B A C
CT CT D


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We proceed with the following similarity transforms.

1

2

 Ih Ih 0
−Ih Ih 0
0 0

√
2Id

 A B C
B A C
CT CT D

Ih −Ih 0
Ih Ih 0
0 0

√
2Id



=
1

2

 Ih Ih 0
−Ih Ih 0
0 0

√
2Id

A+B B −A
√
2C

A+B A−B
√
2C

2CT 0
√
2D



=
1

2

2(A+B) 0 2
√
2C

0 2(A−B) 0
2
√
2CT 0 2D



=

A+B 0
√
2C

0 A−B 0√
2CT 0 D



[
Ih 0 0
0 0 Id
0 Ih 0

]A+B 0
√
2C

0 A−B 0√
2CT 0 D

[Ih 0 0
0 0 Ih
0 Id 0

]

=

[
Ih 0 0
0 0 Id
0 Ih 0

]A+B
√
2C 0

0 0 A−B√
2CT D 0



=

A+B
√
2C 0√

2CT D 0
0 0 A−B



After applying the similarity transforms, we solve det
([
A+B

√
2C√

2CT D

])
= 0 to get the sharpness.

To do so, we assume that D is invertible. This means that λ ̸= ψt∥qt∥42∥yx∥22, 0.

Then, det

([
A+B

√
2C√

2CT D

])
= det(D) det

(
A+B − 2CD−1CT

)
. So, we solve for

det
(
A+B − 2CD−1CT

)
= 0.

First, we solve for D−1 using the Sherman-Morrison Formula:

D−1 = − 1

λ
Id −

ψt∥qt∥42xxT

λ (λ− ψt∥qt∥42∥yx∥22)

Then, we find that

A+B − 2CD−1CT = 2

[
ψt

(
vTt yx

)2
+
ψ2
t ∥qt∥42

(
vTt yx

)2 ∥yx∥22
λ

+
ϕ2t∥yx∥22

λ
− 2ϕtψt∥qt∥22vTt yx∥yx∥22

λ

+
ψ3
t ∥qt∥82∥yx∥42

(
vTt yx

)2
λ (λ− ψt∥qt∥42∥yx∥22)

+
ψtϕ

2
t∥qt∥42∥yx∥42

λ (λ− ψt∥qt∥42∥yx∥22)
− 2ψ2

t ϕt∥qt∥62∥yx∥42vTt yx
λ (λ− ψt∥qt∥42∥yx∥22)

]
qtq

T
t

−
(
ϕtv

T
t yx + λ

)
Ih
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To solve for det
(
A+B − 2CD−1CT

)
= 0, we first multiply by λ

(
λ− ψt∥qt∥42∥yx∥22

)
, which

yields the following.(
2

[
ψt

(
vTt yx

)2
λ
(
λ− ψt∥qt∥42∥yx∥22

)
+ ψ2

t ∥qt∥42
(
vTt yx

)2 ∥yx∥22
(
λ− ψt∥qt∥42∥yx∥22

)
+ ϕ2t∥yx∥22

(
λ− ψt∥qt∥42∥yx∥22

)
− 2ϕtψt∥qt∥22vTt yx∥yx∥22

(
λ− ψt∥qt∥42∥yx∥22

)
+ ψ3

t ∥qt∥82∥yx∥42
(
vTt yx

)2
+ ψtϕ

2
t∥qt∥42∥yx∥42 − 2ψ2

t ϕt∥qt∥62∥yx∥42vTt yx
]
∥qt∥22 −

(
ϕtv

T
t yx + λ

)
λ
(
λ− ψt∥qt∥42∥yx∥22

))
·
(
−λ
(
ϕtv

T
t yx + λ

) (
λ− ψt∥qt∥42∥yx∥22

))h−1
= 0

We focus on the following factor from above.

2

[
ψt

(
vTt yx

)2
λ
(
λ− ψt∥qt∥42∥yx∥22

)
+ ψ2

t ∥qt∥42
(
vTt yx

)2 ∥yx∥22
(
λ− ψt∥qt∥42∥yx∥22

)
+ ϕ2t∥yx∥22

(
λ− ψt∥qt∥42∥yx∥22

)
− 2ϕtψt∥qt∥22vTt yx∥yx∥22

(
λ− ψt∥qt∥42∥yx∥22

)
+ ψ3

t ∥qt∥82∥yx∥42
(
vTt yx

)2
+ ψtϕ

2
t∥qt∥42∥yx∥42 − 2ψ2

t ϕt∥qt∥62∥yx∥42vTt yx
]
∥qt∥22 − λ

(
ϕtv

T
t yx + λ

) (
λ− ψt∥qt∥42∥yx∥22

)
= 0

We see that the above reduces down to the following.

− λ

(
−2λψt

(
vTt yx

)2 ∥qt∥22 − 2ϕ2t∥yx∥22∥qt∥22 + 4ϕtψt∥qt∥42vTt yx∥yx∥22

+ λϕtv
T
t yx − ψtϕt∥qt∥42∥yx∥22vTt yx + λ2 − λψt∥qt∥42∥yx∥22

)
= 0

Since we assumed earlier that λ ̸= 0, we solve the quadratic. From solving the quadratic, we get the
following symmetric pair of eigenvalues.

λ =
1

2
ψt∥qt∥42∥yx∥22 −

1

2
ϕtv

T
t yx + ψt

(
vTt yx

)2 ∥qt∥22
±

√√√√√√
1

4
ψ2
t ∥qt∥82∥yx∥42 −

7

2
ϕtψt∥qt∥42vTt yx∥yx∥22 + ψ2

t ∥qt∥62∥yx∥22
(
vTt yx

)2
+

1

4
ϕ2t
(
vTt yx

)2 − ϕtψt

(
vTt yx

)3 ∥qt∥22 + ψ2
t

(
vTt yx

)4 ∥qt∥42 + 2ϕ2t∥yx∥22∥qt∥22

where the plus direction is our sharpness.

In addition to the sharpness, we also have closed-forms for remaining eigenvalues and their multi-
plicity. We have h copies of ϕtvTt yx, h− 1 copies of −ϕtvTt yx, d− 1 copies of 0, and the following
eigenvalues from our calculation above.

λ =
1

2
ψt∥qt∥42∥yx∥22 −

1

2
ϕtv

T
t yx + ψt

(
vTt yx

)2 ∥qt∥22
−

√√√√√√
1

4
ψ2
t ∥qt∥82∥yx∥42 −

7

2
ϕtψt∥qt∥42vTt yx∥yx∥22 + ψ2

t ∥qt∥62∥yx∥22
(
vTt yx

)2
+

1

4
ϕ2t
(
vTt yx

)2 − ϕtψt

(
vTt yx

)3 ∥qt∥22 + ψ2
t

(
vTt yx

)4 ∥qt∥42 + 2ϕ2t∥yx∥22∥qt∥22

We note that ϕtvTt yx comes from solving det(A− B), −ϕtvTt yx comes from our approach above,
and 0 also comes from as similar approach as above, but by assuming the A+B matrix is invertible
instead of D matrix.

C.1.3 PROOF OF THEOREM 1

In this section we give the proof of Theorem 4.2. Recall that according to our setup, we always have
y = ±1 is the label, ||x||22 > 0 (to avoid degenerate cases) and η > 0.
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As we mentioned in Section 4, our problem can be simplified to a 2-dimensional system with pa-
rameters ∥qt∥22 and vTt yx. We partition the space for this two dimensional system based on two
nullclines of ∥qt∥22 and the boundary splits the space based on whether ∥qt∥22vTt yx grows or shrinks
in the next time step. We also give supporting lemmas that illustrate the properties of the 4 regions,
shown below in Figure 6.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
||qt||22

6

4

2

0

2

4

vT t
yx

= 0.70, ||x||2 = 1.0, y=1

Figure 6: This is the phase space diagram for our one datapoint system for the case where η = 0.70,
∥x∥22 = 1, and y = 1. The blue dashed curves represent the nullclines for ∥qt∥22, where region 1 is
above the top blue curve, region 2 is between both blue curves, and regions 3.1 and 3.2 are below the
bottom blue curve. The red dashed curve represents the boundary where ∥qt∥22vTt yx shrinks inside
the curve (region 3.2) and grows outside the curve (region 3.1). Since ∥qt∥22 = 0 is also a fixed point
of the system, we denote the solid black line portion as ∥qt∥22 = 0 being stable, and the dashed black
line portion as ∥qt∥22 = 0 being unstable. We also include normalized vectors of the gradient field,
shown as grey arrows, to provide some intuition for possible trajectories.

First, we provide the proof for Theorem 4.2. Then, we give the supporting lemmas.

For Theorem 4.2, our proof mainly focuses on the behavior of the loss in each region, since our
definition for Edge of Stability focuses on specific attributes of the loss (i.e., it must have at least 2
local maxima). The intuition behind the proof is based on our understanding that the loss can only
increase in region 3.2 (see Figure 6) and could potentially contribute to the Edge of Stability if we
had some form of movement in and out of region 3.2. However, as seen in Figure 6, region 3.2 is
upper bounded in the vTt yx direction. So, if for some η, the system “escapes” region 3.2 to regions 2
or 1, we cannot move back into region 3.2, since vTt yx is strictly increasing according to Lemma 4.1.
So, our only potential candidate could be movement between regions 3.2 and 3.1. However, this is
also not possible either, since region 3.2 does not appear to have an holes or significant indentations,
and the strict growth of ∥qt∥22 in regions 3.1 and 3.2 makes it that return into region 3.2 from region
3.1 is not possible. So, there would be no significant non-monotonic behavior in the loss. We now
show the formal proof below.

Proof of Theorem 4.2. To prove the theorem, we first consider the phase space of our 2-dimensional
system for this setting, consisting of ∥qt∥22 and vTt yx.

Based on our fixed point analysis, we divide up our phase space into four regions. Region 1 is
defined as the area where ∥qt∥22 > 0 and vTt yx ≥ 0. Region 2 is the area where ∥qt∥22 > 0, vTt yx
satisfies − 2

η <
(
1 + exp

(
∥qt∥22vTt yx

))−1
vTt yx < 0. Region 3.1 is the area where ∥qt∥22 > 0, vTt yx

satisfies
(
1 + exp

(
∥qt∥22vTt yx

))−1
vTt yx < − 2

η and

(
vTt yx

)2 (
2 + η

(
1 + exp

(
||qt||22vTt yx

))−1
vTt yx

)
+ ||qt||22∥yx∥22

(
1 + η

(
1 + exp

(
||qt||22vTt yx

))−1
vTt yx

)2
≥ 0.

Region 3.2 is the area where ∥qt∥22 > 0, vTt yx satisfies
(
1 + exp

(
∥qt∥22vTt yx

))−1
vTt yx < − 2

η and

(
vTt yx

)2 (
2 + η

(
1 + exp

(
||qt||22vTt yx

))−1
vTt yx

)
+ ||qt||22∥yx∥22

(
1 + η

(
1 + exp

(
||qt||22vTt yx

))−1
vTt yx

)2
< 0.
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We proceed by proving that every possible training loss trajectory in the single datapoint setting does
not meet the EOS conditions in our definition by considering the initialization ||q0||22 > 0, vT0 yx in
each region. We don’t consider any initialization with ||q0||22 = 0, since that is a fixed point (see
Claim C.2).

Case 1: ||q0||22 > 0, vT0 yx in region 1. We proceed by induction. For the base case, we know,
by corollary 4.1.1, that ||q1||22vT1 yx > ||q0||22vT0 yx. This means that log

(
1 +

(
−||q1||22vT1 yx

))
<

log
(
1 + exp

(
||q0||22vT0 yx

))
.

For the inductive case, we assume ∥qk∥22 > 0, vTk yx in region 1. By corollary 4.1.1,
we know that ∥qk+1∥22vTk+1yx > ∥qk∥22vTk yx, meaning log

(
1 +

(
−∥qk+1∥22vTk+1yx

))
<

log
(
1 + exp

(
∥qk∥22vTk yx

))
Since our loss is strictly decreasing in this case, it does not meet the EOS condition.

Case 2: ||q0||22 > 0, vT0 yx in region 2. We consider two possible trajectories based on this initializa-
tion. We know that these trajectories are exhaustive based on lemmas 4.1, C.5, and C.11.

Trajectory 1: there exists some k ≥ 1, where ∥qk∥22 = 0. Since we know that ∥qk∥22 = 0 is
a fixed point, we know that for any l > k, ∥ql∥22 = 0. So, log

(
1 + exp

(
−∥ql∥22vTl yx

))
=

log
(
1 + exp

(
−∥qk∥22vTk yx

))
= log (2).

Trajectory 2: there exists some k ≥ 1, where ∥qk∥22 > 0 and vTk yx ≥ 0. We know that our loss
trajectory will be strictly decreasing for subsequent iterations by considering ∥qk∥22, vTk yx as some
initialization in region 1.

Now, for all iterations prior to k, we will show that our loss is strictly decreasing by induction. First,
we consider the base case. By corollary 4.1.2, we know that ||q1||22vT1 yx > ||q0||22vT0 yx. This means
that log

(
1 +

(
−||q1||22vT1 yx

))
< log

(
1 + exp

(
||q0||22vT0 yx

))
.

Next, we consider the inductive case. Assume ||qj ||22 > 0, vTj yx is in region 2, for
1 ≤ j ≤ k. By corollary 4.1.2, we know that ||qj+1||22vTj+1yx > ||qj ||22vTj yx, meaning
log
(
1 +

(
−||qj+1||22vTj+1yx

))
< log

(
1 + exp

(
||qj ||22vTj yx

))
Since our loss can only decrease monotonically in this case, it does not meet the EOS condition.

Case 3: ||q0||22 > 0, vT0 yx in region 3.1. We consider two possible trajectories based on this initial-
ization. We know that these trajectories are exhaustive based on lemmas 4.1, C.6, and C.11.

Trajectory 1: there exists some k ≥ 1, where ∥qk∥22, vTk yx jumps directly from region 3.1 to 1.
We know that our loss trajectory will be strictly decreasing for subsequent iterations by considering
∥qk∥22, vTk yx as some initialization in region 1.

Trajectory 2: there exists some k ≥ 1, where ∥qk∥22, vTk yx is in region 2. We know that our loss
trajectory will be monotonically decreasing for subsequent iterations by considering ∥qk∥22, vTk yx as
some initialization in region 2.

Now, for all iterations prior to k, we will show that our loss is monotonically decreasing by in-
duction. For the base case, we know by lemma C.7 that ||q1||22vT1 yx ≥ ||q0||22vT0 yx, meaning
log
(
1 +

(
−||q1||22vT1 yx

))
≤ log

(
1 + exp

(
||q0||22vT0 yx

))
.
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Next, we consider the inductive case. Assume ||qj ||22 > 0, vTj yx is in region 3.1, for 1 ≤ j ≤ k. We
know by lemma C.7 that ||qj+1||22vTj+1yx ≥ ||qj ||22vTj yx, meaning log

(
1 +

(
−||qj+1||22vTj+1yx

))
≤

log
(
1 + exp

(
||qj ||22vTj yx

))
.

Since our loss can only decrease monotonically in this case, it does not meet the EOS condition.

Case 4: ||q0||22 > 0, vT0 yx in region 3.2. We consider three possible trajectories based on this
initialization. We know these trajectories are exhaustive based on lemmas 4.1, C.6, C.11, and
C.12.

Trajectory 1: there exists some k ≥ 1, where ∥qk∥22, vTk yx jumps directly from region 3.2 to 1.
We know that our loss trajectory will be strictly decreasing for subsequent iterations by considering
∥qk∥22, vTk yx as some initialization in region 1.

Trajectory 2: there exists some k ≥ 1, where ∥qk∥22, vTk yx jumps directly from region 3.2 to 2.
We know that our loss trajectory will be monotonically decreasing for subsequent iterations by
considering ∥qk∥22, vTk yx as some initialization in region 2.

Trajectory 3: there exists some k ≥ 1, where ∥qk∥22, vTk yx is in region 3.1. We know that our loss
trajectory will be monotonically decreasing for subsequent iterations by considering ∥qk∥22, vTk yx as
some initialization in region 3.1.

Now, for all iterations prior to k, we will show that our loss is strictly increasing by induc-
tion. For the base case, we know by lemma C.7 that ||q1||22vT1 yx < ||q0||22vT0 yx, meaning
log
(
1 +

(
−||q1||22vT1 yx

))
> log

(
1 + exp

(
||q0||22vT0 yx

))
.

Next, we consider the inductive case. Assume ||qj ||22 > 0, vTj yx is in region 3.2, for 1 ≤ j ≤ k. We
know by lemma C.7 that ||qj+1||22vTj+1yx < ||qj ||22vTj yx, meaning log

(
1 +

(
−||qj+1||22vTj+1yx

))
>

log
(
1 + exp

(
||qj ||22vTj yx

))
.

Since our loss has only one local maximum in this case, it does not meet the EOS condition.

Since we have shown that our training loss can have at most one local maximum for every possible
trajectory, it therefore does not exhibit EOS behavior according to our definition.

Now, we show the supporting lemmas for Theorem 4.2. First, we prove lemma 4.1 that vTt yx
is always monotonically increasing. In Lemma C.4, we prove that ∥qt∥22 grows monotonically in
region 1 (i.e., vTt yx ≥ 0). In Corollary 4.1.1, we prove that the loss is always decreasing in region 1.
In Lemma C.5, we prove that ∥qt∥22 shrinks in region 2 (see Figure 6). In Corollary 4.1.2, we prove
that, despite ∥qt∥22 shrinking (see lemma C.5), the loss is still decreasing in region 2. In Lemma C.6,
we prove that for regions 3.1 and 3.2, ∥qt∥22 is increasing. In Lemma C.7, we show how the boundary
separating region 3.1 and 3.2 (see the red curve in Figure 6) causes the loss to worsen in region 3.2
but not in region 3.1. In Lemma C.8, we define a necessary condition for the system to be in region
3.2, which we use in later lemmas. In Lemma C.9, we prove that the separating boundary for regions
3.1 and region 3.2 is upper bounded in the vTt yx direction by the one of the ∥qt∥22 nullclines (see
Figure 6). In Lemma C.10, we prove an upper bound in the vTt yx direction for one of the nullclines
of ∥qt∥22, which we use in Lemma C.12. In Lemma C.11, we show that once the system leaves
region 3.2, it is impossible to return back. Lastly, in Lemma C.12, we show that the system can
escape region 3.2 in finite time.

First we show that vTt yx is always monotonically increasing, therefore it does not have a finite
nullcline, and we don’t partition the space according to this variable.
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Proof of Lemma 4.1. Assume some k, l ∈ N, l > k and ∥qk∥22 > 0. We consider the iterated map
for vTl yx below.

vTl yx = vTl−1yx + η
(
1 + exp

(
∥ql−1∥22vTl−1yx

))−1 ∥ql−1∥22∥yx∥22
= vTk yx + η∥yx∥22

(
1 + exp

(
∥qk∥22vTk yx

))−1 ∥qk∥22

+ η∥yx∥22
l−k−1∑
i=1

(
1 + exp(||qk+i||22vTk+iyx)

)−1 ||qk+i||22

≥ vTk yx + η∥yx∥22
(
1 + exp

(
∥qk∥22vTk yx

))−1 ∥qk∥22 since ∀i ∈ {1, ..., l − k − 1}. ||qk+i||22 ≥ 0

> vTk yx since ∥qk∥22 > 0

Next we show that whenever vTk yx ≥ 0 the norm of qt is nondecreasing, this is the main property of
region 1 (see Figure 6)

Lemma C.4. For any k, l ∈ N such that l > k, if ∥qk∥22 > 0, vTk yx ≥ 0, then ∥ql∥22 ≥ ∥qk∥22.

Proof. Assume some k, l ∈ N, l > k, η > 0, ∥qk∥22 > 0 and vTk yx ≥ 0.

We consider the iterated map for ∥ql∥22 below.

∥ql∥22 = ∥ql−1∥22
(
1 + η

(
1 + exp

(
∥ql−1∥22vTl−1yx

))−1
vTl−1yx

)2
= ∥qk∥22

l−k−1∏
i=0

(
1 + η

(
1 + exp

(
||qk+i||22vTk+iyx

))−1
vTk+iyx

)2
≥ ∥qk∥22 by lemma 4.1

As a simple corollary of the first two Lemmas, it’s clear that in region 1 the output of the model is
always improving.

Proof of Corollary 4.1.1. Assume some k, l ∈ N, l > k, ∥qk∥22 > 0 and vTk yx ≥ 0. We derive the
following.

vTl yx > vTk yx by lemma 4.1

∥ql∥22 ≥ ∥qk∥22 by lemma C.4

∥ql∥22vTl yx > ∥qk∥22vTk yx

Now we consider region 2 of Figure 6. This region is sandwiched between two nullclines of ∥qt∥22,
and we show that norm of qt decreases in this region.

Lemma C.5. For any k ∈ N, if ∥qk∥22 > 0, vTk yx satisfies

− 2
η <

(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx < 0, then ∥qk+1∥22 < ∥qk∥22.

Proof. Assume some k ∈ N and ∥qk∥22 > 0, vTk yx that satisfies

− 2
η <

(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx < 0. Consider the iterated map for ∥qk+1∥22 below.
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∥qk+1∥22 = ∥qk∥22
(
1 + η

(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx

)2
< ∥qk∥22

We get to the final step by our assumption that − 2
η <

(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx < 0.

Note that even though in region 2, the norm of qt is decreasing, the loss function is actually still
improving as Corollary 4.1.2 states, which we prove below.

Proof of Corollary 4.1.2. Assume some k ∈ N and ∥qk∥22 > 0, vTk yx that satisfies − 2
η <(

1 + exp
(
∥qk∥22vTk yx

))−1
vTk yx < 0. We derive the following.

vTk+1yx > vTk yx by lemma 4.1

∥qk+1∥22 < ∥qk∥22 by lemma C.5

∥qk∥22vTk yx < ∥qk+1∥22vTk+1yx

The final step comes from our assumption that − 2
η <

(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx < 0.

Finally, we give lemmas related to region 3.1 and 3.2 in Figure 6. In these regions, the norm of qt is
once again increasing.

Lemma C.6. For any k ∈ N, if ∥qk∥22 > 0, vTk yx satisfies
(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx < − 2

η ,
then ∥qk+1∥22 > ∥qk∥22.

Proof. Assume some k ∈ N and ∥qk∥22 > 0, vTk yx that satisfies
(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx <

− 2
η . We derive the following.

∥qk+1∥22 = ∥qk∥22
(
1 + η

(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx

)2
> ∥qk∥22

The final step is due to our assumption
(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx < − 2

η .

In region 3, the loss function may move in different directions, so we further partition the region into
3.1 and 3.2 according to whether the loss function is improving. In region 3.2, we show that the loss
worsens by the following lemma.

Lemma C.7. For any k ∈ N such that ∥qk∥22 > 0, vTk yx,(
vTk yx

)2 (
2 + η

(
1 + exp(∥qk∥22vTk yx)

)−1
vTk yx

)
+ ∥qk∥22∥yx∥22

(
1 + η

(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx

)2
≥ 0

if and only if ∥qk+1∥22vTk+1yx ≥ ∥qk∥22vTk yx.

Proof. First, we prove the forward direction of the biconditional. Assume some k ∈ N and ∥qk∥22 >
0, vTk yx that satisfies(
vTk yx

)2 (
2 + η

(
1 + exp(∥qk∥22vTk yx)

)−1
vTk yx

)
+ ∥qk∥22∥yx∥22

(
1 + η

(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx

)2
≥ 0.
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We derive the following.
∥qk+1∥22vTk+1yx − ∥qk∥22vTk yx

= vTk yx
(
∥qk∥22 + 2η

(
1 + exp

(
∥qk∥22vTk yx

))−1 ∥qk∥22vTk yx + η2
(
1 + exp

(
∥qk∥22vTk yx

))−2 ∥qk∥22
(
vTk yx

)2)
+ η

(
1 + exp

(
∥qk∥22vTk yx

))−1 ∥qk∥22∥yx∥22
(
∥qk∥22 + 2η

(
1 + exp

(
∥qk∥22vTk yx

))−1 ∥qk∥22vTk yx

+ η2
(
1 + exp

(
∥qk∥22vTk yx

))−2 ∥qk∥22
(
vTk yx

)2)− ∥qk∥22vTk yx

= 2η
(
1 + exp

(
∥qk∥22vTk yx

))−1 ∥qk∥22
(
vTk yx

)2
+ η2

(
1 + exp

(
∥qk∥22vTk yx

))−2 ∥qk∥22
(
vTk yx

)3
+ η∥qk∥42∥yx∥22

(
1 + exp

(
∥qk∥22vTk yx

))−1
+ 2η2

(
1 + exp

(
∥qk∥22vTk yx

))−2 ∥qk∥42vTk yx∥yx∥22
+ η3

(
1 + exp

(
∥qk∥22vTk yx

))−3 ∥qk∥42
(
vTk yx

)2 ∥yx∥22

= η∥qk∥22
(
1 + exp

(
∥qk∥22vTk yx

))−1
((
vTk yx

)2 (
2 + η

(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx

)
+ ∥qk∥22∥yx∥22

(
1 + η

(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx

)2)

≥ 0

Now, we consider the reverse direction of the biconditional, which we will prove by contrapositive.
From our above derivation, we already know that ∥qk+1∥22vTk+1yx − ∥qk∥22vTk yx < 0, since we
assumed that ∥qk∥22 > 0 and(
vTk yx

)2 (
2 + η

(
1 + exp(∥qk∥22vTk yx)

)−1
vTk yx

)
+ ∥qk∥22∥yx∥22

(
1 + η

(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx

)2
< 0.

The boundary separating regions 3.1 and 3.2 is not easy to express explicitly, but we do show an
upperbound for the boundary in the following lemmas. In the lemma below, we first show that the
separating boundary for regions 3.1 and 3.2 is upper bounded in the vTt yx direction by one of the
nullclines of ∥qt∥ (see the red and blue curves in Figure 6).
Lemma C.8. A necessary condition for ||q||22 > 0, vT yx to satisfy(
vT yx

)2 (
2 + η

(
1 + exp(||q||22vTk yx)

)−1
vT yx

)
+ ||q||22∥yx∥22

(
1 + η

(
1 + exp

(
||q||22vT yx

))−1
vT yx

)2
< 0,

is that
(
1 + exp

(
||q||22vT yx

))−1
vT yx < − 2

η .

Proof. Assume that some ||q||22 > 0.

We will show that if
(
1 + exp

(
||q||22vT yx

))−1
vT yx ≥ − 2

η , then(
vTk yx

)2 (
2 + η

(
1 + exp(∥qk∥22vTk yx)

)−1
vTk yx

)
+ ∥qk∥22∥yx∥22

(
1 + η

(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx

)2
≥ 0.

We derive the following.(
vT yx

)2 (
2 + η

(
1 + exp

(
||q||22vT yx

))−1
vT yx

)
≥ 0 by our assumption

||q||22∥yx∥22
(
1 + η

(
1 + exp

(
||q||22vT yx

))−1
vT yx

)2
≥ 0(

vT yx
)2 (

2 + η
(
1 + exp

(
||q||22vT yx

))−1
vT yx

)
+ ||q||22∥yx∥22

(
1 + η

(
1 + exp

(
||q||22vT yx

))−1
vT yx

)2
≥ 0.
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In the following lemma, we show an upper bound in the vTt yx direction one of the nullclines of
∥qt∥22, which is also an upper bound for the boundary separating regions 3.1 and 3.2.

Lemma C.9. For any ||q||22 > 0, the vT1 yx that satisfies(
vT1 yx

)2 (
2 + η

(
1 + exp

(
||q||22vT1 yx

))−1
vT1 yx

)
+ ||q||22∥yx∥22

(
1 + η

(
1 + exp

(
||q||22vT1 yx

))−1
vT1 yx

)2
< 0

is less than the vT2 yx that satisfies
(
1 + exp

(
||q||22vT2 yx

))−1
vT2 yx = − 2

η .

Proof. Consider some ||q||22 > 0, vT1 yx that satisfies(
vT1 yx

)2 (
2 + η

(
1 + exp

(
||q||22vT1 yx

))−1
vT1 yx

)
+ ||q||22∥yx∥22

(
1 + η

(
1 + exp

(
||q||22vT1 yx

))−1
vT1 yx

)2
< 0,

and vT2 yx that satisfies
(
1 + exp

(
||q||22vT2 yx

))−1
vT2 yx = − 2

η . Assume for the sake of contradiction
that vT2 yx ≤ vT1 yx. Then,(
1 + exp

(
||q||22vT2 yx

))−1
vT2 yx ≤

(
1 + exp

(
||q||22vT1 yx

))−1
vT2 yx by our assumption(

1 + exp
(
||q||22vT1 yx

))−1
vT1 yx ≥

(
1 + exp

(
||q||22vT2 yx

))−1
vT2 yx = −2

η
since vT2 yx ≤ vT1 yx

This contradicts the necessary condition we determined in lemma C.8.

In the following lemma, we show an upper bound in the vTt yx direction for a nullcline of ∥qt∥22 (see
the bottom blue curve in Figure 6), which is also an upper bound for the boundary separating regions
3.1 and 3.2.

Lemma C.10. For any ||q||22 > 0, the vTt yx that satisfies
(
1 + exp

(
||q||22vT yx

))−1
vT yx = − 2

η is
less than − 2

η .

Proof. First, we will show that for 0 < ||q1||22 < ||q2||22 and vT1 yx, vT2 yx which satisfy(
1 + exp

(
||q1||22vT1 yx

))−1
vT1 yx =

(
1 + exp

(
||q||22vT1 yx

))−1
vT1 yx = − 2

η , we get that vT1 yx <

vT2 yx. Assume for the sake of contradiction that vT1 yx ≥ vT2 yx. Then,

||q1||22vT1 yx > ||q2||22vT2 yx since vT1 yx ≥ vT2 yx and ||q1||22 < ||q2||22(
1 + exp

(
||q1||22vT1 yx

))−1
vT1 yx >

(
1 + exp

(
||q2||22vT2 yx

))−1
vT2 yx,

where the last step comes from our assumption that vT1 yx ≥ vT2 yx and(
1 + exp

(
||q1||22vT1 yx

))−1
vT1 yx = − 2

η . Now that we have proven the above, we consider ||q||22 →
∞. Then, we see that

(
1 + exp

(
||q||22vT yx

))−1 → 1. So,
(
1 + exp

(
||q||22vT yx

))−1
vT yx = − 2

η

becomes vT yx = − 2
η .

We are now ready to show that once the system leaves region 3.2, it cannot go back.

Lemma C.11. For any k ∈ N, if ∥qk∥22 > 0, vTk yx satisfies(
vTk yx

)2 (
2 + η

(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx

)
+ ∥qk∥22∥yx∥22

(
1 + η

(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx

)2
≥ 0,

then
(
∥qk+1∥22 > 0, vTk+1yx

)
satisfies(

vTk+1yx
)2 (

2 + η
(
1 + exp

(
∥qk+1∥22vTk+1yx

))−1
vTk+1yx

)
+ ∥qk+1∥22∥yx∥22

(
1 + η

(
1 + exp

(
∥qk+1∥22vTk+1yx

))−1
vTk+1yx

)2
≥ 0.
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Proof. Assume some k ∈ N and ∥qk∥22 > 0, vTk yx that satisfies(
vTk yx

)2 (
2 + η

(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx

)
+ ∥qk∥22∥yx∥22

(
1 + η

(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx

)2
≥ 0.

We consider 3 cases for ∥qk∥22 > 0, vTk yx.

Case 1: vTk yx ≥ 0. Then, by lemma 4.1, we know that vTk+1yx > 0. So,(
1 + exp

(
||qk+1||22vTk+1yx

))−1
vTk+1yx > 0 > − 2

η . This violates the necessary condition that
we derived in lemma C.8.

Case 2: − 2
η ≤

(
1 + exp

(
||qk||22vTk yx

))−1
vTk yx < 0.

We derive the following.

||qk+1||22vTk+1yx ≥ ∥qk∥22vTk yx by lemma C.7

vTk yx
(
1 + exp

(
||qk+1||22vTk+1yx

))−1 ≥ vTk yx
(
1 + exp

(
∥qk∥22vTk yx

))−1
since vTk yx < 0

vTk+1yx
(
1 + exp

(
||qk+1||22vTk+1yx

))−1
>
(
1 + exp

(
||qk+1||22vTk+1yx

))−1
vTk yx by lemma 4.1

− 2

η
≤ vTk yx

(
1 + exp

(
∥qk∥22vTk yx

))−1
< vTk+1yx

(
1 + exp

(
||qk+1||22vTk+1yx

))−1
.

This also violates the necessary condition that we derived in lemma C.8.

Case 3:
(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx < − 2

η .

If − 2
η ≤

(
1 + exp

(
∥qk+1∥22vTk+1yx

))−1
vTk+1yx, then we use the violation of the necessary condi-

tion derived in lemma C.8 to conclude. Now, we assume(
1 + exp

(
∥qk+1∥22vTk+1yx

))−1
vTk+1yx < − 2

η . We start by deriving a relation between(
vTk yx

)2 (
2 + η

(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx

)
and

(
vTk+1yx

)2 (
2 + η

(
1 +

(
||qk+1||22vTk+1yx

))−1
vTk+1yx

)
.

∥qk+1∥22vTk+1yx ≥ ∥qk∥22vTk yx by lemma C.7

vTk+1yx
(
1 + exp

(
∥qk+1∥22vTk+1yx

))−1

> vTk yx
(
1 + exp

(
∥qk∥22vTk yx

))−1
since vTk yx < 0 and lemma 4.1

(
vTk+1yx

)2 (
2 + η

(
1 + exp

(
∥qk+1∥22vTk+1yx

))−1
vTk+1yx

)
>
(
vTk+1yx

)2 (
2 + η

(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx

)
by lemma 4.1

(
vTk+1yx

)2 (
2 + η

(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx

)
>
(
vTk yx

)2 (
2 + η

(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx

)
since vTk yx, vTk+1yx < 0 and lemma 4.1

(
vTk yx

)2 (
2 + η

(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx

)
<
(
vTk+1yx

)2 (
2 + η

(
1 + exp

(
∥qk+1∥22vTk+1yx

))−1
vTk+1yx

)
.
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Now, we derive a relation between ∥qk∥22∥yx∥22
(
1 + η

(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx

)2
and ∥qk+1∥22∥yx∥22

(
1 + η

(
1 + exp

(
∥qk+1∥22vTk+1yx

))−1
vTk+1yx

)2
. With our assumption(

1 + exp
(
∥qk+1∥22vTk+1yx

))−1
vTk+1yx < − 2

η , we know that

∥qk+1∥22∥yx∥22
(
1 + η

(
1 + exp

(
∥qk+1∥22vTk+1yx

))−1
vTk+1yx

)2
=

(
∥qk∥22∥yx∥22

(
1 + η

(
1 + exp

(
||qk||22vTk yx

))−1
vTk yx

)2)(
1 + η

(
1 + exp

(
∥qk+1∥22vTk+1yx

))−1
vTk+1yx

)2
> ∥qk∥22∥yx∥22

(
1 + η

(
1 + exp

(
||qk||22vTk yx

))−1
vTk yx

)2
.

Then we get that(
vTk+1yx

)2 (
2 + η

(
1 + exp

(
∥qk+1∥22vTk+1yx

))−1
vTk+1yx

)
+ ∥qk+1∥22∥yx∥22

(
1 + η

(
1 + exp

(
∥qk+1∥22vTk+1yx

))−1
vTk+1yx

)2

>
(
vTk yx

)2 (
2 + η

(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx

)
+ ∥qk∥22∥yx∥22

(
1 + η

(
1 + exp

(
||qk||22vTk yx

))−1
vTk yx

)2
≥ 0.

Finally, we show that for any starting point in region 3.2, the trajectory will eventually “escape” 3.2
and reach other regions.
Lemma C.12. For any k ∈ N, if ∥qk∥22 > 0, vTk yx satisfies(
vTk yx

)2 (
2 + η

(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx

)
+ ∥qk∥22∥yx∥22

(
1 + η

(
1 + exp

(
∥qk∥22vTk yx

))−1
vTk yx

)2
< 0,

then there exists some l ∈ N, where k < l ≤ ⌈−( 2
η+vT

k yx)(1+exp(∥qk∥2
2v

T
k yx))

η∥qk∥2
2∥yx∥2

2
⌉ + k + 1, such that

∥ql∥22, vTl yx satisfies(
vTl yx

)2 (
2 + η

(
1 + exp

(
∥ql∥22vTl yx

))−1
vTl yx

)
+ ∥ql∥22∥yx∥22

(
1 + η

(
1 + exp

(
∥ql∥22vTl yx

))−1
vTl yx

)2
≥ 0.

Proof. Consider the set {vT yx} that satisfies(
vT yx

)2 (
2 + η

(
1 + exp

(
||q||22vT yx

))−1
vT yx

)
+ ||q||22∥yx∥22

(
1 + η

(
1 + exp

(
||q||22vT yx

))−1
vT yx

)2
< 0

for all ||q||22 > 0. By lemmas 9 and 10, we know that the set is upper bounded by − 2
η .

Assume for the sake of contradiction that there exists some ||qj ||22, vTj yx that satisfies(
vTj yx

)2 (
2 + η

(
1 + exp

(
||qj ||22vTj yx

))−1
vTj yx

)
+ ||qj ||22∥yx∥22

(
1 + η

(
1 + exp

(
||qj ||22vTj yx

))−1
vTj yx

)2
< 0.

where for all j < l ≤ ⌈−( 2
η+vT

j yx)(1+exp(||qj ||22v
T
j yx))

η||qj ||22∥yx∥2
2

⌉+ j + 1, ∥ql∥22, vTl yx satisfies(
vTl yx

)2 (
2 + η

(
1 + exp

(
∥ql∥22vTl yx

))−1
vTl yx

)
+ ∥ql∥22∥yx∥22

(
1 + η

(
1 + exp

(
∥ql∥22vTl yx

))−1
vTl yx

)2
< 0.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

For conciseness, let’s set ξ = ⌈−( 2
η+vT

j yx)(1+exp(||qj ||22v
T
j yx))

η||qj ||22∥yx∥2
2

⌉+ j + 1. We derive the following.

− 2

η
≥ vTξ yx

= vTj yx + η∥yx∥22
ξ−1∑
i=j

(
1 + exp

(
||qi||22vTi yx

))−1 ||qi||22

> vTj yx + η∥yx∥22||qj ||22
ξ−1∑
i=j

(
1 + exp

(
||qi||22vTi yx

))−1
by lemmas 6 and 8

> vTj yx + η∥yx∥22||qj ||22
(
1 + exp

(
||qj ||22vTj yx

))−1
(ξ − j) ,

where the last step comes from lemma C.7 and our assumption for all j < l ≤
⌈−( 2

η+vT
j yx)(1+exp(||qj ||22v

T
j yx))

η||qj ||22∥yx∥2
2

⌉+ j + 1.

Then, we get

−
(

2
η + vTj yx

) (
1 + exp

(
||qj ||22vTj yx

))
η∥yx∥22||qj ||22

> ξ − j = ⌈
−
(

2
η + vTj yx

) (
1 + exp

(
||qj ||22vTj yx

))
η||qj ||22||yx||22

⌉+ 1,

which is a contradiction.

C.2 TWO DATAPOINT SETTING (N = 2)

In the following subsection, we provide our fixed analysis, sharpness approximations and analysis,
and additional experiments.

Prior to that discussion, we first prove Claim 4.3 below about the strictly increasing behavior of mt.
Recall in Section 4 that we defined mt as vTt (x1 − x2), the component of vt in the max-margin
direction.

Proof of Claim 4.3. Consider some mk and ∥qk∥22 > 0. Based on the iterated map of mt, we see
the following.

ml = ml−1 + η∥ql−1∥22
(
1− xT

1 x2
)((

1 + exp

(
1

2
∥ql−1∥22 (ml−1 + cl−1)

))−1

+

(
1 + exp

(
1

2
∥ql−1∥22 (ml−1 − cl−1)

))−1)

= mk + η∥qk∥22
(
1− xT

1 x2
)((

1 + exp

(
1

2
∥qk∥22 (mk + ck)

))−1

+

(
1 + exp

(
1

2
∥qk∥22 (mk − ck)

))−1)
+η
(
1− xT

1 x2
) l−1∑
i=k+1

∥qi∥22
((

1 + exp

(
1

2
∥qi∥22 (mi + ci)

))−1

+

(
1 + exp

(
1

2
∥qi∥22 (mi − ci)

)−1)

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

≥ mk + η∥qk∥22
(
1− xT

1 x2

)((
1 + exp

(
1

2
∥qk∥22 (mk + ck)

))−1

+

(
1 + exp

(
1

2
∥qk∥22 (mk − ck)

))−1)
since ∥qk∥22 > 0

> mk

C.2.1 FIXED POINT ANALYSIS

Recall in Section 4, we showed that the dynamics of our model in the two datapoint setting can be
captured by the following system (∥qt∥22, ct,mt), where ct = vTt (x1 + x2) (projection of model
parameter v in max-margin complement direction) and mt = vTt (x1 − x2) (projection of model
parameter v in max-margin direction). We proceed to analyze the fixed points for the two datapoint
system below. We make the following claims about the system.
Claim C.13 (Nullclines of ∥qt∥22). The nullclines for ∥qt∥22 are.(
1 + exp

(
1

2
∥qt∥22 (mt + ct)

))−1

(mt + ct) +

(
1 + exp

(
1

2
∥qt∥22 (mt − ct)

))−1

(mt − ct) = b

for b ∈ {0,− 4
η} and ∥qt∥22 = 0.

Claim C.14 (Nullclines of ct). The nullclines for ct are ∥qt∥22 = 0 and ct = 0.
Claim C.15 (Fixed Points for (∥qt∥22, ct,mt) system). The fixed points for the system (∥qt∥22, ct,mt)
are ∥qt∥22 = 0 and ct = 0, ∥qt∥22mt → ∞, where ct = 0, ∥qt∥22mt → ∞ is marginally stable and
∥qt∥22 = 0 is stable for − 4

η < mt < 0.

Claim C.16 (Stable ct = 0). If our system satisfies the following, then the ct = 0 plane is stable.

∥qt∥42
(
1 + exp

(
1

2
∥qt∥22mt

))−2

exp

(
1

2
∥qt∥22mt

)
<

2

η
(
1 + xT

1 x2
)

Claim C.17 (|ct| Growth Boundary). If our system satisfies the following, then ct will grow in
absolute value.

∥qt∥22
(
1 + exp

(
1

2
∥qt∥22 (mt − |ct|)

))−1

−
(
1 + exp

(
1

2
∥qt∥22 (mt + |ct|)

))−1

>
2|ct|

η
(
1 + xT

1 x2

)
We prove the claims below, starting with Claim C.13 about the nullclines of ∥qt∥22.

Proof of Claim C.13. To solve for the nullclines of ∥qt∥22, we first specify its iterated map.

∥qt+1∥22 = ∥qt∥22

+ η∥qt∥22

[(
1 + exp

(
1

2
∥qt∥22 (mt + ct)

))−1

(mt + ct) +

(
1 + exp

(
1

2
∥qt∥22 (mt − ct)

))−1

(mt − ct)

]

+
η2

4
∥qt∥22

[(
1 + exp

(
1

2
∥qt∥22 (mt + ct)

))−1

(mt + ct) +

(
1 + exp

(
1

2
∥qt∥22 (mt − ct)

))−1

(mt − ct)

]2

= ∥qt∥22

[
1 +

η

2

((
1 + exp

(
1

2
∥qt∥22 (mt + ct)

))−1

(mt + ct) +

(
1 + exp

(
1

2
∥qt∥22 (mt − ct)

))−1

(mt − ct)

)]2
With the iterated map above, we find the nullclines by solving ∥qt+1∥22 − ∥qt∥22 = 0. With some
calculation we find get the following.

0 = ∥qt∥22

[(
1 + exp

(
1

2
∥qt∥22 (mt + ct)

))−1

(mt + ct) +

(
1 + exp

(
1

2
∥qt∥22 (mt − ct)

))−1

(mt − ct)

]

·

[
1 +

η

4

[(
1 + exp

(
1

2
∥qt∥22 (mt + ct)

))−1

(mt + ct) +

(
1 + exp

(
1

2
∥qt∥22 (mt − ct)

))−1

(mt − ct)

]]
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From the above, we see that the nullclines are ∥qt∥22 = 0 and the following:[(
1 + exp

(
1

2
∥qt∥22 (mt + ct)

))−1

(mt + ct) +

(
1 + exp

(
1

2
∥qt∥22 (mt − ct)

))−1

(mt − ct)

]
= 0[(

1 + exp

(
1

2
∥qt∥22 (mt + ct)

))−1

(mt + ct) +

(
1 + exp

(
1

2
∥qt∥22 (mt − ct)

))−1

(mt − ct)

]
= −4

η
.

Now, we prove Claim C.14 for the nullclines of ct.

Proof of Claim C.14. To calculate the nullclines of ct, we first specify its iterated map below.

ct+1 = ct + η∥qt∥22
(
1 + xT

1 x2

)((
1 + exp

(
1

2
∥qt∥22 (mt + ct)

))−1

−
(
1 + exp

(
∥qt∥22

1

2
(mt − ct)

))−1
)

With the iterated map above, we can find the nullclines by solving ct+1−ct = 0, which is equivalent
to solving

∥qt∥22

((
1 + exp

(
1

2
∥qt∥22 (mt + ct)

))−1

−
(
1 + exp

(
∥qt∥22

1

2
(mt − ct)

))−1
)

= 0.

We see that solutions to the above are ∥qt∥22 = 0 and ct = 0.

Next, we prove Claim C.15 about the fixed points.

Proof of Claim C.15. Since we already have the nullclines for ∥qt∥22 and ct from Claims C.13 and
C.14, we find the fixed points by first calculating the nullclines for mt. We first specify the iterated
map of mt.

mt+1 = mt + η∥qt∥22
(
1− xT

1 x2

)((
1 + exp

(
1

2
∥qt∥22 (mt + ct)

))−1

+

(
1 + exp

(
1

2
∥qt∥22 (mt − ct)

))−1
)

Then, we solve for the nullclines of mt by solving

∥qt∥22

((
1 + exp

(
1

2
∥qt∥22 (mt + ct)

))−1

+

(
1 + exp

(
1

2
∥qt∥22 (mt − ct)

))−1
)

= 0.

From our calculation, we find that the nullclines are ∥qt∥22 = 0 and ∥qt∥22 (mt − ct) → ∞,
∥qt∥22 (mt + ct) → ∞. Considering the above with the nullclines of ct and ∥qt∥22, we find that
the fixed points of the system are ∥qt∥22 = 0 and ct = 0, ∥qt∥22mt → ∞.

With the fixed points calculated, we proceed to determine their the stability. We do so by solving for
the eigenvalues of the Jacobian of the system at each fixed point. First, we form the Jacobian matrix
below.

J(∥qt+1∥22, ct+1,mt+1) =


∂∥qt+1∥2

2

∂∥qt∥2
2

∂∥qt+1∥2
2

∂ct

∂∥qt+1∥2
2

∂mt

∂ct+1

∂∥qt∥2
2

∂ct+1

∂ct

∂ct+1

∂mt

∂mt+1

∂∥qt∥2
2

∂mt+1

∂ct

∂mt+1

∂mt


Next, we evaluate it at the fixed point ct = 0, ∥qt∥22mt → ∞ as shown below.

J(∥qt+1∥22, ct+1,mt+1) =

[
1 0 0
0 1 0
0 0 1

]
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Since all the eigenvalues are 1, we know that ct = 0, ∥qt∥22mt → ∞ is marginally stable.

For fixed point ∥qt∥22 = 0, the Jacobian reduces to the following.

J(∥qt+1∥22, ct+1,mt+1) =

1 + ηmt +
η2

4 m
2
t 0 0

0 1 0
η
(
1− xT

1 x2

)
0 1


where the eigenvalues are 1 (with algebraic multiplicity 2) and 1 + ηmt +

η2

4 m
2
t .

This means that there exists some part of the mt axis that is stable if the following condition is
satisfied:

− 8

η2
<

(
4

η
+mt

)
mt < 0

Since − 8
η2 is not a tight lower bound of the function, we get that the condition is satisfied for

− 4
η < mt < 0.

In the following, we prove Claim C.16 about the stable region of ct = 0 plane.

Proof of Claim C.16. To determine the stability of the ct = 0 plane, we study the eigenvalues of the
Jacobian of the system at ct = 0. From our calculations, we get that

J(∥qt+1∥22, ct+1,mt+1) =



∂∥qt+1∥2
2

∂∥qt∥2
2

∣∣∣∣
ct=0

0
∂∥qt+1∥2

2

∂mt

∣∣∣∣
ct=0

0 ∂ct+1

∂ct

∣∣∣∣
ct=0

0

∂mt+1

∂∥qt∥2
2

∣∣∣∣
ct=0

0 ∂mt+1

∂mt

∣∣∣∣
ct=0


From the Jacobian, the relevant eigenvalue is

λ =
∂ct+1

∂ct

∣∣∣∣
ct=0

= 1− η∥qt∥42
(
1 + xT

1 x2
)(

1 + exp

(
1

2
∥qt∥22mt

))−2

exp

(
1

2
∥qt∥22mt

)

, since the eigendirection is ν =

[
0
1
0

]
(i.e., in the direction of ct).

To determine where the ct = 0 plane is stable, we consider the following condition:

− 1 < 1− η∥qt∥42
(
1 + xT

1 x2

)(
1 + exp

(
1

2
∥qt∥22mt

))−2

exp

(
1

2
∥qt∥22mt

)
< 1

∥qt∥42
(
1 + exp

(
1

2
∥qt∥22mt

))−2

exp

(
1

2
∥qt∥22mt

)
<

2

η
(
1 + xT

1 x2
)

Lastly, we prove Claim C.17 about the |ct| growth boundary.

Proof of Claim C.17. To understand when ct will grow in absolute value, we look at the nullclines
for c2t . First, we specify the iterated map for c2t below.
c2t+1 = c2t

− 2η
(
1 + xT

1 x2
)
∥qt∥22

√
c2t

[(
1 + exp

(
1

2
∥qt∥22

(
mt −

√
c2t

)))−1

−
(
1 + exp

(
1

2
∥qt∥22

(
mt +

√
c2t

)))−1
]

+ η2
(
1 + xT

1 x2

)2 ∥qt∥42
[(

1 + exp

(
1

2
∥qt∥22

(
mt −

√
c2t

)))−1

−
(
1 + exp

(
1

2
∥qt∥22 (mt +

√
ct)

))−1
]2
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Now, to solve for the nullclines (i.e., c2t+1 − c2t = 0), we solve the following.

0 = ∥qt∥22

[(
1 + exp

(
1

2
∥qt∥22

(
mt −

√
c2t

)))−1

−
(
1 + exp

(
1

2
∥qt∥22

(
mt +

√
c2t

)))−1
]

·

[
−2
√
c2t + η

(
1 + xT

1 x2
)
∥qt∥22

[(
1 + exp

(
1

2
∥qt∥22

(
mt −

√
c2t

)))−1

−
(
1 + exp

(
1

2
∥qt∥22

(
mt +

√
c2t

)))−1
]]

As we are already familiar with the nullclines ∥qt∥22 = 0 and ct = 0 from Claim C.14, we see that
c2t grows if our system satisfies the following:

∥qt∥22
(
1 + exp

(
1

2
∥qt∥22

(
mt −

√
c2t

)))−1

−
(
1 + exp

(
1

2
∥qt∥22

(
mt +

√
c2t

)))−1

>
2
√
c2t

η
(
1 + xT

1 x2

)
This is equivalent to saying the system should satisfy

∥qt∥22
(
1 + exp

(
1

2
∥qt∥22 (mt − |ct|)

))−1

−
(
1 + exp

(
1

2
∥qt∥22

(
mt + |c|t

)))−1

>
2|ct|

η
(
1 + xT

1 x2
)

C.2.2 SHARPNESS APPROXIMATIONS

As mentioned in Section 4, we derived some approximations for the sharpness in our two datapoint
setting. In this section, we derive the four sharpness approximations and their error bounds, which
we show below.

First, we define the following notation.

mt = vTt (x1 − x2) (projection onto max-margin)

ct = vTt (x1 + x2) (projection onto max-margin complement)

ψ1,t =

(
1 + exp

(
1

2
∥qt∥22 (mt + ct)

))−2

exp

(
1

2
∥qt∥22 (mt + ct)

)
ψ2,t =

(
1 + exp

(
1

2
∥qt∥22 (mt − ct)

))−2

exp

(
1

2
∥qt∥22 (mt − ct)

)
ϕ1,t =

(
1 + exp

(
1

2
∥qt∥22 (mt + ct)

))−1

ϕ2,t =

(
1 + exp

(
1

2
∥qt∥22 (mt − ct)

))−1

Now, we introduce our approximations.

Approximation 1 Our first sharpness approximation is
1

2
∥qt∥42

(
(ψ1,t + ψ2,t)±

√
(ψ1,t − ψ2,t)

2
+ 4ψ1,tψ2,t

(
xT1 x2

)2)
where the error with the true sharpness is upper bounded by
1

4

(
ψ1,t∥qt∥22 (mt + ct)

2 − ϕ1,t (mt + ct) + ψ2,t∥qt∥22 (mt − ct)
2 − ϕ2,t (mt − ct)

)

+

√√√√√√√√√√√√√

1

16

(
ψ1,t∥qt∥22 (mt + ct)

2 − ϕ1,t (mt + ct) + ψ2,t∥qt∥22 (mt − ct)
2 − ϕ2,t (mt − ct)

)2
+ 2∥qt∥22

((
1

2
ψ1,t∥qt∥22 (mt + ct)− ϕ1,t

)2

+

(
−1

2
ψ2,t∥qt∥22 (mt − ct) + ϕ2,t

)2
)

+ 4∥qt∥22xT1 x2
(
1

2
ψ1,t∥qt∥22 (mt + ct)− ϕ1,t

)(
−1

2
ψ2,t∥qt∥22 (mt − ct) + ϕ2,t

)

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Approximation 2 Our second sharpness approximation is

1

4

(
ψ1,t∥qt∥22 (mt + ct)

2
+ ψ2,t∥qt∥22 (mt − ct)

2 − ϕ1,t (mt + ct)− ϕ2,t (mt − ct) + (ψ1,t + ψ2,t)∥qt∥42
(
1− xT

1 x2
))

+
1

2

√√√√√√√√√√√√

1

4

(
ψ1,t∥qt∥22 (mt + ct)

2
+ ψ2,t∥qt∥22 (mt − ct)

2 − ϕ1,t (mt + ct)− ϕ2,t (mt − ct)

+ (ψ1,t + ψ2,t)∥qt∥42
(
1− xT

1 x2
))2

−
(
4ψ1,tψ2,t∥qt∥62c2t + 2 (ϕ2,tψ1,t − ϕ1,tψ2,t) ∥qt∥42ct

+ 3∥qt∥42 (ψ1,t (mt + ct) + ψ2,t (mt − ct)) (ϕ1,t + ϕ2,t)− 4 (ϕ1,t + ϕ2,t)
2 ∥qt∥22

)(
1− xT

1 x2
)

where the error with the true sharpness is upper bounded by

1

4
(ψ1,t + ψ2,t)∥qt∥42

(
1 + xT

1 x2
)

+
1

2
∥qt∥2

√
1 + xT

1 x2

√√√√√√√
1

4
(ψ1,t + ψ2,t)

2 ∥qt∥62
(
1 + xT

1 x2
)
+ (ψ1,t − ψ2,t)

2 ∥qt∥62
(
1− xT

1 x2

)
+ 4

(
1

2
ψ1,t∥qt∥22 (mt + ct)−

1

2
ψ2,t∥qt∥22 (mt − ct)− ϕ1,t + ϕ2,t

)2)
Approximation 3 (Low-Error Approximation) Our third sharpness approximation is

1

4

(
ψ1,t∥qt∥22 (mt + ct)

2
+ ψ2,t∥qt∥22 (mt − ct)

2 − ϕ1,t (mt + ct)− ϕ2,t (mt − ct) + (ψ1,t + ψ2,t) ∥qt∥42
(
1 + xT

1 x2
))

+
1

2

√√√√√√√√√√√√

1

4

(
ψ1,t∥qt∥22 (mt + ct)

2
+ ψ2,t∥qt∥22 (mt − ct)

2 − ϕ1,t (mt + ct)− ϕ2,t (mt − ct)

+ (ψ1,t + ψ2,t) ∥qt∥42
(
1 + xT

1 x2

))2

−
(
4ψ1,tψ2,t∥qt∥62m2

t − 2∥qt∥42 (ϕ1,tψ2,t + ϕ2,tψ1,t)mt

+ 3∥qt∥42 (ψ1,t (mt + ct)− ψ2,t (mt − ct)) (ϕ1,t − ϕ2,t)− 4 (ϕ1,t − ϕ2,t)
2 ∥qt∥22

)(
1 + xT

1 x2

)
where the error with the true sharpness is upper bounded by

1

4
(ψ1,t + ψ2,t) ∥qt∥42

(
1− xT

1 x2
)

+
1

2
∥qt∥2

√
1− xT

1 x2

√√√√√√√
1

4
(ψ1,t + ψ2,t)

2 ∥qt∥62
(
1− xT

1 x2
)
+ (ψ1,t − ψ2,t)

2 ∥qt∥62
(
1 + xT

1 x2

)
+ 4

(
1

2
ψ1,t∥qt∥22 (mt + ct)− ϕ1,t +

1

2
ψ2,t∥qt∥22 (mt − ct)− ϕ2,t

)2

Approximation 4 (Interpretable Approximation) Our fourth sharpness approximation is

1

2
(ψ1,t + ψ2,t)∥qt∥42(1 + xT

1 x2)

where the error with the true sharpness is upper bounded by√√√√√√√√√√√√√√√√

1

4

(
ψ1,t∥qt∥22 (mt + ct))

2 + ψ2,t∥qt∥22 (mt − ct)
2 − ϕ1,t (mt + ct)− ϕ2,t (mt − ct)

)2
+ 2∥qt∥22

(
1 + xT

1 x2
)(1

2
ψ1,t∥qt∥22 (mt + ct)−

1

2
ψ2,t∥qt∥22 (mt − ct)− ϕ1,t + ϕ2,t

)2

+ 2∥qt∥22
(
1− xT

1 x2
)(1

2
ψ1,t∥qt∥22 (mt + ct) +

1

2
ψ2,t∥qt∥22 (mt − ct)− ϕ1,t − ϕ2,t

)2

+
1

2
(ψ1,t − ψ2,t)

2 ∥qt∥82
(
1− (xT

1 x2)2
)
+

1

4
(ψ1,t + ψ2,t)

2 ∥qt∥82
(
1− xT

1 x2
)2
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From our approximations, we claim that approximation 3 is a low-error approximation of the sharp-
ness in our setting. We also denote approximation 4 as our interpretable sharpness approximation
based on its simplicity in form.

In the remainder of the section, we perform some preliminary calculations necessary for the ap-
proximations, show our derivations of the four sharpness approximations and their error bounds,
and provide some empirical results and error bound comparisons to support for our claim about
approximation 3.

Preliminary Calculations Before getting into the details of the approximations, we perform some
preliminarily calculations on the Loss Hessian. With θ = (qt, ut, vt), we start with

∇θtL(qt, ut, vt)− λI2h+d

=

 A B C
B A C
CT CT D



where

A =
[
ψ1,t

(
vTt x1

)2
+ ψ2,t

(
vTt x2

)2]
qtq

T
t − λIh

B = −
[
ϕ1,tv

T
t x1 − ϕ2,tv

T
t x2

]
Ih +

[
ψ1,t

(
vTt x1

)2
+ ψ2,t

(
vTt x2

)2]
qtq

T
t

C = −qt
[
ϕ1,txT1 − ϕ2,txT2

]
+ ∥qt∥22qt

[
ψ1,tv

T
t x1xT1 + ψ2,tv

T
t x2xT2

]
D = ∥qt∥42

[
ψ1,tx1xT

1 + ψ2,tx2xT2
]
− λId.

After performing the same similarity transforms as we discussed in the single datapoint setting (see
Appendix C.1.2), we look at the following matrix decomposition:[

0
√
2C√

2CT 0

]
+

[
A+B 0

0 D

]
in which we overload notation a little here by denoting

A+B = 2
[
ψ1,t

(
vTt x1

)2
+ ψ2,t

(
vTt x2

)2]
qtq

T
t −

[
ϕ1,tv

T
t x1 − ϕ2,tv

T
t x2

]
Ih

D = ∥qt∥42
[
ψ1,tx1xT1 + ψ2,tx2xT2

]
.

In the above decomposition, we treat
[

0
√
2C√

2CT 0

]
as a perturbation on the matrix[

A+B 0
0 D

]
.

Based on our original definition for C, we know that
[

0
√
2C√

2CT 0

]
is rank-2 with eigenvalues

±
√
2||q||2

√√√√(
ψ1,t||q||22vTt x1 − ϕ1,t

)2
+
(
ψ2,t||q||22vTt x2 + ϕ2,t

)2
+ 2

(
ψ1,t||q||22vTt x1 − ϕ1,t

) (
ψ2,t||q||22vTt x2 + ϕ2,t

)
xT
1 x2

.

Since the perturbation occurs in a 3-dimensional subspsace spanned by
[
q
0

]
,
[
0
x1

]
, and

[
0
x2

]
, we

believe the 2 nonzero eigenvalues from the D block matrix and 1 nonzero eigenvalue from theA+B
block matrix have been perturbed.
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We now focus on studying this perturbation in the 3-dimensional subspace through the following
derivation.

U =

[
q 0 0
0 x1 x2

]

UT

[
A+B

√
2C√

2CT D

]
U =

qTt (A+B)qt
√
2qTt Cx1

√
2qTt Cx2√

2qTt Cx1 xT1Dx1 xT1Dx2√
2qTt Cx2 xT1Dfirstx2 xT2Dx2

 = K

UTU =

∥qt∥22 0 0
0 1 xT

1 x2
0 xT1 x2 1

 =

1 0 0
0 1√

2
1√
2

0 1√
2

− 1√
2

∥qt∥22 0 0
0 1 + xT1 x2 0
0 0 1− xT1 x2

1 0 0
0 1√

2
1√
2

0 1√
2

− 1√
2


= QΛQ = G

(UTU)−1 = QΛ−1Q =

1 0 0
0 1√

2
1√
2

0 1√
2

− 1√
2




1
∥qt∥2

2
0 0

0 1
1+xT1 x2

0

0 0 1
1−xT1 x2


1 0 0
0 1√

2
1√
2

0 1√
2

− 1√
2

 (Assuming ∥qt∥22 ̸= 0)

This means the sharpness is one of the solutions to the general eigenvalue problem Kν = λGν. We
can also rewrite this to get that the solutions to the general eigenvalue problem are also the eigenval-
ues that we get from the matrices G−1K, Λ− 1

2QKQΛ− 1
2 , and Λ−1QKQ. Since Λ− 1

2QKQΛ− 1
2

is real and symmetric, we know that its eigenvalues are real. We focus on the deriving the matrix
Λ− 1

2QKQΛ− 1
2 .

Λ− 1
2QKQΛ− 1

2

=


1

∥qt∥2
0 0

0 1√
1+xT1 x2

0

0 0 1√
1−xT1 x2


·

 qTt (A+B)qt qTt C(x1 + x2) qTt C(x1 − x2)
qTt C(x1 + x2)

1
2 (x1 + x2)

TD(x1 + x2)
1
2 (x1 + x2)

TD(x1 − x2)
qTt C(x1 − x2)

1
2 (x1 + x2)

TD(x1 − x2)
1
2 (x1 − x2)

TD(x1 − x2)



·


1

∥qt∥2
0 0

0 1√
1+xT1 x2

0

0 0 1√
1−xT1 x2



=


1

∥qt∥2
2
qTt (A+B)qt

1

∥qt∥2

√
1+xT1 x2

qTt C(x1 + x2)
1

∥qt∥2

√
1−xT1 x2

qTt C(x1 − x2)

1

∥qt∥2

√
1+xT1 x2

qTt C(x1 + x2)
1

2(1+xT1 x2)
(x1 + x2)

TD(x1 + x2)
1

2
√

1−(xT1 x2)2
(x1 + x2)

TD(x1 − x2)

1

∥qt∥2

√
1−xT1 x2

qTt C(x1 − x2)
1

2
√

1−(xT1 x2)2
(x1 + x2)

TD(x1 − x2)
1

2(1−xT1 x2)
(x1 − x2)

TD(x1 − x2)


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1918
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=



2ψ1,t∥qt∥22(vTt x1)
2

+ 2ψ2,t∥qt∥22(vTt x2)2

− ϕ1,tv
T
t x1

+ ϕ2,tv
T
t x2

∥qt∥2
√
1 + xT

1 x2

·
(
ψ1,t∥qt∥22vTt x1

+ ψ2,t∥qt∥22vTt x2

− ϕ1,t + ϕ2,t

)
∥qt∥2

√
1− xT

1 x2

·
(
ψ1,t∥qt∥22vTt x1

− ψ2,t∥qt∥22vTt x2

− ϕ1,t − ϕ2,t

)

∥qt∥2
√

1 + xT
1 x2

·
(
ψ1,t∥qt∥22vTt x1

+ ψ2,t∥qt∥22vTt x2

− ϕ1,t + ϕ2,t

) 1
2 (ψ1,t + ψ2,t)∥qt∥42(1 + xT

1 x2) 1
2 (ψ1,t − ψ2,t)∥qt∥42

√
1− (xT

1 x2)2

∥qt∥2
√

1− xT
1 x2

·
(
ψ1,t∥qt∥22vTt x1

− ψ2,t∥qt∥22vTt x2

− ϕ1,t − ϕ2,t

) 1
2 (ψ1,t − ψ2,t)∥qt∥42

√
1− (xT

1 x2)2 1
2 (ψ1,t + ψ2,t)∥qt∥42(1− xT

1 x2)



With the above 3x3 matrix, we use Cauchy Interlacing Theorem (Stewart & Sun, 1990) to produce
the approximations of the sharpness. For each approximation, we also calculate the error bound
using Weyl’s inequality.

Approximation 1 Derivation We consider the first submatrix formed by removing the first col-
umn and the first row.

 1
2 (ψ1,t + ψ2,t)∥qt∥42(1 + xT

1 x2) 1
2 (ψ1,t − ψ2,t)∥qt∥42

√
1− (xT

1 x2)2

1
2 (ψ1,t − ψ2,t)∥qt∥42

√
1− (xT

1 x2)2 1
2 (ψ1,t + ψ2,t)∥qt∥42(1− xT

1 x2)



We show the eigenvalues for this submatrix below.

λ =
1

2
∥qt∥42

(
(ψ1,t + ψ2,t)±

√
(ψ1,t − ψ2,t)2 + 4ψ1,tψ2,t

(
xT1 x2

)2)

Now, we use Weyl’s inequality to find a bound on this. We write the general 3x3 matrix using the
following decomposition:


0 0 0

0 1
2 (ψ1,t + ψ2,t)∥qt∥42(1 + xT

1 x2) 1
2 (ψ1,t − ψ2,t)∥qt∥42

√
1− (xT

1 x2)2

0 1
2 (ψ1,t − ψ2,t)∥qt∥42

√
1− (xT

1 x2)2
1
2 (ψ1,t + ψ2,t)∥qt∥42(1− xT

1 x2)


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+



2ψ1,t∥qt∥22(vTt x1)
2 − ϕ1,tv

T
t x1

+ 2ψ2,t∥qt∥22(vTt x2)2 + ϕ2,tv
T
t x2

∥qt∥2
√
1 + xT

1 x2

·
(
ψ1,t∥qt∥22vTt x1 − ϕ1,t

+ ψ2,t∥qt∥22vTt x2 + ϕ2,t

)
∥qt∥2

√
1− xT

1 x2

·
(
ψ1,t∥qt∥22vTt x1 − ϕ1,t

− ψ2,t∥qt∥22vTt x2 − ϕ2,t

)

∥qt∥2
√

1 + xT
1 x2

·
(
ψ1,t∥qt∥22vTt x1 − ϕ1,t

+ ψ2,t∥qt∥22vTt x2 + ϕ2,t

) 0 0

∥qt∥2
√

1− xT
1 x2

·
(
ψ1,t∥qt∥22vTt x1 − ϕ1,t

− ψ2,t∥qt∥22vTt x2 − ϕ2,t

) 0 0


From our calculation, we see that one of the eigenvalues of the second matrix in the decomposition,
denoted as our perturbation matrix, is 0. The other two eigenvalues are a symmetric pair that we
show below, where the difference between the sharpness and our approximation in this case is upper
bounded by the plus direction of the symmetric pair.

λ =
1

2

(
2ψ1,t∥qt∥22(vTt x1)

2 − ϕ1,tv
T
t x1 + 2ψ2,t∥qt∥22(vTt x2)

2 + ϕ2,tv
T
t x2

)

±

√√√√√√√√√
1

4

(
2ψ1,t∥qt∥22(vTt x1)2 − ϕ1,tv

T
t x1 + 2ψ2,t∥qt∥22(vTt x2)2 + ϕ2,tv

T
t x2

)2
+ 2∥qt∥22

((
ψ1,t∥qt∥22vTt x1 − ϕ1,t

)2
+
(
ψ2,t∥qt∥22vTt x2 + ϕ2,t

)2)
+ 4∥qt∥22xT1 x2

(
ψ1,t∥qt∥22vTt x1 − ϕ1,t

) (
ψ2,t∥qt∥22vTt x2 + ϕ2,t

)
Approximation 2 Derivation Next, we consider the second submatrix formed by removing the
second column and second row.



2ψ1,t∥qt∥22(vTt x1)
2

+ 2ψ2,t∥qt∥22(vTt x2)2

− ϕ1,tv
T
t x1

+ ϕ2,tv
T
t x2

∥qt∥2
√
1− xT

1 x2

·
(
ψ1,t∥qt∥22vTt x1

− ψ2,t∥qt∥22vTt x2

− ϕ1,t − ϕ2,t

)

∥qt∥2
√

1− xT
1 x2

·
(
ψ1,t∥qt∥22vTt x1

− ψ2,t∥qt∥22vTt x2

− ϕ1,t − ϕ2,t

) 1
2 (ψ1,t + ψ2,t)∥qt∥42(1− xT

1 x2)


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We show the eigenvalues for this submatrix below.

λ =
1

2

(
2ψ1,t∥qt∥22(vTt x1)2 + 2ψ2,t∥qt∥22(vTt x2)2 − ϕ1,tv

T
t x1 + ϕ2,tv

T
t x2 +

1

2
(ψ1,t + ψ2,t)∥qt∥42(1− xT

1 x2)

)

± 1

2

√√√√√√√√√√√√

(
2ψ1,t∥qt∥22(vTt x1)

2 + 2ψ2,t∥qt∥22(vTt x2)
2 − ϕ1,tv

T
t x1 + ϕ2,tv

T
t x2 +

1

2
(ψ1,t + ψ2,t)∥qt∥42(1− xT

1 x2)
)2

−
(
4ψ1,tψ2,t∥qt∥62

(
vTt x1 + vTt x2

)2
+ 6∥qt∥42

(
ψ1,tv

T
t x1 − ψ2,tv

T
t x2

)
(ϕ1,t + ϕ2,t)

+ 2 (ϕ2,tψ1,t − ϕ1,tψ2,t) ∥qt∥42
(
vTt x1 + vTt x2

)
− 4 (ϕ1,t + ϕ2,t)

2 ∥qt∥22
)(

1− xT
1 x2
)

Next, we solve for the Weyl’s inequality bound decomposing the general matrix in the following
way.



2ψ1,t∥qt∥22(vTt x1)2

+ 2ψ2,t∥qt∥22(vTt x2)2

− ϕ1,tv
T
t x1

+ ϕ2,tv
T
t x2

0

∥qt∥2
√

1− xT
1 x2

·
(
ψ1,t∥qt∥22vTt x1

− ψ2,t∥qt∥22vTt x2

− ϕ1,t − ϕ2,t

)
0 0 0

∥qt∥2
√
1− xT

1 x2

·
(
ψ1,t∥qt∥22vTt x1

− ψ2,t∥qt∥22vTt x2

− ϕ1,t − ϕ2,t

) 0 1
2 (ψ1,t + ψ2,t)∥qt∥42(1− xT

1 x2)



+



0

∥qt∥2
√
1 + xT

1 x2

·
(
ψ1,t∥qt∥22vTt x1

+ ψ2,t∥qt∥22vTt x2

− ϕ1,t + ϕ2,t

) 0

∥qt∥2
√

1 + xT
1 x2

·
(
ψ1,t∥qt∥22vTt x1

+ ψ2,t∥qt∥22vTt x2

− ϕ1,t + ϕ2,t

) 1
2 (ψ1,t + ψ2,t)∥qt∥42(1 + xT

1 x2) 1
2 (ψ1,t − ψ2,t)∥qt∥42

√
1− (xT

1 x2)2

0 1
2 (ψ1,t − ψ2,t)∥qt∥42

√
1− (xT

1 x2)2 0


From our calculations, we find the one of the eigenvalues of our perturbation matrix (the second
matrix in the decomposition) is 0. The other two eigenvalues are a symmetric pair that we show
below, where the error bound for this approximation is the plus direction of the symmetric pair.
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λ =
1

4
(ψ1,t + ψ2,t)∥qt∥42(1 + xT

1 x2)

± 1

2
∥qt∥2

√
1 + xT

1 x2

√√√√√√√
1

4
(ψ1,t + ψ2,t)

2 ∥qt∥62(1 + xT
1 x2) + (ψ1,t − ψ2,t)

2 ∥qt∥62
(
1− xT

1 x2

)
+ 4

(
ψ1,t∥qt∥22vTt x1 + ψ2,t∥qt∥22vTt x2 − ϕ1,t + ϕ2,t

)2)

Approximation 3 Derivation Next, we consider the third submatrix formed by removing the third
row and third column.



2ψ1,t∥qt∥22(vTt x1)
2

+ 2ψ2,t∥qt∥22(vTt x2)2

− ϕ1,tv
T
t x1

+ ϕ2,tv
T
t x2

∥qt∥2
√
1 + xT

1 x2

·
(
ψ1,t∥qt∥22vTt x1

+ ψ2,t∥qt∥22vTt x2

− ϕ1,t + ϕ2,t

)

∥qt∥2
√

1 + xT
1 x2

·
(
ψ1,t∥qt∥22vTt x1

+ ψ2,t∥qt∥22vTt x2

− ϕ1,t + ϕ2,t

) 1
2 (ψ1,t + ψ2,t)∥qt∥42(1 + xT

1 x2)



We show the eigenvalues for this submatrix below.

λ =
1

2

(
2ψ1,t∥qt∥22(vTt x1)2 + 2ψ2,t∥qt∥22(vTt x2)2 − ϕ1,tv

T
t x1 + ϕ2,tv

T
t x2 +

1

2
(ψ1,t + ψ2,t)∥qt∥42(1 + xT

1 x2)

)

± 1

2

√√√√√√√√√√√√

(
2ψ1,t∥qt∥22(vTt x1)

2 + 2ψ2,t∥qt∥22(vTt x2)
2 − ϕ1,tv

T
t x1 + ϕ2,tv

T
t x2 +

1

2
(ψ1,t + ψ2,t)∥qt∥42(1 + xT

1 x2)
)2

−
(
4ψ1,tψ2,t∥qt∥62

(
vTt x1 − vTt x2

)2 − 2∥qt∥42 (ϕ1,tψ2,t + ϕ2,tψ1,t)
(
vTt x1 − vTt x2

)
+ 6∥qt∥42

(
ψ1,tv

T
t x1 + ψ2,tv

T
t x2

)
(ϕ1,t − ϕ2,t)− 4 (ϕ1,t − ϕ2,t)

2 ∥qt∥22
)(

1 + xT
1 x2

)

Then, we can decompose the general matrix in the following way for the error bound.
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

2ψ1,t∥qt∥22(vTt x1)2 − ϕ1,tv
T
t x1

+ 2ψ2,t∥qt∥22(vTt x2)
2 + ϕ2,tv

T
t x2

∥qt∥2
√
1 + xT

1 x2

·
(
ψ1,t∥qt∥22vTt x1 − ϕ1,t

+ ψ2,t∥qt∥22vTt x2 + ϕ2,t

) 0

∥qt∥2
√

1 + xT
1 x2

·
(
ψ1,t∥qt∥22vTt x1 − ϕ1,t

+ ψ2,t∥qt∥22vTt x2 + ϕ2,t

) 1
2 (ψ1,t + ψ2,t)∥qt∥42(1 + xT

1 x2) 0

0 0 0



+



0 0

∥qt∥2
√

1− xT
1 x2

·
(
ψ1,t∥qt∥22vTt x1 − ϕ1,t

− ψ2,t∥qt∥22vTt x2 − ϕ2,t

)
0 0 1

2 (ψ1,t − ψ2,t)∥qt∥42
√
1− (xT

1 x2)2

∥qt∥2
√
1− xT

1 x2

·
(
ψ1,t∥qt∥22vTt x1 − ϕ1,t

− ψ2,t∥qt∥22vTt x2 − ϕ2,t

) 1
2 (ψ1,t − ψ2,t)∥qt∥42

√
1− (xT

1 x2)2 1
2 (ψ1,t + ψ2,t)∥qt∥42(1− xT

1 x2)



For the perturbation matrix (the second matrix in the decomposition), we get that one of the eigen-
values is 0 and the other two form a symmetric pair that we show below, where difference between
the sharpness and the approximation from this submatrix is upper bounded by the plus direction of
the symmetric pair.

λ =
1

4
(ψ1,t + ψ2,t) ∥qt∥42

(
1− xT

1 x2
)

± 1

2
∥qt∥2

√
1− xT

1 x2

√√√√√√√√
1

4
(ψ1,t + ψ2,t)

2 ∥qt∥62
(
1− xT

1 x2

)
+ (ψ1,t − ψ2,t)

2 ∥qt∥62
(
1 + xT

1 x2
)

+ 4
(
ψ1,t∥qt∥22vTt x1 − ϕ1,t − ψ2,t∥qt∥22vTt x2 − ϕ2,t

)2
Approximation 4 Derivation In this last approximation, we consider the middle element in the
Λ− 1

2QKQΛ− 1
2 matrix, 1

2 (ψ1,t+ψ2,t)∥qt∥42(1+xT1 x2), which is the second 1x1 principal submatrix.
Our motivation for focusing on this principal submatrix is from our analysis of the Λ− 1

2QKQΛ− 1
2

matrix under the assumption that ct = 0 (i.e., vTt x1 = −vTt x2), which causes ψ1,t = ψ2,t and
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ϕ1,t = ϕ2,t. Then, the 3x3 matrix reduces to the following.

4ψ1,t∥qt∥22(vTt x1)2

− 2ϕ1,tv
T
t x1

0 2∥qt∥2
√

1− xT
1 x2

·
(
ψ1,t∥qt∥22vTt x1 − ϕ1,t

)
0 ψ1,t∥qt∥42(1 + xT

1 x2) 0

2∥qt∥2
√

1− xT
1 x2

·
(
ψ1,t∥qt∥22vTt x1 − ϕ1,t

) 0 ψ1,t∥qt∥42(1− xT
1 x2)



Given the sparsity of the above matrix, we can directly compute the eigenvalues. We know that one
eigenvalue is ψ1,t∥qt∥42(1 + xT

1 x2). We show the symmetric pair of eigenvalues below.

2ψ1,t∥qt∥22(vTt x1)2 − ϕ1,tv
T
t x1 +

1

2
ψ1,t∥qt∥42(1− xT

1 x2)

±

√√√√√√
(
2ψ1,t∥qt∥22(vTt x1)2 − ϕ1,tv

T
t x1 +

1

2
ψ1,t∥qt∥42(1− xT

1 x2)

)2

− 6ϕ1,tψ1,t∥qt∥42vTt x1(1− xT
1 x2)− 4ϕ21,t∥qt∥22(1− xT

1 x2)

From experimental evaluation, we compare the ψ1,t∥qt∥42(1 + xT1 x2) eigenvalue with the positive
direction of the symmetric pair of eigenvalues above and find that the former is the exact eigenvalue
in our setting under the ct = 0 assumption, shown in Figures 7 and 8. For conciseness, we refer to
ψ1,t∥qt∥42(1 + xT

1 x2) as eig g1 and the other eigenvalue as eig g2 in the figures.
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Figure 7: We show the differences between the sharpness and both eigenvalues we calculated for the

c0 = 0 case, where η ∈ {0.10, 0.15, 0.20}, xT
1 x2 = 0.99, ||q0||22 = 1.05

√
8

0.13·1.99 , and m0 = 0.01.
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Figure 8: We show the differences between the sharpness and both eigenvalues we calculated for

the c0 = 0 case, where η ∈ {0.10, 0.15, 0.20}, xT
1 x2 = 0.9991, ||q0||22 = 1.05

√
8

0.13·1.99 , and
m0 = 0.01.

Since 1
2 (ψ1,t + ψ2,t)∥qt∥42(1 + xT1 x2) reduces to ψ1,t∥qt∥42(1 + xT

1 x2) under the ct = 0 assumption
and is easier to interpret than the prior approximations, we give it consideration.
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Now, we calculate Weyl’s Inequality, starting from the following decomposition.


0 0 0

0 1
2 (ψ1,t + ψ2,t)∥qt∥42(1 + xT

1 x2) 0

0 0 0



+



2ψ1,t∥qt∥22(vTt x1)
2

+ 2ψ2,t∥qt∥22(vTt x2)2

− ϕ1,tv
T
t x1

+ ϕ2,tv
T
t x2

∥qt∥2
√
1 + xT

1 x2

·
(
ψ1,t∥qt∥22vTt x1

+ ψ2,t∥qt∥22vTt x2

− ϕ1,t + ϕ2,t

)
∥qt∥2

√
1− xT

1 x2

·
(
ψ1,t∥qt∥22vTt x1

− ψ2,t∥qt∥22vTt x2

− ϕ1,t − ϕ2,t

)

∥qt∥2
√

1 + xT
1 x2

·
(
ψ1,t∥qt∥22vTt x1

+ ψ2,t∥qt∥22vTt x2

− ϕ1,t + ϕ2,t

) 0 1
2 (ψ1,t − ψ2,t)∥qt∥42

√
1− (xT

1 x2)2

∥qt∥2
√
1− xT

1 x2

·
(
ψ1,t∥qt∥22vTt x1

− ψ2,t∥qt∥22vTt x2

− ϕ1,t − ϕ2,t

) 1
2 (ψ1,t − ψ2,t)∥qt∥42

√
1− (xT

1 x2)2 1
2 (ψ1,t + ψ2,t)∥qt∥42(1− xT

1 x2)


Since the perturbation matrix (second matrix in the decomposition) is essentially as complex as the
original 3x3 matrix, we calculate the Frobenius norm of the perturbation matrix instead as our error
bound.√√√√√√√√√√√

(
2ψ1,t∥qt∥22(vTt x1)

2 + 2ψ2,t∥qt∥22(vTt x2)
2 − ϕ1,tv

T
t x1 + ϕ2,tv

T
t x2

)2
+ 2∥qt∥22

(
1 + xT

1 x2

) (
ψ1,t∥qt∥22vTt x1 + ψ2,t∥qt∥22vTt x2 − ϕ1,t + ϕ2,t

)2
+ 2∥qt∥22

(
1− xT

1 x2

) (
ψ1,t∥qt∥22vTt x1 − ψ2,t∥qt∥22vTt x2 − ϕ1,t − ϕ2,t

)2
+

1

2
(ψ1,t − ψ2,t)

2 ∥qt∥82
(
1− (xT

1 x2)
2
)
+

1

4
(ψ1,t + ψ2,t)

2 ∥qt∥82
(
1− xT

1 x2
)2

Next, we analyze the error bounds for our different approximations and provide some empirical
results to support our claim that Approximation 3 is a low-error approximation for the sharpness in
our setting.

Analysis of the Approximations From the approximations we derived, we note that approxima-
tion 3 appears to the most accurate in our setting. In comparison to the error bound that we calculated
for approximation 2, we note that it is quite similar in form to the error bound for approximation 3.
We note that difference in whether 1 + xT

1 x2 or 1− xT1 x2 are prominent factors in the error bound.
Given that we assume 0.99 ≤ xT

1 x2 < 1, the error bounds suggests that approximation 3 is more
accurate than approximation 2 in our setting. As for approximations 1 and 4, we determine that
approximation 3 is more accurate than them by experimental evaluation, shown in Figures 9 and
10.

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000
iteration

0.0

0.1

0.2

0.3

0.4

0.5

0.6

di
ffe

re
nc

e

approx4
approx1
approx3

(a) η = 0.10

0 200 400 600 800 1000
iteration

0.0

0.2

0.4

0.6

0.8

1.0

di
ffe

re
nc

e

approx4
approx1
approx3

(b) η = 0.15

0 200 400 600 800 1000
iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

di
ffe

re
nc

e

approx4
approx1
approx3

(c) η = 0.20

Figure 9: We show the differences between the sharpness and approximations 1, 3, and 4 for η ∈
{0.10, 0.15, 0.20}, xT

1 x2 = 0.99, ||q0||22 = 1.05
√

8
0.13·1.99 , c0 = 0.02, and m0 = 0.01.
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Figure 10: We show the differences between the sharpness and approximations 1, 3, and 4 for

η ∈ {0.10, 0.15, 0.20}, xT1 x2 = 0.99, ||q0||22 = 1.05
√

8
0.13·1.9991 , c0 = 0.02, and m0 = 0.01.

Furthermore, we also note that the differences of approximations 1 and 4 to the true sharpness are
quite similar.

From this, we denote approximation 3 as our low-error sharpness approximation and approximation
4 as our interpretable sharpness approximation. We further note that our interpretable approximation
supports the idea proposed by Wang et al. (2022) about the correlation between the sharpness and
the norm of the output layer of a two-layer linear model. However, we see that the correlation is not
direct and more subtle.

Additional Eigenvalues of Loss Hessian In addition to our sharpness approximations, we provide
closed-forms for all but the top three largest (in algebraic value) eigenvalues of the Loss Hessian.

We start with

∇θtL(qt, ut, vt)− λI2h+d

=

 A B C
B A C
CT CT D



where

A =
[
ψ1,t

(
vTt x1

)2
+ ψ2,t

(
vTt x2

)2]
qtq

T
t − λIh

B = −
[
ϕ1,tv

T
t x1 − ϕ2,tv

T
t x2

]
Ih +

[
ψ1,t

(
vTt x1

)2
+ ψ2,t

(
vTt x2

)2]
qtq

T
t

C = −qt
[
ϕ1,txT1 − ϕ2,txT2

]
+ ∥qt∥22qt

[
ψ1,tv

T
t x1xT1 + ψ2,tv

T
t x2xT2

]
D = ∥qt∥42

[
ψ1,tx1xT

1 + ψ2,tx2xT2
]
− λId.

From here, we follow a similar calculation as in the single datapoint case, except we use Woodbury
Matrix Inversion instead of the Sherman-Morrison Formula to handle the D matrix. From those
calculations, we find a closed-form for all but the top three eigenvalues that are analogous to those
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in the single datapoint case. There are h copies of ϕ1,tvTt x1−ϕ2,tvTt x2, h−1 copies of −ϕ1,tvTt x1+
ϕ2,tv

T
t x2, and d− 2 copies of 0.

C.2.3 EXPLAINING SHARPNESS TRAJECTORY

In this section, we revisit the training trajectory that we studied in Section 4, shown in Figure 11.
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Figure 11: We show the sharpness (a), training loss (b), system values (c), α (i.e., |ct|
mt

) (d), and
”location” of the system relative to ∥qt| 22 to nullcline 1 (nC q1 = 0) and |ct| the growth boundary

(gB c = 0) (e) for η = 0.13, ||q0||22 = 1.05
√

8
0.13·1.9991 , c0 = 0.02, and m0 = 0.01. We also show

the similarity between our sharpness approximation and the true sharpness.

Recall from Section 4 that we defined ∥qt∥22 nullcline 1 as(
1 + exp

(
1

2
∥qt∥22 (mt + ct)

))−1

(mt + ct) +

(
1 + exp

(
1

2
∥qt∥22 (mt − ct)

))−1

(mt − ct) = 0,

the |ct| growth boundary as(
1 + exp

(
1

2
∥qt∥22 (mt − |ct|)

))−1

−
(
1 + exp

(
1

2
∥qt∥22 (mt + |ct|)

))−1

=
2|ct|

η∥qt∥22
(
1 + xT

1 x2
) ,

and split the initial trajectory into four phases based on the sign of nC q1 and gB c in Figure 11(e),
defined below.

In the initial part of the trajectory, we see that the system is inside ∥qt∥22 nullcline 1 and the |ct|
growth boundary (nC q1 > 0, gB c > 0), which we denote as phase 1. Then, the system is outside
∥qt∥22 nullcline 1, but still inside the |ct| growth boundary (nC q1 < 0, gB c > 0), which we denote
as phase 2. In phase 3, we see that the system is outside both ∥qt∥22 nullcline 1 and the |ct| growth
boundary (nC q1 < 0, gB c < 0). Lastly, in phase 4, the system is inside ∥qt∥22 nullcline 1, but
still outside the |ct| growth boundary (nC q1 > 0, gB c < 0). To explain the sharpness trajectory,
we use the interpretable sharpness approximation we derived in Appendix C.2.2, shown below, to
explain the first oscillation in sharpness.

1

2
(ψ1,t + ψ2,t)∥qt∥42(1 + xT

1 x2),
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where

ψ1,t =

(
1 + exp

(
1

2
∥qt∥22(mt + ct)

))−2

exp

(
1

2
∥qt∥22(mt + ct)

)
ψ2,t =

(
1 + exp

(
1

2
∥qt∥22(mt − ct)

))−2

exp

(
1

2
∥qt∥22(mt − ct)

)
.

By rewriting the sharpness in terms of αt, we note an initial increase in the sharpness as the norm of
∥qt∥22 and αt grow in phase 1. However, the sigmoid second derivative terms in the approximation
start to dominate the growth of ∥qt∥22 due to the fast growth of αt, which causes the sharpness
to begin to shrink for the remainder of phase 1. In phase 2, the sharpness continues to shrink αt

still grows quite fast, causing the sigmoid second derivative terms to continue to dominate even as
∥qt∥22 shrinks. Initially in phase 3, we find that the sharpness continues to decrease as αt initially
shrinks slowly. However, as αt shrinks faster, we begin to observe an increase in sharpness. We
can think of this as the sigmoid second derivative terms allowing more of ∥qt∥22 to be “present” in
the sharpness, where the “presence” ∥qt∥22 increases over time from some small initial amount. In
phase 4, the shrinkage in αt and growth in ∥qt∥22 continues to cause the sharpness to increase, as
∥qt∥22 dominates the sigmoid second derivative terms. As seen from Figure 11(e), the system can
enter phase 1, and the cycle repeats. As mentioned in Section 4, we note that the dampening in the
oscillations for the sharpness is likely the result of the growth ofmt, which constrains the magnitude
of αt (see Figure 11(d)).

C.2.4 ADDITIONAL EXPERIMENTS FOR EDGE OF STABILITY

In this section, we provide additional experiments to show Edge of Stability behavior in our two dat-
apoint setting. Our experiments consider xT

1 x2 ∈ {0.99, 0.9991}, η ∈ {0.10, 0.12, 0.15, 0.17, 0.20},
||q0||22 = 1.05

√
8

η(1+xT1 x2)
, c0 = 0.02, and m = 0.01, where each model is trained for 1000 itera-

tions with hidden width 1024. In each of the figures below, we show the sharpness, loss, and system
trajectories.
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Figure 12: We show the sharpness (a), training loss (b), and system trajectory (c) for xT
1 x2 = 0.99

and η = 0.10.
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Figure 13: We show the sharpness (a), training loss (b), and system trajectory (c) for xT
1 x2 = 0.99

and η = 0.12.
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Figure 14: We show the sharpness (a), training loss (b), and system trajectory (c) for xT
1 x2 = 0.99

and η = 0.15.

0 200 400 600 800 1000
iteration

0

2

4

6

8

10

12

14

sh
ar

pn
es

s

2

sharpness

(a)

0 200 400 600 800 1000
iteration

10 3

10 2

10 1

100

tra
in

in
g 

lo
ss

(b)

0 200 400 600 800 1000
iteration

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

sy
st

em
 v

al
ue

s

mt

|ct|
||qt||22

(c)

Figure 15: We show the sharpness (a), training loss (b), and system trajectory (c) for xT
1 x2 = 0.99

and η = 0.17.
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Figure 16: We show the sharpness (a), training loss (b), and system trajectory (c) for xT
1 x2 = 0.99

and η = 0.20.
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Figure 17: We show the sharpness (a), training loss (b), and system trajectory (c) for xT
1 x2 = 0.9991

and η = 0.10.
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Figure 18: We show the sharpness (a), training loss (b), and system trajectory (c) for xT
1 x2 = 0.9991

and η = 0.12.
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Figure 19: We show the sharpness (a), training loss (b), and system trajectory (c) for xT
1 x2 = 0.9991

and η = 0.15.
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Figure 20: We show the sharpness (a), training loss (b), and system trajectory (c) for xT
1 x2 = 0.9991

and η = 0.17.
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Figure 21: We show the sharpness (a), training loss (b), and system trajectory (c) for xT
1 x2 = 0.9991

and η = 0.20.
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C.2.5 ADDITIONAL SIMULATIONS OF ASYMPTOTIC SETTING

In this section, we provide additional simulations of our model in the asymptotic case. Recall
from Section 4 that our system reduces to (∥qt∥22, ct) and mt becomes constant in the asymptotic
setting, where we consider xT1 x2 → 1. Our experiments consist of additional cases where the system
(∥qt∥22, ct) jumps between different values, exhibiting a “band” in the trajectory. For each case, we
show the loss, sharpness, and system trajectories, focusing on |ct| instead of ct, as we find magnitude
to be most relevant for loss and sharpness. We also provide zoomed-in versions of the plots to make
values that the system jumps between more clear.
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Figure 22: We show the sharpness (a), training loss (b), system iterate evolution (c) for η = 0.20,
m=0.5, ||q0||22 = 2√

0.2
, and c0 = 10−3. We also provide zoomed-in versions of the sharpness (d),

training loss (e), and system iterate evolution (f).
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Figure 23: We show the sharpness (a), training loss (b), system iterate evolution (c) for η = 0.17,
m=0.5, ||q0||22 = 3√

0.17
, and c0 = 10−4. We also provide zoomed-in versions of the sharpness (d),

training loss (e), and system iterate evolution (f).

Recall from Section 4 that we defined ∥qt∥22 nullcline 1 as(
1 + exp

(
1

2
∥qt∥22 (mt + ct)

))−1

(mt + ct) +

(
1 + exp

(
1

2
∥qt∥22 (mt − ct)

))−1

(mt − ct) = 0
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Figure 24: We show the sharpness (a), training loss (b), system iterate evolution (c) for η = 0.15,
m=0.45, ||q0||22 = 2√

0.15
, and c0 = 10−4. We also provide zoomed-in versions of the sharpness (d),

training loss (e), and system iterate evolution (f).

and the |ct| growth boundary as(
1 + exp

(
1

2
∥qt∥22 (mt − |ct|)

))−1

−
(
1 + exp

(
1

2
∥qt∥22 (mt + |ct|)

))−1

=
2|ct|

η∥qt∥22
(
1 + xT

1 x2
) .

We also show cases for m = 0.45, η = 0.20, where the model appears to have entered a stable orbit
around the intersection of ∥qt∥22 nullcline 1 and |ct| growth boundary. For each case, we show the
loss, sharpness, and system trajectories, focusing with |ct| instead of ct, as we find magnitude to
be most relevant for loss and sharpness. We also provide zoomed-in versions of the plots, since the
scale of the original plots squishes the oscillations in the tail ends of each trajectory.
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Figure 25: We show the sharpness (a), training loss (b), system trajectory (c) for ||q0||22 = 5√
0.2

, and
c0 = 10−4. We also provide zoomed-in versions of the sharpness (d), training loss (e), and system
trajectory (f).
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Figure 26: We show the sharpness (a), training loss (b), system trajectory (c) for ||q0||22 = 2√
0.2

, and
c0 = 10−2. We also provide zoomed-in versions of the sharpness (d), training loss (e), and system
trajectory (f).
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Figure 27: We show the sharpness, training loss, system trajectory for ||q0||22 = 3√
0.2

, and
c0 = 10−5. We also provide zoomed-in versions of the sharpness (d), training loss (e), and sys-
tem trajectory (f).
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