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Contextual morphologically-guided tokenization for pretrained Latin BERT
models

Anonymous Authors1

Abstract
Tokenization is a critical component of language
model pretraining, yet standard tokenization meth-
ods often prioritize information-theoretical goals
like high compression and low fertility rather
than linguistic goals like morphological align-
ment. In fact, they have been shown to be
suboptimal for morphologically rich languages,
where tokenization quality directly impacts down-
stream performance. In this work, we investigate
morphologically-aware tokenization for Latin, a
morphologically rich, medium-resource language.
For both the standard WordPiece and Unigram
Language Model (ULM) tokenization models,
we propose two variations: one seeded with
known morphological suffixes in the tokenizer
vocabulary, and another using contextual pre-
tokenization with a language-specific, lexicon-
based morphological analyzer. From each learned
tokenizer, we pretrain Latin BERT and evaluate
its performance on POS and morphological fea-
ture classification. We find that morphologically-
guided tokenization improves overall perfor-
mance (e.g., 36% relative error reduction for
morphological feature accuracy), with particu-
larly large gains for specific, morphologically-
signalled features (e.g., 54% relative error reduc-
tion for tense prediction). Our results highlight
the utility of morphological linguistic resources to
improve language modeling for morphologically
complex languages.

1. Introduction
Tokenization is the first step in Large Language Model
(LLM) pretraining pipeline, making it the foundation upon
which model performance rests. A common assumption is

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

that tokenizers should maximize compression and minimize
fertility (Schmidt et al., 2024). However, recent research
has challenged this view, particularly in the context of mor-
phologically rich and lower-resource languages. Studies
have shown that existing tokenization methods exhibit low
morphological alignment (Hsu et al., 2023; Bostrom & Dur-
rett, 2020; Erkaya, 2022; Libovick’y & Helcl, 2024), which
can negatively impact downstream performance. In this
work, we investigate tokenization strategies for Latin, a mor-
phologically rich, medium-resource language1 with a long
scholarly tradition, and moreover one with specific inter-
est in word endings and other aspects of word formation,
making it an informative test case.

We hypothesize that incorporating morphological knowl-
edge into tokenization will improve both morphological
alignment and downstream performance. While prior work
has explored morphologically-aware tokenizers, they often
focus on high-resource and/or morphologically simple lan-
guages (Hofmann et al., 2021; Hsu et al., 2023; Bostrom
& Durrett, 2020) or employ acontextual, unsupervised mor-
phological analyzers such as Morfessor (Creutz & Lagus,
2005). Furthermore, evaluations in this area have not exam-
ined fine-grained morphological feature prediction, which
should better capture whether a morphologically-aligned
tokenization helps the language model’s contextual embed-
dings capture its linguistic content.2

Beyond its computational implications, this question is of
particular interest within Latin linguistic and philological
research. The role of word endings in meaning construction
has been central to Latin scholarship for centuries, making
it crucial to empirically test whether morphology-informed
tokenization aligns with these long-standing linguistic intu-
itions.

To test our hypothesis, we experiment with three types of
tokenizers:

1. Baseline: Standard WordPiece and Unigram Language
Model (ULM)

2. Low-guidance approach: Seeding morphological suf-

1Between 100M and 1B tokens (Chang et al., 2024)
2Much prior work attains a partial view of this by evaluating

on POS tagging, a significantly coarser version of the problem.
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fixes into the tokenizer vocabulary. This approach is
lightweight, only requiring a predefined list of suffixes.

3. High-guidance approach: Pre-Tokenization using a
morphological analyzer. Unlike prior work, we dis-
ambiguate the analyses based on POS information,
making our method context-aware.

One of the unique advantages of working with Latin is
the availability of expert-curated morphological and lexi-
cal resources—benefiting from long-standing philological
knowledge about the role of word endings in construct-
ing meaning. In this work, we leverage Lemlat (Passarotti
et al., 2017), a Latin-specific lemmatizer and morphologi-
cal analyzer, to implement both our low and high-guidance
tokenization methods.

For evaluation, we pretrain Latin BERT models (Devlin
et al., 2019) using each tokenizer and finetune them for POS
tagging and morphological feature classification. To our
knowledge, no prior studies have evaluated their morpho-
logically aware tokenization methods using morphological
feature classification as a downstream task. We observe
larger performance gains for this task than POS tagging,
likely due to the granularity of the labels.

2. Related Work
2.1. Tokenization

Tokenization plays a crucial role in language model pre-
training, yet its impact on morphologically rich languages
remains an active area of investigation. Studies have in-
creasingly questioned whether widely used tokenization
methods such as Byte Pair Encoding (BPE) (Sennrich et al.,
2016), Unigram Language Model (ULM) (Kudo, 2018), and
WordPiece (Schuster & Nakajima, 2012) sufficiently cap-
ture morphological structure, and whether this matters for
downstream performance.

Several studies suggest that aligning English BPE and ULM
tokenizers’ segmentations with gold-standard morpholog-
ical boundaries can enhance downstream performance on
sentiment and topic classification (Hofmann et al., 2021),
zero-shot summarization and retrieval (Hsu et al., 2023),
QA, MNLI, and NER (Bostrom & Durrett, 2020).

Beyond English, studies on morphologically rich languages
provide further evidence for the benefits of morphology-
aware tokenization. Rule-based approaches have shown
improvements in Romanian NLP tasks (Vasiu & Potolea,
2020), and pre-tokenization methods using 1) a language-
specific morphological analyzer in Turkish (Erkaya, 2022),
Kinyarwanda (Nzeyimana & Niyongabo Rubungo, 2022), or
2) with Morfessor in eight languages (Libovick’y & Helcl,
2024) have all yielded downstream performance gains. Post-

training strategies have also been effective; for instance,
modifying existing BPE vocabularies improved token-level
tasks in English, Dutch, and German (Bauwens & Delobelle,
2024).

While most morphologically-aware tokenization methods
rely on static rules or unsupervised segmentation, some
studies have experimented with adding contextual informa-
tion. Yehezkel & Pinter (2023) introduced SaGe, a tokenizer
whose vocabulary construction method closely resembles
ULM but incorporates a SkipGram objective to refine vo-
cabulary selection. This approach improved performance on
English GLUE and NER, and Turkish Inference and NER.

Despite strong evidence supporting the benefits of morpho-
logical alignment in tokenization, some studies have pro-
duced mixed or contradictory results. Schmidt et al. (2024)
disprove the assumption that compression is the primary de-
terminant of tokenizer quality, in line with our own intuition,
but found that the morphologically informed tokenizer they
tested, SaGe, was not always the top performer.

Other studies directly oppose the hypothesis that morpho-
logical alignment is beneficial. Toraman et al. (2022) found
no improvements in Turkish NLP tasks when pre-tokenizing
with a morphological analyzer, though they noted that errors
in the analyzer itself may have influenced results. More
broadly, Arnett & Bergen (2025) argued that morpholog-
ical alignment is not a key factor in tokenization quality,
emphasizing instead that dataset size and quality are more
important.

The existing literature provides strong, though not unani-
mous, evidence that morphologically-aware tokenization
can improve NLP performance, particularly for morpholog-
ically rich languages. However, prior studies have largely
focused on a limited set of downstream tasks—such as POS
tagging and NER—which may not fully expose the ben-
efits of morphologically-aligned tokenization. Our work
extends this research by evaluating multiple tokenization
strategies for Latin, including both light and high-guidance
approaches. Additionally, we introduce morphological fea-
ture classification as an alternative downstream evaluation
metric, hypothesizing that the fine-grained morphological
feature values will reveal improvements that are less evident
in coarse-grained POS tagging.

2.2. Morpheme Segmentation

Morpheme segmentation has been widely studied as an in-
dependent NLP task, distinct from its potential applications
in tokenization and language model pretraining. One of
the most prominent efforts in this area is the SIGMOR-
PHON shared task on morpheme segmentation (Batsuren
et al., 2022), which provided segmentation data for nine
languages, including Latin. This task included both acon-
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textual and contextual segmentation challenges; however,
Latin was excluded from the contextual segmentation track.
While the availability of segmentation resources for these
nine languages is valuable, the dataset is too small to sup-
port pretraining efforts. Moreover, many morphological
datasets, including those used in SIGMORPHON, are con-
structed through automatic extraction from sources such as
Wiktionary, introducing data quality concerns. For example,
Gorman et al. (2019) highlight extensive extraction errors
in the dataset for the 2017 CoNLL-SIGMORPHON shared
task for Morphological Reinflection (Cotterell et al., 2017).

Latin is unique within morpheme segmentation research
due to its rich morphological tradition and availability of
high-quality, expert-curated resources. Unlike many other
languages, Latin benefits from centuries of linguistic study
focused on word formation and morphological structure
(Diederich, 1936; Pellegrini et al., 2021).

Our work builds on the precisely curated morphological re-
sources available for Latin, incorporating linguistic knowl-
edge at the morpheme level in a way that is not feasible
for many other languages. We argue that context-aware
morphological tokenization–though requiring significant
language-specific effort–has the potential to bridge the gap
between linguistic theory and modern NLP.

2.3. Language Modeling

Several studies have demonstrated the feasibility of pretrain-
ing transformer-based models for low-resource languages.
Ogueji et al. (2021) introduced AfriBERTa, a multilingual
BERT model trained on various low-resource African lan-
guages using a corpus of approximately 1GB, comparable
in size to ours. Their model outperforms massively multi-
lingual models like mBERT and XLM-R (Conneau et al.,
2020) on NER and text classification. Similarly, Chang et al.
(2024) systematically evaluated the relationship between
model size (from tiny to small) and data size across both
monolingual and multilingual GPT-2 models (Radford et al.,
2019).

Prior work in Latin language modeling has produced sev-
eral pretrained, transformer-based Latin models. LaBERTa
(Riemenschneider & Frank, 2023) was trained on 165M
words from Corpus Corporum (Roelli, 2014),3 a kind of
super-repository of available smaller digitized Latin text
repositories. Another Latin RoBERTa model (Ströbel, 2022;
Liu et al., 2019) was trained on a 390M token corpus also
derived from Corpus Corporum. Finally, LatinBERT (Bam-
man & Burns, 2020) was trained on a larger corpus (642.7M
words), though a significant portion originated from noisy
OCR-processed Latin texts from the Internet Archive. Its
cleaner subset contained 81.6M words.

3https://mlat.uzh.ch/

Our work differs from these prior efforts in Latin language
modeling in three ways. First, we train small models
(29M parameters) rather than ”base”-sized architectures
(110M parameters), aligning with broader research on low-
resource pretraining. Second, our training corpus, total-
ing 195M words (1GB), is larger than the clean subset
used in LatinBERT though smaller than the dataset used
for Latin RoBERTa. Finally, we experiment with various
morphologically-aware tokenization strategies, whereas ex-
isting Latin language models use baseline WordPiece and
BPE.

3. Background: Tokenization
Schmidt et al. (2024) conceptualize tokenization as a three-
step process: 1) pretokenization, which applies an initial
set of rules to define processing units–typically by segment-
ing on whitespace; 2) vocabulary construction or training,
where subword units are learned; 3) segmentation or decod-
ing, which determines how input text is tokenized based
on the trained vocabulary. This framework helps highlight
the different places where morphological guidance can be
introduced, instead of viewing tokenizers as indivisible sys-
tems. We experiment with modifications to two widely-used
Huggingface tokenizer implementations.

3.1. WordPiece Tokenization

BPE and WordPiece are tokenizers with similar training
algorithms. While BPE is widely used, prior work finds it
suboptimal (Bostrom & Durrett, 2020; Erkaya, 2022), so our
experiments focus on WordPiece. For clarity, we overview
both in this section.

Pretokenization for both tokenizers is typically done by
splitting on whitespace and punctuation. Given a list of
(pretokenized) strings and a desired final vocabulary size,
an initial subword vocabulary is constructed from all unique
characters. Subword types are iteratively merged until the
desired vocabulary size is reached. For WordPiece, the
subword bigram with the highest pointwise mutual infor-
mation (PMI) (Bouma, 2009) is chosen. Its two subwords
are merged into a new, single subword and added to the
vocabulary. For BPE, the bigram with the highest frequency
is chosen rather than highest PMI.

To tokenize new text, WordPiece performs greedy left-to-
right decoding, whereas BPE applies merge rules in the
order learned during training.

3.2. Unigram Language Model Tokenization

The Unigram Language Model (Kudo & Richardson, 2018)
infers the most likely segmentation for a word, using the
Viterbi algorithm. For learning, after initial pretokeniza-
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tion,4 the model starts with a large vocabulary of all sub-
strings in the corpus. Subwords are iteratively pruned in
order to maximize the unigram likelihood of the corpus until
the desired vocabulary size is reached.

4. Method
4.1. Data

Tokenizer and Pretraining Data We train our tokenizers
and pretrain our BERT models on the same data used to
train the static floret vectors (Boyd & Warmerdam, 2022)
used in LatinCy, a spaCy pipeline for Latin (Burns, 2023;
Honnibal & Montani, 2017). It is 1.08GB, containing 13.5M
sentences and 195M whitespace-separated words.5 This
is comparable to the pretraining data size of other Latin
transformer models; for example, Riemenschneider & Frank
(2023) trained LaBERTa on 167.5M words.

4.2. Morphologically-Enhanced Tokenizers

We add morphological guidance to both ULM and Word-
Piece tokenizer models, implemented by modifying Hug-
gingFace’s implementations of each (Wolf et al., 2020). We
create and evaluate three tokenizer variations: MorphSeed-
ing, MorphPreTokenization (acontextual), and MorphPreTo-
kenization (contextual).

MorphSeeding We create a list of 480 morphological
suffixes sourced from Lemlat, a type-level lemmatizer and
morphological analyzer for Latin (Passarotti et al., 2017).
For our purposes, we define morphological suffixes as all
segments of a word which are not the first (root/stem) seg-
ment.

Then, we modify the ULM and WordPiece trainers to bias
them to prefer segmenting with this list of suffixes. For
WordPiece, all suffixes are added to the initial vocabulary
with the continuing subword prefix ”##” prepended. Since
WordPiece’s vocabulary construction is bottom-up, once
added to the vocabulary a subword cannot be removed. For
ULM, all suffixes are added to the initial vocabulary, and
for decoding, their log-probabilities are upweighted by a
fixed amount6 in the lattice. Suffixes are not allowed to be
removed from the vocabulary.

MorphPreTokenization We analyze all unique words in
our corpus with Lemlat. For each word, Lemlat returns a

4Pretokenization is also done by splitting on whitespace. In the
HuggingFace implementation, punctuation is not split on.

5The ULM tokenizers are trained on 5% of this corpus. See §9.
6During initial experiments, we found a weight of 0.5 to strike a

good balance of encouraging these suffixes to be chosen more often
when decoding, while not increasing fertility to an unreasonable
degree.

list of possible analyses that include the word’s segmenta-
tion into morphemes, as well as its lemma, declension or
conjugation, part of speech, morphological features, and
derivational affixes. We only utilize the segmentation and
POS.

We then presegment these morphemes in our corpus, so
that during tokenizer training, it will never merge Lemlat-
provided morphemes. We experiment with both contextual
and acontextual segmenters.

For acontextual pretokenization, we simply use the segmen-
tation in the first analysis given by Lemlat. This follows the
type-level focus of previous work, either with language-
specific morphological analyzers (Toraman et al., 2022;
Erkaya, 2022; Nzeyimana & Niyongabo Rubungo, 2022) or
the unsupervised Morfessor model (Creutz & Lagus, 2005;
Libovick’y & Helcl, 2024).

But in many instances, there exists ambiguity over a word’s
segmentation, which can be resolved with contextual infor-
mation about its grammatical role. Thus, we construct a
contextual morphological segmenter by first running an off-
the-shelf part-of-speech tagger on the corpus, and filtering
Lemlat’s output to an analysis with a matching POS tag.7

We tag our corpus with LatinCy (Burns, 2023). It uses the
Latin UD Treebanks’ tagset, which differs from Lemlat’s.
We create a mapping between the tag systems (Table 4),
and a protocol for selecting a word’s segmentation when the
POS tags do not match:

• If Lemlat only gives one unique possible segmentation,
use that one (occurs in 1.2% of words in UD treebanks).

• If Lemlat gives multiple possible segmentations but
none match the predicted POS, do not segment the
word (occurs in 0.028% of words in UD treebanks).

A word’s tag usually disambiguates the segmentation, but
in rare cases, one word may have multiple analyses with the
same POS tag, due to multiple possible lemmas or morpho-
logical features. In these cases, we choose one segmentation
based on the following criteria:

• If the candidate segmentations have the same number
of subwords, choose the one with the longer suffix (i.e.
out of the adjective [adversar, -i] versus infinitive verb
[advers, -ari] choose the latter).

• If the candidate segmentations have a different num-
ber of subwords, choose the one with more subwords
(i.e. out of participle [inordin, -at, -o] and imperative
[inordin, -ato], choose the former).

7Interestingly, for some tasks the approach may seem circu-
lar: a predicted POS tag helps guide the LLM tokenization, and
thus the eventual LLM contextual representation used to predict,
for example, a POS tag. Investigating how initial tagging errors
propagate would be interesting future work.
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This type of conflict occurred in 4.55% of all Lemlat analy-
ses of unique words in the Latin treebanks.8

This results in four morphoglical pretokenization-based
tokenizers—for each model class (ULM and WordPiece),
there is both acontextual and contextual presegmentation.

We implement changes to the tokenizers to accommodate
presegmentation. For ULM, the only modification is to add
a new pre-tokenization step which splits on our morpheme
symbol, allowing morphological suffixes to be treated as
continuing subwords. Due to how the ULM vocabulary is
constructed, it is possible that the suffixes will be split into
multiple subwords, just like the root.

WordPiece requires modification to its trainer, not just the
pretokenizer; for implementation details, see §A.2. Unlike
ULM, once the suffix subword is added to the WordPiece vo-
cabulary, it will remain unchanged, neither split or merged.

4.3. Tokenizer Evaluation

Several metrics have been proposed to assess tokenizer qual-
ity.

Renyi entropy (Zouhar et al., 2023) measures the unifor-
mity of token frequency distributions. However, Schmidt
et al. (2024) found that it correlates with Corpus Token
Count, which they argue is a poor predictor of downstream
performance.

A more linguistically motivated approach is morphologi-
cal alignment with a gold reference segmentation, which
assumes that having ”meaningful” subword units improves
downstream task performance. Various metrics have been
introduced to quantify this.

MorphScore (Arnett & Bergen, 2025) assigns a score of 1
if a tokenizer correctly segments at a specific morpheme
boundary, regardless of other boundaries in the word, and
0 otherwise. Unlike other measures, it excludes words that
remain unsegmented.

Suffix precision, recall, and f1 (Erkaya, 2022) evaluate how
well a tokenizer captures suffix boundaries specifically. Sub-
word boundary precision, recall, f1 (Bostrom & Durrett,
2020) which we adopt in this work, assess overall segmenta-
tion accuracy. In addition, we track exact matches between
predicted and gold segmentations.

The reliability of these metrics depends on the quality of the
gold standard segmentations. Many studies experiment with
multiple languages and rely on morphological data scraped
from Wiktionary. Gorman et al. (2019) highlight exten-
sive errors in SIGMORPHON’s morpheme reinflection data
(Cotterell et al., 2017), demonstrating that such resources

8In both the UD treebanks and in LASLA (Denooz, 2004), a
non-UD Latin treebank.

may introduce inconsistencies. This underscores the im-
portance of carefully curating high-quality gold standards,
which tends to be easier when focusing on a single language.
When Latin scholar coauthors reviewed the SIGMORPHON
segmentation dictionary alongside two open-source Latin
morphological dictionaries (Lemlat and Whitaker’s Words9

), we judged Lemlat to be highest quality. Lemlat has also
been shown to have better coverage of Latin word types and
tokens than Words, and equivalent coverage to LatMor, a
finite state transducer for Latin (Springmann et al., 2016).

To construct an evaluation set, we extract all unique (word,
POS) pairs from the five Latin UD test sets, and segment
them using Lemlat. In the acontextual setting, we ignore
POS and consider the first segmentation given by Lemlat
as the gold segmentation. In the contextual setting, we
disambiguate Lemlat’s analyses using the gold UD POS,
choosing the gold segmentation as described in §4.2.

4.4. BERT Pretraining

We use Megatron-LM (Shoeybi et al., 2020) to pretrain eight
small (29M parameters) BERT models (Devlin et al., 2019),
following prior work in pretraining for low and medium-
resource languages (Ogueji et al., 2021; Chang et al., 2024).
See §A.3 for details on hyperparameters.

4.5. Downstream Tasks

Modeling To evaluate our pretrained models, we finetune
them for POS tagging and morphological feature classi-
fication. We use a separate classification head for each
morphological feature, the same architecture as Riemen-
schneider & Frank (2023)’s finetuned Greek model. See
§A.4 for details on hyperparameters. [ stats on the tagsets?
number of features? –MH] [ Not a bad idea—but perhaps wait
to see if a reviewer requests this specifically? –PJB]

Metrics We report whole-string morphological accuracy,
following the convention of Gamba & Zeman (2023) and
Sprugnoli et al. (2022). This metric considers the model’s
prediction correct when every morphological feature is cor-
rectly predicted, indicating whether the model understands
how all the morphological features fit together.

5. Results
5.1. Tokenizer Evaluation

We evaluate the morphological alignment of each tokenizer
by comparing predicted segmentations to a gold-standard
segmentations from Lemlat. As seen in Table 1, base-
line WordPiece already exhibits relatively strong alignment
with gold segmentations, outperforming ULM in this regard

9https://latin-words.com/
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Tokenizer Type Model Acontextual Contextual
Class Exact Match Exact Match

Baseline ULM .1387 .1076
MorphSeed ULM .1524 .1212
MorphPreTok (Actx.) ULM .7001 .6505
MorphPreTok (Ctx.) ULM .6544 .7188
Baseline WP .2267 .2012
MorphSeed WP .2273 .2018
MorphPreTok (Actx.) WP .8281 .7550
MorphPreTok (Ctx.) WP .7538 .8432

Table 1. Tokenizers’ morphological segmentation accuracy, evalu-
ated both on acontextual and contextual versions of segmentations

(+9.4% exact match against the gold contextual segementa-
tions).10

Introducing morphological pretokenization (MorphPreTok)
significantly enhances alignment for both ULM and Word-
Piece, with exact matches exceeding 65% for all variants.
This suggests that explicitly incorporating morphological
information during pretokenization leads to segmentations
that closely mirror linguistic ground truth.

By contrast, morphological suffix seeding (MorphSeed) pro-
vides only a modest improvement for ULM (+1.4% exact
match against both acontextual and contextual gold segmen-
tations), while having no effect on WordPiece’s alignment.
This suggests that while suffix seeding can nudge segmen-
tation toward morphological boundaries, they are less ef-
fective than full pretokenization in enforcing linguistically
coherent segmentations.

5.2. Downstream Performance

POS Across all models, morphological pre-tokenization
(MorphPreTok) methods led to improvements in POS tag-
ging accuracy, with gains ranging from 1.0-1.3% over the
baseline models (Table 2). In contrast, morphological suffix
seeding (MorphSeed) had little to no effect on POS accu-
racy.

Morphological Features For ULM models, contextual
pre-tokenization resulted in a substantial overall morpho-
logical accuracy improvement, from 90% to 94%. Both
acontextual and contextual pre-tokenization methods led to
consistent performance gains across all morphological fea-
tures, with Tense showing the largest improvement in macro
F1 over the baseline (+14). MorphSeed, while beneficial
for Degree and Tense, did not improve other features and
in some cases led to slight regressions, ultimately yielding
similar overall morphological accuracy to the baseline ULM
model.

WordPiece models produced more mixed results, with no

10For complete evaluation metrics, see Table 3.

single method outperforming the baseline across all mor-
phological features. The most substantial improvements
were observed for Tense (all tokenizer variants) and Degree
(for MorphPreTok variants; MorphSeed caused a 9.7 drop
in Degree macro F1). Acontextual pre-tokenization led to
slight gains in Mood, while MorphSeed improved Voice.
However, overall morphological accuracy remained largely
unchanged across all WordPiece models.

When evaluated on whole-string morphological accuracy,
the ULM model with contextual pre-tokenization outper-
formed both the baseline WordPiece model and the best-
performing WordPiece variation (MorphSeed). These find-
ings suggest that high morphological guidance, particularly
through contextual pre-tokenization, enhances model perfor-
mance more effectively than morphological suffix seeding
alone, with the greatest benefits observed in ULM-based
models.

Figure 1. Word frequency in the pretraining corpus versus whole-
string morphological accuracy, for ULM (top) and WordPiece
(bottom).

Effect of word frequency Figure 1 shows the relation-
ship between words’ downstream morphological feature
accuracy and their frequency in the pretraining corpus.11

For the rarest words (≤ 103 occurrences in the pretraining
corpus), nearly all morphology-guided tokenization meth-
ods improve overall morphological accuracy. The only ex-

11Since this analysis excludes punctuation, numbers, and single-
character words, overall accuracy appears lower than what is re-
ported in Table 2.
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Per-Feature Macro F1

Tokenizer Type Model Class POS Acc Morph Acc Case Degree Gender Mood Number Person Tense Voice

Baseline ULM .9466 .9065 .6286 .8361 .8385 .6087 .9147 .9071 .7382 .8723
MorphSeed ULM +.0021 -.0041 +.0003 +.0193 +.0001 -.0024 -.0114 -.0085 +.0349 -.0051
MorphPreTok Acontextual ULM +.0115 +.0211 +.0109 +.0382 +.0439 +.0502 +.0161 +.0391 +.0678 +.0408
MorphPreTok Contextual ULM +.0132 +.0341 +.0423 +.0537 +.0591 +.0821 +.0374 +.0389 +.1476 +.0653

Baseline WP .9487 .9306 .6576 .9523 .8646 .6464 .9374 .9502 .7258 .8938
MorphSeed WP +.0013 +.0057 -.0008 -.0969 +.0120 +.0055 -.0029 -.0107 +.0852 +.0209
MorphPreTok Acontextual WP +.0103 +.0007 -.0038 +.0332 +.0062 +.0373 -.0139 -.0255 +.1037 +.0100
MorphPreTok Contextual WP +.0136 -.0080 -.0098 +.0076 -.0172 +.0064 -.0188 -.0278 +.1150 -.0073

Table 2. Downstream POS accuracy, whole-string morphological feature accuracy, and per-feature macro F1 scores. Performance is
shown for the baseline of each model class, and for their morphologically-aware variants, the difference from that class’s baseline.

ception is ULM MorphSeed, which experiences a 0.9%
drop. Aside from this, all ULM-based models outperform
the baseline across all frequency ranges. However, the per-
formance gap narrows as word frequency increases, from
a +9.0% improvement over the baseline for rare words to
+2.8% for the most frequent words.

WordPiece-based models show a more variable trend. While
all variants improve accuracy for the rarest words, some
begin to degrade performance at higher frequencies. Con-
textual MorphPreTok sees a decline for words occurring
>103 times, while Acontextual MorphPreTok degrades per-
formance for words occurring >2,654 times. In contrast,
MorphSeed consistently improves performance across all
frequency ranges. The gap between it and the baseline
shrinks from 3.9% (rarest words) to 1.6% (most frequent
words), a trend similar to ULM.

6. Qualitative Analysis
WordPiece Improvements The word scientur (3rd per-
son, plural, passive, future tense) demonstrates how Word-
Piece’s left-to-right greedy decoding can lead to suboptimal
segmentations that affect downstream predictions. The base-
line and MorphSeed tokenizers maximize the length of the
first subword, producing [scient, -ur]. Consequently, both
models mispredict scientur as present tense, and the baseline
model mispredicts singular, likely because -ur appears in
singular, present-tense passive verbs (-tur being the canon-
ical suffix). In contrast, when constrained to morpheme
boundaries, both MorphPreTok models correctly segment
scientur as [sc, -ientur], aligning with the gold Lemlat seg-
mentation and enabling the correct predictions of plural and
future tense.

ULM Improvements The opposite issue arises with the
verb impropero. Its -ero ending resembles a future-tense
marker, but it is actually a present-tense verb with the
root improper-. Unlike WordPiece, which greedily selects
improper- as the first subword, ULM’s Viterbi decoding
optimizes for globally probable segmentations and instead
produces [imp, -rop, -ero]. This segmentation leads to a

misclassification as future tense. By enforcing morpheme
boundaries, the MorphPreTok variants segment impropero
correctly as [improper, -o], aligning with the gold standard
and yielding the correct present-tense prediction.

Regressions Morphologically guided tokenizers can
sometimes over-rely on word endings at the expense of
sentence-level context. For example, the adjective intel-
ligibilis was segmented by the acontextual MorphPreTok
WordPiece tokenizer as [intelligibil, -is], leading the model
to predict its case as genitive due to -is being the genitive
marker for third-declension nouns. However, in this in-
stance, intelligibilis is nominative, as it modifies the nomina-
tive noun species. The baseline and MorphSeed WordPiece
tokenizers, which left intelligibilis unsegmented, correctly
predicted its case. This suggests that while morphological
segmentation can improve alignment, it may also bias mod-
els toward surface-level suffix patterns, sometimes at the
cost of contextual understanding.

7. Ongoing Work: Additional Downstream
Tasks

We recognize that the improvements observed in POS and
morphological feature tagging may not generalize to other
downstream tasks, especially more semantic or sentence-
level tasks. We are in the process of adding three new tasks:
named entity recognition (NER) (Erdmann et al., 2016;
2019; Beersmans et al., 2023), word sense disambiguation
(WSD) (Ghinassi et al., 2024; Lendvai & Wick, 2022), and
authorship verification (Gorovaia et al., 2024).

8. Conclusion
We demonstrate that morphologically-guided tokenization
improves downstream performance in Latin BERT models,
particularly for features that are strongly tied to morphologi-
cal structure. Across both WordPiece and ULM tokenization
frameworks, incorporating morphological suffix seeding or
contextual pre-tokenization enhances morphological feature
classification, with significant gains in tense prediction and
overall accuracy. These findings reinforce the importance
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of linguistically-informed tokenization, especially for mor-
phologically rich languages.

More broadly, our results highlight the need for continued
investment in developing high-quality linguistic resources,
particularly for lower-resource and morphologically com-
plex languages, where data availability remains a key bottle-
neck.

9. Limitations
Our ULM tokenizers are trained on 5% of our pretraining
corpus, whereas the WordPiece tokenizers are trained on
the full dataset. When ULM tokenizers were trained on the
full corpus, we observed pathological behavior, including
high fertility and segmentations with many single-character
subwords and low morphological alignment. Training on
smaller datasets, and this 5% sample, yielded much more
regular results, for reasons unclear to us; future work could
examine if it is an implementation issue. We decided to train
ULM tokenizers on a subset of the corpus, in order to have
higher-quality tokenization and a fairer comparison to the
WordPiece tokenizers. All BERT models were pretrained
on the full corpus.

We pretrain small (29M parameter) BERT models. The
performance gains we observed may not scale to larger
models or other architecture types.

We only pretrain and finetune a single model per tokenizer,
in order to reduce computational time and cost.

All our downstream tasks are at the token level, rather
than the sentence or chunk level. Although other research
has shown performance gains on sentence-level tasks from
morphologically-aware tokenization, it may not improve
results for Latin specifically.

Impact Statement
In this paper, we seek to advance the understanding of to-
kenization and language modeling for Latin, a morpholog-
ically rich, medium resource language. The methods dis-
cussed are potentially relevant to improving performance
for other low-resource and under-studied languages.
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A. Appendix
A.1. Disambiguating Segmentations with POS Tags

When attempting to match a UD POS tag to a Lemlat POS
tag, the Lemlat tags are checked in the order they appear in
Table 4.

A.2. Tokenizer Implementation Details

Training Hyperparameters For all tokenizers, we fix the
vocabulary size at 30k. For ULM, we set the shrinking
factor to the default HuggingFace value, 0.75.

MorphPreTokenization For ULM, we use a sequence
of the default Metaspace() pretokenizer, followed by
a CharDelimiterSplit(delimiter="@"). The
Metaspace pretokenizer replaces whitespace with a spe-
cial underscore-like symbol, then splits on this charac-
ter and prepends it to the next word. Functionally, this
means that the first subword of a word is differentiated
from continuing subwords with this symbol. Then, the
CharDelimiterSplit pretokenizer will split on our
morpheme symbol, allowing morphological suffixes to be
treated as continuing subwords.

WordPiece requires more modification than ULM,
since the continuing subword symbol ”##” is
added at train time rather during pretokeniza-
tion. First, we use a sequence of pretokenizers:
WhitespaceSplit() followed by Split(pattern
= "@", behavior = "merged with next").
Then, we add a morph_delimiter="@" argument to
the WordPieceTrainer. During training, if a subword
is encountered that starts with the morph_delimiter,
the delimiter is replaced with the continuing subword
symbol ”##” and the new subword is added to the
vocabulary.

A.3. Pretraining Details

Aside from the architecture size and training iterations, we
use Megatron-LM’s default hyperparameters.

We stop pretraining once reasonable POS accuracy is
achieved, which occurred after 500k steps, or about 1.2
epochs. For all 8 models, this took around 715 GPU hours
on L40s and A100s.

A.4. Finetuning Details

We finetune for 15 epochs, keeping the model that had
the highest whole string morphological accuracy on the
validation set.
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Gold = Acontextual Lemlat Segmentations Downstream Performance

Tokenizer Type Algorithm Exact Match Subword Recall Subword Precision Subword F1 Fertility POS Acc Morph Acc

Baseline ULM .1387 .1367 .1371 .1369 1.8714 .9466 .9065
MorphSeed ULM .1524 .1576 .1564 .1570 1.8926 .9488 .9024
Acontextual MorphPreTok ULM .7001 .8349 .6646 .7401 2.3585 .9581 .9275
Contextual MorphPreTok ULM .6544 .8003 .6246 .7016 2.4052 .9598 .9406
Baseline WP .2267 .2273 .2412 .2340 1.7688 .9487 .9306
MorphSeed WP .2273 .2283 .2423 .2351 1.7688 .9500 .9363
Acontextual MorphPreTok WP .8281 .9084 .7993 .8504 2.1335 .9590 .9313
Contextual MorphPreTok WP .7538 .8504 .7338 .7878 2.1755 .9623 .9225

Gold = Contextual Lemlat Segmentations Downstream Performance

Tokenizer Type Algorithm Exact Match Subword Recall Subword Precision Subword F1 Fertility POS Acc Morph Acc

Baseline ULM .1076 .1168 .1208 .1188 1.8714 .9466 .9065
MorphSeed ULM .1212 .1372 .1404 .1388 1.8926 .9488 .9024
Acontextual MorphPreTok ULM .6505 .7762 .6374 .7000 2.3585 .9581 .9275
Contextual MorphPreTok ULM .7188 .8498 .6843 .7581 2.4052 .9598 .9406
Baseline WP .2012 .2137 .2341 .2234 1.7688 .9487 .9306
MorphSeed WP .2018 .2149 .2353 .2246 1.7688 .9500 .9363
Acontextual MorphPreTok WP .7550 .8294 .7530 .7893 2.1335 .9590 .9313
Contextual MorphPreTok WP .8432 .9190 .8182 .8657 2.1755 .9623 .9225

Table 3. Full Tokenizer Evaluation Metrics

UD POS Tag Lemlat POS Tags

NOUN Noun, Adjective
PROPN Noun, Adjective
VERB Verb
ADJ Adjective, Noun
PRON Pronoun, Noun, Invariable
ADV Invariable
ADP Preposition, Invariable
CCONJ Conjunction, Invariable
SCONJ Conjunction, Invariable
PART Interjection, Invariable
INTJ Interjection, Invariable
DET Pronoun, Adjective
X Invariable, Other
AUX Verb
PUNCT Invariable
NUM Noun, Adjective, Invariable

Table 4. Mapping from Universal Dependencies (UD) POS Tags
to Lemlat POS Tags

Hyperparameter Value

Layers 4
Hidden Size 512
Attention Heads 8
Sequence Length 512
Max Position Embeddings 512
Micro Batch Size 4
Global Batch Size 32
Learning Rate 0.0001
Training Iterations 4,216,370
LR Decay Iterations 990,000
LR Decay Style Linear
Minimum Learning Rate 1.0× 10−5

Weight Decay 0.01
LR Warmup Fraction 0.01
Gradient Clipping 1.0
Mixed Precision (FP16) True

Table 5. Pretraining Hyperparameters

Hyperparameter Value

Learning Rate 5× 10−5

Per Device Train Batch Size 8
Per Device Eval Batch Size 8
Number of Training Epochs 15
Weight Decay 0.01
Evaluation Steps 50

Table 6. Fine-tuning Hyperparameters
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