
Deep Convolutional Neural Networks Structured
Pruning via Gravity Regularization

Abdesselam Ferdi
Electronics Department

Constantine 1 - Frères Mentouri University
Constantine, Algeria

abdesselam.ferdi@gmail.com

Abstract—Structured pruning is a widely employed strategy
for accelerating deep convolutional neural networks (DCNNs).
However, existing methods often necessitate modifications to
the original architectures, involve complex implementations, and
require lengthy fine-tuning stages. To address these challenges,
we propose a novel physics-inspired approach that integrates
the concept of gravity into the training stage of DCNNs. In
this approach, the gravity is directly proportional to the prod-
uct of the masses of the convolution filter and the attracting
filter, and inversely proportional to the square of the distance
between them. We applied this force to the convolution filters,
either drawing filters closer to the attracting filter (experiencing
weaker gravity) toward non-zero weights or pulling filters farther
away (subject to stronger gravity) toward zero weights. As a
result, filters experiencing stronger gravity have their weights
reduced to zero, enabling their removal, while filters under
weaker gravity retain significant weights and preserve important
information. Our method simultaneously optimizes the filter
weights and ranks their importance, eliminating the need for
complex implementations or extensive fine-tuning. We validated
the proposed approach on popular DCNN architectures using
the CIFAR dataset, achieving competitive results compared to
existing methods.

Index Terms—DCNNs, Structured pruning, Gravity, Regular-
ization

I. INTRODUCTION

Deep convolutional neural networks (DCNNs) have demon-
strated remarkable proficiency in addressing a variety of
computer vision tasks. Despite this, a significant portion
of the research community remains primarily concentrated
on enhancing the accuracy of DCNNs, often overlooking
critical factors such as computational efficiency and mem-
ory requirements. More specifically, the energy consumption,
quantified by the number of floating point operations per
second (FLOPs), and the memory footprint, determined by
the number of parameters, are frequently disregarded during
the performance optimization process.

DCNNs are predominantly deployed on resource-
constrained devices, such as smartphones. However,
early ImageNet models, such as VGG-19 and ResNet-
50, are characterized by their high complexity, with
approximately 143.7M and 25.6M parameters, and
computational requirements of 0.8 and 4.09 GFLOPS,
respectively. This complexity poses a significant challenge in
scenarios where efficiency is paramount. Consequently, there
is a growing demand for the development of lightweight

models that maintain a balance between compactness, in
terms of power and memory, and performance, with minimal
accuracy degradation. The question then arises: how can we
effectively transform these heavyweight models into efficient,
lightweight counterparts?

Numerous strategies have been proposed to answer this
question, with model compression emerging as the most
prevalent approach [1]. This approach encompasses a variety
of techniques, including quantization, low-rank approximation,
distillation, and pruning methods. Pruning can be further
categorized into semi-structured, unstructured, and structured
approaches. Recent research has primarily concentrated on
structured pruning (SP), which forms the basis of our work
[2], [3]. In SP, entire filters or channels are removed from the
convolutional layers of the model.

This work addresses the following critical question: What
is the optimal way to configure a model for the pruning stage?

We put forth a novel, physics-inspired method for the SP of
DCNNs. In particular, we incorporate the concept of gravity
into the training stage of DCNNs. This concept is leveraged
during model training to redistribute the weights of the filters
around a designated attracting filter within the convolutional
layer. The term ’attracting filter’ refers to the convolution
filter with the largest mass, determined by the L1-norm, or
the filter located at the zero position within the convolutional
layer. Essentially, we induced sparsity in the convolution
filters, which is directly proportional to the product of the
masses of the convolution filter and the attracting filter, and
inversely proportional to the square of the distance between
them. Upon completion of the model training, we can prune
the sparser filters based on a predetermined pruning ratio.
Our method effectively reduces the model’s complexity while
preserving its accuracy. Moreover, it does not necessitate any
modifications to the original model architecture, and allows
for the compression of the trained model at varying pruning
ratios without the need for retraining. This latter attribute
distinguishes our method from existing SP techniques, which
typically train the model for a specific pruning ratio and
necessitate retraining when this ratio is altered.

Our contributions are as follows:

• We introduce a novel, physics-inspired SP method for
DCNNs, grounded in the concept of gravity.

ar
X

iv
:2

41
1.

16
90

1v
1

 [
cs

.C
V

]
 2

5
N

ov
 2

02
4

• Our method effectively reduces the complexity of DC-
NNs, both in terms of energy consumption and memory
requirements.

• The proposed method is easy to implement and does not
necessitate any modifications to the original architecture.
It can be applied to both non-trained and pre-trained
models.

• We can prune a model trained with our gravity-based
method at varying pruning ratios without the need for
retraining.

The rest of the paper is organized as follows. Section 2
reviews existing methods for pruning DCNNs. In Section 3,
we introduce our gravity methodology, including its motivation
and the proposed approach. Section 4 details the experimental
setup, followed by the presentation of results in Section
5. Section 6 provides a discussion of these results, while
Section 7 summarizes the work and explores potential future
directions.

II. RELATED WORK

The development of complex deep models continues to
deliver promising results, making model acceleration a key
research area. In the past decade, model pruning has gained
significant attention due to the demand for efficient deep
networks. Pruning is categorized based on its timing relative
to network training: at initialization, during training, and after
training. These categories include semi-structured [4], unstruc-
tured [5], and SP [2]. Our focus is on SP after training, which
involves pruning a densely pretrained model and subsequently
fine-tuning it to recover any performance loss caused by
pruning [2], [3]. SP techniques aim to eliminate redundant
connections with minimal impact on overall performance,
thereby improving test-time efficiency. However, they often
significantly increase training time, as the extensive fine-tuning
required can nearly double the overall training duration.

III. METHODOLOGY

This section commences with a discussion of the motivation
for incorporating the concept of gravity from physics to the
SP of DCNNs, and proceeds with a thorough explanation of
the proposed method.

A. Motivation

In the realm of physics, gravity, or gravitational force, is a
ubiquitous natural phenomenon. This force manifests between
objects possessing mass, drawing them toward each other. The
intensity of gravity is contingent upon two factors: mass and
distance. The larger the masses of the objects, the stronger
the gravitational pull between them. Conversely, the greater
the distance between the objects, the weaker the gravitational
force.

We posit that the introduction of such a force into the
training of DCNNs will facilitate the redistribution of the
weights of convolution filters around a specified location. By
exerting a gravitational force on the filters of a convolutional
layer during the training stage of DCNNs, we induce an

increasing rate of sparsity in the weights of the filters. The
further a filter is from a specified location (i.e., the attracting
filter), the greater the induced sparsity.

B. Proposed Method

In physics, gravity is a force that causes objects with mass
m to be attracted to one another. Newton’s law of gravitation,
denoted as F , is expressed as

F = G
m1mn

d2
(1)

where G represents the gravitational constant (6.7 ×
10−11N.m2.kg−2). m1 and mn denote the masses of two
objects, and d is the distance between them.

Analogous to Newton’s law of gravitation, we define the
gravitational force between two filters in a DCNN using Eq.
1. Here, m1 and mn represent the masses corresponding to
the attracting filter and the convolution filter n, respectively.
The gravitational constant is denoted by G, and r represents
the distance between the attracting filter and the convolution
filter n.

To understand the gravity, consider a convolutional layer,
denoted as l, consisting of N filters. Each filter has dimensions
of [C,K,K], where C represents the number of channels
and K denotes the filter size. At layer l, the attracting filter
generates a gravitational field that exerts the following effects:
(1) an attractive force on neighboring filters, and (2) no force
on itself.

We define the mass of filter n in layer l as the L1-norm of
its weights, thus

mn = ∥Wn,l∥1 (2)

where n ∈ [0, N − 1].
The position of filter n (or pn) does not correspond to a

physical position in layer l as the filters are not physically
positioned in a specific way. However, we can refer to the
physical position of filter n by its index in layer l. For example,
the first filter in layer l could be said to be at position zero, the
second filter at position one, and so on. Based on the given
definition, the distance between the attracting filter and the
convolution filter n in layer l is determined by computing the
absolute difference between their respective indices. Thus, we
can write

d = |p1 − pn| (3)

where p1 and pn represent the position of the attracting filter
and the convolution filter n in layer l, respectively.

In DCNNs, the influence of the gravitational force is re-
flected in the weights of the convolution filters. Specifically,
filters subjected to stronger forces will have weights that
converge to zero, whereas filters experiencing weaker forces
will retain non-zero weights.

Our objective is to make filters located in proximity to
the attracting filter (i.e., at small distances) maintain non-zero
weights, corresponding to weaker gravitational forces. Con-
versely, filters positioned farther from the attracting filter (i.e.,

at greater distances) should have zero weights, corresponding
to stronger gravitational forces. However, as indicated by Eq.
1, the gravitational force F is inversely proportional to the
distance d, resulting in weaker forces at greater distances and
stronger forces at shorter distances.

To align with our objective of ensuring that the gravitational
force F becomes weaker for filters in close proximity to
the attracting filter and stronger for those farther away, we
reformulate the distance d (Eq. 2) as follows

d =
1

|p1 − pn|
(4)

We generalize the Eq. 1 for the nth filter in layer l as

Fn,l = G
m1,lmn,l

d2n,l
(5)

Here, it is important to emphasize that the gravitational
force becomes nonexistent when considering the attracting
filter (m1,l) interacts with itself.

we incorporate the gravitation force to regularize the cost
function

J̃ =
∑
n,l

J(wn,l;X, y) + αgFn,l (6)

Here, αg , referred to as the gravity rate, is a hyperparameter
that adjusts the relative contribution of the penalty term Fn,l

relative to the standard objective function J .
When the optimizer minimizes the regularized objective

function J̃ , it simultaneously reduces both the original objec-
tive function J on the training data and the gravitational force
Fn,l. By minimizing Fn,l, the optimizer drives the weights
of filters experiencing larger gravitational forces toward zero.
The influence of the gravitational force on filter weights is
illustrated in Figure 1.

The gradient of the regularized objective function with
respect to the weights is expressed as

∇J̃ =
∑
n,l

∇wn,l
J(wn,l;X, y) + αg∇wn,l

Fn,l (7)

By substituting Eq. 5 into Eq. 7 (omitting indices n and l),
we can write

∇J̃ = ∇wJ(w;X, y) + αg∇wG
m1mn

d2
(8)

∇J̃ = ∇wJ(w;X, y) + αgG
m1

d2
(w) (9)

where the function (.) is the sign function.
The weights are updated through a single gradient step,

using the following learning rule

w ← w − ϵ(∇wJ(w;X, y) + αgG
m1

d2
(w)) (10)

where ϵ is the learning rate.
By examining Eq. 10, we can see that the contribution of

the gravitational force to the gradient is a variable factor with
a sign corresponds to the sign of the weight of the filter n

Fig. 1: An illustration of gravity-based training: A convolu-
tional layer comprising ten filters is presented as an example.
The color shading indicates the mass of each filter, with the
attracting filter assigned the largest mass. Initially, the convo-
lutional layer contains filters initialized with either random or
pretrained weights. Filters located farther from the attracting
filter experience stronger gravitational forces, driving their
weights toward zero. In contrast, filters in closer proximity
encounter weaker forces, thereby pulling their weights toward
non-zero values.

(i.e., sign(w)). This factor is dependent on the distance d.
Consequently, filters that are farther from the attracting filter
(m1) will have a larger gradient value, while filters closer to
the attracting filter will exhibit a smaller gradient value.

To facilitate understanding, the proposed method is outlined
in Algorithm 1. Notably, the gravitational force was only ap-
plied to the convolutional layers to prune. This approach is jus-
tified as follows: during the optimization process, minimizing
the regularized objective function J̃ simultaneously reduces
both the standard objective function J and the gravitational
force F . The reduction of the standard objective function di-
rects the filter weights toward local minima, while minimizing
the gravity adjusts the weights of the filters to prune toward a
specific weight distribution. This adjustment ensures that the
removal of these filters results in low information loss.

IV. EXPERIMENTAL SETUP

In this section, we present the details of the experiments,
including the dataset utilized, the models employed, and the
implementation of the proposed gravity-based approach.

A. Datasets and Networks

We conducted analyses on the CIFAR dataset [2] with
ResNet [2] and VGGNet [2]. The model’s parameters were
optimized using the stochastic gradient descent (SGD) opti-
mizer, implemented with PyTorch 2.4.1 on an NVIDIA Tesla
T4 GPU provided by Google Colaboratory [6].

Algorithm 1 Gravity-based training algorithm

1: Input: Randomly initialized or pretrained model
Mbaseline, convolutional layers to prune L, gravitational
constant G, gravity rate αg , epochs E

2: Output: Gravity-trained model MGravity

3: for layer l in L do
4: Extract and flatten the weights of filters of layer l
5: for filter n in layer l do
6: Compute the mass of the convolution filter n
7: Rank the masses of filters and determine the at-

tracting filter m1,l

8: Compute the distances dn,l between the convolu-
tion filter n and the attracting filter

9: Fn,l = G
|m1,l||mn,l|

d2
n,l

10: end for
11: end for
12: Compute the sum of the gravitational forces (F)
13: Regularize the standard objective function J based on αg

14: Train the model for E epochs using SGD with the
regularized objective function J̃

B. Pruning and Fine-tuning

After completing the gravity-based model training, we move
to the pruning phase, where filters with zero or less important
weights are removed to minimize information loss. A local
pruning strategy is used, ranking filters by their L1-norm and
eliminating those with the smallest norm based on a consistent
pruning rate across convolutional layers. We summarized the
pruning strategy in Algorithm 2.

After the pruning stage, for fair comparison with existing SP
methods, the pruned models were fine-tuned using the same
hyperparameters (e.g., epochs, learning rate, batch size) as
other pruning methods [7].

V. RESULTS

In this section, we present the results of the models trained
using the gravity method, both prior to and following fine-
tuning. Furthermore, we present the training cost associated
with the method.

Algorithm 2 Local structured pruning algorithm

1: Input: Gravity-trained model MGravity, convolutional
layers to prune L, pruning ratio pr

2: Output: Pruned model Mpruned

3: for layer l in L do
4: Extract and flatten the weights of filters of layer l
5: for filter n in layer l do
6: Compute the L1-norm of filter n
7: end for
8: Rank the filters based on their L1-norms
9: Prune the filters with lowest L1-norms based on the

pruning rate pr
10: end for

A. Pruning Results

The performance of the CIFAR-pretrained ResNet-56 and
VGG-19 models, trained with the gravity method at gravity
rates of 105 and 102, respectively, prior to fine-tuning, is
reported in Table I. The baseline networks were trained on
the same CIFAR dataset, achieving accuracies comparable to
those reported in the original publications. Additionally, the
results at different gravity rates are presented as curves in
Figure 2. In this figure, for each network, the pruned top-1
accuracy is plotted against the pruning ratio (along with the
corresponding speedup rate), which ranges from 0% to 100%.

B. Training Overhead

The training times without fine-tuning of the ResNet-56 and
VGG-19 models on the CIFAR dataset are presented in Table
II.

C. Fine-tuning Results

We evaluated our gravity method on the CIFAR dataset
using ResNet and VGGNet, as shown in Tables III and IV. For
existing SP methods, we used the original reported results.

VI. DISCUSSION

In this section, we first discuss the pruning results of the
gravity-trained networks and the associated training overhead.
Subsequently, we compare our findings to state-of-the-art
(SOTA) SP methods and provide a theoretical analysis of the
results. Finally, we perform an ablation study to investigate
the impact of the gravity rate on model’s performance.

A. Gravity-based Pruning

Table I shows that a network trained using our gravity
method can be pruned by up to 40%, resulting in a reduction
of the baseline accuracy by approximately 37%. For example,
a ResNet-56 model trained on the CIFAR-10 dataset using
the gravity method experiences a 23% reduction in baseline
accuracy when pruned at a rate of 50%.

In terms of training time, Table II demonstrates that the
baseline method achieved the shortest training time for both
ResNet-56 and VGG-19. In contrast, the L1-norm and gravity
methods resulted in increased training durations. For example,
the ResNet-56 model trained on the CIFAR-10 dataset using
the baseline method completed in 2.84 hours. In comparison,

TABLE I: Pruning results of the ResNet-56/CIFAR-10 and
VGG-19/CIFAR-100 models

ResNet-56 + CIFAR-10: Baseline Acc. 93.39%, Params. 0.85M, FLOPs 0.25G
Pruning rate (%) 10 20 30 40 50
Speedup 1.14× 1.29× 1.45× 1.71× 1.99×
Compression 1.13× 1.26× 1.45× 1.69× 2.00×
Pruned Acc. (%) 74.52 74.22 74.53 72.88 71.74

VGG-19 + CIFAR-100: Baseline Acc. 73.76%, Params. 20.07M, FLOPs 0.80G
Pruning rate (%) 10 20 30 40 50
Speedup 1.23× 1.53× 1.97× 2.61× 3.61×
Compression 1.24× 1.57× 2.04× 2.78× 3.98×
Pruned Acc. (%) 63.39 57.96 53.10 46.52 31.47

Fig. 2: Top-1 accuracy of pruned ResNet-56 and VGG-19 models, initialized with pretrained weights and trained with gravity
at five distinct gravity rates, without any fine-tuning.

TABLE II: Comparison of training costs for ResNet-56 and
VGG-19 models trained using the baseline method, L1-
norm regularization, and the proposed gravity method on an
NVIDIA Tesla T4 GPU.

Model/Dataset Method Training time (h)
Baseline 2.84

ResNet-56/CIFAR-10 L1-norm 4.15
Gravity (ours) 5.10

Baseline 2.65
VGG-19/CIFAR-100 L1-norm 13.08

Gravity (ours) 16.94

the L1-norm method extended the training time by approx-
imately 46%, requiring 4.15 hours. The proposed gravity
method incurred the highest training cost, with a total training
time of 5.10 hours, representing an 80% increase relative to the
baseline. This increase in training time for the gravity method
is due to the additional computational overhead introduced
by the calculation of the penalty term incorporated into the
gradient (Eq. 10) during the optimization process.

Overall, while the gravity method imposes the highest
training cost compared to the baseline and standard L1-
norm methods, its demonstrated effectiveness in enhancing
the performance of pruned models (as illustrated in Figure
2) may justify the additional computational expense. This
is particularly relevant in high-stakes applications, such as
autonomous driving and healthcare [18], [19]), or in scenarios
with ample computing resources.

B. Comparison with State-of-the-arts

Our Gravity (r) approach, while achieving higher speedups,
consistently results in minimal accuracy drop compared to all
existing methods. In terms of top-1 accuracy post-pruning, we
observe the following: (1) ResNet-56/CIFAR-10: our Gravity
(p) method outperforms CP by 1.19% and AMC by 1.09% at
a 2.17× speedup. Although Torque demonstrates a 0.77% ad-
vantage at the same speedup, this margin diminishes at higher
speedups. At a 2.73× speedup, WHC surpasses both Torque
and our Gravity (p) method by 0.03% and 0.62%, respectively.
However, Electrostatique force outperforms WHC by 0.28% at
the same speedup. (2) VGG-19/CIFAR-100: Our Gravity (p)

TABLE III: Comparison of different methods on CIFAR-10
with ResNet-56

Method Base Pruned Acc. Speed
Acc. (%) Acc. (%) drop up

GReg-1 [7] 93.51 93.25 0.26 1.99×
GReg-2 [7] 93.51 93.28 0.23 1.99×
CP [8] 92.80 91.80 1.00 2.00×
AMC [9] 92.80 91.90 0.90 2.00×
SFP [10] 93.59 93.36 0.23 2.11×
WHC [11] 93.59 93.74 0.15 2.11×
LFPC [12] 93.59 93.24 0.35 2.12×
Torque [3] 93.48 93.76 -0.28 2.15×
Electrostatique force [2] 94.05 93.88 0.17 2.17×
Gravity (r) (ours) 88.02 91.07 -3.05 2.17×
Gravity (p) (ours) 93.53 92.99 0.54 2.17×
ABC Pruner [13] 93.26 93.23 0.03 2.18×
RL-MCTS [14] 93.20 93.56 -0.36 2.22×
C-SGD [15] 93.39 93.44 -0.05 2.55×
GReg-1 [7] 93.51 93.18 0.18 2.55×
GReg-2 [7] 93.51 93.36 0.00 2.55×
AFP [16] 93.93 92.94 0.99 2.56×
Torque [3] 93.48 93.40 0.08 2.60×
Electrostatique force [2] 94.05 93.64 0.41 2.62×
Gravity (r) (ours) 88.02 90.21 -2.19 2.62×
Gravity (p) (ours) 93.53 92.73 0.8 2.62×
WHC [11] 93.59 93.29 0.30 2.71×
Torque [3] 93.48 93.26 0.22 2.72×
Electrostatique force [2] 94.05 93.57 0.48 2.73×
Gravity (r) (ours) 88.02 90.43 -2.41 2.73×
Gravity (p) (ours) 93.53 92.67 0.86 2.73×

A negative value in ’Acc. drop’ indicates an improved model accuracy.
’r’ and ’p’ denote gravity-trained models with randomly initialized
weights and pretrained weights, respectively.

method exceeds Kron-OBD by 8.14% at a 6.85× speedup. At
an 8.89× speedup, it outperforms EigenDamage by 1.61% and
Torque by 0.92%. Nonetheless, the Electrostatic Force method
outperforms our Gravity (p) by 0.74% at the same speedup.
Although GRreg-2 offers a marginal 0.22% improvement, it
incurs substantially higher computational costs. Furthermore,
GReg-1/2 necessitates full retraining for any changes in prun-
ing rate, whereas our approach remains adaptive and cost-
efficient without requiring complete retraining.

C. Theoretical Analysis

To theoretically interpret the obtained results, we refer to
Eq. 10. The penalty term introduced into the gradient arises

TABLE IV: Comparison of different methods on CIFAR-
100 with VGG-19

Method Base Pruned Acc. Speed
Acc. (%) Acc. (%) drop up

Kron-OBD [17] 73.34 60.70 12.64 5.73×
Kron-OBS [17] 73.34 60.66 12.68 6.09×
Electrostatique force [2] 74.59 69.00 5.59 6.85×
Gravity (r) (ours) 58.62 61.96 -3.34 6.85×
Gravity (p) (ours) 70.99 68.84 2.15 6.85×
EigenDamage [17] 73.34 65.18 8.16 8.80×
GReg-1 [7] 74.02 67.55 6.47 8.84×
GReg-2 [7] 74.02 67.75 6.27 8.84×
Torque [3] 73.03 65.87 7.16 8.88×
Electrostatique force [2] 74.59 67.53 7.06 8.89×
Gravity (r) (ours) 58.62 60.70 -2.08 8.89×
Gravity (p) (ours) 70.99 66.79 4.2 8.89×

from the gravitational force. When the distance d is larger,
the penalty term decreases, allowing the weights to retain
non-zero values. Conversely, when d is smaller, the penalty
term increases, causing the weights to approach zero. By
pruning filters with zero weights, the model can be accelerated
while retaining critical information from filters with non-zero
weights. This analysis supports the conclusion that our gravity-
based training method is effective for optimally configuring
both modern deep networks with residual connections and
single-branch architectures for the pruning stage, with minimal
accuracy drop.

D. Ablation Study

Our method relies significantly on the gravity rate, denoted
as αg , which serves as a key hyperparameter. This parameter
governs the strength of the gravitational force applied to the
filters within the convolutional layers of the model, as defined
in Eq. 6. A large αg imposes a substantial penalty on the gra-
dient, leading to pronounced variations in the updated weights.
In contrast, smaller values of αg result in a minimal gradient
penalty, corresponding to more moderate weight updates.

Selecting an appropriate value for αg is critical, as it enables
a significant proportion of filters to achieve zero weights,
thereby facilitating higher pruning ratios without degrading
model accuracy. To identify the appropriate value of αg , we
trained models using four different values: 10, 102, 104, and
105. As shown in Figure 2, the appropriate αg values for the
ResNet-56 and VGG-19 models are 105 and 102, respectively.
This analysis reveals that models with higher FLOPs require
a smaller gravity compared to those with lower FLOPs to
achieve effective pruning.

VII. CONCLUSION

We introduced a novel method that integrates the concept
of gravity from physics into DCNNs training through reg-
ularization. By applying gravitational forces to convolution
filters, we either attract or repel their weights toward non-
zero or zero values, respectively, resulting in a sparser model.
Filters farther from the attracting filter contribute to sparsity,
while those closer retain density. This weight distribution
enables effective pruning with minimal information loss. Our

method demonstrated promising results on the CIFAR dataset,
comparable to existing SOTA techniques. Future work will
explore further applications of gravity-inspired approaches to
model pruning.

REFERENCES

[1] Muhammad Zawish, Steven Davy, and Lizy Abraham, “Complexity-
driven model compression for resource-constrained deep learning on
edge,” IEEE Transactions on Artificial Intelligence, 2024.

[2] Abdesselam Ferdi, Abdelmalik Taleb-Ahmed, Amir Nakib, and Youcef
Ferdi, “Electrostatic force regularization for neural structured pruning,”
arXiv preprint arXiv:2411.11079, 2024.

[3] Arshita Gupta, Tien Bau, Joonsoo Kim, Zhe Zhu, Sumit Jha, and
Hrishikesh Garud, “Torque based structured pruning for deep neural
network,” in Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, 2024, pp. 2711–2720.

[4] Matteo Grimaldi, Darshan C. Ganji, Ivan Lazarevich, and Sudhakar
Sah, “Accelerating deep neural networks via semi-structured activation
sparsity,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV) Workshops, October 2023, pp. 1179–1188.

[5] Yihua Zhang, Yuguang Yao, Parikshit Ram, Pu Zhao, Tianlong Chen,
Mingyi Hong, Yanzhi Wang, and Sijia Liu, “Advancing model pruning
via bi-level optimization,” Advances in Neural Information Processing
Systems, vol. 35, pp. 18309–18326, 2022.

[6] Google Colaboratory, “Google colaboratory: Online jupyter notebooks,”
2024, Accessed: 2024-10-1.

[7] Huan Wang, Can Qin, Yulun Zhang, and Yun Fu, “Neural pruning
via growing regularization,” in International Conference on Learning
Representations (ICLR), 2021.

[8] Yihui He, Xiangyu Zhang, and Jian Sun, “Channel pruning for
accelerating very deep neural networks,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 1389–1397.

[9] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song
Han, “Amc: Automl for model compression and acceleration on mobile
devices,” in Proceedings of the European conference on computer vision
(ECCV), 2018, pp. 784–800.

[10] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang, “Soft
filter pruning for accelerating deep convolutional neural networks,” arXiv
preprint arXiv:1808.06866, 2018.

[11] Shaowu Chen, Weize Sun, and Lei Huang, “Whc: Weighted hybrid
criterion for filter pruning on convolutional neural networks,” in ICASSP
2023-2023 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2023, pp. 1–5.

[12] Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Hanwang Zhang, and
Yi Yang, “Learning filter pruning criteria for deep convolutional neural
networks acceleration,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 2009–2018.

[13] Mingbao Lin, Rongrong Ji, Yuxin Zhang, Baochang Zhang, Yongjian
Wu, and Yonghong Tian, “Channel pruning via automatic structure
search,” arXiv preprint arXiv:2001.08565, 2020.

[14] Zi Wang and Chengcheng Li, “Channel pruning via lookahead search
guided reinforcement learning,” in Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, 2022, pp. 2029–2040.

[15] Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong Han, “Cen-
tripetal sgd for pruning very deep convolutional networks with com-
plicated structure,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2019, pp. 4943–4953.

[16] Xiaohan Ding, Guiguang Ding, Jungong Han, and Sheng Tang, “Auto-
balanced filter pruning for efficient convolutional neural networks,” in
Proceedings of the AAAI Conference on Artificial Intelligence, 2018,
vol. 32.

[17] Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong Zhang, “Eigen-
damage: Structured pruning in the kronecker-factored eigenbasis,” in
International conference on machine learning. PMLR, 2019, pp. 6566–
6575.

[18] Abdesselam Ferdi, Said Benierbah, Amir Nakib, Youcef Ferdi, and
Abdelmalik Taleb-Ahmed, “Quadratic convolution-based yolov8 (q-
yolov8) for localization of intracranial hemorrhage from head ct images,”
Biomedical Signal Processing and Control, vol. 96, pp. 106611, 2024.

[19] Abdesselam Ferdi, Said Benierbah, and Amir Nakib, “Residual encoder-
decoder based architecture for medical image denoising,” Multimedia
Tools and Applications, pp. 1–18, 2024.

	Introduction
	Related Work
	Methodology
	Motivation
	Proposed Method

	Experimental Setup
	Datasets and Networks
	Pruning and Fine-tuning

	Results
	Pruning Results
	Training Overhead
	Fine-tuning Results

	Discussion
	Gravity-based Pruning
	Comparison with State-of-the-arts
	Theoretical Analysis
	Ablation Study

	Conclusion
	References

