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ABSTRACT

Long video understanding poses a fundamental challenge for large video-language
models (LVLMs) due to the overwhelming number of frames and the risk of losing
essential context through naive downsampling. Inspired by the way humans watch
videos on mobile phones, constantly zooming in on frames of interest, we propose
ZoomV, a query-aware temporal zoom-in framework designed for efficient and
accurate long video understanding. Specifically, ZoomV operates in three stages:
(1) Temporal interests grounding: guided by the query, ZoomV retrieves relevant
events and their associated temporal windows as candidates. (2) Event interests
spotlighting: within pools of candidate windows, each window is scored through
the model itself reflection and filtered accordingly, where higher-confidence win-
dows are more representative. (3) Compact representation: the selected events are
encoded and temporally downsampled to preserve critical semantics while signifi-
cantly reducing redundancy. Extensive experiments demonstrate that ZoomV sub-
stantially outperforms prior video-agent–style approaches. On temporal ground-
ing, ZoomV unlocks the latent capability of LVLMs, achieving an 11.8% mIoU
gain on Charades-STA. Remarkably, ZoomV further boosts accuracy on LVBench
by 9.7%, underscoring its effectiveness on long-video benchmarks.

1 INTRODUCTION

Long-form video understanding, involving frame sequences that can span minutes to hours, presents
a fundamental challenge in computer vision. While large video-language models (LVLMs) have
shown impressive performance on video-language tasks (Zhang et al., 2024f; Li et al., 2024b;
Caba Heilbron et al., 2015; Yu et al., 2019; Lei et al., 2021; Wu et al., 2024), they still struggle
with long videos. On one hand, feeding all frames into the model leads to a rapid increase in com-
putational cost and memory usage, making naive full-frame processing infeasible. On the other
hand, aggressive temporal downsampling risks discarding critical context, often resulting in severe
visual hallucinations. For instance, the advanced LLaVA-Video uniformly samples only 64 frames
regardless of video duration, leading to a significant loss of detailed temporal information, especially
in hour-long videos (Zhang et al., 2024f). Therefore, it is crucial to identify a sufficient number of
the most relevant frames in a prompt-aware manner for reliable long-video understanding.

Existing attempts to scale LVLMs to long videos can be mainly grouped into two directions. The first
is token sparsification, reducing sequence length by discarding a subset of visual tokens or patches
(Li et al., 2023b; Zhang et al., 2024d; Ma et al., 2025; Zhang et al., 2025). While this improves
computational efficiency, it inevitably compromises the holistic integrity of frames, and often leads
to noticeable performance degradation. The second is video-agent approaches, which typically
assemble a pipeline of heterogeneous models, e.g., (Wang et al., 2024d; 2025b) using EVA-CLIP
(Sun et al., 2023) for retrieval, BLIP (Li et al., 2022) for captioning, and GPT-4 (Achiam et al.,
2023) for reasoning. Although such modular systems alleviate sequence-length constraints, their
reliance on disparate models makes them inefficient, resource-intensive, and non-end-to-end.

To address the limitations of both paradigms, we take inspiration from human cognitive strategies
(Sweller, 1994; Zacks & Swallow, 2007; Wu & Xie, 2024; Shen et al., 2024a), particularly the way
humans selectively zoom in on relevant visual content, and introduce our method dubbed ZoomV,
a query-aware temporal zoom-in framework for efficient long-video understanding. As illustrated
in Figure 1 (b), humans review videos broadly to find relevant clues, then gradually focus on more
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Relevant events missed! 

In this video, what do the friends do after 
receiving food from the waiter?

(a) Uniform DownSample 
(e.g., LLaVA-Video)

Zoom in! 

Can not answer.
(b) Human-like Search

(e.g., Our ZoomV)

...

Query:

Sit down and
eat food. 

Figure 1: Illustration of human-like interaction for long-video understanding. It divides hour-
long videos into manageable sub-events and searches within query-aware segments.

specific sub-events for detailed inspection. Importantly, when the necessary information is not im-
mediately clear, humans may revisit multiple candidate sub-events iteratively, grounding and vali-
dating their relevance until they find satisfactory answers. Therefore, ZoomV imitates the behavior
and progressively divides the video timeline into coarse-grained events and finer-grained sub-events,
enabling efficient human-like search. Specifically, ZoomV unfolds in three progressive stages.

In the first stage, to identify subtle temporal details within promising sub-events accurately, we first
need to ground temporal interest. Previous LVLMs (Li et al., 2023a; Zhang et al., 2024f) have in-
corporated temporal instructions to improve understanding, yet they do not effectively align visual
and temporal cues. In contrast, our ZoomV employs a TemporaLink that explicitly embeds tem-
poral information into visual frame representations, enabling LVLMs to precisely associate visual
content with corresponding timestamps. Additionally, to alleviate quantization errors introduced
by frame sampling, we optimize the absolute timestamp representation, stabilizing temporal learn-
ing and enhancing grounding performance. The model retrieves query-relevant events and their
associated temporal windows as candidate regions along the video timeline, providing a coarse yet
comprehensive coverage of potentially relevant content.

In the second stage, event interests spotlighting, each candidate window is evaluated through the
model’s self-reflection mechanism dubbed TemporaLight, which assigns confidence scores to spot-
light the most representative windows while filtering out less relevant ones. As humans hierarchi-
cally search through time, they continuously reflect on whether a specific sub-event warrants deeper
inspection. Similarly, we leverage the self-reflection capability of LVLMs to guide the search pro-
cess. Recent studies (Lin et al., 2022; Kadavath et al., 2022; Zheng et al., 2023; Zhang et al.,
2024b) have demonstrated that LLMs effectively assess their prediction confidence through addi-
tional multiple-choice or yes/no questions. Inspired by these findings, we first identify that LVLMs
inherently possess a similar self-reflection capability—“they know what they do not know.” This
selective scoring process ensures that only high-confidence sub-events proceed to the next stage.

In the third stage, compact representation, the spotlighted events are encoded and temporally down-
sampled into condensed representations that preserve critical semantics while substantially reducing
redundancy. Together, these stages enable ZoomV to progressively zoom in from coarse-grained
temporal coverage to fine-grained and compact representations, achieving efficient and accurate
long-video understanding. Extensive experiments demonstrate its superior performance across var-
ious challenging benchmarks, including VideoMME (Fu et al., 2024), MLVU (Zhou et al., 2024),
and LongVideoBench (Wu et al., 2024). Notably, on the highly challenging LVBench dataset with
hour-long videos (Wang et al., 2024c), ZoomV achieves new state-of-the-art accuracy, substan-
tially surpassing previous methods. ZoomV also substantially outperforms existing video grounding
methods on temporal grounding tasks, such as Charades-STA (Gao et al., 2017), ActivityNet Cap-
tions (Caba Heilbron et al., 2015), and ReXTime (Chen et al., 2024a). We conduct comprehensive
ablation studies and reveal the sources of improvement. In summary, our contributions are threefold:

• We reveal that LVLMs inherently exhibit strong self-reflection abilities, previously studied
mainly in LLMs, which enable reflection-guided prioritization of temporal search.
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• We propose ZoomV, a query-aware hierarchical temporal zoom-in framework that mimics
human coarse-to-fine exploration, significantly advancing long-video understanding. For
example, ZoomV improves accuracy on LVBench from 41.8% to 51.5%.

• We demonstrate that LVLMs possess latent temporal grounding capabilities, which can be
effectively unlocked through our proposed TemporaLink. Despite its simplicity, this design
achieves an 11.8% mIoU gain over state-of-the-art temporal grounding models.

2 RELATED WORK

2.1 LONG VIDEO UNDERSTANDING

Understanding lengthy videos for LVLMs is challenging due to the need to store and extract infor-
mation effectively from numerous frames. One common line involves using language as a bridge
to summarize videos into concise captions (Islam et al., 2024; Zhang et al., 2023a), resulting in the
omission of vital visual signals. Another widely studied line involves memory-based methods for
compressing video features into a limited memory bank, which is achieved by continually updating
the memory bank during visual encoding (Song et al., 2024). Memory bank has also been applied to
real-time streaming video understanding, potentially enabling an unlimited length of frames while
maintaining a constant space footprint (Zhang et al., 2024a). A major drawback of these methods is
their oversight of video duration and information density, particularly when utilizing a fixed space
for a memory bank. For instance, Flash-VStream compresses both brief 10-second clips and hour-
long movies into the same 681 tokens (Zhang et al., 2024a). Besides, these black box methods lack
interpretability, as it is hard to verify whether pertinent details are accurately retrieved for reason-
ing. Another line of work reduces video tokens through visual compression, including spatial token
selection (Zhang et al., 2025), temporal frame selection (Yu et al., 2025; Tang et al., 2025), and joint
spatio-temporal selection (Shen et al., 2024b). These methods typically serve as pre-processing
strategies before LLM inference. In contrast, ZoomV leverages the inherent temporal grounding
ability, enabling task-aware and hierarchical selection.

2.2 TEMPORAL GROUNDING

Temporal Grounding (TG) localizes video segments relevant to textual queries Gao et al. (2017);
Hendricks et al. (2018); Lei et al. (2021) or questions Chen et al. (2024a); Xiao et al. (2024). Cur-
rent LVLM-based approaches typically rely on heavy customizations to handle continuous time,
such as specialized time tokens Wang et al. (2024a); Guo et al. (2024); Ren et al. (2024), auxiliary
temporal modules Qian et al. (2024); Wang et al. (2024e), or extensive multi-stage reinforcement
training Li et al. (2025a); Wang et al. (2025a). In contrast, ZoomV show that standard LVLMs inher-
ently possess precise grounding capabilities when properly guided. ZoomV unlocks this potential
through a simple TemporaLink and coarse-to-fine zooming mechanism, achieving state-of-the-art
performance without architectural modifications or sophisticated RL training.

2.3 VIDEOAGENTS

VideoAgent is a LLM agent that understands videos by using customized structured and tools (Wang
et al., 2024d; Hendricks et al., 2018; Wang et al., 2025b). Previous research usually needs one more
model for the agent pipeline. For instance, Wang et al. (2024d) introduces a prompt-driven video QA
agent that employs extra vision-language retrieval models (e.g., CLIP) to ground key frames during
reasoning. Building on this, VideoTree (Wang et al., 2025b) designs a hierarchical tree-style search
by clustering frames with visual features, enabling structured exploration. Both approaches still rely
on caption models to provide frame-level descriptions. In contrast, our ZoomV avoids additional
captioning or grounding models and directly leverages LVLMs to predict continuous temporal win-
dows. Moreover, the tree-like structure of ZoomV is constructed purely over simple temporal seg-
ments, without requiring extra visual feature models or clustering algorithms. We also highlight two
concurrent works with hierarchical search strategies. UniTime (Li et al., 2025b) exhaustively per-
forms temporal grounding on all video segments, while VideoChat-R1.5 (Li et al., 2025a) employs a
fixed three-step grounding strategy. In contrast, ZoomV designs an adaptive search mechanism with
reflection-guided early termination: TemporaLight assesses confidence to avoid exhaustive searches
and the priority queue enables flexible exploration with backtracking to alternative paths. These
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Query: When a man in a black t-shirt appear around 
the yellow car, what change occurs with the yellow car?

Initial answer: Sorry, the current visual information is not 
enough. I need to find the yellow car.

Video
LLM

[zoom in]
[hierarchical search]

ZoomV

Step 1: TemporaLink

Given the video and the question, 
find the relevant windows.

[[121,122]]

Step 2: TemporaLight

Are the relevant windows correct? 
Or Answer the options directly. 

Confidence 0.9
Final answer: The door 
changes from closed to open.

[compact representation]

[+ZoomV]

[+Uniform 
Downsample]

Figure 2: An illustrative view of ZoomV. Equipped with ZoomV, Video LLM can gain enhanced
capability for efficient and accurate long-video understanding.

innovations allow ZoomV to achieve superior efficiency and accuracy by focusing computation on
the most relevant temporal windows.

3 PROPOSED APPROACH: ZOOMV

In this section, we present the ZoomV framework, which equips LVLMs with a hierarchical, human-
inspired temporal zoom-in mechanism. We first introduce TemporaLink, a temporal-augmented
representation that explicitly binds timestamps with visual frames to support accurate temporal
grounding. Next, we uncover the inherent self-reflection capability of LVLMs and propose Tem-
poraLight, and describe the reflection-guided hierarchical search algorithm, which integrates
grounding and reflection to progressively zoom in from coarse-grained events to fine-grained sub-
events. Ultimately, produce compact event representations for efficient long-video understanding.

3.1 PRELIMINARY: UNIFIED AUTOREGRESSIVE MODELING

Our ZoomV is built upon an autoregressive LVLM backbone, which sequentially predicts tokens
conditioned on visual and textual contexts. An autoregressive LVLM generates an output sequence
y = (y1, y2, . . . , yL) with length L given a text condition x and a video condition v by predicting
tokens one at a time based on the previously generated tokens. Assuming that the LVLM is parame-
terized by θ, the conditional probability distribution of generating a sequence y given context x and
v is defined as

pθ(y|v,x) =
L∏

i=1

pθ(yi|v,x,y<i), (1)

where y<1 = ∅ and y<t = (y1, y2, . . . , yt−1). Taking video question answering (VQA) as an
example, an LVLM predicts the answer distribution pθ(a | v,q, Iq), where q denotes the input
question and Iq = “Answer the following questions related to this video”
serves as the instruction. Here, v represents a sequence of T downsampled frame tokens extracted
from the original video, which are transformed by a dedicated visual encoder and projector into
visual tokens. In the following sections, we extend this autoregressive formulation to model both
the grounding and reflection mechanisms within a unified framework.

3.2 TEMPORAL INTEREST GROUNDING VIA TEMPORALINK

Temporal interest grounding aims to identify the most relevant temporal windows according to the
query, modeling continuous numerical timestamps as discrete digit generations (Ren et al., 2024;
Guo et al., 2024). The task process is defined as: (1) Given a query q and the grounding instruction
Ig = “Find the relevant windows”, the model predicts text sequence pθ(w|v,q, Ig); (2)
Then the text sequence w is turned into a set of time ranges W = [(s1, e1), . . . , (sK , eK)] with
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size K, where sk, ek signifies the start and end timestamps of k-th target window clip. However,
LVLMs naturally struggle to accurately handle numerical tasks, especially in temporal tasks involv-
ing precise numerical comparisons (Schwartz et al., 2024; Xie, 2024). To alleviate this challenge
and effectively activate the inherent temporal grounding capability of LVLMs, we propose a simple
yet effective enhancement module, dubbed TemporaLink, which explicitly binds timestamps with
visual frame representations.
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Figure 3: Illustration of TemporaLink.

Specifically, given a downsampled video represented
by frames (f1, f2, . . . , fT ) and their corresponding
fractional timestamps (t1, t2, . . . , tT ), e.g., (0.00,
3.33, 6.67, 10.00), we first round these times-
tamps to the nearest integer. Then, to ensure a consis-
tent token representation in TemporaLink, we apply
left-zero padding, resulting in timestamps like (00,
03, 07, 10):

t̃i = Pad(Round(ti)). (2)

Next, we extract frame visual features through a vi-
sual encoder V with a projection module (Zhang et al.,
2024f). To embed the absolute timestamp into each
frame feature, as illustrated in Figure 3, we directly concatenate these features with their corre-
sponding absolute timestamp embeddings:

ṽi = concat(V(fi), T (t̃i)), ṽi ∈ R(N+P )×D, (3)

where T denotes the embedding layer of the LLM, D represents the embedding dimension, and N ,
P denote the number of visual frame tokens and padded timestamp tokens, respectively. Following
the above design, we perform refinement training on the LVLM. During this process, manually an-
notated timestamps are further aligned with the rounded timestamps to mitigate quantization errors,
as detailed in the Appendix B. By explicitly linking visual frames with timestamps, TemporaLink
not only significantly enhances the temporal grounding capability of LVLMs but also provides a
solid foundation for the subsequent spotlighting and selection stages.

3.3 EVENT INTERESTS SPOTLIGHTING VIA TEMPORALIGHT
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Figure 4: Reflection proba-
bilities correlate with perfor-
mance.

After obtaining the candidate temporal windows, we need to vali-
date them and highlight the most suitable ones. Previous research
has demonstrated that generative LLMs can evaluate the correct-
ness of their predictions through self-reflection mechanisms (Lin
et al., 2022; Zheng et al., 2023; Zhang et al., 2024b;e). These
models can produce well-calibrated confidence scores for Yes/No
and multiple-choice questions. We extend this observation from
text-based LLMs to LVLMs and propose TemporaLight to assess
the validity of temporal spotlight predictions. Here, there are two
forms of validation.

For Yes/No type reflection validation, given a question q, a Tem-
poraLight prediction W , and reflection instruction Itf =“Are
the proposed relevant windows correct?”, the
probability is formulated as

c = pθ(“Yes”|v,q,W, Itf). (4)

The Yes/No reflection confidence positively correlates with
grounding accuracy (mIoU), thus providing an intrinsic measure
of spotlight correctness without human annotations (Figure 4,
top). For multiple-choice reflection validation, the reflection con-
fidence score is defined by selecting the maximum prediction
probability from multiple choices. Given a set of candidate an-
swers, the reflection confidence is computed as:

c = max {pθ(o|v,q,W, Imc)} , o ∈ (“A”, “B”, . . . ), (5)
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Algorithm 1: TemporaLight Hierarchical Search
Input: v, q,
∆ is the sub-event duration threshold, ϵ is the confidence threshold.

1 Initialize:
• PQ: a priority queue prioritised by confidence.

• W : the candidate optimal window; c: best confidence.

• W, c← SPOTLIGHTREFLECT(v)

• ENQUEUE(PQ,v,W, priority = c)
2 def SPOTLIGHTREFLECT(vi):
3 Wi = GROUND(FRAMESAMPLE(vi),q, Ig) ;
4 if question q is open-ended then
5 ci = REFLECT(v,q,W, Itf) // Yes/No;
6 else
7 ci = REFLECT(v,q,W, Imc) // MC;
8 return Wi, ci
9 while PQ is not empty do

// Pop sub-event with top priority;
10 vi,Wi, ci ← DEQUEUE(PQ) ;
11 if ci ≥ c then
12 c← ci ;
13 W ←Wi ;
14 if ci ≥ ϵ then
15 break // stop criterion;
16 for vj ∈ {begin, mid, end} of vi do
17 if LENGTH(vj) ≥ ∆ then
18 Wj , cj ← SPOTLIGHTREFLECT(vj);
19 ENQUEUE(PQ,vj ,Wj , priority = cj)

Output: W , the optimal temporal windows

where Imc is the reflection instruction, e.g., “Answer the options directly”. The calibra-
tion analysis in Figure 4 (bottom) further confirms that LVLMs produce reliable reflection scores,
especially at high-confidence levels. In summary, the above two modes indicate that LVLM in-
herently knows whether “relevant windows can be found” and “whether questions can be correctly
answered.”

Notably, ZoomV iteratively performs temporal interest grounding to identify query-aware temporal
events. At each step, the TemporaLight module is employed to evaluate the confidence c of the cur-
rently candidate windows. If the reflection confidence c is below a predefined threshold ϵ, we hierar-
chically split the event into three equal-sized overlapping sub-events (“beginning”, “middle”,
and “end”.), recursively exploring sub-events prioritized by reflection confidence scores c, as illus-
trated in Algorithm 1. In this algorithm, ZoomV adopts a priority queue PQ to organize the order
of sub-event searches, which allows backtracking to coarser-grained events to explore alternative
search paths when current sub-events still do not yield enough information. This hierarchical search
terminates either when the confidence exceeds a threshold hyper-parameter ϵ, or when the sub-event
duration falls below a minimal threshold ∆. The highlighted temporal windows with the highest
reflection confidence are utilized for the following video understanding tasks.

3.4 EVENT COMPACT REPRESENTATION

Receiving the spotlighted events, ZoomV constructs compact representations for them, where high-
confidence windows are encoded through the LVLM’s visual encoder to extract visual embeddings,
followed by temporal downsampling to retain key frames and discard less informative ones. The
embeddings are then aggregated into event-level representations that maintain temporal order and
salient visual-textual correlations. By concentrating computation on the most representative sub-
events, ZoomV achieves effective long-video understanding without excessive memory or latency
costs, substantially contributing to its overall performance on challenging benchmarks.
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4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Evaluation Benchmarks. We comprehensively evaluate our ZoomV across three types of video
understanding tasks, including a total of eight subtasks. (1) For video question answering, ZoomV
is validated on three long-video multiple-choice benchmarks, including LongVideoBench (Wu
et al., 2024), MLVU (Zhou et al., 2024), and LVBench (Wang et al., 2024c), which cover dura-
tions from minutes to hours, as well as short-video benchmarks like MVBench (Li et al., 2024b)
and VideoMME (Fu et al., 2024). (2) For temporal sentence grounding, we conduct zero-shot
evaluation on widely used benchmarks such as Charades-STA (Gao et al., 2017) and ActivityNet-
Captions (Caba Heilbron et al., 2015). Following prior works (Ren et al., 2024; Lin et al., 2023),
we adopt Recall@1 at IoU thresholds 0.3, 0.5, 0.7 and mIoU as metrics. (3) For temporal question
grounding task, we evaluate on the popular ReXTime benchmark (Chen et al., 2024a), which is
designed to assess temporal reasoning and causal understanding across multiple video events, and
we measure both VQA accuracy and Recall@1 at IoU thresholds 0.3 and 0.5.

Models. We apply our ZoomV to the LLaVA-Video (Zhang et al., 2024f), InternVL2.5 (Chen
et al., 2024b), and advanced Qwen2.5-VL (Team, 2025), three different video model architectures
for generality. The training of TemporaLink is both completed within eight hours using 128 A100
GPUs. To enhance TemporaLight capabilities without sacrificing general performance, we apply
LoRA (Hu et al., 2022) with a rank of 32 to the LLM, and freeze other parameters.

Video Input Format. Within the identified time window W , interest frames are densely sampled
from the spotlighted segments for video understanding. These dense frames are appended after the
globally sparsely sampled frames, thereby retaining the ability to answer questions about the global
video context. In our experiments, the number of global frames is set to 64, while the maximum
number of spotlight frames provided by ZoomV is 16.

4.2 MAIN RESULTS

Video Question Answering Tasks. As illustrated in Table 1, ZoomV consistently boosts existing
open-source LVLMs across a wide range of benchmarks. On short-video tasks such as MLVU,
ZoomV maintains competitive performance, ensuring that its long-video enhancements do not come
at the cost of short-duration understanding. The advantage becomes more pronounced on long-video
datasets: for instance, ZoomV improves InternVL2.5 on LVBench (average duration 4101 seconds)
from 41.8% to 51.5%, and makes it surpass all prior methods. Similar gains are observed on
LongVideoBench (+2.7% accuracy) and VideoMME-Long (+1.7%), highlighting its effectiveness
in handling videos lasting up to several hours. Furthermore, the consistent improvements across
different LVLM backbones, such as an 8.7% and 11.3% boost on LVBench with LLaVA-Video and
Qwen2.5-VL, demonstrate the robustness and versatility of our ZoomV as a general solution for
temporal search in long video understanding.

Temporal Grounding Tasks. As shown in Table 2, ZoomV delivers substantial improvements
over existing grounding-oriented LVLMs. On standard benchmarks such as Charades-STA and
ActivityNet Captions, it achieves an average mIoU gain of 11.8% compared with the previous state-
of-the-art (e.g., GroundedVideo-LLM). Beyond these datasets, ZoomV demonstrates even stronger
advantages on ReXTime, where it boosts mIoU by 8.6%, Recall@0.5 by 9.6%, and nearly doubles
VQA accuracy from 40.0% to 76.5% relative to TimeChat, clearly highlighting its ability to reason
over complex temporal event structures.

4.3 ANALYSIS

Effectiveness of TemporaLink. We quantitatively validate TemporaLink by comparing it to the
widely used Time Instructions on various datasets. As shown in Figure 5a, compared to the time
instruction, TemporaLink significantly improves the ability of moment retrieval, especially at high
IoU thresholds. Specifically, when replacing TemporaLink with time instruction on the QVHigh-
light, R@0.7 drops sharply by 13.8% while R@0.5 drops 6.5%. Although previous LVLMs are
capable of recognizing relevant events, they struggle to accurately establish associations between
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Table 1: Comparison of ZoomV with other LVLMs on video understanding results. The results
on various short and long video benchmarks with video durations range from seconds to hours.

Model Size #F MVBench MLVU LongVideoBench
VideoMME

LVBench
Long Overall

Average Duration 16s 651s 473s 2386s 1010s 4101s

Proprietary LVLMs
GPT-4V (OpenAI, 2023) - - 43.7 49.2 60.7 53.5 59.9 -
GPT-4o (OpenAI, 2024) - - 64.6 64.6 66.7 65.3 71.9 34.7
Gemini-1.5-Pro (Team et al., 2024) - - 60.5 61.8 64.4 67.4 75.0 33.1

Open-Sourced LVLMs
InternVL2 (Chen et al., 2024b) 8B - 65.8 64.0 54.6 - -
Qwen2-VL (Wang et al., 2024b) 7B - 67.0 - - - 63.3 -
Qwen2.5-VL (Bai et al., 2025) 7B 768 - - - - 65.1 45.3
LLaVA-OneVision (Li et al., 2024a) 7B - 56.7 64.7 56.3 - 58.2 -
LLaVA-OneVision (Li et al., 2024a) 72B - 59.4 68.0 61.3 - - 26.9

Long-Video LVLMs
VideoLLaMA2 (Zhang et al., 2023b) 7B 72 54.6 48.5 - 42.1 47.9 -
LongVA (Zhang et al., 2024c) 7B 128 - 56.3 - 46.2 52.6 -
LLaMA-VID (Li et al., 2023b) 7B 1 FPS 41.9 33.2 - - - 23.9
Oryx (Liu et al., 2024) 7B 1 FPS 63.9 67.5 55.3 50.3 58.3 -
Oryx-1.5 (Liu et al., 2024) 7B 1 FPS 67.6 67.5 56.3 51.2 58.8 -
LongVU (Shen et al., 2024b) 7B 1 FPS 66.9 65.4 59.5 52.4 60.6 -

Video Agents
VideoAgent (GPT-4) (Fan et al., 2024) - 87 - - - 49.0 56.0 -
VideoTree (GPT-4o) (Wang et al., 2025b) - 98 - - - 53.1 - -
UniTime (Li et al., 2025b) 7B 128 - 66.5 56.5 - - -
LLaVA-Video (Zhang et al., 2024f) 7B 80 57.7 64.4 58.3 52.4 63.4 41.3
w/ ZoomV 64+16 58.1 (↑ 0.4) 68.1 (↑ 3.7) 60.9 (↑ 2.6) 53.9 (↑ 1.5) 64.0 (↑ 0.6) 50.0 (↑ 8.7)

InternVL2.5 (Chen et al., 2024b) 8B 80 70.1 67.1 60.6 52.2 63 41.8
w/ ZoomV 64+16 70.3 (↑ 0.2) 70.0 (↑ 2.9) 63.3 (↑ 2.7) 53.9 (↑ 1.7) 64.4 (↑ 1.4) 51.5 (↑ 9.7)

Qwen2.5-VL (Team, 2025) 7B 80 66.0 65.9 59.0 52.0 63.5 40.0
w/ ZoomV 64+16 66.0 (↑ 0.0) 67.0 (↑ 1.1) 61.0 (↑ 2.0) 53.6 (↑ 1.6) 63.6 (↑ 0.1) 51.3 (↑ 11.3)

InternVL3 8B 80 69.5 67.5 60.8 54.6 65.3 43.1
w/ ZoomV 64+16 69.5 (↑ 0.0) 68.5 (↑ 1.0) 63.6 (↑ 2.8) 54.9 (↑ 0.3) 65.6 (↑ 0.3) 51.6 (↑ 8.5)

Table 2: Comparison of ZoomV with other LVLMs on video grounding results. The results
include two temporal-sentence and one temporal-question grounding benchmarks.

Model Charades-STA ActivityNet-Captions ReXTime

R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 R@0.7 mIoU R@0.3 R@0.5 mIoU VQA

CG-DETR (Moon et al., 2023) 70.4 58.4 36.3 50.1 - - - - 31.3 16.6 23.8 -
UniVTG (Lin et al., 2023) 72.6 60.2 38.6 52.1 - - - - 41.3 26.8 28.1 -

LITA (Huang et al., 2024b) - - - - - - - - 29.49 16.29 21.49 34.44
SeViLA (Yu et al., 2023) 27.0 15.0 5.8 18.3 31.6 19.0 10.1 23.0 - - - -
Valley (Luo et al., 2023) 28.4 1.8 0.3 21.4 30.6 13.7 8.1 21.9 - - - -
VideoChat2 (Li et al., 2024b) 38.0 14.3 3.8 24.6 40.8 27.8 9.3 27.9 - - - -
Momenter (Qian et al., 2024) 42.6 26.6 11.6 28.5 42.9 23.0 12.4 29.3 - - - -
VTimeLLM (Huang et al., 2024a) 51.0 27.5 11.4 31.2 44.0 27.8 14.3 30.4 28.8 17.4 20.1 36.1
TimeChat (Ren et al., 2024) 46.7 32.2 15.7 - - - - - 14.4 7.6 11.6 40.0
HawkEye (Wang et al., 2024e) 50.6 31.4 14.5 33.7 49.1 29.3 10.7 32.7 - - - -
GroundedVideo-LLM (Wang et al., 2024a) 54.2 36.4 19.7 36.8 46.2 30.3 19.0 36.1 - - - -

Qwen2.5-VL (Bai et al., 2025) - 24.2 11.1 29.0 - 15.8 7.5 21.1 - - - -
VideoChat-R1 (Li et al., 2025a) - 70.6 47.2 59.9 - 33.3 16.7 35.5 - - - -
Time-R1 (Wang et al., 2025a) 78.1 60.8 35.3 - 58.6 39.0 21.4 - 31.81 18.46 22.48 72.1
UniTime (Li et al., 2025b) - 59.1 31.9 52.2 - 22.8 14.1 27.3 - - - -

Our ZoomV 73.6 52.4 24.5 48.6 61.0 43.0 26.1 43.9 48.4 36.4 36.7 76.5

events and timelines without TemporaLink. Besides, TemporaLink provides consistent improve-
ments on the challenging ReXTime, which requires a strong ability to reason across time.

Effectiveness of TemporaLight. To validate our TemporaLight effectiveness, we employ the
LLaVA-Video model as the baseline, and equip it with our two types of reflections to watch the
difference. The results are reported in Table 3. We find that our TemporaLight enhances the base-
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Figure 5: Ablation studies on temporal grounding and ultra-long video length.
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Figure 6: Impact of the spotlight frames on LongVideoBench.

line by 8.8% on LVBench, and 2.7% on LongVideoBench. Additionally, multiple-choice reflection,
which offers more options for the model, shows better performance on video understanding tasks.

Ablation Study of Frames Zoomed in. We conduct experiments by varying the number of frames
we zoom in, while keeping the frame budget fixed at 64. As shown in Figure 6 (left), introducing
spotlight frames yields a significant boost in accuracy for both general cases and long videos. Our
results suggest that 16 is an optimal setting, as it preserves global awareness while ensuring precise
event retrieval. For a more in-depth understanding, we further analyze the number of spotlight
windows and their duration distributions in Figure 6 (middle and right). The histogram of spotlight
window counts reveals that most examples require only one or two spotlight windows, suggesting
that many questions can be effectively answered with a small number of targeted events. Moreover,
the spotlight duration histogram indicates that a majority of spotlighted events are relatively short
(under 50 seconds). These findings highlight that a small number of well-chosen short spotlights is
sufficient for significant improvements in long-video understanding, validating the effectiveness of
our reflection-guided temporal search strategy in selecting relevant video moments efficiently.

Robustness to Ultra-Long Video Lengths. ZoomV shows noticeable improvements for video
understanding models in Figure 5b. Specifically, for medium-length videos (i.e., 180s-600s),
simply applying the TemporaLink to supplement event details can yield consistent gains. Empiri-
cally, despite the significant loss of temporal dynamics in frame sampling, TemporaLink can still
identify windows relevant to the questions based on limited visual cues. As the video length in-
creases (i.e., over 900s ), it becomes increasingly challenging for TemporaLink to focus on useful
events through sparse frames, and our search strategies are needed and result in significant improve-
ments. Notably, for short videos, the framework maintains original performance as expected.

Efficiency of ZoomV. While we boost LVLM performance via ZoomV, we uphold efficiency op-
timizations to ensure practicality. Initially, training a high-quality ZoomV on the LLaVA-Video
model within 80 epochs only requires 8 hours utilizing 128 NVIDIA A100 GPUs. Furthermore,
ZoomV introduces minimal additional latency during inference, and the runtime of per search step
is 3483ms. We further optimize the multi-turn search by the prefix cache, as shown in Appendix Ta-
ble 2. Eventually, we compare our method with other video-agent–style approach (e.g., VideoTree).
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Table 3: Analysis of TemporaLight on video understanding tasks.

Method LVBench LongVideoBench LongVideoBench-Long

Baseline (LLaVA-Video) 41.3 58.3 48.4
Yes/No Reflection 43.3 61.0 50.4
Multiple Choice Reflection 50.1 61.0 51.8

Table 4: Detailed Comparison of ZoomV on efficiency and accuracy on EgoSchema.

Method grounding (s) reflect (s) caption (s) keyfr. (s) QA (s) overall (s) acc. (%)
VideoTree – – 1.6 4.4 1.8 7.8 63.6
ZoomV 1.6 1.9 – – 1.9 5.4 63.7

As shown in Table 4, while achieving higher accuracy, our method requires only 5.4s under the
optimal parameters on a typical long-video dataset, compared to 7.8s for VideoTree, yielding an
acceleration of approximately 30.8%.
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Figure 7: Runtime comparison
across different video dura-
tions. We report the worst-case
scenario for ZoomV, demonstrat-
ing superior efficiency compared
to fixed-cost long-video models.

To further validate the efficiency, we compare the inference time
of ZoomV with other agents and long-video models across vary-
ing durations. As illustrated in Figure 7, we report the run-
time of ZoomV in the worst-case scenario (i.e., searching to the
finest granularity), benchmarking it against state-of-the-art mod-
els including VideoTree (Wang et al., 2025b), LongVU (Shen
et al., 2024b), LLaVA-OneVision (Li et al., 2024a), VideoL-
LaMA2 (Zhang et al., 2023b), and LLaMA-VID (Li et al.,
2023b). ZoomV exhibits a linear scaling of inference time
with video duration, yet remains highly efficient. Specifically,
for short videos, ZoomV completes inference in just ∼ 5 sec-
onds, outperforming VideoTree. Even as the duration extends to
1200 seconds, ZoomV requires only ∼ 12.1 seconds. In sharp
contrast, LongVU takes 33 seconds, while VideoLLaMA2 and
LLaMA-VID incur significantly higher latency. These results
underscore ZoomV’s superior scalability and efficiency for long-
video understanding.

5 CONCLUSION

This paper introduces ZoomV, a novel framework for long-video understanding that emulates a
human-like hierarchical temporal search. ZoomV proposes TemporaLink to retrieve key events
and TemporaLight to verify predictions and guide the search direction. ZoomV achieves state-
of-the-art performance across diverse video benchmarks, demonstrating significant gains in long-
video QA and temporal grounding tasks. Furthermore, comprehensive ablation studies confirm the
effectiveness of each component and underscore the importance of specialized designs for ultra-long
video analysis. Finally, ZoomV bridges the gap between human cognitive strategies and model-
based video analysis, providing a robust and interpretable solution for long video tasks.
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A THE USE OF LARGE LANGUAGE MODELS

This paper makes use of an LLM solely for the purpose of polishing paragraph-level text.

B ABSOLUTE TIMESTAMP CALIBRATION

As stated in the main text, we utilize quantized integer timestamps to reduce the learning diffi-
culty. However, the frame rate during frame extraction is often low for long videos, while man-
ual annotations are done at a high frame rate. As a result, not every frame corresponding to
a manually annotated time can be sampled. For example, the sampled frames are located at
0s,3s,...67s,70s,73s,77s,80s,83s,86s,89s and the target windows are serialized
as [[72, 82], [84, 89]].This problem introduces potential optimization challenges for text-
oriented objectives. To address this, we propose the Absolute Temporal Calibration (ATC) method,
which precisely aligns the annotated timestamps with the video decoding and frame extraction times.
This calibration precisely aligns the annotated timestamps with the video’s specific frame time,
thereby preventing the model from performing unnecessary frame interpolation during the learn-
ing process. Specifically, in the example above, the target windows will first be adjusted to [[73,
83], [83, 89]]. Subsequently, we will merge the overlapping windows caused by quantization
errors, i.e., calibrated target is [[73, 89]]. ATC ensures that the model can focus on temporal
understanding without dealing with temporal discrepancies, thereby enhancing the model’s learning
efficiency and temporal accuracy.

C INSTRUCTION TUNING

The objective of Instruction Tuning is to equip the model with the ability to understand the Tempo-
raLink.

Table 1: Various tasks of our instruction dataset with the corresponding number of samples. {r}
donate a list of time ranges corresponding to spotlighted video clips.

Tasks Sources Instructions # of Samples

Spotlight QVHighlights Given the video and the query, find the relevant windows. 7218
Grounded-VideoLLM Provide the timestamps that correspond to the Answer. 51918

Reflection ReXTime Proposed time range: {r}. Is the proposed time range relevant to the question? 19390
Grounded-VideoLLM Proposed time range: {r}. Is the proposed time range relevant to the question? 15220

General Answer Grounded-VideoLLM General Video-QA instructions 107806
LLaVA-Video General Video-QA instructions 79389
NextQA Please respond with only the letter of the correct answer. 6278

Spotlight Answer Moment-10M Please watch the clip of {r} and answer the question. 42071
Grounded-VideoLLM Please answer the question based on the detailed clip of {r}. 17214

Datasets As shown in Table 1 in the appendix, the training dataset is composed of four distinct
tasks, all derived from existing open-source datasets. By introducing specialized instructions, we
enhance the model’s capabilities in a cost-effective manner. The ”Answering” capability is divided
into two components: General Answering, which covers basic question-answering tasks like the
most of LVLMs, and spotlighted answering, where answers are enriched using grounded video clips
identified through a prior search for relevant spotlighted content.

D EFFECTIVENESS AND EFFICIENCY TRADE-OFF IN SEARCH

The reflection confidence threshold ϵ and the minimum sub-event duration ∆ govern the search
procedure. These hyperparameters jointly mediate the effectiveness-efficiency trade-off. From an
effectiveness perspective, as validated in Figure 1, higher ϵ and lower ∆ values improve accuracy at
the cost of increased search steps. Reducing ∆ from 2400s to 600s with ϵ = 0.8 elevates LVBench
accuracy from 46.8% to 49.5%, while finer-grained searches with ∆ = 300s do not result in im-
provements. Regarding efficiency, the best-case complexity remains constant when ∆ exceeds the
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Figure 1: Effectiveness and efficiency trade-off with confidence threshold ϵ and sub-event duration
threshold ∆.

Table 2: Optimization of ZoomV in Efficiency via prefix cache.
Primitives encoded frames prefill (ms) decode (ms) overall (ms)
Grounding 64 1157 424 1581
Reflection 80 1496 406 1902
Reflection (w/ prefix cache) 16 299.2 406 745

video length, while the worst-case complexity scales linearly. Specifically, when ∆ is larger than
the video length, the search only executes a single step. In contrast, when ∆ is smaller than the
video length, setting ϵ = 1 forces exhaustive traversal of all sub-events. The search prioritizes high-
confidence segments through a priority queue, emulating human-like coarse-to-fine understanding.
Empirical experiments demonstrate that ϵ = 0.5 requires only an average of 1.6 search steps while
maintaining 99.5% of peak accuracy on LongVideoBench when ∆ = 1200s.

E QUALITATIVE ANALYSIS

To further illustrate how ZoomV addresses challenges inherent in long-video understanding, we
conduct a series of case studies on tasks involving temporal perception and chronological rela-
tions Wu et al. (2024). A core difficulty for LVLMs lies in insufficient temporal details, which
often leads to misinterpretations of events. ZoomV mitigates this issue by integrating human-like
Spotlight and Reflection mechanisms, allowing for more precise event retrieval.

For example, Figure 2 illustrates a case spanning 275 seconds, in which a man is sitting in front of a
mirror. At the global (coarse) sampling level, only sparse frames can be observed, making it difficult
to discern the subtle motion of his hands. The TemporaLink component in ZoomV addresses this
issue by spotlighting a more fine-grained window from the 249th to the 275th second. Within this lo-
calized segment, the frame rate is increased, revealing that the man’s hands are clasped together—an
action easily missed under low-frequency sampling. This example demonstrates how TemporaLink
adaptively zooms in on the essential moments of a long video, capturing subtle actions that would
otherwise be overlooked. Additionally, Figure 3 and Figure 4 showcase object attribute change and
appearance order cases.

Figure 5 illustrates how ZoomV discerns sequential relationships between events in an ultra-long
video through a hierarchical, coarse-to-fine search. In this example, ZoomV first identifies a large
time window that roughly contains the relevant events. Upon noticing the disappearance of the white
car, the search narrows to the 600-second sub-event window. Within this finer scope, ZoomV uses
spotlight frames to focus on critical moments, identifying the appearance of a red car and a person.
By progressively refining, ZoomV effectively captures the sequential flow of events, mimicking the
way humans would search through long videos by zooming in on key events.
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Question: In a room with a white background, there is a man with short hair wearing a short-sleeved T-shirt, sitting in front of a mirror.

What is he doing at this moment?

Options: (A) Raised both hands upwards, (B) Shaking head, (C) Stood up, (D) Crying, (E) Hands clasped together

Full Video Frames (275s)

Spotlight Frames with predicted windows [[249, 275]]

Figure 2: Illustration of the subtle temporal dynamic challenge.

Question: Under the blue sky, a yellow car is driving on the road, with a truck behind it. There are tall trees planted in the greenbelt on both sides of the 

road. When a basketball hoop and a man in a black t-shirt appear around the yellow car, what change occurs with the yellow car?

Options: (A) The door of the yellow car changes from closed to open. (B)The door of the yellow car shows some cartoon drawings. (C)The body of the 

yellow car gets sprayed with paint. (D)Some cartoon drawings appear on the body of the yellow car. (E)The headlights of the yellow car show some cartoon 

drawings.

Full Video Frames (186s)

Spotlighted Videos with predicted windows [[121,123]]

Figure 3: Illustration of the object attibute change challenge.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Question: A man wearing a grey hat and black clothes is sitting on an off-white chair. The chair to his right is empty, and beside the empty chair, there is a 

potted plant. The wall behind him is blue. Among the photos that the man is showing, which photo appears first?

Options: (A)solo photo,(B)A group photo of four people,(C)A group photo of five people, (D)A group photo of two people,(E)A group photo of three 

people

Full Video Frames (427.8s)

Spotlight Videos with multiple predicted windows [[0, 5], [16, 27]]

[0, 5s] 

[16, 27s]

[16, 27s]

Figure 4: Illustration of the object before/after object challenge.

Question: Many private cars, motorcycles, and buses are driving on a road marked with white dashed lines. On both sides of the road are orderly rows of 

big trees and green grass. After the white car at the bottom center of the screen disappears from view, what happens?

Options:  (A) A man is washing a car, (B) A man is helping a woman wash a car, (C) A blue car and a person appear,

(D) A red car and a person appear, (E) A blue car and two people appear

Full Video Frames (2161s)

Spotlight Frames (15s)

TimeSearch Sub-event (600s)

Figure 5: Illustration of the event after event challenge.
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