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Summary
Equivariant Graph Neural Networks (EGNNs) excel at Multi-Agent Reinforcement Learn-

ing (MARL) problems by harnessing symmetries in observations, but struggle in real-world
environments where symmetries may be broken to varying degrees. We introduce Partially
Equivariant Graph Neural Networks (PEnGUiN), a novel architecture that learns to exploit
partial symmetries. PEnGUiN blends equivariant and non-equivariant updates via a learn-
able parameter, adapting to the degree and type of symmetry present and bridging the gap
between fully equivariant and non-equivariant models. In addition, we formalize types of par-
tial equivariance common to real-world environments (subgroup, feature-wise, subspace, and
approximate). Experiments on MARL benchmarks demonstrate PEnGUiN’s superior perfor-
mance and robustness compared to EGNNs and GNNs in asymmetric settings. PEnGUiN
learns where equivariance holds, improving applicability to real-world MARL problems.

Contribution(s)
1. We present the first generalization of Equivariant Graph Neural Networks (EGNN) to Par-

tial Equivariance with our novel neural network architecture Partially Equivariant Graph
Neural Networks (PEnGUiN). We show theoretically that PEnGUiN unifies fully equivari-
ant (EGNN) and non-equivariant (GNN) representations within a single architecture, con-
trolled by a learnable parameter called the symmetry score.
Context: PEnGUiN builds on EGNN (Satorras et al., 2021) and E2GN2 (McClellan et al.,
2024), and is designed to handle environments with asymmetries, unlike prior work that
primarily focuses on full equivariance.

2. We show the first Partially Equivariant Neural Network applied to Multi-Agent Reinforce-
ment Learning, leading to improved performance over GNNs and EGNNs in MARL.
Context: Prior work has applied equivariance to MARL (Pol et al., 2021; McClellan et al.,
2024), these approaches typically assume full equivariance.

3. We formally define and categorize several types of partial equivariance relevant to Multi-
Agent Reinforcement Learning (MARL), including subgroup equivariance, feature-wise
equivariance, subspace equivariance, and approximate equivariance.
Context: While specific instances of broken symmetries have been discussed (Chen et al.,
2023; Park et al., 2024), our work provides a unified and comprehensive categorization
tailored to MARL.

4. Through experiments on Multi-Particle Environments (MPE) and the highway-env bench-
mark, we empirically validate that PEnGUiN outperforms both EGNNs and standard GNNs
in MARL tasks with various types of asymmetries.
Context: None
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Abstract

Equivariant Graph Neural Networks (EGNNs) have emerged as a promising approach1
in Multi-Agent Reinforcement Learning (MARL), leveraging symmetry guarantees to2
greatly improve sample efficiency and generalization. However, real-world environ-3
ments often exhibit inherent asymmetries arising from factors such as external forces,4
measurement inaccuracies, or intrinsic system biases. This paper introduces Partially5
Equivariant Graph NeUral Networks (PEnGUiN), a novel architecture specifically de-6
signed to address these challenges. We formally identify and categorize various types of7
partial equivariance relevant to MARL, including subgroup equivariance, feature-wise8
equivariance, regional equivariance, and approximate equivariance. We theoretically9
demonstrate that PEnGUiN is capable of learning both fully equivariant (EGNN) and10
non-equivariant (GNN) representations within a unified framework. Through extensive11
experiments on a range of MARL problems incorporating various asymmetries, we em-12
pirically validate the efficacy of PEnGUiN. Our results consistently demonstrate that13
PEnGUiN outperforms both EGNNs and standard GNNs in asymmetric environments,14
highlighting their potential to improve the robustness and applicability of graph-based15
MARL algorithms in real-world scenarios.16

1 Introduction17

Multi-Agent Reinforcement Learning (MARL) presents significant challenges due to the com-18
plexities of agent interactions, non-stationary environments, and the need for efficient explo-19
ration and generalization. Recently, Equivariant Graph Neural Networks (EGNNs) (Satorras20
et al., 2021) have emerged as a promising approach in MARL, leveraging inherent symmetries21

Figure 1: An example of how EGNNs
can be advantageous in equivariant en-
vironments, and a liability when an en-
vironment has increased asymmetries.

in multi-agent systems to improve sample efficiency and gen-22
eralization performance (Pol et al., 2021; McClellan et al.,23
2024). By encoding equivariance to transformations like ro-24
tations and translations, EGNNs can achieve superior sam-25
ple efficiency and generalization, particularly in environments26
where geometric relationships are crucial.27

However, many real-world MARL scenarios do not exhibit28
perfect symmetry, and there are concerns that this architec-29
ture may be too restrictive in its assumptions. The real world30
is messy, and it is rare for something to be exactly rotationally31
equivariant. Factors such as external forces (e.g., wind, grav-32
ity), sensor biases, environmental constraints (e.g., obstacles,33
landmarks, safety zones), or heterogeneous agent capabilities34
introduce asymmetries that break the assumptions underlying35
fully equivariant models. Applying standard EGNNs in these36
partially symmetric environments can lead to suboptimal performance, as the imposed equivariance37
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constraints may not accurately reflect the underlying dynamics. Conversely, standard Graph Neural38
Networks (GNNs), which lack any inherent equivariance guarantees, may fail to exploit the symme-39
tries that do exist, leading to reduced sample efficiency and weaker generalization.40

This paper introduces Partially Equivariant Graph NeUral Networks (PEnGUiN), a novel architec-41
ture designed to address the challenges of learning in partially symmetric MARL environments.42
PEnGUiN provides a flexible and unified framework that seamlessly integrates both equivariant and43
non-equivariant representations within a single model. Unlike traditional approaches that either en-44
force full equivariance or disregard symmetries entirely, PEnGUiN learns to adaptively adjust its45
level of equivariance based on the input. This is achieved through a blending mechanism controlled46
by a learnable parameter that modulates the contribution of equivariant and non-equivariant updates47
within the network.48

Prior works have explored symmetry-breaking cases broadly under the label of “approximately49
equivariant” Wang et al. (2022c). This work introduces several more precise categories of partial50
symmetry that commonly emerge in MARL environments. This includes subgroup equivariance,51
regional equivariance, feature-wise equivariance, and general approximate equivariance. These52
categories are used to design partially equivariant experiments in the Multi-Particle Environments53
(MPE) (Lowe et al., 2017) and Highway-env Leurent (2018). Experiments show PEnGUiN is able to54
modulate a ’symmetry score’ to adapt to these partially equivariant scenarios. On these benchmarks,55
PEnGUiN consistently outperforms both EGNNs and standard GNNs.56

2 Related Works57

Research in equivariant neural networks has explored various architectures and applications, aiming58
to improve learning and generalization by leveraging symmetries. Equivariant Graph Neural Net-59
works (EGNNs) (Satorras et al., 2021), SEGNNs (Brandstetter et al., 2022), and E3NNs (Geiger60
& Smidt, 2022) are prominent examples, designed to be equivariant to rotations, translations, and61
reflections. PEnGUiN builds on the EGNN architecture (Satorras et al., 2021), but extends its capa-62
bilities to handle partial equivariance. (Finzi et al., 2021b) introduced Equivariant MLPs, which are63
versatile but computationally expensive. Within reinforcement learning, van der Pol et al. (2020)64
and Pol et al. (2021) established theoretical frameworks for equivariant Markov Decision Processes65
(MDPs) and Multi-Agent MDPs (MMDPs), respectively, focusing on fully equivariant settings with66
simple dynamics. McClellan et al. (2024) introduced E2GN2 to address exploration challenges in67
EGNN-based MARL. Chen & Zhang (2024) employed SEGNNs for cooperative MARL, though68
SEGNNs often have slower training times. Yu et al. (2024) explored adding a symmetry-based loss69
term, showing limited performance gains. Wang et al. (2022b) investigated rotation equivariance70
specifically for robotic manipulation with image-based observations. These works primarily ad-71
dress full equivariance, or focus on specific tasks or symmetry types, contrasting with PEnGUiN’s72
general and learnable approach to partial equivariance.73

Research on partial or approximate equivariance includes group CNNs for image processing (Wang74
et al., 2022c; 2024; McNeela, 2024; Samudre et al., 2024; Ouderaa et al., 2022; Park et al., 2024)75
and combining MLPs with equivariant components (Finzi et al., 2021a), which are distinct from76
our graph-based approach. Studies (Wang et al., 2022a; 2023; Petrache & Trivedi) have analyzed77
the effectiveness of equivariant models in asymmetric scenarios, motivating models like PEnGUiN78
that can learn equivariance quantities. In the realm of GNNs, Hofgard et al. (2024) concurrently79
introduce a relaxed equivariant GNN; however, their model is built upon spherical harmonic repre-80
sentations (which increases implementation and computation complexity), unlike PEnGUiN, which81
is based on EGNNs and allows a smooth transition between fully equivariant and standard GNN82
behavior. Huang et al. (2023) studies GNN permutation equivariance, not O(n) equivariance. Chen83
et al. (2023) developed subgroup equivariant GNNs tailored for robotics, specifically to ignore grav-84
ity, limiting their applicability compared to PEnGUiN’s general framework.85
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(a) Graph at layer l (b) Node Feature Update hl+1
i (c) Node Coordinate Update ul+1

i

Figure 2: Diagram of an individual PEnGUiN layer. The colored boxes represent vectors, where rounded
corners indicate the preservation of equivariance and square corners indicate non-equivariance. An example
graph is provided in (a), showing coordinates ui and features hi corresponding to each node vi. The update
for node vi (blue) is split into feature and coordinate updates, shown in (b) and (c) respectively. Within each
subfigure is a non-equivariant branch (top) and an equivariant branch (bottom), whose outputs are blended via
convex combination (red) governed by the symmetry score α.

3 Background86

3.1 Multi-Agent Reinforcement Learning87

Multi-Agent Reinforcement Learning (MARL) extends the principles of Reinforcement Learning88
(RL) to scenarios involving multiple interacting agents within a shared environment. In MARL,89
each agent aims to learn an optimal policy πi that maximizes its own expected cumulative re-90
ward Ri, which is influenced by the actions of other agents and the environment dynamics. For-91
mally, at each timestep t, each agent i observes a local state sti, takes an action ati according92
to its policy πi(a

t
i|sti), and receives a reward rti = Ri(s

t, at), where st = (st1, ..., s
t
N ) and93

at = (at1, ..., a
t
N ) represent the joint state and action spaces of all N agents (Littman, 1994). The94

goal of each agent i is to learn a policy πi(ai|s) that maximizes its expected return: J(πi) =95
Eπ1, ..., πN

[∑T
t=0 γ

tRi(st, a
1
t , ..., a

N
t )

]
where T is the time horizon, γ ∈ (0, 1] is a discount fac-96

tor, and ajt ∼ πj(·|st).97

3.2 Equivariance98

Equivariance describes how functions behave under transformations. In the context of machine99
learning, especially for tasks involving geometric data or physical systems, leveraging equivariance100
can significantly enhance sample efficiency, generalization, and robustness (van der Pol et al., 2020).101
A function f is said to be equivariant to a group of transformations G if transforming the input x by102
a group element g ∈ G results in a predictable transformation of the output f(x). Formally, if Tg103
represents a transformation of the input space and Lg represents a transformation of the output space,104
equivariance is defined as:f(Tgx) = Lgf(x), ∀g ∈ G,∀x. Related to equivaraince is invariance,105
where the output remains unchanged under the input transformation, i.e., f(Tgx) = f(x).106

4 Partially Equivariant Graph Neural Networks107

To address the challenges of learning in partially symmetric environments, we introduce Partially108
Equivariant Graph Neural Networks (PEnGUiN). PEnGUiN is a novel graph neural network archi-109
tecture designed to seamlessly incorporate varying degrees of equivariance, ranging from full O(n)110
equivariance, as in E2GN2s, to non-equivariant behavior, akin to standard GNNs. This flexibility111
is achieved through a blending mechanism controlled by a parameter α, allowing the network to112
adapt to and learn the specific symmetries present in the data. PEnGUiN follows a similar message-113
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passing paradigm as a standard GNN with message computation, message aggregation, and node114
feature updates. The forward pass of a single layer l in PEnGUiN, shown in Figure 2, is defined by115
the following equations:116

Table 1: PEnGUiN Update Equations for layer l

Message Computation: Equivariant: ml
ij = ϕm

(
hl
i,h

l
j , ∥ul

i − ul
j∥2

)
Non-equivariant: nl

ij = ϕn

(
hl
i,h

l
j ,u

l
i,u

l
j

)
Message Aggregation: ml

i = α
∑

j ̸=i m
l
ij + (1− α)

∑
j ̸=i n

l
ij

Equivariant Coordinate Update: ul
i,eq = ul

iϕe(m
l
i) +

∑
j ̸=i

(
ul
i − ul

j

)
ϕu

(
ml

ij

)
Feature Update: hl+1

i ,up
i = ϕh

(
hl
i,m

l
i

)
Partially Equivariant Coordinate
Update:

ul+1
i = αul

i,eq + (1− α)up
i

Each node i contains two vectors of information: the node embeddings hi ∈ Rh and the coordinate117
embeddings ui ∈ Rn. The node embeddings are invariant to O(n). Inputs for layer 0 for hi may118
be information about the node itself, such as node type, ID, or status. The coordinate embeddings119
for node i are equivariant to O(n), and inputs will typically consist of positional values (see the120
appendix for a discussion on how to incorporate velocity and angles).121

A layer is updated by first computing the non-equivariant nij ∈ Rm and equivariant mij ∈ Rm122
messages between each pair of nodes i and j. Each node then aggregates these messages across123
all neighboring nodes. At this stage, the aggregated non-equivariant and equivariant messages are124
mixed together. Finally, the updated feature node vector hl+1

i for layer l+1 is computed by passing125
the aggregated message through an MLP ϕh : Rh+m 7→ Rh+n. This update includes a skip con-126
nection to the previous feature node vector. Note that the output of ϕh is split into hi ∈ Rm and127
up
i ∈ Rn (the latter is used in the Partially Equivariant Coordinate update).128

The equivariant coordinate vector is updated using the learnable functions (typically MLPs) ϕe :129
Rm 7→ R and ϕu : Rm 7→ R. This update in table 1 is guaranteed to be equivariant to O(n) Satorras130
et al. (2021). Finally, in the Partially Equivariant update, the equivariant term ui,eq is mixed with a131
non-equivariant component up

i ∈ Rn.132

A key element of PEnGUiN is the addition of the term α ∈ (0, 1) ⊂ R to quantify the amount of133
equivariance in the system. For convenience, we will refer to α as the "symmetry score". The value134
of the symmetry score has the following important implications:135

Theorem 1 Given a Partially Equivariant Graph Neural Network Layer as defined in table 1, when136
α = 1 the Partial Equivariant Layer is exactly equivalent to an E2GN2 layer. (see Appendix A for137
proof)138

An important implication of this theorem is when α = 1 PEnGUiN is exactly equivariant to rotations139
(the group O(n)). This theorem establishes that PEnGUiN embeds EGNN as a special case. When140
α = 1, PEnGUiN fully exploits the benefits of the equivariant inductive bias, such as improved141
sample efficiency and generalization in environments with symmetric observations.142

Theorem 2 Given a Partially Equivariant Graph Neural Network as defined in table 1, when α = 0143
the Partial Equivariant Graph Neural Network is equivalent to a GNN (see Appendix A for proof)144

This theorem highlights PEnGUiN’s ability to operate in asymmetric settings. As α approaches145
0, the network’s reliance on equivariant updates diminishes, allowing it to learn arbitrary, non-146
equivariant relationships.147

In practice, the amount of equivariance will rarely be a simple constant. Equivariance may be148
restricted to a certain region, or a subset of features. Thus, we estimate α using an MLP as a149
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(a) External Forces (b) Fixed Obstacle (c) Safety Region (d) Sensor Bias

Figure 3: Examples of the types of partial equivariance described in Table 2, with respect to a 90-degree
clockwise rotation about the origin.

function of the input features for each node: ϕα(h
0
i ,x

0
i ) = α. We will refer to this network as150

the Equivariance Estimator (EE). This allows α to be learned as a spatially and entity-dependent151
function, enabling the network to adaptively modulate equivariance within the network.152

5 Categories of Partial Equivariance153

Previous works have noted that functions may have some error in equivariance (Wang et al., 2022c).154
Others have noted that functions may be equivariant to subgroups instead of an entire group (Chen155
et al., 2023). In this work, we present a new formalism to unify these asymmetries. We refer to156
partial equivariance as any situation with asymmetries.157

We divide partial equivariance into four categories: subgroup equivariance, feature-wise equivari-158
ance, regional equivariance, and approximate equivariance. Approximate equivariance and subgroup159
equivariance were previously defined in (Wang et al., 2022c) and (Chen et al., 2023) respectively.160
Recall that an equivariant function f will result in the following equality: ∥f(Tgx)− Lgf(x)∥ = 0161
where G is a group with a representation tranformation Tg acting on the input space and a represen-162
tation Lg acting on the output space.

Table 2: Types of Partial Equivariance

Type Name Equation Examples

Relaxed/Approximate
Equivariance

∥f(Tgx)− Lgf(x))∥ ≤ ϵ External forces, nonlinear
dynamics, sensor errors.

Subgroup Equivariance f(Thx) = Lhf(x), ∀h ∈ H ⊆ G Ignoring the gravity vector.

Feature-Wise Equivari-
ance

f(Tgx1, x2) = Lgf(x1, x2) Fixed Obstacles.

Regional Equivariance ∥f(Tgx)− Lgf(x)∥ = ϵ(x) Safety regions.

163

Definition 5.1 (Approximate Equivariance) Let f : X → Y be a function The function f is ap-164
proximately equivariant if there exists a small constant ϵ > 0 such that: ∥f(Tgx) − Lgf(x)∥ ≤165
ϵ, ∀x ∈ X , ∀g ∈ G166

Approximate equivariance is the most general category of Partial Equivariance. Approximate equiv-167
ariance means that the function is almost equivariant, but there might be small deviations from168
perfect equivariance. This is a relaxation of the strict equality required for perfect equivariance.169
Multi-agent systems with unpredictable wind, nonlinear dynamics, or sensor errors may result in170
approximate equivariance.171

Definition 5.2 (Subgroup Equivariance) A function f : X → Y is subgroup equivariant with172
respect to a subgroup H ⊆ G if, for all h ∈ H and all x ∈ X the following is true f(Thx) = Lhf(x)173

As an example of subgroup equivariance, consider a quadcopter operating in 3d space. Previous174
works have shown this will not be equivariant in E(3), specifically due to the effects of the gravity175
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vector (i.e. rotating in the x-z plane affects the dynamics). Instead, (Chen et al., 2023) only enforced176
equivariance to the group orthogonal to the gravity vector, that is the subgroup of E(3) that only177
includes rotations orthogonal to gravity.178

Definition 5.3 (Feature-wise equivariance) Let x = (x1, x2, ..., xn) be an input vector where each179
xi represents a different feature or subset of features. A function f is feature-wise equivariant if:180
f(Tgx1, x2, ..., xn) = Lgf1(x), f2(x), ..., fm(x) Where f(x) = (f1(x), f2(x), ..., fm(x)).181

Feature-wise equivariance applies when only part of the input is subject to a symmetry transforma-182
tion. The function is equivariant with respect to that part of the input, while other parts might be183
invariant or behave in a non-equivariant way. This allows us to handle situations where some entities184
of the environment are symmetric, and others are not.185

Definition 5.4 (Regional Equivariance) Let f : X → Y be a function, The function f is regional186
equivariant if there exists a subspace S ⊂ X such that for all x ∈ S:187

ϵ(x) = ∥f(Tgx)− Lgf(x)∥, ∀g ∈ G

where ϵ(x) > 0 if x ∈ S, and ϵ(x) = 0 if x /∈ S188

Regional equivariance means that the function exhibits perfect equivariance only within a specific189
region or regional of the input space. Outside this region, the equivariance property might not hold,190
or it might be violated to varying degrees.191

6 Experiments192

This section presents an empirical evaluation of Partially Equivariant Graph Neural Networks (PEn-193
GUiN) to address the following key questions: (1) Does PEnGUiN offer performance improvements194
over standard Equivariant Graph Neural Network structures (i.e. EGNN, E2GN2)? (2) Is PEnGUiN195
capable of effectively identifying and leveraging symmetries where they exist while accommodating196
asymmetries where necessary? (3) Does the Equivariance Estimator component of PEnGUiN cor-197
rectly estimate Partial Equivariance? To investigate these questions, we conducted experiments on198
the Multi-Particle Environments (MPE) benchmark suite (Lowe et al., 2017) and the more com-199
plex highway-env benchmark Leurent (2018). We compared the performance of PEnGUiN against200
several baselines using the Proximal Policy Optimization (PPO) (Schulman et al., 2017) algorithm201
implementation from RLlib (Liang et al., 2018).202

6.1 Multi-Particle Environment (MPE)203

We utilized two representative scenarios from the MPE benchmark (Lowe et al., 2017). Simple Tag:204
a classic predator-prey environment where multiple pursuer agents, controlled by the RL policy, aim205
to collide with a more nimble evader agent controlled by a heuristic policy to evade capture. The206
environment also includes static landmark entities. Simple Spread: a cooperative environment in207
which three agents are tasked with positioning themselves over three landmarks. Agents receive a208
dense reward for being close to landmarks and are penalized for collisions with each other. These209
MPE scenarios provide a simplified setting to initially assess the capabilities of PEnGUiN in en-210
vironments with varying degrees of symmetry. To systematically evaluate PEnGUiN’s ability to211
handle partial equivariance, we introduced three distinct types of asymmetries into the MPE scenar-212
ios, corresponding to the categories previously defined:213

1. Sensor Bias (Approximate Equivariance): We introduced a constant positional bias to the214
observations of a subset of entities. In simple tag, this bias was applied to the observed positions215
of landmarks and the evader agent. In simple spread, the bias was applied to the landmark216
observations. Critically, this bias was consistently applied to entities not belonging to the agent’s217
team, mimicking biased sensor measurements of external entities.218
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Figure 4: Learning curves on MPE simple spread (Top) and simple tag (Bottom) environments under ‘None’,
‘Bias’, and ‘Safety‘ asymmetry conditions. Results are averaged over 10 seeds with shaded regions indicating
standard error. PEnGUiN shows consistent performance, especially in environments with feature-wise and
regional equivariance.

2. Safety Region (Regional Equivariance): We implemented a safety region by imposing a nega-219
tive reward penalty whenever an agent entered the upper-right quadrant of the environment. This220
creates a spatially defined asymmetry.221

3. Decoy (Feature-wise Equivariance): To test feature-wise equivariance, we added a "decoy"222
entity to the environment. This decoy visually resembled the agents’ objective (evader in simple223
tag, landmarks in simple spread) but provided no reward upon interaction. The true objective224
remained static, while the decoy moved randomly, introducing an asymmetry based on object225
identity and reward relevance.226

We employed the RLLib PPO agent for training all neural network architectures. We compared227
PEnGUiN against the following baselines. EGNN: Equivariant Graph Neural Network Satorras228
et al. (2021), representing a fully equivariant baseline. E2GN2: An unbiased version of EGNNs,229
with improved MARL performances (McClellan et al., 2024). GNN: A standard Graph Neural230
Network, serving as a non-equivariant baseline.231

For PEnGUiN, the α parameter was implemented as a Multi-Layer Perceptron (MLP) that takes as232
input the node’s position ul

i and node type. This allows α to be learned as a spatially and entity-233
dependent function, enabling the network to adaptively modulate equivariance.234

6.1.1 Results and Discussion (MPE)235

Figure 4 presents the learning curves for PEnGUiN, EGNN, E2GN2, and GNN across the stan-236
dard MPE scenarios and their partially equivariant modifications. In the fully symmetric "None"237
condition, EGNN and E2GN2 achieve strong performance, validating the benefits of equivariance238
in symmetric environments. However, their performance significantly degrades in the "Bias" and239
"Safety" scenarios, demonstrating their sensitivity to symmetry breaking. In contrast, PEnGUiN240
consistently maintains high performance across all asymmetry conditions, showcasing its robustness241
and adaptability to partial equivariance. While the standard GNN is less affected by the introduced242
biases, it consistently underperforms PEnGUiN and equivariant models in symmetric settings, and243
does not reach the peak performance of PEnGUiN in asymmetric ones. In the "Decoy" environment,244
PEnGUiN also exhibits superior performance, indicating its effectiveness in handling feature-wise245
asymmetries.246
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6.2 PEnGUiN Quantifying Partial Equivariance247

Next, we want to explore how well PEnGUiN identifies Partial Equivariance. In theory, we expect248
the symmetry score (α) to increase as certain regions or features remain equivariant. As asymme-249
tries are introduced into the scenario, the symmetry score should decrease in value where those250
asymmetries are present.251

Figure 5: Descriptive statistics of α over training for
simple tag. Each statistic is averaged over all 10 seeds
for training.

During training we tracked the average, min-252
imum, and maximum values of the symmetry253
score. We show these results for the simple tag254
environment in figure 5. For the scenario with255
no asymmetries, the symmetry score increases256
quickly. PEnGUiN is able to learn that the257
equivariance applies across the scenario. How-258
ever, it does not reach the exact optimal sym-259
metry score, which would be 1 for this scenario.260
For the safety and decoy scenarios, we note that261
the minimum value of α decreases rapidly. It is262
important to note that the average value seems263
to stabilize rather quickly, so it appears that264
learning for the symmetry score occurs primar-265
ily in the early stages of training.266

To further investigate PEnGUiN’s learned be-267
havior, we visualized the equivariance estima-268
tor output in the "Safety Region" scenario (Figure 6).269

Figure 6: Left: the ’Safety Region’ of the simple tag
scenario. Right: visualization of learned α values for
PEnGUiN in the "Safety Region" scenario.

The heatmap shows the output of the equivari-270
ance estimator as a function of agent position271
(X and Y coordinates). Lower α values (red)272
indicate reduced equivariance, while higher α273
values (blue) represent stronger equivariance.274
PEnGUiN learns to reduce equivariance in the275
designated safety region (upper-right quadrant),276
effectively adapting to the regional asymmetry.277

Figure 6 reveals that PEnGUiN indeed learns to278
modulate equivariance spatially. The heatmap279
shows lower α values concentrated in the280
upper-right quadrant, corresponding to the281
safety region. This suggests that PEnGUiN suc-282

cessfully identifies the region where equivariance is broken and reduces its reliance on equivariant283
updates in that area, while maintaining higher equivariance in the symmetric regions of the environ-284
ment.285

Figure 7: An example of us-
ing domain knowledge to hand-
design α leading to improved
learing

Finally, we experiment with using a hand-designed value for α. If286
an engineer can identify the symmetries and asymmetries in a sce-287
nario, they may encode that into the neural network, improving the288
inductive bias of the model. For this experiment, we use the simple289
tag safety environment. We set α = 0 when x > 0 (i.e. where290
the safety region violates equivariance and then set α = 1 for the291
remaining locations. In figure 7, we see the results of this simple292
experiment. Hand designing α, in this case, does indeed seem to293
improve sample efficiency. This may not always be the case, there294
are many environments where hand designing α may be nontrivial,295
especially when one considers that α is used for all layers, and the296
optimal α may depend on the layer.297
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6.3 Experiments on Highway Environment298

6.3.1 Environment Setup299

To assess PEnGUiN’s performance in more complex and realistic300
scenarios, we evaluated it on the highway-env benchmark Leurent (2018), a suite of environments301
for autonomous driving. We focused on two challenging environments: Racetrack and Roundabout.302
Racetrack: In this environment, the agent must navigate a closed racetrack, following the track’s303
curvature while maintaining speed and avoiding collisions with other vehicles. Roundabout: This304
scenario requires agents to navigate a roundabout intersection, performing lane changes and speed305
adjustments to efficiently pass through the roundabout while avoiding collisions.306

Figure 8: Vizualization of roundabout and racetrack
scenario

These environments utilize a more sophisti-307
cated bicycle dynamics model for vehicle mo-308
tion, introducing non-linear dynamics and re-309
quiring precise control over steering and throt-310
tle actions. Furthermore, the constraint of stay-311
ing within the road boundaries and lanes nat-312
urally introduces a form of regional equivari-313
ance, as symmetry is broken at the road edges.314

We maintained consistent implementation de-315
tails with the MPE experiments, using RL-316
Lib PPO and comparing PEnGUiN against the317
same set of baselines (EGNN, E2GN2, and GNN).318

6.3.2 Results and Discussion (highway-env)319

Figure 9 presents the learning curves for the highway-env racetrack and roundabout scenarios.320

Figure 9: Learning curves on highway-env racetrack and roundabout environments. Results are averaged
over multiple seeds with shaded regions indicating standard error. PEnGUiN consistently outperforms EGNN,
E2GN2, and GNN, demonstrating its effectiveness in more complex environments with non-linear dynamics
and regional constraints.

The results in Figure 9 demonstrate that PEnGUiN consistently outperforms all baselines in both321
highway-env scenarios. PEnGUiN achieves higher rewards and exhibits faster convergence com-322
pared to EGNN, E2GN2, and GNN. This indicates that PEnGUiN’s ability to adapt to partial equiv-323
ariance is beneficial even in environments with more complex, non-linear dynamics and regional324
constraints, where full equivariance might be a suboptimal inductive bias.325

7 Conclusion326

This paper introduced Partially Equivariant Graph Neural Networks (PEnGUiN), a novel architec-327
ture for Multi-Agent Reinforcement Learning (MARL) that addresses the limitations of existing328
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fully equivariant models in real-world, partially symmetric environments. Unlike traditional Equiv-329
ariant Graph Neural Networks (EGNNs) that assume full symmetry, PEnGUiN learns to blend equiv-330
ariant and non-equivariant updates, controlled by a learnable parameter. This allows it to adapt to331
various types of partial equivariance, including subgroup, feature-wise, subspace, and approximate332
equivariance, which we formally defined and categorized.333

We theoretically demonstrated that PEnGUiN encompasses both fully equivariant (EGNN) and334
non-equivariant (GNN) representations as special cases, providing a unified and flexible frame-335
work. Extensive experiments on modified Multi-Particle Environments (MPE) and the more com-336
plex highway-env benchmark showed that PEnGUiN consistently outperforms both EGNNs and337
standard GNNs in scenarios with various asymmetries, demonstrating improved sample efficiency338
and robustness. Furthermore, visualizations of the Equivariance Estimator explored PEnGUiN’s339
ability to identify and exploit regions and features where equivariance holds and where it is violated.340
PEnGUiN expands the applicability of equivariant graph neural networks to real-world MARL by341
handling partial symmetries, common in scenarios like robotics, autonomous driving, and multi-342
agent systems with sensor biases or external forces. By learning to navigate the complexities of343
partial symmetries, PEnGUiN represents a step towards realizing safe and dependable multi-agent344
robotic systems in the real world.345

A Appendix A: Proofs346

A.1 Proof PEnGUiN embeds an E2GN2347

Setting α = 1 in the PEnGUiN equations directly yields the EGNN equations. For clarity we will
rewrite the partially equivariant node and coordinate updates and how it changes when α = 1:

ml
i = α

∑
j ̸=i

ml
ij + (1− α)

∑
j ̸=i

nl
ij = α

∑
j ̸=i

ml
ij

ul+1
i = αul

i,eq + (1− α)up
i = ul

i,eq

Thus the update equations become:

ul
i,eq = ul

iϕe(m
l
i) +

∑
j ̸=i

(
ul
i − ul

j

)
ϕu

(
ml

ij

)
)

ml
i =

∑
j ̸=i

ml
ij hl+1

i = ϕh

(
hl
i,m

l
i

)
These are precisely the update equations for an EGNN layer.348

A.2 Proof of GNN equivalence349

Proof PEnGUiN is equivalent to a GNN when α = 0. Recall the node embeddings hi ∈ Rh and
the coordinate embeddings ui ∈ Rn For clarity we will rewrite the partially equivariant node and
coordinate updates (the equations with α), and how it changes when α = 0:

ml
i = α

∑
j ̸=i

ml
ij + (1− α)

∑
j ̸=i

nl
ij =

∑
j ̸=i

nl
ij

ul+1
i = αul

i,eq + (1− α)up
i = up

i

Thus far this means that our output hi will be purely using the GNN update message nij . Next350
we will note that we can rewrite hl+1

i ,up
i as hl

i,0:h,h
l
i,h:h+n (essentially this is simply renaming351

notation. In the main text, we used up
i to aid in clarity). We use this renaming to represent that352

10



PEnGUiN: Partially Equivariant Graph NeUral Networks for Sample Efficient MARL

hl
i,0:h contains the first h elements of the output from ϕh, and hl

i,h:h+n is the remaining n elements.353
Thus the final node update for this layer becomes: hl

i,0:h,h
l
i,h:h+n = ϕh

(
hl
i,m

l
i

)
354

To ensure this is equivalent to a GNN, we now look at the next layer in the network. We now see355
that the next layer becomes:356

nij = ϕn

(
hl+1
i ,hl+1

j ,ul+1
i ,ul+1

j

)
= ϕn

(
hl+1
i,0:L−2,h

l+1
j,0:L−2,h

l+1
j,L−2:L,h

l+1
j,L−2:L

)
This is equivalent to a standard GNN messgae update which is: ϕn (hi, vhj) The only difference is357
that we explicitely separate (then later concatenate) the last n elements of h The remainder of the358
equations of PEnGUiN for layer l + 1 (with α = 0) will be: ml+2

i =
∑

j ̸=i n
l+1
ij , with the final359

node update: hl+2
i,0:h,h

l
i,h:h+n = ϕh

(
hl+1
i ,ml+1

i

)
which is equivalent to a GNN360
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Supplementary Materials451

The following content was not necessarily subject to peer review.452
453

B Additional Training Details454

Hyperparameters value

train batch size 2000
mini-batch size 1000

PPO clip 0.2
learning rate 30e-5

num SGD iterations 10
gamma 0.99
lambda 0.95

Table 3: hyperparameters for MPE

Hyperparameters value

train batch size EpisodeLength*16
mini-batch size EpisodeLength*4

PPO clip 0.2
learning rate 45e-5

num SGD iterations 10
gamma 0.99
lambda 0.95

Table 4: PPO Common Hyperparameters for Highway-env

All MLPs in the GNNs use 2 layers with a width of 32. For all GNN structures we use separate455
networks for the policy and value functions.456

Graph Structure and Inputs The graph structure for MPE environments is set as a complete graph.457
For MPE environments the input invariant feature for each node h0

i is the id (pursuer, evader, or458
landmark). For MPE there is also a velocity feature, which we incoporate following the procedure459
described in (Satorras et al., 2021). For the Highway-env, we incorporated the460

Graph Outputs for Value function and Policy We followed the design choices in (McClellan461
et al., 2024) for the action space and value function design: the value function output comes from462
the invariant component of the agent’s node of final layer of the EGNN/E2GN2. For MPE the actions463
are (partially) equivariant, so we use the outputs of the coordinate embeddings. For highway env,464
the actions are (partially) invariant, so we use the outputs of hi for the policy output465
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