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ABSTRACT

Recent research in deep learning optimization reveals that many neural network
architectures trained using gradient descent with practical step sizes, 1, exhibit an
interesting phenomenon where the top eigenvalue of the Hessian of the loss func-
tion, A increases to and oscillates about the stability threshold, % The two parts
of the trajectory are referred to as progressive sharpening and edge of stability.
The oscillation in A is accompanied by a non-monotonically decreasing train-
ing loss. In this work, we study the Edge of Stability phenomenon in a two-layer
rank-1 linear model for the binary classification task with linearly separable data
to minimize logistic loss. By capturing the core training dynamics of our model as
a low-dimensional system, we rigorously prove that Edge of Stability behavior is
not possible in the simplest one datapoint setting. We also empirically show that,
with two datapoints, it is possible for Edge of Stability to occur and point out the
source of the oscillation in A and non-monotonic training loss. We also give new
approximations to A for such models. Lastly, we consider an asymptotic setting,
in the limit as the margin converges to 0, and provide empirical results that suggest
the loss and sharpness trajectories may exhibit stable, perpetual oscillation.

1 INTRODUCTION

To optimize modern deep neural networks, algorithms such as stochastic gradient descent (SGD) and
adaptive optimizers, such as Adam (Kingma & Ba, [2017), have become the go-to choice. However,
the foundation for both algorithms, gradient descent, is not fully understood. In scenarios with a
small learning rate 7, gradient descent is well-understood via the descent lemma (Nesterov et al.):

Lemma 1.1. For some function f(0), if Amazx (sz(G)) < BandBi11 =0, —nV f(0;), then
f Or2) < 100 =n (1= 38) 1950

The descent lemma suggests that one should choose learning rate 7 to be close to 1/3, where
is an upperbound on the “sharpness” (largest eigenvalue of the Loss Hessian). However, recently
efforts to understand neural network training with gradient descent with practical learning rates have
revealed some interesting behavior. In particular, work by |[Cohen et al. (2021)) reveals that many
standard neural network architectures exhibit trajectories that can be broken down into two phases
(see Figure [I(b)). Phase 1, denoted as Progressive Sharpening, is the regime where the sharpness
increases until it reaches past the stability threshold % Then, it enters phase 2, denoted as Edge of
Stability (EOS), where the sharpness hovers around the stability threshold % and the loss function in
question decreases non-monotonically. This common training behavior has attracted much attention
from the research community and has inspired theoretical research aimed at studying simple, low
dimensional models with similar behavior as well as more general characterizations for this sort of
training dynamics. However, since much of the analysis on these models is done using regression-
type losses, our understanding of Edge of Stability in classification losses, such as logistic loss, is
still limited.

1.1 OUR CONTRIBUTIONS

In this work, we build upon the contributions of [Wu et al.|(2023)) and [Kalra et al.|(2025)) by studying
Edge of Stability behavior in a two-layer rank-1 linear neural network trained to minimize logistic
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Figure 1: Sharpness and loss trajectories for 3 different models. Top row represents sharpness;
bottom row represents training loss. The 3 models from left to right are our model with 1 datapoint
(a)(d), 2 datapoints (b)(e) and a 4-layer feedforward ReLU network trained on a 1000 datapoint,
linearly separable subset of the MNIST dataset (c)(f).

loss with gradient descent under some initialization assumptions. By distilling model dynamics to
a low-dimensional system, we partition the system’s phase space and prove that, under the simplest
setting of one training datapoint, our model does not exhibit Edge of Stability.

However, by adding another datapoint to our training dataset, we empirically show that our model
can exhibit Edge of Stability behavior. We provide an example of the loss and sharpness dynamics
of our model in both dataset settings compared to more realistic neural network in Figure

In our analysis of the two-datapoint setting, we determine the source of the Edge of Stability be-
havior and explain why it does not exist in the single datapoint setting. Furthermore, we investigate
an asymptotic case in the two datapoint setting, where we consider the limit as the margin for the
dataset approaches 0. Based on simulations of our low-dimensional system, we believe it is possible
for the system to exhibit perpetual stable oscillation in both the sharpness and loss.

We further provide a detailed comparison with the two-layer linear model studied in the regression
setting (Kalra et al.| [2025)). Our comparison reveals that the condition under which Edge of Stability
occurs in our model is more subtle than in the regression setting, since the parameter iterates of our
model move between two nullclines of our low-dimensional system whereas the regression setting
iterates move between an unstable axis. While the analysis in the regression setting (Kalra et al.,
20235)) relies on the trace of the Loss Hessian as a surrogate for the sharpness, we provide a closed-
form formula of the sharpness in our single training datapoint setting and a low-error approximation
of the sharpness in our two training datapoint setting.

2 RELATED WORK

Oscillations in overall convergent loss during training have been observed in a number of prior works
[(Lewkowycz et al., 2020), Jastrzebski et al.| (2020), (Wu et al., 2018), (Xing et al., |2018)), (Arora
et al., |2018)), (Li et al.l 2022)]. (Cohen et al.[(2021) formalized this observation in their empirical
study of many neural network architectures and training objectives, denoting it as Edge of Stability.

We first note a number of works that analyze Edge of Stability for general functions. Ma et al.
(2022) use subquadratic approximations of loss functions to explain the mechanism behind Edge
of Stability training dynamics. |Arora et al.|(2022) prove Edge of Stability behavior for normalized
gradient descent on a smooth loss function with time-dependent learning rate and gradient descent
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on the square root of a smooth loss function with constant learning rate. |Damian et al.| (2023)
identify the third-order term in the Taylor expansion of a loss function as a source of implicit bias
for gradient descent that prevents divergence in the Edge of Stability regime. We also note research
by Rosca et al.| (2023) and |Cohen et al.| (2025) that develops continuous time tools to study the
oscillatory dynamics in sharpness and loss observed with gradient descent training in the Edge of
Stability regime. We note that|Cohen et al.|(2025) also show how their approach can be extended to
adaptive optimizers, such as RMSProp.

Next, we discuss works that study Edge of Stability for particular models. We first note some
works [(Wang et al., [2022)), (Song & Yunl 2023)), (Kalra et al.| 2025)] that focus on studying two-
layer linear networks in the regression setting. Wang et al.| (2022) focus on studying sharpness
dynamics by assuming direct correlation of the sharpness with the norm of the output layer. [Song &
Yun| (2023)) prove that the gradient descent trajectories observed to minimize a convex, 1-lipschitz,
even loss align with the bifurcation diagram of a one-dimensional iterated map. [Kalra et al.| (2025)
conduct fixed point analysis on the two-layer linear neural network and show that it can exhibit
Edge of Stability behavior and period-doubling route to chaos. Besides two-layer linear networks,
we also note that Zhu et al| (2023b) theoretically study the training dynamics of a 4-layer linear
scalar network under a coupled initialization and prove the Edge of Stability behavior in a large
local region.

For logistic loss, (Wu et al.| (2023) develop a new technique to study the implicit bias of logistic
regression in the Edge of Stability regime and prove that it is guaranteed to converge, unlike expo-
nential loss. [Liu et al.[|(2023)) prove the existence of the “catapult phase” in two-layer linear models
on non-separable data with logistic loss. In comparison, we note that our work focuses on the sepa-
rable data setting, points out the source of the Edge of Stability behavior, and studies an asymptotic
case.

We defer further discussion of prior works to Appendix

3 PRELIMINARIES AND NOTATION

In this section, we introduce our two-layer linear model, some definitions, and the training dataset
settings that we study.

3.1 Two-LAYER RANK-1 LINEAR MODEL

A standard two-layer linear network would map x to ¢” Mx. However, in such cases the only rele-
vant component in M would be a rank-1 component that is aligned with g. Motivated by the results
in Ji & Telgarsky| (2019), where they prove the asymptotic convergence of the weight matrices in
a deep linear network (trained to minimize logistic loss) to rank-1 matrices with specific alignment
properties, we break M into a rank 1 matrix uv” to have a clearer understanding of its alignment
behavior.

The model we study, f : R — R, is parameterized by u € R", ¢ € R", and v € R?, where
foun(X) = qTuvTx. For clarity, we denote d as the dimension of our input x, where x € R? is
the feature vector and h as the width of our model’s hidden linear layer, uv”. For a binary label
y € {£1}, we consider the standard logistic loss L : R?"*¢ — R on our training dataset (x;, y;)¥,

using gradient descent with constant learning rate 77. We use a standard way to express the logistic
loss for a datapoint (x;,y;) as L = log(1 + exp(—f(y:x;)).

At time-step ¢, the loss for our model is as follows:

N

L(qs, ut,v¢) = Zlog (1 + exp(—q/ wevf yixi))
i=1

The iterated map for our parameters u, ¢, and v are also shown below.

N

-1
Q41 =G + 10Uy Z (14 exp(q/ wev] yizi))  vf yixi,
i=1



Under review as a conference paper at ICLR 2026

N

-1
Upp1 = U +1 1 Z (1 + exp(q/ wev yixs)) vl yixi,
i=1
al 1
verr = v+ n gl u Y (14 exp(qf wol yiws)  yix;
i—1

To further simplify the model, we assume that model parameters ¢ and v start from the same initial-
ization, similar to the setup of Zhu et al.|(2023b)). With this initialization assumption, we make the
following claim.

Claim 3.1. If q and u start from the same initialization (i.e., ug = qo), then, for any time t > 0,
Ut = qt.

We defer the proof of the claim to Appendix

3.2 DEFINITIONS

Now we give the formal definition for sharpness:

Definition 1 (Sharpness). Consider § = [qT U " We define sharpness, A, as the largest
algebraic eigenvalue of the Hessian of loss function L, A4z (VgL).

T UT]

In order to define Edge of Stability, we rely on the property that the loss value oscillates in the Edge
of Stability regime. We start by defining the local maximum of the loss.

Definition 2 (Local Maximum). For a discrete-time one-dimensional dynamical system n, we say
the n; (natime ¢t € N, ¢ > 0) is a local maximum if n;_1 < n; and nypq < ny.

With the local maximum, we argue a trajectory is in Edge of Stability regime if the loss has multiple
local maxima.

Definition 3 (Edge of Stability). Consider training a neural network using gradient descent with
step size 1 to minimize loss L. If there exists some local region during training (for discrete time-
steps k,l € N;I > k + 4) where the loss L trajectory has n > 2 local maxima at times ¢; for
i € {t1,...,tn} such that k < t; < ... < t,, < [, then we say the model exhibits Edge of Stability
behavior.

We also note that the non-monotonic behavior of the loss function we describe in our Edge of
Stability definition is often accompanied by the sharpness oscillating or hovering about the stability
threshold 2.

n

In our analysis, the main tool is to reduce the model to a lower dimensional equivalent system, and
consider nullclines of system’s components — boundaries where a component stays the same after a
single iteration.

Definition 4 (Nullcline). Consider an r-dimensional discrete-time dynamical system 7, such that
such that the iterated map for it is n¢11 = f(n:), where f(n;) = (fi(nt), ..., fr(n:)) and ny =
(n1,¢,...,ny¢). For component i € {1,..,7}, we define the nullcline of n; ; as the set of points {n,}
such that f;(n;) —n;; = 0.

3.3 DATA SETUP

One Training Datapoint (N = 1) In this setting, our training dataset (x;,y;)~ ; is simply (x, ),
where label y € {£1}.

Two Training Datapoints (N = 2) In this setting, our training dataset (x;,v;)Y, is
(x1,1), (x2,—1). We focus on the following range of parameters for this setting which often leads
to Edge of Stability behavior in experiments.

Lo [xif[2 = [[x2[]2 =1
2. 099 <xTxy <1
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3. there exists w, € R?s.t. wy;x; > 0and w! yoxy > 0
4.0.10 < 15 < 0.20

3.4 FIXED POINT ANALYSIS

After constructing the low-dimensional systems for each dataset setting, we find and determine the
stability of the fixed points. To find the fixed points, we first find the nullclines with respect to each
component in the system. After finding the nullclines for each component, we find the points where
the nulllclines for all the components of the system intersect. Those are our fixed points. We then
determine the stability properties of the fixed points by forming the Jacobian of the system J and
analyzing its eigenvalues \/. If all the eigenvalues at a particular fixed point satisfy [\{| < 1, then
we say that fixed point is stable. If all the eigenvalues at a particular fixed point satisfy || > 1,
then we say that fixed point is unstable. Lastly, if all the eigenvalues at a particular fixed point satisfy
IA/| = 1, then we say that fixed point is marginally stable.

4 ANALYSIS OF GRADIENT DESCENT DYNAMICS

In this section, we analyze the dynamics of our model in the one and two datapoint settings based on
the low dimensional systems we derive. Using the fixed point stability analysis, we present our main
theoretical result that, in the single datapoint setting, our model does not exhibit Edge of Stability
and describe a sufficient trajectory that produces Edge of Stability behavior in the two datapoint
case. We also present our findings in an asymptotic case that we study in the two datapoint setting.

4.1 SINGLE TRAINING DATAPOINT (N = 1)

To understand the dynamics of the single training datapoint setting, we first observe that the dy-
namics can be completely captured by two quantities, ||¢; |3 and v} yx. This is because, under our
initialization assumption, u; = ¢, which we know from Claim So, we get that g7 u; = ||q¢||3.
Since we are also dealing with only one datapoint, the component of v, that is orthogonal to x does
not affect the updates of the parameters in the model. This allows us to study the training dynamics
of the model as a 2-dimensional system with variables ||¢;||3 and v} yx.

In our analysis, we focus on the part of the phase space where ||¢;||3 > 0 since ||¢ |3 = 0 is a fixed
point. We first show that v} yx is strictly increasing in Lemma 4.1

Lemma 4.1. Forany k,l € N such thatl > k and ||qx||3 > 0, vl yx > v} yx.

For ||g:||3, our analysis shows two important nullclines, which are v]yx = 0 and

(1 + exp ([lqc[3vfvx)) Tolyx = —2. The derivation of the nullclines and fixed points can be
found in Appendix We also provide a visual representation of these nullclines in Figure
Using these nullclines, we partition the phase space into 3 disjoint regions, which we denote as re-
gions 1, 2, and 3. Since ||g;||3v{ yx is the primary component in the loss for this setting, and we
know that ||q;||3v] yx grows (i.e., the loss shrinks) in the next time step if the system is in regions 1
and 2 according to corollaries {.T.T]and [4.1.2] we further divide region 3 into regions 3.1 and 3.2.
We define region 3.1 and region 3.2 such that ||¢;||3v] yx grows and shrinks in the next time step,
respectively.

Corollary 4.1.1. For any k,l € N such that | > k, if ||qx||3 > 0,08 yx > 0, then ||q||3v] yx >
llarll307 yx.

Corollary 4.1.2. Forany k € N, if ||qx||3 > 0, v{ yx satisfies
—1
—2 < (L+exp (laxl3ofyx))  vfyx <0, then ||ge |30, 9% > [lak] 30 yx.

By analyzing the dynamics of our system in each region, we prove the following theorem.

Theorem 4.2 (No Edge of Stability in the One Datapoint Setting). Consider our two-layer rank-1
linear model trained to minimize logistic loss on a single datapoint (x,y), where y = £1, using
gradient descent with learning rate 1. Under any initialization such that |qo|3 > 0, our loss
trajectory will contain at most one local maximum.
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n=0.70, ||x]]2=1.0, y=1
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lgel13

Figure 2: This is the phase space diagram for our one datapoint system for the case where = 0.70,
|Ix||3 = 1, and y = 1. The blue dashed curves represent the nullclines for ||¢; ||, where region 1 is
above the top blue curve, region 2 is between both blue curves, and regions 3.1 and 3.2 are below the
bottom blue curve. The red dashed curve represents the boundary where ||g;||3v] yx shrinks inside
the curve (region 3.2) and grows outside the curve (region 3.1). Since ||¢;||3 = 0 is also a fixed point
of the system, we denote the solid black line portion as ||g;||3 = 0 being stable, and the dashed black
line portion as ||¢;||3 = 0 being unstable. We also include normalized vectors of the gradient field,
shown as grey arrows, to provide some intuition for possible trajectories.

We defer the proof of the lemma, corollaries, and theorem in this section to Appendix [C.1.3]

4.2 TwoO TRAINING DATAPOINTS (N = 2)

In the two datapoint setting, we note that the dynamics can be captured by three quantities, | q;||3,
vl (x; — X2), and v} (x; + Xp). As in the single datapoint case, with our initialization, we know
that u; = ¢ from Claim So, qfus = ||q¢||3. However, since we have two datapoints, we
observe the updates to the parameters of our model are affected by v} x; and v} xo. However, we
find v} (x; — x2) and v] (x; + x2) are more meaningful than v} x; and v} X, since v} (x; — X2)
and v; (X; + X2) represent the alignment of parameter v; in the max-margin (x; — X3) and max-
margin complement (x; + X2) directions, respectively. Furthermore, we can reconstruct vy x; and
vi'xo from v} (x; — x2) and v} (x; + X2). For conciseness, we define m; = v (x; — x2) and
¢y = vl (x1 + X3). So, we can study our model’s training dynamics as the 3-dimensional system
(lg¢l3, ce, m¢). Similar to the single datapoint case, we find that ||¢||3 = 0 is a fixed point of our

system, so we focus on the system’s behavior for [¢|3 > 0. And, similar to v] yx in the single
datapoint setting, we prove that my is a strictly increasing component in Claim[4.3]

Claim 4.3. Forany k,l € N such that | > k and ||qx||3 > 0, m; > mg.

We defer the proof of this claim to Appendix

From our analysis of ||g|

(1o (Salson+e0)) omerer+ (1o (Maldm ) om—a) =,

forb € {0, f%}. For convenience, we denote ||¢;||3 nullcline 1 for b = 0 and ||¢; |3 nullcline 2 for

g, we define two of its nullclines below,

b= —%. However, unlike the single datapoint setting, we have the additional component, c;. In our
8
n(1+xTxQ)
and move towards otherwise. To understand how “far” this repelling behavior reaches, we derive the
following closed-form boundary, where, if the system is in the interior of the boundary, |c;| grows.

—1 —1
1 2 1 2 2|ct|
(1 exp (Gladzm =) ) = (1emp (GladEmesfe)) ) = T

We provide visuals for the ||¢; |3 nullclines and |c;| growth boundary in Figure[3| The derivation for
nullclines, |c;| growth boundary, and fixed points can be found in Appendix

analysis, we find that the system can move away from the ¢; = 0 plane for ||q;||3 >
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Figure 3: For a slice of of the 3-dimensional phase at ||¢;||3 = 9.0 for the case where = 0.20 and
x7'xy = 0.9991, we show the nullclines of ||g;|| and the |c;| growth boundary. In (a), the blue dashed
lines represent the nullclines of ||g;||3, where the bottom blue curve is nullcline 2 and the blue curve
above it is nullcline 1. In (b), we provide zoomed-in view for the red dashed curve shown in a) that
represents the |c;| growth boundary.

Compared to the single datapoint case, where we proved Edge of Stability was not possible, we
empirically observe Edge of Stability behavior in the two datapoint setting, as shown in the Figure[d]
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Figure 4: We show the sharpness (a), training loss (b), system values (c), « (i.e., M) (d), and

my
“location” of the system relative to |g;|3 to nullcline 1 (nC_g1 = 0) and |c;| the growth boundary

(gB-c = 0) (e) for n = 0.13, xI'x3 = 0.9991, |0 |3 = 1.05\/ 53->5997+ Co = 0.02, mg = 0.01.
We also show the similarity between our sharpness approximation and the true sharpness.

Now, we explain how the trajectory in Figure [ produces Edge of Stability behavior. We do so
by explaining the first oscillation in loss. We defer our explanation of the sharpness dynamics in
Figure [ to Appendix [C.2.3] using the sharpness approximation we derived in Appendix [C.2.2] To
explain the first oscillation in loss, we first split the initial trajectory into four phases based on the
sign of nC'_q1 and gB_c in Figure ffe).

In the initial part of the trajectory, we see that the system is inside ||g;||2 nullcline 1 and the |c4|
growth boundary (nC_q1 > 0, gB_c > 0), which we denote as phase 1. Then, the system is outside
llg /|2 nullicline 1, but still inside the |c;| growth boundary (nC'_q1 < 0, gB_c > 0), which we denote
as phase 2. In phase 3, we see that the system is outside both ||g;||2 nullcline 1 and the |¢;| growth
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boundary (nC_g1 < 0, gB_c < 0). Lastly, in phase 4, the system is inside | ¢ ||3 nullcline 1, but still
outside the |c;| growth boundary (nC'_g1 > 0, gB_c < 0).

To explain the loss trajectory, we first rewrite our loss using o, = % (see Figure d)) as shown
below.

1 1
L =1log (1 + exp (—2 (1—ay) ||qt||§mt>> + log <1 + exp <—2qt|§mt 1+ ozt)>>

In the first phase, we observe |q;||3 and oy grow. During the first few iterations of this phase, we
observe a decrease in loss. From our rewritten loss above, we see that for small o > 1, ||g¢||3m
needs to be larger in order for the loss to increase. We observe that ||g;||3m; is not large enough
for the first few steps even as «; increases. Once oy and ||g;||3m; grow large enough, then the loss
increases for the remainder of phase 1. In the second phase of the trajectory, we observe o increase
and ||g¢||2 shrink. The loss begins to decrease, since ||g;||3m; is shrinking due to ||q;||3. After this,
in the third phase of the system’s trajectory, we observe ||g;||3 and o shrink, and this causes the
loss to continue to decrease. Once the system enters the fourth phase, ||q;||3 begins to grow and oy
continues to shrink. We continue to see decreases in loss due to the shrinkage of o.

Following this last phase, we observe that ||g;||3 continues to grow and a; continues to shrink until
the system is inside the |c;| growth boundary (¢B_c > 0), where we enter phase 1 again. Once this
happens, the cycle repeats. We note that the dampening in the oscillations for both loss and sharpness
is likely the result of the growth of m;, which constrains the magnitude of «; (see Figure[d(d)).

We attribute the Edge of Stability behavior observed above to c;. Compared to our single data-
point setting, the ¢; component in the two-datapoint setting provides a means for the system to
oscillate between ||g;||3 nullcline 1 (i.e., nC _g1 changes signs), causing oscillations in ||¢;||3, which
causes oscillations in the loss. We provide additional experiments for the two datapoint setting in

Appendix [C.2.4]

4.2.1 ASYMPTOTIC CASE (X¥Xy — 1)
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Figure 5: For m = 0.45 and 7 = 0.20, we show the first 14 steps of a trajectory starting close the
intersection point between ||¢;||3 nullcline 1 and the |¢;| growth boundary. We denote the starting
point as the cyan star the 14th step as the black diamond, with cyan arrows pointing to subsequent
iterates and a black arrow from iterate 13 to 14.

We further study an asymptotic case, where we consider the limit as x{ xo — 1. This is meant to
consider the behavior of our model as the margin for our dataset approaches 0. In this limit, our
system reduces to 2 dimensions in terms of ||¢; ||3, c;, where m; becomes a constant based on initial-
ization. Results from the simulations conducted for this case can be found in Appendix [C.2.5] From
the simulations, we find cases where our asymptotic system remains localized, jumping between
a specific set of values producing a trajectory “band”. From these cases, we focus on a particular
set of instances with m = 0.45 and = 0.2, where, in the trajectory tail, the system is localized
appears around the point where the ||q;||3 nullcline 1 intersects with the |c;| growth boundary. Upon
further investigation, we find that, under a similar hyperparameter setting, initializing close to the
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intersection point seems to generate a stable elliptical orbit, as shown in Figure [5] Based on the
figure, we formulate a conjecture below.

Conjecture 4.3.1. There exists some n,m > 0 where, if the system (||q:||3, |ct|) is initialized at
some € > 0 distance from the intersection point of ||q;||3 nullcline 1 and the |c;| growth boundary,
then it will enter and remain in a stable orbit around the intersection point.

5 DIFFERENCE BETWEEN SQUARED LOSS AND LOGISTIC LOSS

Based on our analysis, we highlight some of the differences between our two layer rank-1 linear
model to minimize logistic loss and the two-layer linear model studied by |Kalra et al| (2025) to
minimize mean squared loss.

Training Dataset Size Kalra et al.| (2025) highlight that Edge of Stability can occur in a two-layer
linear model even with a single training datapoint, as long as the corresponding label y # 0. How-
ever, in our work, we find that Edge of Stability does not occur with only a single training datapoint.
The simplest setting we found for Edge of Stability in our model was with two training datapoints.

Existence of critical learning rate 7. Furthermore, Kalra et al.| (2025)) state that Edge of Stability
occurs in their setting once the learning rate n crosses some critical learning rate 7.. In our work,
we claim that the occurrence of the Edge of Stability relies on more than just crossing some 7.. We
find that it is necessary for xthQ to be above some critical threshold, (xthQ) o While we know that

for any choice of 77 and X} x3, there exists a region of the phase space where the system moves away
from the ¢; = 0 plane, our model is not guaranteed to exhibit Edge of Stability behavior for x! x,
that is not large enough. Intuitively, we know that a large x] x5 corresponds to a smaller optimal
margin of separation, since the datapoints are “harder” to distinguish. The small margin would
then constrain the growth of m,, requiring more iterations to escape the region where the ¢; = 0
is unstable (assuming initialization in this region). This allows the system to movement across the
|lg¢||3 nullclines for sufficient iterations until m; becomes large enough. So, the faster growth rate
of m; with smaller x} x, may cause the system to “escape” the ¢; growth region quite early during
training, resulting in no sufficient oscillations in |¢;| or ||¢;||3 to produce to oscillations in the loss or
sharpness.

Edge of Stability Source In the regression setting, |[Kalra et al.| (2025)) claim that Edge of Stability
occurs when a fixed point, defined as the line where the residual of their model is O for appropriate
values of the Loss Hessian trace (zero-loss line), becomes unstable. The instability of the zero-loss
line causes oscillations in the residual that cause the parameters to move towards the Edge of Stabil-
ity manifold. In our classification setting, we find an analogous condition, where Edge of Stability
can occur when our 3-dimensional system enters the region where the ¢, = 0 plane is unstable and
remains there for a sufficient number of training steps. However, we find that oscillations in |c;| that
produce movement of the system in and out of ||¢;||3 nullcline 1 causes Edge of Stability behavior.
This is because oscillations of the system about ||g;||2 nullcline 1 causes ||¢;||3 to oscillate, and we
find that ||g;||5 is a significant component in the sharpness based on our interpretable approximation

in Appendix |[C.2.2

no

6 CONCLUSION AND FUTURE DIRECTIONS

In this work, we study the behavior of a two-layer rank-1 linear neural network to minimize logistic
loss on linearly separable data. In this setting, we prove that with one datapoint the model does
not display Edge of Stability behavior. We also show that with two datapoints, our model exhibits
Edge of Stability. Furthermore, we extend our two datapoint setting to an asymptotic case where
the margin approaches 0 and provide evidence that supports the possibility for perpetual stable
oscillation in the loss and sharpness.

The main open problem is to prove the Edge of Stability behavior for the two datapoint setting
rigorously and generalize it to more general settings, such as multiple linearly separable datapoints.
We hope our analysis, together with the approximation of sharpness in Appendix [C.2.2] provides a
starting point for understanding Edge of Stability behavior in logistic losses for more complicated
models.
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A USE OF LARGE LANGUAGE MODELS

In this work, we used a Large Language Model to assist our sharpness derivations. Specifically, we
used the Large Language Model to realize how similarity transforms could be applied to the Loss
Hessian and the impact of the rank-2 perturbation in the Loss Hessian for the two datapoint setting.
We also used the Large Language Model to look for resources related to eigenvalue approximation
under perturbation, where the model recommended a book (Stewart & Sun, [1990) from which we
learned about Cauchy Interlacing Theorem.

B ADDITIONAL RELATED WORKS

‘We continue our discussion of related works in this section. First, we discuss some additional works
on general functions. |Kong & Tao| (2020) show that, under large learning rates and certain loss
functions, gradient descent exhibits chaotic behavior leading it to converge to a distribution rather
than a local minimizer. Lyu et al.|(2022) show that a model with some form of normalization (batch
normalization, layer normalization, etc.) and weight decay can enter the Edge of Stability regime,
where the implicit bias induced drives the model to reduce sharpness. |Ahn et al.| (2022) discuss
the causes and main features of unstable convergence (Edge of Stability) based on the evolution
of gradient descent iterates, loss, and sharpness. |Kreisler et al.| (2023) identify the gradient-flow
sharpness (GFS) as a monotonically decreasing quantity in gradient descent training and study how,
in scalar neural networks, the decrease of the GFS below the stability threshold causes the loss to
decrease at an exponential rate. |Wang et al.| (2023) attribute the occurrence of non-trivial training
dynamics, such as Edge of Stability, to loss functions that satisfy certain regularity conditions along
with gradient descent and sufficiently large learning rates. [Bartlett et al.| (2023) study sharpness-
aware minimization (SAM) for convex quadratic and non-quadratic objectives. In the latter case,
they show that the oscillations observed during training are essentially gradient descent steps on the
spectral norm of the Hessian, where SAM represents the derivative of the sharpness. [Cohen et al.
show that the Edge of Stability phenomenon can carry over to adaptive optimizers, such as Adam,
by considering the maximum eigenvalue of a preconditioned Loss Hessian. [Long & Bartlett| (2024))
derive the Edge of Stability threshold for sharpness-aware minimization (SAM) and experimentally
observe SAM operating in the Edge of Stability regime. |Chen et al.| (2024a) prove that, for twice-
differentiable loss functions, gradient descent is forward-invariant. The authors also show that for
initialization outside the forward-invariant set will oscillate for several iterations until entering the
forward invariant set containing a local minimum.

Next, we continue the discussion of works focused on specific models. [Pedregosa et al.[(2022) show
that quadratic regression models trained to minimize a quartic loss function exhibit both Progressive
Sharpening and Edge of Stability. (Chen & Bruna (2023)) use two-step gradient updates to analyze
matrix factorization and single-neuron ReLLU networks for a range of learning rates where gradient
descent dynamics hover around minimizers. |Ahn et al.[(2023)) show that a 2-layer ReL U network can
exhibit Edge of Stability behavior and prove that, with learning rates not sufficiently large enough,
the network can fail to learn a nonzero first-layer bias, which is essential for useful implicit biases
that can lead to better generalization. |[Even et al.|(2023) study the implicit bias of 2-layer diagonal
linear neural networks trained with gradient descent (GD) and stochastic gradient descent (SGD)
using large step sizes. They show that the implicit bias discrepancy between SGD and GD is am-
plified with learning rates that induce Edge of Stability behavior. [Noci et al.| (2024)) study sharpness
dynamics in the context of learning rate transfer for neural networks in the rich regime and in the
Neural Tangent Kernel to indicate feature learning. [Zhu et al|(2023a) show that quadratic models
used the approximate shallow feedforward ReLU networks exhibits a “catapult phase” when trained
with sufficiently large learning rates and demonstrate improved generalization following the “cata-
pult phase”. |Chen et al.| (2024b) show that phase retrieval and a cubic iterated map representing a
two-layer neural network with quadratic activations, fixed output layer, and orthogonal data exhibit
five phases of training, including Edge of Stability.

C MODEL ANALYSIS

In this section, we provide additional information for our study of the single and two datapoint
settings including sharpness derivations, fixed point analysis, and additional experiment results.
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First, we prove Claim [3.I] which is essential for our analysis in both dataset settings.

Proof of Claim[3.1] Assume uy = go. We prove the claim by induction. First, we prove the base
case for uq and ¢q.

ur —qu=uo+1q0 Y (1 +exp(gs uovg yixi))  vg yixi
=1

N
-1
- <C10 +1nuo Z (1 + exp(gq wovg yixi)) voTini>

i=1

N
-1
= 1o — qo — 1 (vo — qo) Z 1+ exp(qp uovg YiXi)) g YiXs
=1
=0 since ug = qo
Next, we prove the inductive step. Assume uy = q. Then, for u;y; and gx+1, we see the following.

N

-1
Uk+1 = Qr41 = Uk + 1) Gk Z (1 + exp(gi urvi, yixi))  vj yixi
i=1

N
-1
- (mc +nug Yy (1+ exp(qf ukvf yixi)) U;{ym)

i=1

N
-1
=ur — qx — 1 (ur — qx) E 1 + exp(qj, Ukvk szz)) Ugyixi
=1

=0 since ux = qi

C.1 SINGLE DATAPOINT SETTING (N = 1)
C.1.1 FIXED POINT ANALYSIS

Recall from Sectlon@that can study the dynamics of our model in the single datapoint settlng as the
system, (||g¢]|3, v yx). In this section, we derive the fixed points for our system, (||g:||3, v} yx). We
make the following claims.

Claim C.1 (Nullclines of |q|3). The nullclines of ||q:||3 are as follows: |¢:||3 = 0, v yx = 0,
-1
(14 exp (lgell3of yx))  vf'yx = =2, and |lg; |30 yx — oo.

Claim C.2 (Fixed points for (||¢;||3, vl yx) system). The fixed points for the system of two variables,
llg:||3 and vl yx are ||q¢||3v] yx — oo and ||q:||3 = 0, where ||q;||3v] yx — oo is marginally stable
and ||q;||3 = 0 is stable only if% <vlyx <0.

First, we prove Claim [C.1]

Proof of Claim[C.1] First, we define the iterated map of ||g;|3.
—2 2

1113 = larll3 + 20 (1 + exp (lael3ol vx)) ™ larlloFux + 02 (1+ exp (larll3oFux)) " llael3 (o vx)

1 2
= llael3 (14 (1+ exp (larl3elyx) " of vx)

To solve for the nullclines, we solve for ||q41l13 — [lqtl
ing (1+ exp (lael3o7 %))~ (241 (1 + exp (llaol yx

2 = 0, which is equivalent to solv-
1
) tTyx) llg¢||3vf yx = 0. From the
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factors, we see that the nullclines are [|¢¢[|3 = 0, v yx = 0, (1 + exp (|| H%vtTyx))fl vlyx = f%,

(
0. 0

-1
and |g¢[|3v{ yx — oo to get (1 + exp ([lg¢[3vi yx))
Next, we proceed with the fixed point stability analysis.

Proof of Claim From Claim we already have the nullclines for | ¢ 3. So, we find the
nullclines of v} yx. First, we define the iterated map for v} yx.

ol yyx = ofyx + 0 (1+ exp (lael3ofyx)) " ladll3lyx)3
We solve for the nullclines as follows.
0=l yx — ofyx = n (1+ exp (lael3o7 vx)) " llarll3]vx3
0= (1+exp (||qt\|§vtTyx))71 llq:|2 since ||yx||3 is a constant

So, we get that the nullclines are || ¢;[|2 = 0 and ||¢;||3v] yx — oo. Then, we see that the intersection
of the nullclines for ||¢;||3 and v} yx shows that the fixed points are ||¢||3 = 0 and || ¢ |3v] yx — oo.

To analyze the stability properties of the fixed points, we find the eigenvalues for the Jacobian of the
system (||g¢ |3, v{ yx). First, we define the Jacobian as follows.

Ollars1ll3  Ollgitall3

2 T Ia:l3 vl yx

v X) =
(el oo = | Qs oul
AMlq:113 vl yx

Then, we solve for the partial derivatives.

3%7;19" -1 2. T -2 2. T 4 2
—=——=1—n(1+exp ([laell3v; yx)) ~exp (lgll3v; vx) laell2llyxl3
ovy yx
ovl  yx -1 —2
ﬁ:\l% =n(1+exp ([lqli3of vx))  llyx[|53 —n (1 +exp (lqell30f yx)) ~ exp ([lgll3v] yx) llaell5v] yx|lyx|3
OMaeillz _ o) (1 4 exep (o207 o)) ™" laelZ + 207 (1 + exp (lae2oT9%)) "~ el 20T v
(%tTyx =420 XP \[|G¢t]|2V: Y qill2 n XP \||qt |2V Y qtl|2V Y
—2
—2n (1 +exp ([|g)130f yx)) " exp (|lal3v] yx) [lae]vf yx
_3 2
— 2% (L + exp (gell3vf yx)) ~ exp(llgell30f yx)llgells (v/ yx)
0 2 -1 —2 2
W =1+2n(1+exp (|ql30fyx))  vfyx+n> (1 +exp ([lg:/50f vx)) ~ (vf yx)
2

— 25 (1 + exp ([lgs]|207yx)) " exp (lgc 30T ) lla:|3 (v yx)”

-3 3
—20% (1 + exp ([lael307 yx))  exp (llacl30f vx) a3 (o] vx)
We first consider the fixed point ||g;||3v] yx — oo. We see that the Jacobian reduces to the following.
1 0
Haesa Bt = |§ )

Since the both eigenvalues for the Jacobian are 1, || |/3v] yx — oo is marginally stable.

Next, we consider the fixed point ||g;||3 = 0. The Jacobian reduces to the following.

J(lge41l13, vy 1yx) =

2(, T, )2
14 oTyx+ ) 0]
3 llyxI3 1
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2 T 2
The eigenvalues for the Jacobian are 1 and 1 + nv] yx + %

the v] yx axis is stable. We solve for the segment below.

. This means that a segment of

n? (vl yx)?
1

4
< (?7+vfyx>vtTyx<O

—1<1+77vtTyx+ <1
-8
02
Since the ;—28 lower bound is not tight, we get that the condition is satisfied for 774 <vlfyx<0. O

C.1.2 SHARPNESS DERIVATION

In this section, we derive a closed-form formula for the sharpness and the other eigenvalues of the
Loss Hessian. We first make the following claim about the sharpness.

Claim C.3 (Closed-Form for Sharpness in One Datapoint Setting). The sharpness for the model in
the one datapoint setting is

1 1 2
stillac3lluel3 — Soul e + illael} (oF )

1 7 2
iw?l\qtllg\lyxll‘% - §¢t¢t||Qt||%UtTnyyx”% + 1/’?”%”3 (UtTyx) ||ny§
_|_

1
+ 597 (o )" = dwnllanll3 (o )" + 7 llael (v we)" + 267 e 311y 3
where ¢, = (1+ exp (|lg:[|3vTyx)) " and vy = (1+ exp (|ael3vf vx)) " exp ([larl|3o] ).

Proof. To solve for the sharpness, we first define the Loss Hessian. For 8; = (g¢, ut, v¢), we have

O’L(gr,ue,ve)  9L(qeyue,v) 0% L(qe,ur,ve)

Aqt ath Aqe 6utT Aqt Ov;r
_ | °Lqe,ue,ve)  9%L(gs,ue,ve)  92L(ge,ut,ve)

vgt L((]t7 Uts Ut) - Our0qf SuiOul OuiOvt
O°L(ge,ug,ve)  0°L(gqe,ue,ve)  0°L(ge,ue,ve)

v 0qf OviOul v Ov}

We solve for the eigenvalues using the technique developed by |Singh & Hofmann|(2024). First,
we solve for det (Vg, L(qs, ug, v¢) — Aaptq) = 0. We form the matrix Vg, L(qs, ug, v¢) — Mapta
below.

thL(qta Ut, Ut) - AIQ]’H—d

2 2
P (vf yx)" wpu! — )\21}1 —prvf yxIy, +;bt (vfyx)"ueql  (—¢¢ + Peaf uev] yx) ugyx”
= | o yxIp, + Uy (vtTyx) qruf Wy (utTyx) aai — My (—¢t + z/ththutv;fyx) qryx”
(*¢t + 1/1tthUtUtTyX) yxul (*Qﬁt + T/thtTUt’UtTyX) yxqi i (thUt) zxl — NIy

With our initialization assumption (i.e., ug = qo, then u; = ¢; by Claim [3.1)) Vg, L(qy, us, v¢) —
Ao, reduces to

2 2
Uy (v yx)” qraf — )\gh —goi yxIy, i (ofyx)" qeaf’ (= + Pillqel|307 yx) qryx”
= | o yxIp, + Uy (U;‘Fyx) aqi P (fufyx) qai — My (—¢t + %H%H%WTZ/X) qryx”
(=01 + Uellacl3of yx) yxa! (= dr + Pilla:ll5v] yx) yxqf Pillgellzza” — Ag

Based on the pattern introduced in the Vg, L(gt, ut, v¢) — Al2p+4 by the initialization assumption, we
perform two similarity transforms. We first define A = 1/ (v? yx) 2 q@qt — Ny, B = —¢vl yxIp +

2
U (v yx)" qal, C = (—é¢ + Uullae|3vf yx) qyx™, and D = ¢y ||q]|3z2" — AI4. Then, we can
rewrite Vg, L(q¢, ut, ve) — Aap4q as

A B C
B A C
ct ¢t D
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We proceed with the following similarity transforms.
1 I h I h 0 A B C I h -1 h 0

|\ —=Iy I 0 B A C| |1, I 0
219 o venl|llct ¢ pllo o Vol

1 (I, I, O A+B B—-A V2C
25 *Ih Ih 0 A+B A—B \/50
| 0 0 V2I4) | 207 0 V2D
1 [2(A+B) 0 2v2C
== 0 204—B) 0
2| 2v20T 0 2D

A+ B 0 V2C
0 A-B 0
Vv2eT 0 D

I, 0 01[A+B 0 Vel rl, 0 0
lo 0 I 0 A—B 0 0 0 Ih]
0 I, O \/§CT 0 D 0o I O
I, 0 07[4A4+B VoC 0
=0 0 I 0 0 A-B
L0 I 0] |v20T D 0

[A+B V2C¢ 0
= [(v2cT D 0
0 0 A-B

After applying the similarity transforms, we solve det ( k‘é”cg \/gc ) = 0 to get the sharpness.
To do so, we assume that D is invertible. This means that A # 1||q: |3 /|yx||3, 0.

A+B 2C - B T
Then, det <{ﬂCT D ]) = det(D)det (A +B-2CD'C ) So, we solve for

det (A+ B —2CD~'CT) =0.
First, we solve for D! using the Sherman-Morrison Formula:

Vellgel|3za”
A= Yellgell3llyxl3)

1
D! = —~1i -

Then, we find that

2
2 OPllaells (of yx) " llyxl3  o2luxl3 20t lq|3of yx|lyx|3

A+ B-20D7'CT =2|y, (v/yx)" + 5 e 5
2
n Villael3lyxIs (viyx) vidillallsllyxlls 207 llal3llyxlzvi yx aal
A= elali3lyxlz) T A= Gellalsllyxls) A= vellalidlyx]z) ]

— (pevf yx+ \) I
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To solve for det (A + B —2CD~'CT) = 0, we first multiply by A (A — ¢[|q||3/|yx[|3), which
yields the following.

2 2
(2 [wt (o7 5%)> X (A = e lge [31x12) + 2llaels (07 9)° yxll2 (A — e lle 3 x]2)
2
@ 2 (A — e lgel3xI2) — 20e0ellge BT yxlux] (0 — dellacl 2 uxliZ) + 03 lae|S o (o vx)
+mmmWwﬁ—w%wm%mmﬁxmﬁ—wﬁw+MA@—wmww@0

h—1

(= (deolyx+ A) (A —bellgelldlux]12) T =0

We focus on the following factor from above.
2[00 (7 y%)° A (A = Gl arlllxl13) + V3 llarlld (o %) lyxl13 (A — welael13]1x13)
+ 62 yxI13 (A = Vellge|31ux13) — 20e0ellae 3ol yxllyxl3 (A — vellge31yx13) + w7 llae I3l (o7 vx)”
+ o7 a3 llyxlls — 207 della IS lyxlzv] yx |l )3 — A (¢tUtTyX + )\) (>\ - ¢t||%||%||yx|@) =0
We see that the above reduces down to the following.
= A(—%wt (v y%)” llae|3 — 26 1yxl131gc13 + dbeibellae 407 yxllyx)|3

T AGTYx — el 4y BT yx + A2 Awtnqtnémxn%) —0

Since we assumed earlier that A # 0, we solve the quadratic. From solving the quadratic, we get the
following symmetric pair of eigenvalues.

1 1 2
A= §¢t\\Qt|\3llyX||§ - §¢>tvtTyX+ Py (v yx) " a3

1 7 2
ZthHQt”gHyXH% - §¢tz/thth§vtTyx||nyg + %2”%“3”1/"”% (UtTyX)
+

1 2 3 4
+ 2307 (v yx)” = et (vi yx) " aells + 07 (v %) ez + 267 lyxlI2 a3
where the plus direction is our sharpness. O
In addition to the sharpness, we also have closed-forms for remaining eigenvalues and their multi-

plicity. We have h copies of ¢;v] yx, h — 1 copies of —@;v] yx, d — 1 copies of 0, and the following
eigenvalues from our calculation above.

1 1 2
A= stullanldllyxlE - Sowlyx+ v (oF )" ol

1 7 2
1?&?”%”3”%”3 - §¢>t¢tHQtH§UtTZ/X||yXH§ + 07 [l ISy (vf yx)

1 2 3 4
+ 1@17? (v yx)" — dethe (0 yx)" [|aell3 + 7 (vf yx) " llaells + 267 lyxI3]l a3

We note that ¢;v] yx comes from solving det(A — B), fgbtvtT yx comes from our approach above,
and 0 also comes from as similar approach as above, but by assuming the A + B matrix is invertible
instead of D matrix.

C.1.3 PROOF OF THEOREM 1

In this section we give the proof of Theorem[d.2] Recall that according to our setup, we always have
y = 1 is the label, ||x||3 > 0 (to avoid degenerate cases) and 1 > 0.

18
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As we mentioned in Section ] our problem can be simplified to a 2-dimensional system with pa-
rameters ||¢;||3 and vf'yx. We partition the space for this two dimensional system based on two
nullclines of ||¢;||3 and the boundary splits the space based on whether ||g;||3v} yx grows or shrinks
in the next time step. We also give supporting lemmas that illustrate the properties of the 4 regions,
shown below in Figure 6]

n=0.70, ||x]|2=1.0, y=1

0.0 2.5 5.0 7?5 16.0 1£.5 15.0 17.5 20.0
lgel13

Figure 6: This is the phase space diagram for our one datapoint system for the case where 1 = 0.70,
Ix||3 = 1, and y = 1. The blue dashed curves represent the nullclines for ||¢;||3, where region 1 is
above the top blue curve, region 2 is between both blue curves, and regions 3.1 and 3.2 are below the
bottom blue curve. The red dashed curve represents the boundary where ||g;||3v] yx shrinks inside
the curve (region 3.2) and grows outside the curve (region 3.1). Since ||¢;||5 = 0 is also a fixed point
of the system, we denote the solid black line portion as ||¢;||3 = 0 being stable, and the dashed black
line portion as ||¢;||3 = 0 being unstable. We also include normalized vectors of the gradient field,
shown as grey arrows, to provide some intuition for possible trajectories.

First, we provide the proof for Theorem[.2] Then, we give the supporting lemmas.

For Theorem {.2] our proof mainly focuses on the behavior of the loss in each region, since our
definition for Edge of Stability focuses on specific attributes of the loss (i.e., it must have at least 2
local maxima). The intuition behind the proof is based on our understanding that the loss can only
increase in region 3.2 (see Figure [f)) and could potentially contribute to the Edge of Stability if we
had some form of movement in and out of region 3.2. However, as seen in Figure [6] region 3.2 is
upper bounded in the v} yx direction. So, if for some 7, the system “escapes” region 3.2 to regions 2
or 1, we cannot move back into region 3.2, since v yx is strictly increasing according to Lemma
So, our only potential candidate could be movement between regions 3.2 and 3.1. However, this is
also not possible either, since region 3.2 does not appear to have an holes or significant indentations,
and the strict growth of ||¢;||3 in regions 3.1 and 3.2 makes it that return into region 3.2 from region
3.1 is not possible. So, there would be no significant non-monotonic behavior in the loss. We now
show the formal proof below.

Proof of Theorem To prove the theorem, we first consider the phase space of our 2-dimensional
system for this setting, consisting of ||¢; | and v yx.

Based on our fixed point analysis, we divide up our phase space into four regions. Region 1 is
defined as the area where ||g;||2 > 0 and v} yx > 0. Region 2 is the area where ||¢;||3 > 0,v] yx

satisfies —2 < (1 +exp <||qt||%vtTyx))_1 vl'yx < 0. Region 3.1 is the area where ||q; |2 > 0, v} yx
satisfies (1 + exp (||q,5||§vtTyx))_1 v{'yx < —2 and

(o7 yx)” (247 (1 + exp ((lail 3o vx))

Region 3.2 is the area where ||¢;[|3 > 0, v{ yx satisfies (1 + exp (||qt||§vtTyx))_1 vlyx < —% and

(o7 yx)” (247 (1 + exp (llael 3T x)) " o x) + llaeliBllyxI3 (1 +n (14 exp (lladli3ol yx)) " o yx)
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We proceed by proving that every possible training loss trajectory in the single datapoint setting does
not meet the EOS conditions in our definition by considering the initialization ||go||3 > 0,03 yx in
each region. We don’t consider any initialization with ||go||3 = 0, since that is a fixed point (see

Claim[C.2).

Case 1: ||qo]|2 > 0,vf'yx in region 1. We proceed by induction. For the base case, we know,
by corollary @.1.1} that ||q1|[3v] yx > ||qo||3v3 yx. This means that log (1 + (—||q1|[3v]yx)) <

log (1 + exp (Jlgo|3vf vx)).
For the inductive case, we assume [gx||3 > 0,vfyx in region 1. By corollary 4.1.1}
we know that [lgrt1[3v] jyx > [lgxll3ofyx, meaning log (1+ (—|lgrs1l3vf,19x)) <
log (1 + exp (||gx||3v yx))

Since our loss is strictly decreasing in this case, it does not meet the EOS condition.

Case 2: ||qo||3 > 0, v yx in region 2. We consider two possible trajectories based on this initializa-
tion. We know that these trajectories are exhaustive based on lemmas and

Trajectory 1: there exists some k > 1, where ||gx||3 = 0. Since we know that ||gx||3 = 0 is
a fixed point, we know that for any I > k, [|g[|3 = 0. So, log (1 + exp (—|ql3vf yx)) =

log (14 exp (—|lgx[3v{yx)) = log (2).

Trajectory 2: there exists some k& > 1, where ||gx||3 > 0 and vf'yx > 0. We know that our loss
trajectory will be strictly decreasing for subsequent iterations by considering ||qz |3, v,{yx as some
initialization in region 1.

Now, for all iterations prior to k, we will show that our loss is strictly decreasing by induction. First,
we consider the base case. By corollary[4.1.2] we know that ||q; | |20 yx > ||qo||3vd yx. This means

that log (1 + (—|lg1/[3v{ yx)) < log (1 + exp (|lqol 507 yx))-
Next, we consider the inductive case. Assume ||g;|[ > 0,v]yx is in region 2, for
1 < j < k. By corollary , we know that ||qj+1||§va+1yx > ||qj||§vayx, meaning
log (1 + (—llgj+13v]1yx)) <log (1 +exp (|lg;l30] yx))

Since our loss can only decrease monotonically in this case, it does not meet the EOS condition.

Case 3: ||qo||3 > 0, v 'yx in region 3.1. We consider two possible trajectories based on this initial-
ization. We know that these trajectories are exhaustive based on lemmas [{.1] [C.6] and [C.11]

Trajectory 1: there exists some k > 1, where |qx||%, vl yx jumps directly from region 3.1 to 1.
We know that our loss trajectory will be strictly decreasing for subsequent iterations by considering
llg |13, v yx as some initialization in region 1.

Trajectory 2: there exists some k > 1, where |3, vI yx is in region 2. We know that our loss
trajectory will be monotonically decreasing for subsequent iterations by considering ||gx ||3, vayx as
some initialization in region 2.

Now, for all iterations prior to k, we will show that our loss is monotonically decreasing by in-
duction. For the base case, we know by lemma that ||q1|[3vTyx > ||qol|3vT yx, meaning

log (1 + (—||q1|/3vfyx)) < log (1 + exp (||qol/30vd yx)).
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Next, we consider the inductive case. Assume ||g;||3 > 0,v] yx is in region 3.1, for 1 < j < k. We
know by lemma|C.7)that [|g;41][30]  yx > [|g;[30] yx, meaning log (1 + (—|lg;+1[3v] %)) <
log (1 +exp ([|g;|[5v] yx)).

Since our loss can only decrease monotonically in this case, it does not meet the EOS condition.

Case 4: ||qo||3 > 0,vdyx in region 3.2. We consider three possible trajectories based on this
initialization. We know these trajectories are exhaustive based on lemmas C.11] and

Trajectory 1: there exists some k > 1, where ||g||3, v} yx jumps directly from region 3.2 to 1.
We know that our loss trajectory will be strictly decreasing for subsequent iterations by considering
llg |13, v¥ yx as some initialization in region 1.

Trajectory 2: there exists some k > 1, where ||g||3, v} yx jumps directly from region 3.2 to 2.
We know that our loss trajectory will be monotonically decreasing for subsequent iterations by
considering ||gx||3, v} yx as some initialization in region 2.

Trajectory 3: there exists some k > 1, where ||qx||3, v} yx is in region 3.1. We know that our loss

trajectory will be monotonically decreasing for subsequent iterations by considering ||gx||3, v{ yx as
some initialization in region 3.1.

Now, for all iterations prior to k, we will show that our loss is strictly increasing by induc-
tion. For the base case, we know by lemma that [|g1][3v7yx < ||qo||3vd yx, meaning

log (1 + (~[laill3vTyx)) > log (1 + exp (|lgol[3v5 ¥x))-

Next, we consider the inductive case. Assume ||g;||3 > 0, vayx isinregion 3.2, for 1 < j < k. We
know by lemmathat lgj1113vT, yyx < ||g;][3vT yx, meaning log (1 + (—|[gj 411307, 9x)) >
log (1 + exp ([g;][507 yx))-

Since our loss has only one local maximum in this case, it does not meet the EOS condition.

Since we have shown that our training loss can have at most one local maximum for every possible
trajectory, it therefore does not exhibit EOS behavior according to our definition.

O

Now, we show the supporting lemmas for Theorem First, we prove lemma that v yx
is always monotonically increasing. In Lemma we prove that ||¢;||3 grows monotonically in
region 1 (i.e., v yx > 0). In Corollary we prove that the loss is always decreasing in region 1.
In Lemma we prove that ||¢;||3 shrinks in region 2 (see Figure @) In Corollary we prove
that, despite [|¢;||3 shrinking (see lemma|C.5)), the loss is still decreasing in region 2. In Lemma
we prove that for regions 3.1 and 3.2, ||¢;||5 is increasing. In Lemma we show how the boundary
separating region 3.1 and 3.2 (see the red curve in Figure[6) causes the loss to worsen in region 3.2
but not in region 3.1. In Lemma[C.8] we define a necessary condition for the system to be in region
3.2, which we use in later lemmas. In Lemma@ we prove that the separating boundary for regions
3.1 and region 3.2 is upper bounded in the v] yx direction by the one of the ||g;||3 nullclines (see
Figure|6). In Lemma we prove an upper bound in the v yx direction for one of the nullclines
of ||g¢||3, which we use in Lemma In Lemma we show that once the system leaves
region 3.2, it is impossible to return back. Lastly, in Lemma |C.12| we show that the system can
escape region 3.2 in finite time.

First we show that v} yx is always monotonically increasing, therefore it does not have a finite
nullcline, and we don’t partition the space according to this variable.
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Proof of Lemma[-1} Assume some k,l € N, [ > k and ||gx||3 > 0. We consider the iterated map
for v/ yx below.

-1
vl yx = v_yyx+n (L+exp (la—1l30219x) a3 ]yx]3

1
= vg yx + nllyx[|3 (1 +exp (lgxll3vf vx))  llarll3
l—k—1

1
+llyxl3 > (14 exp(llaeral 3ol v%)  Haksll3
=1

-1 . .
> o yx +nlyx(13 (1 +exp (laxll3o5vx)) " llaxll3 since Vi € {1,...,0 =k — 1} [lgeril3 > 0
> vl yx since || gx (|3 > 0

O

Next we show that whenever v} yx > 0 the norm of ¢; is nondecreasing, this is the main property of
region 1 (see Figure[6)

Lemma C.4. Forany k,l € N such thatl > k, if ||qx||3 > 0,vfyx > 0, then ||q|13 > ||qx |3

Proof. Assume some k,l € N, 1 > k,n > 0, ||gx||3 > 0 and vl yx > 0.

We consider the iterated map for ||g; |3 below.

1 2
larl3 = a1 13 (14 (1 + exp (a1 30 19%)) " o 10x)
l—k—1

2 2T -1 7 2
= llal3 ] (1+77(1+exp(l|qk+i|\zvk+iy><)) kayX)
1=0

> [lgxll3 by lemma[4.]

O

As a simple corollary of the first two Lemmas, it’s clear that in region 1 the output of the model is
always improving.

Proof of Corollary@1.1] Assume some k,l € N, [ > k, ||qx[3 > 0 and v{ yx > 0. We derive the
following.

vl yx > vl yx by lemma[4.1]
latll3 > llaxl3 by lemma[C.4]
30 yx > llakl301 yx

O

Now we consider region 2 of Figure @ This region is sandwiched between two nullclines of ||¢;||3,
and we show that norm of ¢; decreases in this region.

Lemma C.5. Forany k € N, if||qx||3 > 0, v} yx satisfies

1
—2 < (L+exp (lawllBofyx))  vfyx <0, then [lgesall3 < llaxl3-

Proof. Assume some k € N and ||g;||3 > 0, v{ yx that satisfies

—% < (1+exp (||qk||§v,fyx))_1 vl yx < 0. Consider the iterated map for ||gx1/|3 below.
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1 2
k412 — k|2 kll2VE k
lak+1ll3 = llaxll3 (1 +n (1 +exp (llael3ofyx))  viyx

< llaxl3
We get to the final step by our assumption that f% < (1 + exp (|lgx H%v,{yx))fl vlyx < 0. O

Note that even though in region 2, the norm of ¢; is decreasing, the loss function is actually still
improving as Corollary i.1.2]states, which we prove below.

Proof of Corollary@.1.2) Assume some k € N and ||gx||3 > 0,v]yx that satisfies —% <
(1 + exp (lgr||I3vf yx)) ~"4Tyx < 0. We derive the following.

Vi yx > vl yx by lemma[.]
lgr-+11I3 < llgx 3 by lemmaC.3|

laxll305 yx < llare1 301 yx
The final step comes from our assumption that 7% < (1 + exp (|lgx H%vayx))fl vlyx < 0. O

Finally, we give lemmas related to region 3.1 and 3.2 in Figure[d] In these regions, the norm of ¢; is
once again increasing.

Lemma C.6. Foranyk €N, if ||qz||3 > 0,v] yx satisfies (1 + exp (||q;c||§vgyx))_1 vlyx < —%,
then ||qi+113 > llax|l3.

Proof. Assume some k € N and [|q||3 > 0, v yx that satisfies (1 + exp (||qk||§v,:£yx))_1 vlyx <
f%. We derive the following.

1 2
w13 = llawl3 (147 (1+exp (laelFelyx) " of yx)
> el

The final step is due to our assumption (1 + exp (||gx H%v,{yx))fl vlyx < f%.

O

In region 3, the loss function may move in different directions, so we further partition the region into
3.1 and 3.2 according to whether the loss function is improving. In region 3.2, we show that the loss
worsens by the following lemma.

Lemma C.7. For any k € N such that ||q; |3 > 0, v yx,
2 ~1 ~1 2
(oFyx)” (24 (L4 explllan 3ol )~ oy ) + lanB3lly=l3 (147 (1 + exp (laelBofv)) o yx) >0

if and only if || qry1 1307 vx > llqell5v] yx.

Proof. First, we prove the forward direction of the biconditional. Assume some k € N and ||qx||3 >
0, vgyx that satisfies

2 —1 -1 2
(vi yx) (2+n(1+exp(llqk||§v;fyX)) v;fyX)+|qu||§||yXH§(1+n(1+exp(llqk||§v{y>&)) v{yX) > 0.
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We derive the following.

llqr41 ||§U17;+1?JX - quHgv,{yx

-1 -2 2
=v§yX(|qk||§+2n (1+exp (axl30Fyx)) llawli3vlyx +n? (1 +exp ([lanll3vlyx)) " llaxll3 (viyx) )
—1 —1

+ 1 (1 + exp (laI3v7 yx)) IquIIEIIyXI§<quII§+2n(1+exp(||qk§v§§yX)) llawl|3v7 yx

T (1 + oxp (lax2oF o)) "2 el (v,?yx)Q) PN o

=21 (1 + exp (|lgxl 207 vx)) " Naell2 (0Fyx)” + 02 (1 + exp (lgrl20fvx)) " el (oF vx)°
+nllaell3lyx)2 (1 + exp (lgelZoFyx)) " + 202 (1+ exp (lael2ofyx) > gl dof yxllyx][2
+ 02 (1 +exp (laelZoFyx)) " llaelld (v yx)” [lyx)13

= nllgel3 (1 + exp (laxl3ofvx)) ((v;fyX)2 (247 (1 + exp (lasl3oiyx) ~ ol vx)

_1 2
a3 (140 1+ exp (lanlBoE )~ o))

>0

Now, we consider the reverse direction of the biconditional, which we will prove by contrapositive.
From our above derivation, we already know that || qx11||3vf, ;yx — |la|[3v{yx < 0, since we
assumed that g |3 > 0 and

2 —1 1 2
(oFyx)” (247 (1 + exp(lanl3ol vx)) " vl yx) + lal3llyxI3 (140 (1+exp (lan|3ofyx) o yx)” <o,
O

The boundary separating regions 3.1 and 3.2 is not easy to express explicitly, but we do show an
upperbound for the boundary in the following lemmas. In the lemma below, we first show that the
separating boundary for regions 3.1 and 3.2 is upper bounded in the v} yx direction by one of the
nullclines of ||¢¢|| (see the red and blue curves in Figure|6).

Lemma C.8. A necessary condition for ||q||3 > 0,vT yx to satisfy
(v )" (240 (1 -+ explal o) o) + lallxl3 (140 (1 + exp (Il ) o) <0,
is that (1 + exp (||q||§vax))_1 vTyx < —%.
Proof. Assume that some ||q||3 > 0.
We will show that if (1 + exp (||q||§vax))_1 vTyx > —2, then
(o )" (241 (1 + ep(lan 307 0) ™ of ) + llaw I3 (140 (1 + exp (s [3eF %)~ of ) > 0.
We derive the following.
(vax)2 (2 + 1 (L +exp (||q][307yx)) - vax) >0 by our assumption
el (14 (1 -+ exp (lall3075) ' 07ux)” > 0
(vax)2 (2 +n(1+exp (||q||§vax))71 UTyx)

1 2
+lal3llyx13 (147 (1+ exp (llalBoTyx)) " oTyx) > 0.
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O

In the following lemma, we show an upper bound in the v} yx direction one of the nullclines of
llq¢||3, which is also an upper bound for the boundary separating regions 3.1 and 3.2.

Lemma C.9. For any ||q||2 > 0, the vT yx that satisfies

(vFwm)” (24 (1 exp (BT e) ™ of ) + llalBlloxl3 (14 (1 4+ exp (lal3el )~ oT ) <0
is less than the v} yx that satisfies (1 + exp (||q| |§vgyx))71 vlyx = —%.
Proof. Consider some ||g||2 > 0, v{yx that satisfies

_ _ 2
(oF %) (2 (1 + exp (lal3oTyx) ™ vl yx) + alBllyxl3 (140 (1 -+ exp (lall3elyx) ~ oTyx)” <o,

and vJ yx that satisfies (1 + exp (||q||3v3 yx)) oTyx = —2. Assume for the sake of contradiction
that v yx < v{ yx. Then,

(1+exp (|\q||§vayx))_1 vy yx < (1 +exp (||q\|§111Tyx))_1 vl yx by our assumption

(1 +exp (llalZolyx)) " oTyx > (1 +exp (llalZodyx)) " vlyx = —% since vJ yx < o7 yx

This contradicts the necessary condition we determined in lemma|C.§ O

In the following lemma, we show an upper bound in the v; yx direction for a nullcline of ||q; |3 (see
the bottom blue curve in Figure[6)), which is also an upper bound for the boundary separating regions
3.1 and 3.2.

Lemma C.10. For any ||q||3 > 0, the v} yx that satisfies (1 + exp (||q||§vax))71 vTyx = —% is

less than —2.
n

Proof. First, we will show that for 0 < [[¢1]|3 < |lg2||3 and vTyx,vIyx which satisfy

(1+exp ([laa 301 yx))
vd'yx. Assume for the sake of contradiction that v yx > vI'yx. Then,

T ofyx = (1+exp (||q||§vlTyx))_1 vfyx = —2, we get that v{ yx <

llar| 507 yx > (|2l 30z yx since v] yx > vy yx and [|q1[[3 < [|g2|13
-1 -1

(1+exp ([l 1301 yx)) ol yx > (1+exp (Jla2ll3v3 yx)) v yx,

where the last step comes from our assumption that vfyx > viyx and

(1 + exp (||lq1]13vT yx)) “hoTyx = —2. Now that we have proven the above, we consider [|q||3 —
o0o. Then, we see that (1 + exp (Hq||§vax))_1 — 1. So, (L +exp (|lg|5v"yx))  vTyx = -2
becomes v yx = —2. 0O

n

We are now ready to show that once the system leaves region 3.2, it cannot go back.
Lemma C.11. Forany k € N, if ||qx||3 > 0, v yx satisfies

_ _ 2
(oF )" (247 (1 + exp (3o yx) ™ o yx) + lawlBlluxl3 (14 (1 + exp (laelol we) " ol we) > 0,

then (||qe+1113 > 0,0, yx) satisfies
2 -1
(Vs 1) (2 + 1 (1+ exp ([lger1 13085 19x)) UkT-ny)

1 2
+ lawsaI3lyl3 (147 (1 + exp (laeaBofams) " olayx) = 0.
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Proof. Assume some k € Nand ||g;||3 > 0, v{ yx that satisfies

_ _ 2
(vfyX)z(2+n(1+exp(|\qk||§vfyX)) 1'UE@/X)+||qk||§|\yX||§ <1+n(1+exp(||qk||§vfy>&)) 1v;{yX) > 0.

We consider 3 cases for ||gx||3 > 0, v} yx.

Case 1: v,{yx > 0. Then, by lemma we know that v,{ﬂyx > 0. So,
(1+exp (||qk+1||§va+1yx))71 vl yx > 0 > f%. This violates the necessary condition that
we derived in lemmal[C.8]

Case 2: —% < (1+exp (||qk||§vayx))71 vlyx < 0.

We derive the following.

ak-+111307 1 yx > [lqil30f yx by lemma|[C77]
—1 —1 .
vfyx (14 exp ([larr1l30819%)) = vf yx (1 +exp (|lqell301 yx)) since v yx < 0
—1 —1
Vi1 yx (L4 exp ([[ars1l30d19x)) > (L+exp (|lgrsa|3oi19x))  viyx by lemma4.T]

2 _ B
- < vEyx (1+exp (e 3o yx)) ™ < oF ey (1+ exp (|[grs |30, 19x))

This also violates the necessary condition that we derived in lemma[C.§]

Case 3: (1 + exp (quHgfukTyx))fl vlyx < f%.

-1 S .
If —% < (14 exp ([lge+1ll3v819x)) v, yx, then we use the violation of the necessary condi-
tion derived in lemma [C.8]to conclude. Now, we assume

(1 + exp ([|gr+1 ||§v,?+1yx))71 vl yx < f%. We start by deriving a relation between
(vFyx)* (247 (1 + exp (lanl3oFyx)) ™ o yx) and (uF,19%)* (20 (14 (lawsa o 9x)) " o wx).

qr+1]1301, 1 yx > llaxl30f yx by lemma[C.7]
-1
O yx (1 + exp (|| grs1 30141 9%))

> vlyx (1 +exp (||qk\|§vayx))_1 since v} yx < 0 and lemmals. 1]

(UI{H?JX)Q (2 +n (1 + exp (”%H”gvgﬂy"))il v,{ﬂyx)

> (vzﬂyx)2 (2 +n (1 + exp (||qk|\§vgyx))71 v%yx) by lemma@

(vFaym)” (240 (1+ exp (lael3ulvx) ol vx)

> (vayx)2 (2 +n(1+exp (||qu§v{yx))71 vfyx) since v}l yx, v, yx < 0 and 1emma

(v,{yx)2 (2 +n (1 + exp (quHgvgyx))_l v,{yx)

< (oFawx)” (240 (1 -+ exp (g [3o709x)) " olawx)

26



Under review as a conference paper at ICLR 2026

_ 2
Now, we derive a relation between |gx||3|lyx]|3 (1+n(1+exp(\|qk||§v£yx)) 1v,fyx)

-1 2 . .
and ||qri1]13]yx||3 (1 +77(1 + exp (||qk+1||%v,{+1yx)) v{+1yx) . With our assumption

-1
(1 +exp (llge1l3vf119x)) v 1yx < —2, we know that

1 2
a1 I3lgx13 (14 0 (14 exp (lawsal3ofamx)) " ol o)

1 2 1 2
= (uqkn%wxn% (147 (1 + exp (llapl3of yx) " vl yx) ) (147 (1 + exp (lawsa 3ol avx)) " olux)

1 2
> llawl3llyxI3 (147 (1 +exp (llaxlBof yx)) " ol yx)

Then we get that
2 -1
(Ugﬂyx) (2 +n (1 +exp (||Qk+1|‘§va+1yx)) vfﬂyX)

. 2
+ [lge+1 /131 1yx|13 (1 + 1 (1 + exp (||grr1]30711yx)) vfﬂyX)

> (oFyx)” (240 (1 + exp (a3 vx)) " ol vx)

1 2
o+ Naw 3013 (147 (1 + exp (llaxli3ol vx)) " ol vx)

> 0.
O

Finally, we show that for any starting point in region 3.2, the trajectory will eventually “escape” 3.2
and reach other regions.

Lemma C.12. Forany k € N, if ||qi||3 > 0, v{ yx satisfies

_ _ 2
(vF ) (20 (1 + exp (lawl3ofw)) ™ ofwe) + larl3lel3 (147 (1 + exp (laellfel )~ ol yx) <o,

—(2+of yx) (14exp(llarll3of vx))

then there exists some | € N, where k <1 < [ PP
2 2

1+ &+ 1, such that
laal|3, vy satisfies

_ _ 2
(o )" (247 (1 + exp (a3l )~ ol e ) + lal3lwl3 (1+n (1 + exp (lal3olve) " ol ye)” > 0.

Proof. Consider the set {vTyx} that satisfies

(vax)2 (2 +1n (1 + exp (||‘ZH§UT?JX))

for all ||¢||3 > 0. By lemmas 9 and 10, we know that the set is upper bounded by —%.

1 -1 2
oTyx) +lal3lyx13 (147 (1+ exp (llalBoTyx)) " o7yx) " <0

Assume for the sake of contradiction that there exists some ||g; |3, v] yx that satisfies

_ _ 2
(o7 )" (247 (1 +exp (a5l Bof yx) " vl yx) + gl Bllyxl3 (1 + 0 (1 + exp (llas o] vx) ~ o] yx)” < 0.

— (2407 yx) (1exp(|lg; 130T x))
P

where forall j <1 < [ 1+7+1, |al3, vf yx satisfies

_ _ 2
(o yx)” (247 (1 + exp (a3l vx) " ol x) + lal3lyxI3 (1+n (1+ exp (lal3olyx) ol yx) " <o,
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2+l yx) (14exp(l1g;1130] vx))
nlla; 113 1lyxl3

For conciseness, let’s set £ = [_( 1+ 7 + 1. We derive the following.

2
-—2 Ugyx
7
&1 .
= vy yxHallyxl3 Y (1 exp (llaill3olyx)) llaill3
i=J
T 2 25_1 2. T -1
> vl yx + nllyx[13]1g;113 Y (1 + exp (|laill3v] yx)) by lemmas 6 and 8
i=j

1 .
> ol yx + nllyx|l3llg;115 (1 + exp (|lg;]130] yx)) (€ —4),

where the last step comes from lemma and our assumption for all 7 < [ <

,(%+vfyx)(1+exp(||qjHgv?yx)) ) <
[ == =R T+j+1

Then, we get

= (2+0Tyx) (1+ exp (llasl BoTyv)) (B ePux) (1 exp (Il BeTy))
2 2 >E—j=] 3 3
nllyx[13llg;113 nllg;l131yxl[3

which is a contradiction.

C.2 TwO DATAPOINT SETTING (N = 2)

In the following subsection, we provide our fixed analysis, sharpness approximations and analysis,
and additional experiments.

Prior to that discussion, we first prove ClalmFbelow about the strictly i 1ncreas1ng behavior of m;.
Recall in Sectlon I that we defined m; as v; (X3 — X2), the component of v; in the max-margin
direction.

Proof of Claim[@.3) Consider some my, and ||gx |3 > 0. Based on the iterated map of m;, we see
the following.

1 —1
my = my_1 + gl (1 - x{ xo) ((1 + exp <2||ql_1||§ (M1 + Cl—l)))
1 ) -
+ (e { Slallz (mi-r = c-1)

— i+ llaell? (1 - xTxe) ((1 T exp (|qk||2 (i + ) ))

+ (1+exp (|qk||2 my, — Ci, ) )

(1) 3 a1+ (5 ||qz||2<mz+cz>))

i=k+1
1
1 2
+ (1 ew (Gl mi- ) )
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1 —1
> -t ol 0= xPx) ( (1 exo (Gllasl (s +-)) )

—1
1 .
+ (1 + exp <2||qk§ (my, — %))) ) since [|qx (|3 > 0

C.2.1 FIXED POINT ANALYSIS

Recall in Section 4] we showed that the dynamics of our model in the two datapoint setting can be
captured by the following system (||q¢||3, c;, M), where ¢; = v (X1 + X2) (projection of model
parameter v in max-margin complement direction) and m; = v} (x; — X2) (projection of model
parameter v in max-margin direction). We proceed to analyze the fixed points for the two datapoint
system below. We make the following claims about the system.

Claim C.13 (Nullclines of || ||3). The nullclines for ||q:||3 are.

(1o (Slalgim +e0))  omva+ (15 exp (Slalime—e0)) e —co =0

forb €0, —%} and |q:||3 = 0.
Claim C.14 (Nullclines of ¢;). The nullclines for ¢, are ||q;||3 = 0 and ¢, = 0.

Claim C.15 (Fixed Points for (||q||3, ct, m¢) system). The fixed points for the system (||q: |3, ct, my)
are ||q:||3 = 0 and ¢, = 0, ||q¢||3m: — oo, where ¢, = 0, ||q¢||3m: — oo is marginally stable and
llg:||3 = 0 is stable for —% <my < 0.

Claim C.16 (Stable ¢, = 0). If our system satisfies the following, then the ¢, = 0 plane is stable.

-2
1 1 2
4 2 2
1+ ex - m ex — m < —
|qt2( p(zqtu )) p(2||qt||2 ) T )

Claim C.17 (|c;| Growth Boundary). If our system satisfies the following, then c; will grow in
absolute value.

-1 -1
1 1 2|cy
2 2 2 t
1+e — my — |c —(1+4+e — my + |c >
llgell2 ( Xp (2||Qt||2( t = | t|)>> ( Xp (2||Qt||2( ¢+ | t|)>> 1 (1 +x1Tx2)

We prove the claims below, starting with Claim about the nullclines of || ¢ ||3.

Proof of Claim To solve for the nullclines of ||g;||3, we first specify its iterated map.

|\Qt+1||§ = ||Qt||§

(1o (Badgim+e0)) e+ (1400 (Saltm ) o q)]

+nllalls

(1o (Slaliom +0))  omver+ (1o (Sl e —0))  omi- cﬁ] 2

141 <<1 +oxp (gl (o m)))_l o+ (1 exo (Sl om >>) - )N

With the iterated map above, we find the nullclines by solving ||g;+1/|3 — ||¢:||3 = 0. With some
calculation we find get the following.

2
n
+ a3

= lla:ll3

o= o | (1+e (Jlaldon+e0))  om+en s (1o (Jlatdon—en)) omi- ct>]
2 (1w (§||qt§<mt+ct>))1<mt+ct>+(1+exp<;nqtn3<mtct>))1<mtct>H
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From the above, we see that the nullclines are ||¢;||3 = 0 and the following:

(1 +exp (;H%H% (my + Ct))>1 (my + ce) + (1 + exp <;||Qt|§ (me — Ct)))l (my — Ct)] =0

-1

(1o (Stalton +0)) omver s (1o (Saltm—e0)) e

O
Now, we prove Claim for the nullclines of ¢;.

Proof of Claim To calculate the nullclines of ¢;, we first specify its iterated map below.

-1 -1
1 1
vt = co+ el (1 +xTx) ((1 v (glatiome +0) ) = (1+ o (lalz e - 0) ) )

With the iterated map above, we can find the nullclines by solving ¢;4; —¢; = 0, which is equivalent
to solving

Jael3 ((1 vep (Slation+e0)) ~ (1+ew (ladzh on - >))) ~0.

We see that solutions to the above are ||¢;||3 = 0 and ¢; = 0. O
Next, we prove Claim [C.I5]about the fixed points.

Proof of Claim[C.I3] Since we already have the nullclines for ||¢;||3 and ¢; from Claims and
[C.14] we find the fixed points by first calculating the nullclines for m,. We first specify the iterated
map of my.

—1 —1
1 1
e = me -+l (1 xfx0) ((1 ro (latiome +0) )+ (1+ow (latome - ) )

Then, we solve for the nullclines of m; by solving

a3 ((1 vesp (Slation+e0)) + (14 (Slali on - )))) ~0

From our calculation, we find that the nullclines are [|q;||3 = 0 and ||q]|3 (m: — ;) — oo,
llg¢|l3 (m¢ + ¢¢) — oo. Considering the above with the nullclines of ¢; and ||¢;||3, we find that
the fixed points of the system are ||¢;||3 = 0 and ¢; = 0, || ||3m: — oo.

With the fixed points calculated, we proceed to determine their the stability. We do so by solving for
the eigenvalues of the Jacobian of the system at each fixed point. First, we form the Jacobian matrix
below.

Alaesrllz  Bllgetalls  Ollaetall3

Ala:1l3 886t 88mt
2 _ Ct41 Ct41 Ct41
J([lge+1l2, ce1, mesr) = Mael2 dey om,
Oy 41 Omeq1 Omyiy1
Allaell Ocy omy

Next, we evaluate it at the fixed point ¢; = 0, || ||3m: — oo as shown below.

1 0 0
J(Hqt-‘r1||37ct+17mt+1) = 0 ]_ 0
0 0 1
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Since all the eigenvalues are 1, we know that ¢; = 0, ||q;||3m; — oo is marginally stable.

For fixed point || ||3 = 0, the Jacobian reduces to the following.

14+ nm + %mf

0 0
J(llgr41113; Coq1,mig) = 0 10
i (1 - X?Xg) 01
where the eigenvalues are 1 (with algebraic multiplicity 2) and 1 4+ nm; + Z—me .

This means that there exists some part of the m; axis that is stable if the following condition is

satisfied:
8 4
- <|{—=—4+my)my <0
n n

Since 771% is not a tight lower bound of the function, we get that the condition is satisfied for
—% < myg <0.

O
In the following, we prove Claim [C.I6|about the stable region of ¢; = 0 plane.

Proof of Claim To determine the stability of the ¢; = 0 plane, we study the eigenvalues of the
Jacobian of the system at ¢; = 0. From our calculations, we get that

Allgesall3 0 Allgesall3
Alq: I3 omy
c=0 c=0
2 _ 9cita
J(lge+1l2; ce1,mey1) = 0 Doy 0
c;=0
Omyq 0 Omi i1
Alq:13 oy
cr= c;=0

From the Jacobian, the relevant eigenvalue is

dciin 1 -2 1
A=t~ alald (o xfxa) (1o (ol ) ) e (G lalm )
Ct =0 2 2

0
, since the eigendirectionis v = [1] (i.e., in the direction of ¢;).
0

To determine where the c¢; = 0 plane is stable, we consider the following condition:

1 -2 1
vt (et (1 (Glalgm) ) e (Gladin ) <1

1 2 1 2
4 2 2
l+exp| = m ex — my | < ——————~
llgell2 ( p <2 llgell2 t)) p (2 lell2 t) " (1 T 2)

Lastly, we prove Claim about the |c;| growth boundary.

Proof of Claim|C.I7] To understand when ¢; will grow in absolute value, we look at the nullclines

for c2. First, we specify the iterated map for c? below.
2 2
Cr1 =G

— 21 (1 +xTxy) ||qt||§\/;§ (1 + exp (;Ith% (mt - \/g)))_l B (1 +exp (é”qtl% (mt - \/%>)>_1]
esene @»1O%WGM@W+W»)T
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Now, to solve for the nullclines (i.e., ¢7, | — ¢7 = 0), we solve the following.

(1+ 0 (Gt (me - f))) ~ (e (ghatt (m+ [»”
.[_z\/éw(ux?m) ol | (1 + e (3l (i - )))— (1+ew (iq(mﬂf)))ﬂ

As we are already familiar with the nullclines ||¢;||3 = 0 and ¢; = 0 from Claim|C.14} we see that
c? grows if our system satisfies the following:

-1
1 2 C2
lla:ll3 <1+exp(2||qt||§ (mt— C?)» —(Hexp( qt|2<mt+\/ ))) 7t
1+x1x2)

This is equivalent to saying the system should satisfy

-1 -1
1 1 2|y
2 2 2 | t
l+exp| = my — |C —([14+exp| = (m—i—c))) >
llgell2 ( P (2||Qt||2( t— | t|))> ( P (2||Qt||2 ¢+ leg 1 (1 +x1Tx2)

O

0 = [lq[l3

C.2.2 SHARPNESS APPROXIMATIONS

As mentioned in Section[d] we derived some approximations for the sharpness in our two datapoint
setting. In this section, we derive the four sharpness approximations and their error bounds, which
we show below.

First, we define the following notation.
my = vl (X; — Xa) (projection onto max-margin)

cy = vt (x1 + x2) (projection onto max-margin complement)

1
exp (3l me + o)

1+exp ( lgell3 (me + ¢

N )

ae= (1o (Gl (e = 0) ) oo (Gl tme—eo)
o= (1o (MalB i)

)

bo = (1 + exp (nqtng e — ¢

Now, we introduce our approximations.

Approximation 1 Our first sharpness approximation is

%H%H% ((th + o) \/(1/)1,75 — tpa4)? 4 41 s tho s (XlTX2)2)

where the error with the true sharpness is upper bounded by

1
1 (¢1,t”%”§ (my + Ct)2 — o1 (my + ) + 1/12,t||(h||§ (my — Ct)2 — o (my — Ct))

I3 (me — e0)* ~ b (i — )

2
13 (me — cr) + ¢2,t) )

1 1
it (gonalal mot e = one) (~gonelald om ) + one)

1
16 (d)l,tIIth% (me + ) = prs (M + ¢1)

2
1 1
+ | +2llall ((2¢1,t”9t|§(mt+ct) —¢1,t) + <—2

2
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Approximation 2 Our second sharpness approximation is

1
1 <¢1,t||Qt||§ (my +¢;)” + Vatllqe|3 (me — c)® — b1, (M + ) — bae (e — ¢r) + (Y14 + Vo) |laell3 (1 — X?X2))

1

1 (¢1,t||ch||§ (me + Ct)2 + ¢2,t||Qt||§ (my — Ct)2 —¢1 (me+ct) — P2t (me — )

1 2
tg |+ Wt vanlal (0= xTx) ) (10 nilalied + 20w - oreen) ladde

+ 3l gells (Wre (me + o) + g (my — c0)) (b1e + G2) — 4 (1e + Dot)” th) (1—x7x2)

where the error with the true sharpness is upper bounded by

1

1(1/)1,t + o) [lqell3 (1+ x1 x2)
1
—(

) Uie+ 2.0 @IS (1 +xTx2) + (Y10 — ¥2,0)” [lgell§ (1 — xT x2)
+§||Qt||2 1+ x7x, ) ) )
+4 <2¢1,t||6h||3 (my +c) — §¢2,t||Qt||§ (my —cp) — b1t + ¢2,t> )

Approximation 3 (Low-Error Approximation) Our third sharpness approximation is

1

1 (1/11,t||Qt||§ (s + ¢0)? + Vol g3 (me — e0)® = ue (me + ¢0) — og (M — ¢0) + (1e + Vo.0) el (1+ X1TX2))

1
1 (1/11,t||11t||§ (me +co)? + o llall3 (me — co)® — b1e (me + c) — P20 (Mg — 1)

1 2
+ 5 |t (1t +P2s) llaells (1 + X{X2)> - (4w1,th¢llqtllgmf —2|qe|l3 (d1,4%2,6 + P2,481,¢) T

+ 3l qell3 (re (my + o) = o (me — 1)) (10 — P21) — 4 (d1,0 — b20)” th) (1+xix2)
where the error with the true sharpness is upper bounded by

1
1 (V1,6 + ¥2) laell3 (1 — x] x2)

1

1 7 e+ o) laill$ (1= x{xa) + (1.0 — ¥2.0)* aell$ (1+ X7 x2)

+§||Qt||2 1—X?X2 1 1 2
4 (gl Om + @) = 61+ gl e - o) - on. )

Approximation 4 (Interpretable Approximation) Our fourth sharpness approximation is

1
5 W+ ¥ larll2(1+x7%s)

where the error with the true sharpness is upper bounded by

2
7 (0103 (me e + a3 0me — c0)? = B1. (ma+0) = g (e — 1))

1 1 2
+2[|qell3 (1 + x| x2) (21/)1,t%|§ (my +cr) — §T/J2,t||%||§ (my —ct) — d1e + ¢2,t>

2
1
aell3 (me + co) + =allgell3 (me — ce) — d1e — ¢2’t>

1
+2lal} (- xTx) (o -

1 1 2
+ B (1t — 1/)2,t)2 lagell5 (1 — (X{X2)2) + 1 (Y1, + 1/’2,t)2 el (1— XlTX2)
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From our approximations, we claim that approximation 3 is a low-error approximation of the sharp-
ness in our setting. We also denote approximation 4 as our interpretable sharpness approximation
based on its simplicity in form.

In the remainder of the section, we perform some preliminary calculations necessary for the ap-
proximations, show our derivations of the four sharpness approximations and their error bounds,
and provide some empirical results and error bound comparisons to support for our claim about
approximation 3.

Preliminary Calculations Before getting into the details of the approximations, we perform some
preliminarily calculations on the Loss Hessian. With 6 = (g;, us, v¢), we start with

VetL(qh Ui, Ut) - )‘I2h+d

A B C
=|B A C
ct ¢t D

where

A= [wl,t (UtTX1)2 + oy (Uthz)Q} aql — My
B=- [¢1,t’UtTX1 — ¢2,t’UtTX2] Iy + {1/)1,:5 (’UtTX1)2 + o (’UtTX2)2} aq;

C=—q [d1,x] — d2.4x3 | + l@ell3q: [t1,00] X1X] + 1240 Xox] |

D = lqull3 [¢1.%1X] + 12,1Xox5 | — Alg.

After performing the same similarity transforms as we discussed in the single datapoint setting (see
Appendix [C.1.2), we look at the following matrix decomposition:

[ \/§OCT \/(220} + [A —g B ]%} in which we overload notation a little here by denoting

2 2
A+B=2 [wl,t (’Uthl) + 7/12,:& (UtTXz) ] thtT - [(bl,tvthl - ¢2,tUtTX2} Iy,
D = |lqull3 [¢1.%1X] + 12,iXox5 ] .

0 V2C

In the above decomposition, we treat [ Noleds 0

A+B 0
0 Dy

} as a perturbation on the matrix

0 V20

Based on our original definition for C', we know that { Noledd 0 } is rank-2 with eigenvalues

2 2
(Vrellall30f x1 — d1,6) " + (Va,ellall3v) %2 + d2t)
+2 (Y1l 3o x1 — b1.t) (Vo.ellal|3v] X2 + ¢o4) XT X2

+£v2[|q]l2

Since the perturbation occurs in a 3-dimensional subspsace spanned by [g], [)?1], and [}?J, we

believe the 2 nonzero eigenvalues from the D block matrix and 1 nonzero eigenvalue from the A+ B
block matrix have been perturbed.
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We now focus on studying this perturbation in the 3-dimensional subspace through the following
derivation.

-5 1

0 X1 X9
T
g (A+ B)a \[q Cxq fq Cxs
ur [f};cg \/gC}U_ V2q¢F Cxy x¥ Dx, xI'Dxy | =K
V2q¢FCOxy  xTDfirstxy x4 Dxy
a3 00 L0 0 Mald 0 o [0 0
e e Rl P I B Ll P I
0 X7 X2 1 0 VR 0 0 1—x{xa| |0 %5~
—QAQ =G
1 -
- 1 L0 07 e O O o0 _ ,
wrnyt=eate=19 w10 mm 0 | |Y F 33 | (Assuming g3 #0)
0 ﬁ 7% 0 0 1—X,{'X2 0 ﬁ 7%—

This means the sharpness is one of the solutions to the general eigenvalue problem Kv = AGv. We
can also rewrite this to get that the solutions to the general eigenvalue problem are also the eigenval-
ues that we get from the matrices G~ K, A’%QKQA’%, and AT'QKQ. Since A*%QKQA*%
is real and symmetric, we know that its eigenvalues are real. We focus on the deriving the matrix

A 2QKQA 2.

A 2QKQA™2
1
AR 0 0
0o ——1— 0
= \/1+x?xz )
0 0 V1-xTx;
[ 4/ (A+ B)q, af C(x1 +x3) qi C(x1 — X2)
thC(Xl + Xg) %(Xl + XQ)TD(Xl + X2) %(Xl + XQ)TD(Xl — XQ)
@t C(x1 —X2)  5(x1+%X2)"D(x1 —X2) 5(x1 —x2)"D(x1 — x3)
ro1
M. 0 0
[ — 0
\/1+xpfo L
L 0 0 v/ 1-xTxs
uqlu (A+B)qt EAE \/m‘h Cla +%2) AR \/7% Cla = xo)
laells \/7 (Xl + XQ) m(xl =+ XQ) D(X1 + Xg) ﬁ(?ﬁ + XQ) D(X1 — X2)

Hqtum/l T Tl O

1
%) S )

D(x1 — x2)
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2001 ¢l e 13 (07 x1)?

+ 2 4| g |13 (v x2)?
- ¢1,tvt X1

+ ¢2,tUtTX2

llgell2/1 + xT'x2
A\ Yrellalzof x
+ haillae |30 X2
— Q10+ Dot

lgell24/1 — x{'x2
A YrellalZof x
- 1/J2,t||Qt||§UtTX2

— ¢ — ¢2,t>

lgell2y/1 +xTxo
A\ vrellal 3o x
+ Poellqell 507 X2

— Q1+ Dot

3(W1e +v2)llaell2(1 +x{x2)

3 (W1 = ¥ae) a3 v/1 — (x]x2)?

llgellz/1 — x{x2
N\ el 3of x
- Z/’2,1‘/||Q15||§UtTXz

— ¢ — ¢2,t>

3 W1 —va0) a3

1 - (x{x2)?

3(Wre + ¥ae) a2 (1 — x{'x2)

With the above 323 matrix, we use Cauchy Interlacing Theorem (Stewart & Sun, |1990) to produce
the approximations of the sharpness. For each approximation, we also calculate the error bound

using Weyl’s inequality.

Approximation 1 Derivation We consider the first submatrix formed by removing the first col-

umn and the first row.

3 (Wre+ Y202 (1 + x{x2)

3 (e = ¥ad)llaells v/l — (xfx2)?

We show the eigenvalues for this submatrix below.

3 (W1 = vae)llaell3

51+ 20 llael3(1 — xTx2)

1— (x{x)?

A= %H%Hg (Wl,t +thoy) £ \/(l/fl,t = 24)? + 41 atfay (X{XQ)Q)

Now, we use Weyl’s inequality to find a bound on this. We write the general 323 matrix using the

following decomposition:

0 0

0 (W1 +voe)llall2(1+x{x2)

0 %(¢1,t - 71’2,:&)”%”3 1 — (x{xz)?
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201.ellae 13

llge]l2

+ : <1/)1,

llgell2

(e

(Ut Xl) - ¢1,tUtTX1

+ 2¢2,t||qt|| (vfx2)” + ¢2,tUtTX2

1+ X{Xg

b1

tH%H%‘U?Xl -

+%M%@%ﬂwm)

T

1—x7x9

1.

tH%H%Uthl -

—ww%mhrwu)

lgtll2y/ 1+ xTx2

b1,

U1 ellgell 3o x1 —

4¢u¢nqA@v?xQ+¢2¢)

lgell2y/1 = x{x2

Prellgell3of X1 —

Mﬁm%Q

b1,

From our calculation, we see that one of the eigenvalues of the second matrix in the decomposition,
denoted as our perturbation matrix, is 0. The other two eigenvalues are a symmetric pair that we
show below, where the difference between the sharpness and our approximation in this case is upper
bounded by the plus direction of the symmetric pair.

1
A= 3 @nllad BT x)? = d1e0] 30 %2)* + 2,0 x2)
1 2
7 (20rallal 30T x0)? = gl 3 (v x2)? + 62,00 %)
2
+ (P2l aelBol s + 62.)°)

+ 2lallf ((Vrallanl3olxi — é10)” +

+ 4l qel3x] X2 (Vrellgel3vs %1 — d1,0) (Voellaell3vd X2 + d2,0)

Approximation 2 Derivation Next, we consider the second submatrix formed by removing the
second column and second row.

21l ge13 (v x1)?

+ 209 4[| @113 (vf x2)?
- ¢1,tvt X1

+ ¢2,tUtTX2

lgell2q/1 — xTxo
Vrllael3vf %1
- ¢2,t||Qt||%UtTX2

— 1t — <Z>2,t>

lgell2y/1 — xTxo
Yrllael3of %1
30 x2

— ¢t — ¢27t>

3 (e + ¥ae) a3 (1 — x{x2)
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We show the eigenvalues for this submatrix below.

1 1
A=g (MLtH%H%(UtTXl)Z + 2004 [|qe |15 (vf X2)? — G100 X1 + dapv) X + 5(1/}1,t + o)l gell3(1 — X{Xz))

1 2
<2?/J1,t||qt||§(vtTX1)2 + 200 4| e |3 (vf X2)? — G100 X1 + o) X + §(¢1,t + o)l qell3(1 — X?X2)>

1 2
+ 5 |~ <4¢1,t¢2,t||9t||g (v %1 + vf X2) " + 6| [|3 (Y1407 X1 — Y240] X2) (G1,¢ + Port)

+ 2 (P21, — drahas) laells (v %1+ vf X2) — 4 (dr4 + $2.1)° |Qt||§> (1—x{xp)

Next, we solve for the Weyl’s inequality bound decomposing the general matrix in the following
way.

T

o llaell2q/1 — x7 x2
291 ¢l gel[2 (vg x1) o T
+ 20,4 ]|g4 15 (v] x2)° 0 | Vrellaelzvex
- ¢1,tUtTX1 — o]l qell5v] Xa
+ ¢2,4v; X2

— Q1,6 — Pa
0 0 0

lgell2y/1 = X7

) wl,tHQtH%UtTXl
2T 0 %(d)l,t + ¢2,t)\|QtH§l(1 - X’{XQ)
—7/12,tHQtszt X2

— 1 — ¢2,t>

llgell2y/1 + xTxz
| vrellaelzvl x
+¢2,t||Qt||§UtTX2

—G1e + Pot

lgellzy/1 4 x{x;
~ (w
+ o ¢l qe |30 X2

— Q1 + P2t

%H%Uthl

e+ o) lael3( +xTxe)  S(v1e — o) laell3v/1 — (xTx2)?

0 51— oe)llaell3v/1 — (x]x2)? 0

From our calculations, we find the one of the eigenvalues of our perturbation matrix (the second
matrix in the decomposition) is 0. The other two eigenvalues are a symmetric pair that we show
below, where the error bound for this approximation is the plus direction of the symmetric pair.
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1
A=W+ Pad)llala(l+xix)

1

1 7 e+ Yo.0)? g5 (1 + X7 %) + (W10 — ¥2.0)? [lael§ (1 — xTx2)
+ a1+ xTxo . . 2
+4 (¢1,t||QtH§Ut X1 + Yol |30 X2 — o1 + ¢>2,t) )

Approximation 3 Derivation Next, we consider the third submatrix formed by removing the third
row and third column.

s latllz/1+xx,
20130 x1)

2T
+ 20030 x2)? AN
- ¢1,tU¢FX1 + o ¢l qe |30 X2
+ ¢2.1v; X2
— P16+ Pat

lgell2/1 + x{ X2
: wl,t||Qt||§UtTX1
+ Yot llqe[|5v) X2

— Q14+ Dot

(W1 + Y2 lqell3(1 + xTx2)

We show the eigenvalues for this submatrix below.

1
A= <2?/11,t||Qt||§(UtTX1)2 + 200 4| e |3 (vf X2)? — B1,00) X1 + o) X + §(¢1,t + o)l qell3(1 + X?X2)>

1
2

2
1
<2¢1,t||Qt||§(UtTX1)2 + 2004 [|qe |13 (v X2)? — G100 X1 + dopvf Xo + §(¢1,t + o)l ||3(1 + X1TX2)>

1 2
+ 5|~ (4¢17t¢27t||%||g (vf x1 — vf X2)" = 2[|qel|3 (d1,6%2,0 + d2,01e) (vf X1 — v x2)

+ 6]l qell3 (Vrv] X1 + P2, 0) X2) (P16 — d24) — 4 (D1, — $2,0)° |Qt||§> (1+x]x2)

Then, we can decompose the general matrix in the following way for the error bound.
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+ 2924

lgell2y/ 1 + X7

: (%,t

0

T

1gll24/1 = x1 %2

. (%,tl
—wi%@%rww>

a||30f X1 — @1

201 [l e I3 (v) %1)% — drav) X1
ell3(vfx2)? + d2,v) X2

|aell3v %1 — o1,

lgell24/1 +x7x2

+wwmm&w¢u)

+wwm@&ﬂwu)

31— Ya)llael3v/1 — (xx2)?

A prellalzvl x — b 0

(W1 + P2 lqell3(1 + xTx2)

0
0]
llgell2y/1 —xTx2

~(wLAMA@val¢Lt
—%NM@%YWM)

5 (W1 — Va)llaell3

1 — (x{x2)?

3 (e + ¥ae)@ll3(1 — x{x2)

For the perturbation matrix (the second matrix in the decomposition), we get that one of the eigen-
values is 0 and the other two form a symmetric pair that we show below, where difference between
the sharpness and the approximation from this submatrix is upper bounded by the plus direction of

the symmetric pair.

1
A= 1 (1,6 + P2,0) [laell3 (1 — x{ x2)

1
1 (1,6 + 1/)2,16)2 ||qt||g (1 - X{XQ)

1
+ llaley/1-xTx

2
+ (Y1, — Y2.4)” el (1 + x{ x2)
2
+4 (Vrellall5of X1 — ¢1e — Yasllall3v] X2 — d2.0)

Approximation 4 Derivation In this last approximation, we consider the middle element in the
A"3QK QA= matrix, 3 (¢1,4+¢2,)] || 3 (1+xT'x2), which is the second 12:1 principal submatrix.
Our motivation for focusing on this principal submatrix is from our analysis of the A_%QK QA_%
matrix under the assumption that ¢; = 0 (i.e., vtT X; = —vtT X2), which causes 11 = 12+ and
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@1,+ = P2.+. Then, the 323 matrix reduces to the following.

iy t”qt”T(vt [x1)? 0 2[lgsll24/1 — x] x2
— 20100 % : (l/fl,t”llt”gUtTXl - ¢1,t)
0 P1ellgel|3(1 4+ %7 x2) 0

2[|gefl2y/1 — x{ %2 0
|- (Yrellael3of %1 — d14)

13(1 — x7'xz)

Given the sparsity of the above matrix, we can directly compute the eigenvalues. We know that one
eigenvalue is 11 ¢/ q:]|3(1 + x¥'X2). We show the symmetric pair of eigenvalues below.

1
2001 [l qel|3 (vf x1)% — pravf %1 + §¢1,t||(1t\|3(1 — X] X2)

2
1
(wl,tnqtn%(v?xm bl sl - xlTX2))

— 6101t llqell5v! X1 (1 — X x0) — 467 4 [|qe[|3(1 — x] x2)

+

From experimental evaluation, we compare the 91 ¢||q:||3(1 + x? x2) eigenvalue with the positive
direction of the symmetric pair of eigenvalues above and find that the former is the exact eigenvalue
in our settlng under the ¢; = 0 assumption, shown in Figures [7]and [8] For conciseness, we refer to
13(1 + x¥'x5) as eig_g1 and the other eigenvalue as eig_g2 in the figures.

N
S

difference
G

difference

difference

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
iteration iteration iteration

(@)n =0.10 (b)n =0.15 (©)n =0.20

Figure 7: We show the differences between the sharpness and both eigenvalues we calculated for the
co = 0 case, where 7 € {0.10,0.15,0.20}, x{ xo = ﬁ/m, and mg = 0.01.

difference
difference
difference

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
iteration iteration iteration

(a)n = 0.10 (b)n =0.15 (©)n = 0.20

Figure 8: We show the differences between the sharpness and both eigenvalues we calculated for

the ¢g = 0 case, where p € {0.10,0.15,0.20}, X{ X2 = 0.9991, ||go||3 = 1.05/ 51555, and
mo = 0.01.

Since % 5 (U1 +v24)llqe]|5(1 + X] X2) reduces to 91 ,¢]|g¢]|5(1 + X{ X2) under the ¢; = 0 assumption
and is ea51er to interpret than the prior approximations, we give it consideration.
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Now, we calculate Weyl’s Inequality, starting from the following decomposition.

0 0 0

0 5(¥re +v20)llell3(1 +x{x2) 0

0 0 0
o lacllay/1 + 5% lacllay/1 — 5%
291 ¢lgt 15 (v; x1) 9 T 2T
+ 21/)2,t,|1th||%(U?X2)2 | Yrellaellzvs xa | Yrellallzve xa
B iT + o1 [laell3o] x2 — o 1llael| 3o %2
2,tV¢ X2
—¢1, + ¢2,t) — P16 — ¢2,t>
lgell2/1 4 xTx;
N\ vrellalzof %
R 0 L — da)lanliy/T= (T%)?
2,t 114t || 2V X2
— Q1+ P2t
lgellzy/1 — xTx;
N\ vrellalzof %
ol 207 3 — Ya)llaldvl — (x{x2)? (Y1 + ¥2)llae]l3(1 — X{x2)
— Y2.¢1qt |2V X2
— P16 — ¢2,t>

Since the perturbation matrix (second matrix in the decomposition) is essentially as complex as the

original 323 matrix, we calculate the Frobenius norm of the perturbation matrix instead as our error
bound.

2
(201 ellqell3 (v x1)% + 2002 ¢ [l e I3 (v %2)% = Prav] X1 + P20/ x2)
2
+2[lqell3 (1 + X7 x2) (Vrellaell3of X1 4 Vo llaell3v] X2 — d1.t + post)
2
+2[qell3 (1= x{ x2) (VrellaellZof x1 — oullael3of %2 — d1.0 — hoy)

1 1 2
+5 e — Yo.)” el (1 — (x7x2)%) + 7 (Mot Ya.0)” |3 (1 — x7x2)

Next, we analyze the error bounds for our different approximations and provide some empirical
results to support our claim that Approximation 3 is a low-error approximation for the sharpness in
our setting.

Analysis of the Approximations From the approximations we derived, we note that approxima-
tion 3 appears to the most accurate in our setting. In comparison to the error bound that we calculated
for approximation 2, we note that it is quite similar in form to the error bound for approximation 3.
We note that difference in whether 1 + x{ x5 or 1 — x? x, are prominent factors in the error bound.
Given that we assume 0.99 < x¥x, < 1, the error bounds suggests that approximation 3 is more
accurate than approximation 2 in our setting. As for approximations 1 and 4, we determine that
approximation 3 is more accurate than them by experimental evaluation, shown in Figures [0 and

Ia
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—— approxl —— approx1 —— approx1l
05 —— approx3 —— approx3 30 —— approx3

0.6

25
204
820
go3

differen:
difference
r

°

0.1 0.5

0.0 0.0 0.0
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
iteration iteration iteration

(a)n=0.10 (b)n=20.15 (c)n=10.20

Figure 9: We show the differences between the sharpness and approximations 1, 3, and 4 for n €
{0.10,0.15,0.20}, x{ 22 = 0.99, ||qo||3 = 1.051/ 5535595+ Co = 0.02, and mg = 0.01.

—— approx4 —— approx4 —— approx4
—— approx1 05 —— approx1 —— approx1
—— approx3 — approx3 — approx3

N b N| v

0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
iteration iteration iteration

difference

difference

difference
N

(@)n = 0.10 (b)n =0.15 (©)n =0.20

Figure 10: We show the differences between the sharpness and approximations 1, 3, and 4 for
n € {0.10,0.15,0.20}, x{ x5 = 0.99, ||q0|3 = 1.051/ 5529957 Co = 0.02, and mg = 0.01.

Furthermore, we also note that the differences of approximations 1 and 4 to the true sharpness are
quite similar.

From this, we denote approximation 3 as our low-error sharpness approximation and approximation
4 as our interpretable sharpness approximation. We further note that our interpretable approximation
supports the idea proposed by [Wang et al.| (2022) about the correlation between the sharpness and
the norm of the output layer of a two-layer linear model. However, we see that the correlation is not
direct and more subtle.

Additional Eigenvalues of Loss Hessian In addition to our sharpness approximations, we provide
closed-forms for all but the top three largest (in algebraic value) eigenvalues of the Loss Hessian.
We start with

Vo, L(qt, ut, vt) — Maptd

A B C
cT ¢cT D

where
A= {1/11,15 (UtTX1)2 + oy (’U,TX2)2] QtCI? — Ay
B = — [¢1,00{ X1 — ¢o40{ Xo] I, + {%,t (szl)Q + P2 (UtTX2)2} aq;
C=—q [¢1,tXC1F - ¢>2,th} + laell3q [1/)1,t'U;EFX1XT + 1/J2,tU;‘FX2X,‘2F]

D = ||qi|3 [t1,ex1X] + t24X0X5 | — Mg

From here, we follow a similar calculation as in the single datapoint case, except we use Woodbury
Matrix Inversion instead of the Sherman-Morrison Formula to handle the D matrix. From those
calculations, we find a closed-form for all but the top three eigenvalues that are analogous to those
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in the single datapoint case. There are h copies of ¢1 ;0] X1 — @2 v} X2, h—1 copies of —¢1 ;v] X1+
$2.1v1 Xo, and d — 2 copies of 0.

C.2.3 EXPLAINING SHARPNESS TRAJECTORY

In this section, we revisit the training trajectory that we studied in Section[d] shown in Figure[TT]

17.0 A ,,,,,, % 6 '\/\/vv—-—_‘_ oome
16.54 ¢ « sharpness 5 © el
. 2
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P .8 2 Sa
$155{ - i° 8 k-] 2
g1s. i = g
s £ £3
& 15.0 N & € 5
< I 5 i 2
145 2if 5 22
S o T d @
4
140{ § €F 1
s ¢ .
135 o] &
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
iteration iteration iteration
(@ (b) ©
14 _
0.02 "gfql
12 & — gBc
0.001- A\,"
10 o V
£ -0.02
-8 ]
s a
£ -0.04
6 5
4 -0.06
2 -0.08
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
iteration iteration
(d) ©

Figure 11: We show the sharpness (a), training loss (b), system values (c), « (i.e., %) (d), and
“location” of the system relative to ||g;|-2? to nullcline 1 (nC'_g1 = 0) and |c;| the growth boundary

(gB-c = 0) (e) for n = 0.13, ||qo]|3 = 1.05\/ 535997+ Co = 0.02, and mg = 0.01. We also show

the similarity between our sharpness approximation and the true sharpness.

Recall from Section Ié__l| that we defined ||¢;||3 nullcline 1 as

-1

(1o (Slalbom+e0)) meved+ (1o (Sl —e0))  om—a) =0

the |¢;| growth boundary as

—1 —1
1 2 1 2 2|ce|
(1 exp (Gladzm =) ) = (1w (Gl me fah) ) = T,

and split the initial trajectory into four phases based on the sign of nC'_¢1 and gB_c in Figure[TTfe),
defined below.

In the initial part of the trajectory, we see that the system is inside ||g;||3 nullcline 1 and the |c|
growth boundary (nC'_gq1 > 0, gB_c > 0), which we denote as phase 1. Then, the system is outside
|lg¢||3 nullcline 1, but still inside the |c;| growth boundary (nC'_q1 < 0, gB_c > 0), which we denote
as phase 2. In phase 3, we see that the system is outside both ||¢;||3 nullcline 1 and the |¢;| growth
boundary (nC' g1 < 0,gB_c < 0). Lastly, in phase 4, the system is inside ||¢; || nullcline 1, but
still outside the |c;| growth boundary (nC_gl > 0,gB_c < 0). To explain the sharpness trajectory,
we use the interpretable sharpness approximation we derived in Appendix [C.2.2} shown below, to
explain the first oscillation in sharpness.

1
5@+ a)llarll2(1 +x%s),
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where

1 - 1
one= (1o (Glalionc+e)) ) e (Glaldon +<0)

(1o (Stalom —e0)) e (Slatiom —e)

By rewriting the sharpness in terms of ai;, we note an initial increase in the sharpness as the norm of
llg¢||3 and oy grow in phase 1. However, the sigmoid second derivative terms in the approximation
start to dominate the growth of ||¢||3 due to the fast growth of oy, which causes the sharpness
to begin to shrink for the remainder of phase 1. In phase 2, the sharpness continues to shrink oy
still grows quite fast, causing the sigmoid second derivative terms to continue to dominate even as
llq¢||3 shrinks. Initially in phase 3, we find that the sharpness continues to decrease as o initially
shrinks slowly. However, as oy shrinks faster, we begin to observe an increase in sharpness. We
can think of this as the sigmoid second derivative terms allowing more of ||¢;||3 to be “present” in
the sharpness, where the “presence” ||q;||3 increases over time from some small initial amount. In
phase 4, the shrinkage in a; and growth in ||¢;||3 continues to cause the sharpness to increase, as
llg¢||3 dominates the sigmoid second derivative terms. As seen from Figure e), the system can
enter phase 1, and the cycle repeats. As mentioned in Section[d] we note that the dampening in the
oscillations for the sharpness is likely the result of the growth of m,, which constrains the magnitude

of ay (see Figure[[T[(d)).

Vot

C.2.4 ADDITIONAL EXPERIMENTS FOR EDGE OF STABILITY

In this section, we provide additional experiments to show Edge of Stability behavior in our two dat-
apoint setting. Our experiments consider x? x, € {0.99,0.9991}, 7 € {0.10,0.12,0.15,0.17,0.20},

l|qo]|2 = 1.05 /m, co = 0.02, and m = 0.01, where each model is trained for 1000 itera-
1

tions with hidden width 1024. In each of the figures below, we show the sharpness, loss, and system
trajectories.
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Figure 12: We show the sharpness (a), training loss (b), and system trajectory (c) for X} x5 = 0.99
and n = 0.10.
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Figure 13: We show the sharpness (a), training loss (b), and system trajectory (c) for X} xo = 0.99
andn = 0.12.
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Figure 14: We show the sharpness (a), training loss (b), and system trajectory (c) for X xo = 0.99
and n = 0.15.
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Figure 15: We show the sharpness (a), training loss (b), and system trajectory (c) for X xo = 0.99
and n = 0.17.

S

. ome
o el

/ + llaeli3

sharpness

10°

9x107

Bx107

sharpness
BoE NN N NN
5 b S5 B N O %
R i
: s
training loss
system values
o N & o

7x107

0 200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
iteration iteration iteration

() (b) (©

o
o

Figure 16: We show the sharpness (a), training loss (b), and system trajectory (c) for X} xo = 0.99
and n = 0.20.
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Figure 17: We show the sharpness (a), training loss (b), and system trajectory (c) for X} x5 = 0.9991
and n = 0.10.
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Figure 18: We show the sharpness (a), training loss (b), and system trajectory (c) for X} xo = 0.9991
andn = 0.12.
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Figure 19: We show the sharpness (a), training loss (b), and system trajectory (c) for xlTX2 =0.9991
and n = 0.15.
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Figure 20: We show the sharpness (a), training loss (b), and system trajectory (c) for x¥ xo = 0.9991
and n = 0.17.
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Figure 21: We show the sharpness (a), training loss (b), and system trajectory (c) for x¥ xo = 0.9991
and n = 0.20.
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C.2.5 ADDITIONAL SIMULATIONS OF ASYMPTOTIC SETTING

In this section, we provide additional simulations of our model in the asymptotic case. Recall
from Section E| that our system reduces to (||g||3, c;) and m; becomes constant in the asymptotic
setting, where we consider x7 X, — 1. Our experiments consist of additional cases where the system
(llg¢ll3, ct) jumps between different values, exhibiting a “band” in the trajectory. For each case, we
show the loss, sharpness, and system trajectories, focusing on |¢;| instead of ¢, as we find magnitude
to be most relevant for loss and sharpness. We also provide zoomed-in versions of the plots to make
values that the system jumps between more clear.
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Figure 22: We show the sharpness (a), training loss (b), system iterate evolution (c) for n = 0.20,
m=0.5, ||qol|3 = \/%, and ¢y = 1073, We also provide zoomed-in versions of the sharpness (d),

training loss (e), and system iterate evolution (f).
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Figure 23: We show the sharpness (a), training loss (b), system iterate evolution (c) for n = 0.17,

m=0.5, ||qo||3 = \/%, and ¢y = 10~%. We also provide zoomed-in versions of the sharpness (d),

training loss (e), and system iterate evolution (f).

Recall from Section Ié—_l| that we defined ||¢;||3 nullcline 1 as
—1

(1o (Slalbon+0)) omever+ (1o (Ml ) om—a) =0
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Figure 24: We show the sharpness (a), training loss (b), system iterate evolution (c) for n = 0.15,
m=0.45, ||qo||3 = ﬁ, and co = 10~%. We also provide zoomed-in versions of the sharpness (d),

training loss (e), and system iterate evolution (f).

and the |c;| growth boundary as

1 -1 1 -1 2|y
1 a3 (my — — (1 —laell? = .
(1o (Gl =ie))) = (1o (Gl o+ )} =S

We also show cases for m = 0.45, 7 = 0.20, where the model appears to have entered a stable orbit
around the intersection of | ¢ |3 nullcline 1 and |c;| growth boundary. For each case, we show the
loss, sharpness, and system trajectories, focusing with |c;| instead of ¢;, as we find magnitude to
be most relevant for loss and sharpness. We also provide zoomed-in versions of the plots, since the
scale of the original plots squishes the oscillations in the tail ends of each trajectory.
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Figure 25: We show the sharpness (a), training loss (b), system trajectory (c) for ||qo||5 = —2=, and

V0.2
co = 10™*. We also provide zoomed-in versions of the sharpness (d), training loss (e), and system
trajectory (f).

49



Under review as a conference paper at ICLR 2026

* 2
v, T n

sharpness lcel

’ + ladi3

sharpness
o ®» 5 K &
training loss
g
system values
ok N W s U O N @
3

| —-—
H r
0 2000 4000 6000 8000 10000 [ 2000 4000 6000 8000 10000 [ 2000 4000 6000 8000 10000
iteration iteration iteration

() (b (©

10.0{ e L [ T T ] [ cm——— =
5
0210 el
9.9
0a Ilacli2
» . ]
o B o15x10 3
S 98 2 T
8 2 £’
5 € o1x10 H
G 97 ] 2
5 2,
@
905 x10°t
961 ,
.2 1
9x10
9800 9825 9850 9875 9900 9925 9950 997510000 9800 9825 9850 9875 9900 9925 9950 997510000 9800 9825 9850 9875 9900 9925 9950 997510000
iteration iteration iteration

(d ©) ®

Figure 26: We show the sharpness (a), training loss (b), system trajectory (c) for ||go||3 = —2 =, and

V0.2
co = 1072. We also provide zoomed-in versions of the sharpness (d), training loss (e), and system
trajectory (f).
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Figure 27: We show the sharpness, training loss, system trajectory for ||go||3 = —2=, and

V0.2’
cp = 107°. We also provide zoomed-in versions of the sharpness (d), training loss (e), and sys-
tem trajectory (f).
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