
1

Adaptive attention-based graph representation
learning to detect phishing accounts on the

Ethereum blockchain
Haojie Sun, Zhaowei Liu, Member, IEEE, Shenqiang Wang, and Haiyang Wang

Abstract—With Ethereum blockchain advancement, the
Ethereum platform gathers numerous users. In this context,
traditional phishing appears new fraud methods, resulting in
significant losses. Currently, network embedding methods are
considered effective solutions in the field of phishing detection.
However, investigating existing Ethereum phishing node detection
algorithms finds they are not optimal and still face two issues.
Firstly, the Ethereum network’s topology is unsatisfactory, with
nodes exhibiting a long-tail distribution in their degree. Current
technologies typically allow high-degree nodes to acquire high-
quality embeddings, while low-degree nodes, constrained by lim-
ited structure, obtain embeddings of lower quality, significantly
impacting the detection accuracy of downstream tasks. Secondly,
different features of nodes will suffer losses during the fusion
process, resulting in the final learned feature embedding being
suboptimal. This paper presents an attention-based graphical
learning representation approach (ABGRL) to address these
problems. ABGRL extracts different feature information by
means of multiple channels, and fuses the different feature infor-
mation using adaptive attention convolution to select the feature
information that has the greatest impact on the downstream task.
Then the tail node feature information is enhanced by a self-
supervised regression model with robust tail node embedding.
Finally, the effectiveness of the proposed model was validated
through extensive experiments.

Index Terms—Blockchain, Ethereum, Phishing Fraud Detec-
tion, Network Embedding, Graph Neural Networks

I. INTRODUCTION

BLOCKCHAIN [1] is a novel digital currency based on a
decentralized network that is not governed by any central

authority and originated from Bitcoin. In 2008, an anonymous
author proposed the concept of blockchain. With blockchain
technology’s ongoing development, it is widely used in the
cryptocurrency industry [2]. Currently, Bitcoin and Ethereum
dominate the cryptocurrency market, with a total market share
of nearly 70% [3]. Among blockchain platforms, Ethereum
is the most widely used [4], which supports smart contracts
using a Turing-complete language.

This work was supported in part by the National Natural Science Foundation
of China under Grant 62272405, School and Locality Integration Development
Project of Yantai City(2022), the Youth Innovation Science and Technology
Support Program of Shandong Provincial under Grant 2021KJ080, the Natural
Science Foundation of Shandong Province under Grant ZR2022MF238, Yantai
Science and Technology Innovation Development Plan Project under Grant
2022XDRH023. (Corresponding author: Zhaowei Liu.)

Zhaowei Liu, and Haojie Sun are with the School of Computer and
Control Engineering, Yantai University, Yantai 264005, China (e-mails:
lzw@ytu.edu.cn; sunhaojie@s.ytu.edu.cn)

Haiyang Wang,and Shenqiang Wang are with the Institute of Net-
work Technology (Yantai), Shandong, China(e-mail: wanghaiyang@ict.ac.cn;
wsqaahh@foxmail.com)

However, as Ethereum becomes increasingly popular, the
Ethereum network has also become a breeding ground for
various types of cybercrime [5]. More than 10% of Ethereum
accounts have reportedly received various threats [6], includ-
ing phishing scams, honey traps, money laundering, Ponzi
schemes, and so on [7], [8]. Among them, phishing scams are
the most harmful type of cybercrime [9], accounting for more
than half of all Ethereum crimes [10]. Phishing scams include
the unlawful alteration of official websites or contact details by
con artists in order to steal their victims’ personal information
[11]. In most cases, this false information can be widely
disseminated through email, advertisements, forums, chat ap-
plications, etc., with a great deal of damage and relatively
low cost. Compared with traditional phishing scams, phishing
scams on Ethereum have different manifestations [12]. Firstly,
cash is no longer the target of phishing scams, and cryptocur-
rencies have become the target. Secondly, since the blockchain
is transparent, anyone can access every transaction record
on Ethereum, providing a complete dataset for researching
different Ethereum users [13]. Thirdly, on Ethereum, phishing
scams frequently differ from normal phishing scams,and more
methods exist for spreading phishing content. [14].

In the face of the aforementioned security issues, how to
quickly and accurately identify phishing accounts within the
Ethereum platform has become a popular subject in the area
of blockchain security [15]. Applying algorithms for network
representation learning to the Ethernet network for phishing
detection is currently the most popular approach [16], [17].
This method can be roughly divided into two categories: detec-
tion algorithms random walks-base and detection algorithms
graph neural networks(GNN)-base [18]. Random walk-based
approach to detection is a semi-supervised algorithm used for
network representation learning and scalable network feature
learning [19]. A key aspect of these algorithms is the strategy
of random walks, i.e., how to choose neighbors when selecting
them in order to include more topological information. GNN-
based algorithms use neural networks to learn representations
of nodes in the Ethereum network, in order to conduct phishing
detection [20], [21]. Typically, these algorithms use a message-
passing protocol, feature aggregation is a crucial stage, where
each node gathers feature data from its topological neighbors
in each convolution layer [22], [23].

Although these two types of algorithms have made great
progress in detecting Ethereum phishing nodes, existing al-
gorithms still face two challenges: Firstly, this work by eval-
uating and analyzing the ability of GNN that fuses network

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3355089

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 06,2024 at 08:55:05 UTC from IEEE Xplore. Restrictions apply.

2

topology features and node attribute features, found that the
current GCN model is suboptimal in fusing different feature
information of Ethernet network, there is a certain loss in
the feature fusion process, and it is not able to optimally
extract the feature information that is the most important for
downstream tasks from the different features. Secondly, by
analyzing the topological structure of the Ethereum transaction
network [24], this work found that the degree of nodes in
the Ethereum transaction network exhibits the characteristics
of a long-tail distribution [25] (that is, most nodes have few
connections, and only a few nodes have rich connections,
as shown in Figure shown in 1). However, the performance
of most existing embedding-based methods largely depends
on rich structural information. Although high-degree nodes
connected to enough neighboring nodes can fully extract
neighbor information, low-degree nodes are connected to small
neighborhoods that may be biassed or underrepresented, which
can lead to unsatisfactory model performance.

Fig. 1. Degree distribution of nodes.

After finding the inadequacy of the existing Ethereum trad-
ing network node detection framework, the question naturally
arises: ”Can we design a GNN model that can learn effective
tail node characteristic vectors from limited structural informa-
tion and can extract in a better way the implicit relationships
between multiple different characteristics, selecting the most
important characteristic information that affects downstream
tasks?”

Based on the challenges raised above, this work proposes
a new network embedding algorithm ABGRL for detecting
phishing accounts in the Ethereum network. Specifically, the
algorithm first learns different feature information of nodes
from the original graph and the node’s attribute feature map
by using multiple graph representation learning channels for
extracting feature information. Then, in order to deal with the
problems raised by Challenge 1, the algorithm introduces an
adaptive attention mechanism, using an adaptive convolution
method to capture the potential relationships between different
features and adaptively select the most important feature
information for downstream tasks, thus fully ensuring the low-
dimensional embeddings contain more effective features that
contribute to the downstream task. To overcome the issues

raised in Challenge II, this work proposes a self-supervised
regression model for robust tail node embedding by learning
its neighborhood representation information from structure-
rich head nodes, and then further transferring it to structure-
limited tail nodes to enhance its representation so that its
embedding contains more structural information. Finally, in
order to verify the quality of the learned node features, the
final node embedding vectors are input into different classifiers
to verify the effectiveness of ABGRL.

This article’s main contributions are as follows:
(1) This work proposes a graph representation learning-

based Ethernet phishing node detection model (ABGRL) that
extracts different feature information through multiple feature
extraction channels and employs an adaptive attention mech-
anism to capture the implicit relationships between different
features, and adaptively selects to fuse the feature information
that is most important for the downstream task.

(2) This work points out that the degrees of nodes in
Ethernet networks exhibit long-tailed distributions, and en-
hances their representation by employing a self-supervised
regression model for robust tail node embedding to learn
their neighborhood representations from structurally rich head
nodes, which are then further transferred to structurally limited
tail nodes.

(3) Numerous experiments were carried out on the Ethereum
dataset collected in this article. Experimental findings indicate
that the approach suggested in this paper outperforms tradi-
tional phishing node identification techniques on the Ethereum
network.

II. RELATED WORK

This section summarizes the graph representation learning-
based anomalous node detection algorithms and Ethernet
phishing scam detection algorithms released in recent years,
and describes their principles and features. Both types of
algorithms apply network embedding techniques to map high-
dimensional networks into lower-dimensional spaces, thereby
transforming the anomaly node detection problem into a graph
node classification problem [26].

A. Anomaly Node Detection Algorithm Based on Graph Rep-
resentation Learning

The anomaly node detection algorithm based on graph
representation learning is a method used to identify abnormal
nodes in a network [27]. This class of algorithms learns the
topological structure of the graph and relationships between
nodes, mapping nodes from a high-dimensional network to a
low-dimensional representation space. This enables the low-
dimensional node representation to effectively capture both
local and global information in the graph structure, providing
an effective means of anomaly detection in complex net-
works. Currently, graph representation learning-based anomaly
node detection algorithms can be broadly categorized into
two types: random walk-based algorithms and graph neural
network(GNN)-based algorithms.

The core of random walk-based algorithms lies in the
strategy of selecting random walks, determining how nodes

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3355089

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 06,2024 at 08:55:05 UTC from IEEE Xplore. Restrictions apply.

3

choose neighbors to maximize the inclusion of neighbor-
hood information. Classic algorithms such as DeepWalk,
Node2vec, and Line are based on random walks. DeepWalk
[28], as a pioneering algorithm, utilizes random walks to
obtain sequences of node neighborhoods, which are then input
into Word2Vec to generate vector representations for nodes.
Node2vec [29] builds upon DeepWalk, incorporating a biased
random walk strategy controlled by tuning hyperparameters.In
recent years, many abnormal node detection algorithms based
on random walks have also been released. For example, She
et al. [30] proposed a local outlier detection method based
on grid random walks, which uses random walks to obtain
network information. Stationary distribution vector for the
grid infographic. Liu et al. [31] proposed a neighborhood
relationship filtering model based on random walk similarity
measure to find the best neighbor for each relationship in the
heterogeneous network.

The other category, graph neural network(GNN)-based al-
gorithms, primarily leverage deep neural networks to learn
non-linear information in the graph. Fundamental graph neural
network algorithms such as Graph Convolutional Network
(GCN) [32], GraphSAGE [33], Cluster-GCN [34], etc., have
demonstrated excellent performance in various downstream
tasks such as node classification and link prediction. These
algorithms utilize deep learning techniques and the message-
passing mechanism among nodes in the network to capture de-
pendencies and aggregate feature information from topological
neighbors [35].Additionally, some network algorithms based
on attention mechanisms to capture the structure and features
of the network have been released recently. For example,
Zhang et al. [36] proposed an adaptive structural fingerprint
model (ADSF), which ”crosstalks” each other by learning
multi-head attention, and is able to deal with complex reality.
Particularly useful with world data. He et al. [37] proposed a
graph joint attention network (CAT) that can learn representa-
tions embedding latent features considered important by joint
attention.

While there has been a lot of progress in recent
years with random walk-based algorithms and graph neu-
ral network(GNN)-based algorithms, such algorithms are not
specifically designed for the Ether transaction graph, and thus
have some limitations in dealing with the complexity of the
Ether network. When directly applying the anomalous node
detection algorithm based on graph representation learning
to the Ethernet network to extract feature information, many
important features related to the phishing node detection task,
such as transaction feature information on the edges, may not
be extracted effectively. Therefore, the accuracy rate is not
high when applying them directly to Ethernet networks for
phishing node detection.

B. Ethereum Network Phishing and Fraud Detection Algo-
rithm

In response to the characteristics of the Ethereum transac-
tion graph, many scholars have proposed different algorithms
to solve the problem of detecting phishing fraud accounts.
For example,Wu et al. [38] proposed Tran2vec, a phishing

fraud account detection method based on improved Node2vec.
This method applies the network embedding technique on
Ethernet for the first time to perform phishing detection by
mining transaction records. Wang et al. [39], in addressing
the Ethereum network phishing detection problem, further
enriched the information obtained from the random walk
algorithm by employing heterogeneous network representation
learning. Xia et al. [40] proposed a new node re-labeling
strategy based on Ethereum transaction attributes, including
transaction amount, quantity, and direction. Through new
labels, nodes and subgraphs can be differentiated, enabling the
simultaneous learning of the structure and attribute features of
the Ethereum transaction network. Chen et al. [21] introduced
a phishing account detection method based on graph convolu-
tional networks and autoencoders. Wen et al. [41] provided a
new method, LBPS, for analyzing transaction records. For the
first time in the Ethereum phishing node detection task, this
method combines manual feature engineering with transaction
record-based methods. Liu et al. [26] proposed an adaptive
multi-channel Bayesian graph attention network (AMBGAT)
to enhance the Ethereum network structure by using Bayesian
estimation, thereby improving the accuracy of phishing node
identification. Wang et al. [42] suggested a method applying
graph representation learning based on temporal graph atten-
tion, which models the interaction between time signals and
node features, edge features, and the topology of the graph.

To summarize, the current Ethernet phishing account detec-
tion models based on graph representation learning have made
great progress, but most of the models assume that the network
graph structure is complete, and little attention has been paid to
the long-tailed distribution problem that exists in the network
itself, and many existing Ethernet phishing node detection
algorithms do not take into account the implicit relationship
between different features in the process of extracting and
fusing different features using a direct summation, which may
result in the corruption of some feature information that is
important to the downstream task.

III. FRAMEWORK

This section will provide a detailed overview of the method-
ology proposed in this work, which primarily consists of
three modules: the Data Collection and Network Construction
module, the Feature Extraction and Fusion module, and the
Feature Enhancement and Phishing Detection module. The
Data Collection and Network Construction module is respon-
sible for crawling Ethereum transaction data from the web
and constructing a network graph containing both phishing
and normal nodes. The Feature Extraction and Feature Fusion
module is responsible for extracting the different feature
information in the topology and attribute maps, and using an
adaptive attention approach to capture the potential relation-
ships between the different features, extracting and fusing the
feature information that is most important for the downstream
task. Finally, the Feature Enhancement and Phishing Detection
module enhances the feature vectors of tail nodes and performs
subsequent phishing detection tasks based on the enhanced
embedding vectors. The details are illustrated in Figure 2.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3355089

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 06,2024 at 08:55:05 UTC from IEEE Xplore. Restrictions apply.

4

Fig. 2. The overall framework

A. Data Collection and Network Building module

The Ethereum phishing node identification problem studied
in this paper can be formulated as a semi-supervised graph
node classification problem. In order to achieve this goal, the
source and collection of Ethereum transaction network data
sets will be described in detail in this sub-section, as well as
the process of building transaction networks.

1) Data Collection: To train the proposed model mentioned
in this paper, a sufficiently large dataset is needed to support
it. Only with an ample amount of training samples can the
model exhibit better classification performance. Therefore, the
first step is to obtain a comprehensive Ethereum dataset.

Due to the public transparency of Ethereum, all transaction
records can be publicly accessed on the blockchain. Thus, by
accessing the blockchain network and synchronizing block
data using blockchain clients such as Core and Geth, raw
Ethereum data can be obtained. In this research, the labeled
nodes collected were obtained from a tag cloud module
provided by the Etherscan blockchain explorer. This website
displays various types of Ethereum account information that
have been labeled. In this work, accounts from exchanges,
ICO wallets, miners, investment institutions, and other normal
types were scraped as normal account nodes, while phishing
accounts were scraped as abnormal phishing nodes.

To more effectively identify Ethereum phishing accounts,
relying solely on limited labeled data is insufficient. It is
necessary to collect a large amount of unlabeled account data
to build a comprehensive Ethereum phishing account dataset.
When obtaining unlabeled accounts, this work analyzes the
recent activity dates of each node and randomly extracts
Ethereum accounts based on these dates. To avoid duplicate
accounts, the extraction process checks whether the account
has been labeled by the Etherscan website, and if so, the
address is removed. After obtaining node label information, the

Ethereum accounts’ first-order transaction data for all nodes
is retrieved using the application programming interface (API)
provided by Etherscan. The final dataset consists of 376,759
account nodes and 1,048,576 transactions, with each account
corresponding to a unique address.

Due to the anonymity of Ethereum accounts, they con-
tain only a small amount of attribute information. To better
describe the characteristics of different account nodes, this
work extracts account features for each Ethereum account
based on the account attribute information and transaction data
provided in Etherscan, as shown in Table 1. These features
can further reveal correlations between transaction behavior
and accounts, enabling the discovery of specific transaction
patterns for phishing accounts and providing more data support
for Ethereum phishing account identification. The description
and calculation methods of some of the attribute characteristics
are as follows:

The timestamp of the largest transaction: It is a feature on
the transaction edge and represents the timestamp information
of the latest transaction between two nodes.

Total amount of transactions: It is a feature on the transac-
tion edge, indicating the total amount of ETH that occurred
between the two nodes.

Number of transactions: It is a feature on the transaction
edge, indicating the total number of transactions between two
nodes.

Total Ether sent: It is an attribute characteristic of the node,
indicating the total number of Ether sent by the account as the
transaction sender.

Average amount of Ether sent: It is the attribute character-
istic of the node and is the value of the total number of Ether
sent divided by the number of transactions sent.

2) Network Construction: After collecting the data set, our
task is to model the data according to the graph network
modeling method based on the collected data set. Model

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3355089

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 06,2024 at 08:55:05 UTC from IEEE Xplore. Restrictions apply.

5

TABLE I
COMPLETE LIST OF EXTRACTED FEATURES

Feature

1 The timestamp of the largest transaction

2 The timestamp of the smallest transaction

3 Total amount of the transactions

4 Number of transactions

5 The total gas fee for the transaction

6 Total Ether sent

7 Maximum amount of Ether sent

8 Minimum amount of Ether sent

9 The number of trades accepted as a trade sender

10 Average amount of Ether sent

11 Total Ether received

12 Maximum amount of Ether received

13 Minimum amount of Ether received

14 The number of trades accepted as a trade taker

15 Average amount of Ether received

16 Ratio of Ether sent to received

17 ratio of transaction sender to receiver numbers

18 Average Ether traded

19 The timestamp of the account’s last transaction

20 The timestamp of the account’s first transaction

21 Total Ethereum Transaction Fees

22 Average Ethereum Transaction Fees

Ethereum’s transaction dataset as a graph G = (V,E,X,A),
where V = [V1, V2, · · ·Vn] is the set of Ethereum network
nodes, where the total number of accounts is N = |V | ,
E = [e1, e2, . . . er] is the set of r transaction edges, and X is
the set of transaction edge attributes with X ∈ R(r∗s) , where
s is the dimension of the characteristics of the transaction edge
and r is the number of transaction edges. A is the set of node
attributes with A ∈ R(n∗c) , where c is the dimension of the
node characteristics and n is the number of nodes.

B. Feature Extraction and Feature Fusion module

This work creates a model named the ABGRL deep neural
network for feature extraction and feature fusion. Figure 4
depicts the model’s framework. The model first generates
embeddings containing node topology information by using a
biased random walk method to mine information from transac-
tion edges and the topology of the graph. Next, to learn node
feature information from the original graph and node attribute
feature maps, multi-channel attention convolution modules are
employed, and automatic learning of the importance weights
of the various embeddings created above takes place using
an adaptive attention method, in order to better fuse them
and improve the embedding ability of nodes,and include
more information in the combined embeddings. Finally, in
order to enhance the representation ability of the tail node

embedding and solve the long-tail distribution problem of
the Ethereum transaction network, a self-supervised regression
model is adopted to learn its neighborhood representation
information from the structurally rich head nodes and further
transfer it to the structurally limited tail nodes to enhance their
representation ability, so that their embeddings contain more
structural information.

This section mainly introduces the feature extraction and
feature fusion algorithms proposed by us for the Ethereum
transaction network. In the next subsection 3.3, the feature
enhancement algorithm of the tail node will be introduced.

1) Topological feature learning based on random walk:
There are two main components to the random walk-based
feature representation learning method. To create node em-
beddings including topological information, the initial step is
to capture the structural relationships and other information
between nodes using various walking strategies. Then, the
skip-gram model utilizes the produced node sequence to solve
a maximum likelihood optimization problem, enabling the
learning of node embeddings. With the help of this method,
data analysis and processing can effectively learn the feature
information of nodes.

Given a source node u, sample a random walk sequence of
length l, and the starting vertex of the sequence is denoted as
c0 = u . The vertexes in the random walk sequence within l
are represented as ci, and the sampling strategy for ci is:

P (ci = x | ci−1 = u) =

{πu,z

Z if(x, v) ∈ E
0 else

(1)

where πu,x is the likelihood of a transition occurring be-
tween node u and node x, whereas Z is the normalisation
factor.

In order to understand the characteristics of the transaction
network more comprehensively and extract the topology infor-
mation of the Ethereum transaction network, this paper con-
siders the transaction information between each pair of nodes,
such as transaction amount, transaction timestamp, transaction
number,and transaction edge type. A biased random walk
strategy based on transaction amount, transaction timestamp
and transaction number is designed to effectively extract the
topological information of the transaction network and embed
it into a low-dimensional vector representation.

Individual Information-Based Random Walk Strategy:
In the transaction timestamp-based random walk method,

we consider the transaction information between each pair
of nodes and use the transaction timestamp as a record.
Since there may be multiple transactions between each pair of
nodes and each transaction has its own timestamp. Therefore,
in order to take into account the timestamp information of
all transactions, this work sums and averages all transaction
timestamps between each pair of nodes to obtain the timestamp
information between the node pair.

T (u, x) =

∑c
i=1Ti(u, x)

c
(2)

where c represents the quantity of transactions between
nodes x and u, and Ti(u, x) is the timestamp of the i-th
transaction between node x and node u.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3355089

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 06,2024 at 08:55:05 UTC from IEEE Xplore. Restrictions apply.

6

Fig. 3. Framework of ABGRL

Assuming that the greater the timestamp T (x, u) of the
obtained transaction, the closer the connection between the
two related nodes, our goal is to find the transition probability
P between the nodes during the random walk, so that the
biased random walk is performed according to the transition
probability. Under time-based bias sampling, the transition
probability PT from node u to neighboring node x ∈ Vu is
calculated as follows:

PT =
T (u, x)∑

x′∈Vu
T (u, x′)

(3)

Where Vu is represented as a set of nodes directly connected
to node u, and T (u, x) refers to the timestamp of node u
and node x obtained by formula 2 ,

∑
x′∈Vu

T (u, x
′
) refers to

the time stamps of node u and all its adjacent nodes sum of
timestamps.

Similarly, under biased sampling based on transaction
amount, the transition probability PA from node u to adjacent
node x ∈ Vu is calculated as follows:

PA =
MAXA(u, x)∑
x′∈Vu

A(u, x′)
(4)

Among them, MAXA(u, x) refers to the max transaction
amount between node u and node x ,

∑
x′∈Vu

A(u, x
′
) refers

to the transaction amount between node u and all its adjacent
nodes The sum of transaction amounts.

Similarly, under biased sampling based on the number of
transactions, the transition probability PC from node u to
adjacent node x ∈ Vu is calculated as follows:

PC =
C(u, x)∑

x′∈Vu
C(u, x′)

(5)

Where C(u, x) refers to the number of transactions between
node u and node x ,

∑
x′∈Vu

C(u, x
′
) refers to the transaction

times between node u and all its adjacent nodes The sum of
the number of transactions.

Random walk strategy based on various transaction in-
formation:

The previous three strategies only considered one type
of information on the transaction edges, and therefore, the
learned embeddings had some missing information. To ensure
that the learned features contain more information, this work
simultaneously considers the transaction amount, transaction
time, and transaction count information. Using parameters
α, β, γ ∈ [1, 0] to balance the influence of these three types of
information on graph feature learning.

Specifically, firstly, normalize the transaction amount, trans-
action time, and transaction count information separately.
A

′

u,v represents the normalized transaction amount weight
information between node u and node v, T

′

u,v’ represents the
normalized transaction time weight information, and C

′

u,v rep-
resents the normalized transaction count weight information

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3355089

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 06,2024 at 08:55:05 UTC from IEEE Xplore. Restrictions apply.

7

between node u and node v. Then use the hyperparameters
α, β, γ ∈ [1, 0] to balance the influence of different weight
information.

Su,v = α ·A
′

u,v + β · T
′

u,v + γ · C
′

u,v (6)

In the updated user transaction network, nodes with higher
weights represent stronger relationships and have a greater
impact on the central node. By utilizing the aggregation infor-
mation weight in the transaction graph, it can be transformed
into the transition probability between two nodes. Based on
the different transition probabilities, when performing random
walks from a certain node, neighboring nodes can be selec-
tively chosen. Let the transition probability from node u to its
first-order neighboring node v be:

PS(u, v) = MAXSu,v/
∑

v′∈Vu
Su,v′ (7)

Here, MAXSu,v refers to the maximum weight between
node u and node v after aggregation, and

∑
x′∈Vu

Su,v′

represents the sum of aggregated information weights between
node u and all nodes it has transacted with.

To capture the topological features of the Ethereum transac-
tion network graph and embed more transaction information
into the representation vectors, perform biased random walks
with a step size of l for r iterations on each node u in the
network. By taking into account different transition probabil-
ities between nodes, we sample biasedly from the neighbor
set Nu of the central node, generating a sequence of nodes
containing the topological features of the network. Similar to
previous work [29], utilize the skip-gram model and stochastic
gradient descent to optimize the node embeddings and obtain
the objective function f, which maximizes the probability of
the logarithm of node occurrences in the neighborhood Nu of
node u. In other words, our goal is to increase the possibility
of monitoring the context nodes given the center node.

MAX
∑

u∈V log Pr(Nu | f(u)) (8)

f : GM → Rn∗d (9)

To learn the topological embedding vector HM ∈ Rn∗d

containing the topological information of each node,where n is
the quantity of nodes and d is the dimension of the topological
embedding of each node.

2) Multi-channel convolution module: This section intro-
duces the convolution module based on the adaptive attention
we use. Unlike traditional GCN, without knowing the full
graph network beforehand, this module is able to assign
various correlation weights, or alpha, to various nodes in the
neighborhood based on their relationships. This paper designed
two convolution modules, one for extracting node attribute
information and the other for extracting common information
in different networks. When calculating alpha, the detailed
explanation of the formula is as follows:

αi,j =
exp(LeakyReLU (⃗a · (W lhl

i || wlhl
j)))∑

k∈Ni
exp(LeakyReLU (⃗a · (W lhl

i || W lhl
k)))

(10)

Where a⃗ is the parameter vector of the forward propagation
layer, wl is the weight matrix of each node’s linear change,
and || represents vector splicing.

Attention convolution module for extracting attribute in-
formation:

Create a k-nearest neighbour (KNN) graph in this work
based on the node feature matrix X to capture the attribute
feature information embedded in the nodes in the feature
space Gf = (Af , X) , where Af is the adjacency matrix
of the KNN graph to represent the attributes between nodes
similarity. When constructing a KNN graph, first calculate
the similarity matrix u by calculating the cosine similarity
of attribute information between nodes, and the calculation
expression of the similarity matrix is:

ui,j =
xi · xj

| xi | · | xj |
(11)

Among them, xi and xj are the attribute characteristics cor-
responding to node i and node j respectively. Then uniformly
select the top k similar nodes for each node based on the
generated similarity matrix u to build connection edges to
generate a KNN graph.

Finally, we take the generated KNN proximity graph Gf

as the input graph and input it into the graph convolutional
network (GAT) to learn the attribute feature embedding of
each node. The output of the last layer of this module is:

hi = σ(
1

k

∑K
k=1

∑
j∈Ni

αi,jW
khj) (12)

Where αi,j is the attention coefficient after the kth nor-
malization, W k is the weight matrix, σ is the activation
function, Ni is the neighborhood node set of node i, hj is
the eigenvector of node i’s neighbor node j, k is the number
of convolutional layers. The output vector of the last layer is
represented as HZ as the attribute feature vector of the node.

Attention convolution module for extracting common
information in the network:

In the Ethereum transaction network, the attribute feature
space of nodes and the topological space of nodes are not
completely independent. To more effectively extract network
features, in addition to embeddings that extract node-specific
information in one space, embeddings that extract shared
information across these two spaces are also required. This
is because it can be difficult to determine which part of the
original topology graph, the attribute feature map of the nodes,
or the common part of the two, is more relevant to the target
downstream task. Therefore,this paper create a convolution
module to extract the shared data between the initial topology
graph and the attribute feature graph of nodes, making the task
more flexible.

Firstly, exploit the common convolution module to extract
the embedding HCM of nodes from the original topology
graph as follows:

hi = σ(
1

k

∑K
k=1

∑
j∈Ni

αi,jW
k
c hj) (13)

The αi,j coefficients are the normalized attention coeffi-
cients after the kth iteration, σ is the activation function, and

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3355089

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 06,2024 at 08:55:05 UTC from IEEE Xplore. Restrictions apply.

8

W k
c is the trainable weight matrix in the common convolution

module. It is used to extract common information in two
feature spaces. The output vector of the last layer is taken
as the learned feature and represented by HCM .

Next, input the KNN adjacency graph to learn its features
using the same formula as formula 14, and the output vector
of the last layer is taken as the learned feature and represented
by HCZ .With two different input graphs, we obtain two
output embeddings HCM and HCZ . The common information
embedding learned on these two feature spaces is expressed
as follows:

HC = (HCM +HCZ)/2 (14)

Adaptive feature fusion module:
After extracting features from the Ethereum transaction

network can obtained three types of embedding vectors con-
taining different information, namely the embedding HM

containing topological features, the embedding HZ containing
node attribute features, and the embedding HC containing
common features. Considering that the label information of
Ethereum nodes may be related to one or several of these
feature information, in order to better integrate these three
parts of information and extract the information related to
Ethereum node labels, by used adaptive node feature fusion
technology to automatically select the information in these
three types of features that is more important for downstream
tasks, and generate the final node feature embedding.

The fusion process uses an attention-based adaptive mecha-
nism to automatically learn the importance of different embed-
ding information for the task of identifying phishing nodes in
Ethereum, that is, for the feature information [HM , HZ , HC]
to learn the importance coefficient [qm, qz, qc] ∈ Rn∗1 .
Specifically, taking node i as an example, for its feature vector,
first apply a nonlinear transformation, and then multiply it by a
shared attention vector to get its attention values [qim, qiz, q

i
c] ∈

Rn∗1.

qix = ωT · tanh(W · (hi
x)

T + b) (15)

where hi
x ∈ R1×d is one of the three feature embeddings of

node i, W ∈ Rd′×d is a trainable weight matrix, b ∈ Rd′×1

is the paranoid parameter, ω ∈ Rd′×1.
Next, normalize the attention values qm, qz, qc using the

softmax algorithm to get the final weights:

qim = softmax(qim) =
exp(qim)

exp(qim) + exp(qiz) + exp(qic)
(16)

The final feature vector is created by joining the learned
three weight coefficients with the pertinent feature data:

Hi = qim · hi
m + qiz · hi

z + qic · hi
c (17)

C. Feature Enhancement module

The degree of Ethereum’s nodes is distributed in a long tail,
and its transaction network is not a perfect network structure.
For this kind of network structure, it is not a problem to learn
the embedding of the head node with a higher degree, but not

for the tail node. The lack of available structural information
for tail node embeddings presents the biggest difficulty in
learning them. In other words, each tail node has only a small
number of neighbor nodes to observe. In this section will use a
self-supervised regression model to reconstruct the embedding
of the tail node by using the high-quality embedding of the
head node to provide it with more topological information
without assuming additional auxiliary information.

The precise processing procedure is as follows: classify
the graph’s nodes into head and tail nodes based on degree,
designating the node with a degree greater than 5 as the
head node and the node with a degree less than 5 as the tail
node. According to the embedding vector generated in Section
3.2.3, separating the head and tail nodes’ embedding vectors
allows us to train a self-supervised regression model F using
the head node’s embedding vector as the training set. The
regression model F is through continuous Input the training
set consisting of the aggregate embedding of the neighbors
of the head node to regress and reconstruct the embedding
of the generated head node, so that the regression model can
still return a good embedding ability when there are only a
few neighbor nodes. Specifically, the model reconstructs and
outputs a predicted embedding h′

u through the aggregation of
the embedding vectors of the neighbor nodes of the given
head node, and then trains by continuously optimizing the
predicted embedding h′

u to approximate the embedding hu

of the head node. Formally, by reducing the loss error can
learn the model’s parameters. The processing formula is:

L = argmin
∑

u∈Vhead
|| h′

u − hu ||2 (18)

The notation || · || refers to the Euclidean norm. h′
u rep-

resents the reconstructed embedding outputted by the model,
while hu is the original embedding of the head node.

In order to ensure better performance of the trained regres-
sion model and make the head node more similar to the tail
node, we will filter the neighbors of the head node to simulate
the tail node by adjusting the number of neighbors to be similar
to the tail node. This allows the model to predict high-quality
node embeddings even when only the tail node is available.
After training, we can use the regression model F to predict
the embedding vector of the tail node, ensuring that its quality
can approach that of the structurally rich embedding vector of
the head node. The formula for the calculation is:

h′
u = W2 · σ(W1xu + b1) + b2 (19)

Here, σ is an activation function, W1 and W2 are weight
matrices, and b1 and b2 are bias functions. xu represents the
neighborhood features of a node, which are aggregated from
its neighbors.

N (m)
u =

⋃
i∈N

(m−1)
u

Ni (20)

After obtaining all the m-hop neighbors of the head node,
in this work will filter the head node’s neighbors. Specifically,
only randomly sample k neighbors for each head node, that
is, randomly sample k nodes from N

(m)
u to form a set N ′

u.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3355089

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 06,2024 at 08:55:05 UTC from IEEE Xplore. Restrictions apply.

9

xu = AGGR({hi : i ∈ N ′
u}) (21)

AGGR (·) is an aggregator, such as average pooling, LSTM,
and graph convolution aggregator.

Fig. 4. Training a regression model to reconstruct the embedding of tail nodes

IV. EXPERIMENT

In this section, the effectiveness of the proposed ABGRL
algorithm will be evaluated using a collected Ethereum dataset.
Specifically, first discuss the experimental setup, including the
dataset used, baseline methods, and implementation details.
Next, a comparison will be made between ABGRL and ex-
isting baseline methods to validate the advantages of ABGRL
in the task of phishing node identification. Subsequently, an
analysis of various variants of ABGRL will be conducted to
validate the roles of its different functional modules. Finally,
the impact of parameter sensitivity on the phishing node
detection task will be analyzed.

A. Experimental Settings

1) Dataset: The dataset used in the experiments comprises
376,759 account nodes and 1,048,576 transactions. Among
these data, a total of 9,986 nodes are labeled, with 5,000
identified as normal nodes and 4,956 flagged as phishing
nodes.

To comprehensively evaluate the proposed methodology in
this study, three different dataset partitioning methods were
employed. The details are presented in Table 2, where the
dataset is divided into three subsets, namely D1, D2, and D3
[43].

2) Baselines: By analyzing the comparison of baseline
methods with similar work, this work compares ABGRL with
several different types of algorithms, including random walk-
based algorithms, graph neural network-based algorithms, and
algorithms specifically applied to Ethereum phishing node
detection.

•DeepWalk [28]: is a traditional network embedding algo-
rithm that learns vector representations of nodes by collecting
context information and co-occurrence relationships between
nodes through random walks.

TABLE II
THREE TRAINING-VALIDATION-TEST SET PARTITION METHODS

Dataset Train Set Validation Set Test Set

D1 50% 10% 40%

D2 70% 10% 20%

D3 80% 10% 10%

•Node2vec [29]: is based on DeepWalk, obtain node context
combinations through biased random walk sampling, and then
models this combination to obtain embeddings representing
the features of network nodes.

•LINE [44]: can obtain two representation vectors of ver-
tices, source vector and target vector, by optimizing first-order
similarity and second-order similarity, and combines the two
vectors to represent the final vertex.

•GCN [32]: is a deep learning model for node classification.
It applies the neural network’s convolution operation to graph
structure in general and can process complex graph data,
including nodes and edges.

•GAT [45]: is a representative graph convolutional network
that adds an attention strategy to produce better neighbor
aggregation and also lends some interpretability to the model.

•GEN [46]: is a GNN built on learning graph structures. By
constructing an estimated graph and utilizing comprehensive
data to estimate a more precise graph structure to adapts the
GNN mechanism.

•AM-GCN [47]: is a multi-view graph convolutional net-
work capable of discovering node embeddings from both node
features and topology.

•Trans2vec [38]: is a method that detects blockchain
network phishing scams by mining blockchain transaction
records, considering both transaction amounts and timestamps.

•HNRL [26]: is a heterogeneous network representation
learning method that mines hidden information in Ethereum
transactions and maps the Ethereum transaction network to a
low-dimensional space.

3) Implementation Details: Regarding implementation de-
tails, the implementation of ABGRL consists of a random
walk module based on multiple transaction data and two GAT
layers with the same three hidden layer dimensions and output
layer dimensions. The settings in the random walk module
are: walk length l = 10, number of walks r = 10, neighbor
window size m = 5, weight parameters α, β, γ ∈ [0, 1], output
embedding dimension d = 128. Each layer in the GAT layer
contains k = 4 attention head calculations, the learning rate
is 0.01, the weight decay is 5e-4, the decay rate of each
layer is 50%, and the Adam optimizer is used in training.
In addition, the dimension of the hidden layer embedding is
selected from {512, 768}, the dimension of the output layer
is positioned at 128, the feature map k = 5, the number
of iterations of the model is set to 100, and the parameters
with the highest verification accuracy are saved for testing. In
the comparative experimental parameter settings, the random
walk-based algorithm settings are the same as the random

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3355089

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 06,2024 at 08:55:05 UTC from IEEE Xplore. Restrictions apply.

10

TABLE III
NODE CLASSIFICATION RESULTS OF DIFFERENT METHODS

Method
Dataset D1 D2 D3

Metric Pre Recall F1 Pre Recall F1 Pre Recall F1

Random Walk

DeepWalk 72.00 72.15 72.00 73.32 73.36 73.31 71.45 71.66 71.45

Node2vec 75.54 75.67 75.53 76.29 76.36 76.28 75.31 75.43 75.30

Line 76.63 76.39 75.33 77.82 77.36 76.48 78.12 78.32 78.11

Deep Leaning

GCN 76.18 75.07 74.27 76.94 75.63 74.99 79.41 77.85 78.16

GAT 76.45 73.50 76.50 75.37 70.43 75.33 77.85 71.74 77.71

GEN 83.31 86.58 84.92 84.76 86.69 85.71 84.83 87.23 86.01

AM-GCN 79.79 79.66 79.70 82.65 82.31 82.45 80.94 80.09 80.39

Blockchain method
Trans2vec 81.80 81.66 81.70 82.40 82.42 82.41 83.71 83.72 83.71

HNRL 86.60 89.10 89.00 88.70 91.50 91.70 88.90 95.90 95.70

Ours ABGRL 89.55 89.42 91.49 91.69 91.57 91.63 92.39 92.22 92.33

walk module. The walk length l = 10, the number of walks
r = 10, the neighbor window size m = 5, the paranoia
parameter q = 0.5, and the output embedding dimension
d = 128. The algorithm settings based on the graph neural
network are the same as the GAT layer. The dimension of the
hidden layer embedding is selected from {512, 768}, and the
dimension of the output layer is positioned at 128. The basic
settings of trans2vec are the same as the random walk module,
except that its importance parameters p = 0.25, q = 0.75,
search bias α = 0.5. The edge dimension in HNRL is set
e=15,base embedding dimension b=200, attribute dimension
a=15, overall dimension d=128, and search strategy parameter
q=0.25.

In order to evaluate the classification effects of different
algorithms, this article selects three evaluation indicators:
Precision, Recall and F1-score. These three indicators are
calculated as follows:

Pre =
TP

TP + FP
(22)

Recall =
TP

TP + FN
(23)

F1 = 2× Pre×Recall

Pre+Recall
(24)

Among them, TP means the prediction is positive and the
actual value is positive; FP means the prediction is positive
and the actual value is negative; FN means the prediction
is negative and the actual value is positive; TN means the
prediction is negative and the actual value is also negative.

B. Classification experiment results and analysis

Based on the above parameter settings, this chapter evalu-
ates the performance of ABGRL in node classification tasks
on the Ethereum network. The results are shown in Table 3.

Combined with the experimental results in Table 3, the
following conclusions can be drawn:

(1)The performance of the random walk-based approach
ranges between 72% and 79%, and the performance of
the deep learning-based approach ranges between 76% and
86%, which is significantly lower than the algorithms that
specifically deal with Ethernet phishing node detection. This
result proves that traditional graph representation learning
algorithms do face certain limitations when dealing with
Ethernet networks. When extracting features of the Ethernet
transaction network, these traditional algorithms may not be
able to effectively capture many important feature information
relevant to the phishing node detection task, resulting in a low
accuracy rate.

(2)ABGRL exhibits significant node classification advan-
tages over classical graph representation learning algorithms
such as DeepWalk, Node2Vec and GCN. This observation
highlights the superior performance of ABGRL in capturing
complex feature relationships in Ethernet transaction graph
data in comparison to traditional graph representation learning
methods in Ethernet networks, enabling it to accurately extract
the implicit information between different features, extract the
feature information whose fusion has the greatest impact on
the downstream tasks, and significantly improve the accuracy
of the Ethernet fishing node identification task.

(3)Compared with Trans2vec and HNRL, the algorithms
specifically designed for Ethereum phishing node detection,
ABGRL’s accuracy on the three data sets is better than them,
ranging from 0.1% to 8% higher. This shows that compared
with advanced phishing node detection algorithms, ABGRL
can more effectively extract important feature information
related to phishing node detection tasks in the Ethereum
network, and enhance the feature representation capabilities
of tail nodes in the network in a more robust way, thereby
improving node classification performance.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3355089

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 06,2024 at 08:55:05 UTC from IEEE Xplore. Restrictions apply.

11

Fig. 5. The results of ABGRL and its three variants on the Ethereum transaction dataset.

C. Ablative Analysis

In order to validate the effectiveness of different modules in
ABGRL, this paper compares ABGRL with its three variants
on the Ethernet dataset to validate the reasonableness and
effectiveness of the proposed model in this paper. Among
them, ABGRL/A extracts feature information from the graph
using only the random wandering module based on multiple
transaction data for detecting phishing nodes.ABGRL/B fuses
only topological features and node attribute features generated
by random wandering in the graph attention fusion module
without fusing the shared features.ABGRL/C is a model that
removes the tail node feature enhancement module based on
ABGRL .

According to the corresponding observations shown in Fig-
ure 5, the results are as follows:

(1) The performance of ABGRL/A significantly decreased
compared to ABGRL, with a decrease of 9%, 8.5%, and 9.8%
in accuracy on the D1, D2, and D3 datasets, respectively. This
result indicates that the features learned solely through random
walks are not enough to accurately identify phishing nodes in
Ethereum phishing detection tasks. It is necessary to fully learn
and integrate various features to achieve better results.

(2) The performance of ABGRL/B also significantly de-
creased compared to ABGRL. This result indicates that learn-
ing only the respective features of the two graph structures
is not enough, and it is necessary to learn and integrate the
common information of the two graph structures to better
identify phishing nodes.

(3) After removing the tail node feature enhancement mod-
ule, the performance of ABGRL/C was not as good as that of
ABGRL. This suggests that the long-tail distribution of nodes
in the Ethereum transaction network that we analyzed does
indeed affect the performance of algorithm, and solving this
problem is crucial for improving the accuracy of Ethereum
phishing node detection tasks.

By comparing ABGRL with its variants, the contribution
of different modules to the overall performance of the model
is revealed, further verifying the effectiveness of the overall
model.

D. Parameter sensitivity analysis

There are numerous variables for the proposed method that
can impact the outcomes. In this section, we evaluate the

influence of several parameters on how well ABGRL performs
when tasked with categorizing nodes on the Ethereum trans-
action network. When a particular parameter is evaluated, the
other parameters are set to their default values. Firstly, we
evaluate the impact of node embedding dimension on classi-
fication performance. When the node embedding dimension
is equal to 8, 16, 32, 64, 128, 256, we test the classification
effect of ABGRL. Figure 6 depicts the ultimate classification
outcome. Figure 6 demonstrates that as the embedding dimen-
sion increases, the classification performance of the framework
proposed in this paper improves. This shows that the larger the
dimension of the node vector, the richer the network structure
and node information can be preserved. When high-precision
embedding results are required, larger embedding dimensions
should be chosen.

Then analyze the influence of the hyperparameters l, r, α,
β, γ of the random walk module and the knn proximity
graph K in the attention fusion module. Through a series of
experiments, the conclusions that can be drawn are as follows:
(1) The values of parameters l and r are 20 and 5, respectively,
and the effect is the best. Compared with parameter r, the
parameter l has a greater impact on the performance of the
random walk module. (2) When the hyperparameters α, β and
γ are respectively (0.1, 0.05, 0.1), the model has the best
performance. At this time, the information learned by the
random walk module is the most abundant. (3) Adjust the
k of the knn graph between 2 and 10, and the results show
that when k is equal to 5, the K-adjacent graph at this time
will contain more node attribute information.

V. CONCLUSION

This work proposes an Ethereum network representation
learning method to extract the characteristics of each node
from the Ethereum transaction network to handle the task of
phishing node detection. Specifically, the Ethereum transaction
network is first built through the collected data. Then, a
semi-supervised self-attention network convolution method is
proposed, which fuses the obtained network topology embed-
ding and node attribute embedding to enhance the feature
information of nodes. The topology embedding of the network
is through a random walk proposed in this article. strategies
to learn. Finally, a self-supervised regression model is adopted
to enhance the expressive ability of tail node embeddings.
Experimental results show that the algorithm proposed in this

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3355089

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 06,2024 at 08:55:05 UTC from IEEE Xplore. Restrictions apply.

12

Fig. 6. Impact of Embedded Dimensions on Metrics.

article is better than the existing Ethereum abnormal node
detection algorithm. However, in actual application scenarios,
the transaction network of Ethereum is dynamic. In future
work, the identification of phishing nodes in the dynamic
Ethereum network should be studied more deeply.

REFERENCES

[1] S. Nakamoto and A. Bitcoin, “A peer-to-peer electronic cash system,”
Bitcoin.–URL: https://bitcoin. org/bitcoin. pdf, vol. 4, no. 2, 2008.

[2] Z. Zheng, W. Chen, Z. Zhong, Z. Chen, and Y. Lu, “Securing the
ethereum from smart ponzi schemes: Identification using static features,”
ACM Transactions on Software Engineering and Methodology, 2022.

[3] M. Vasek and T. Moore, “There’s no free lunch, even using bitcoin:
Tracking the popularity and profits of virtual currency scams,” in Fi-
nancial Cryptography and Data Security: 19th International Conference,
FC 2015, San Juan, Puerto Rico, January 26-30, 2015, Revised Selected
Papers 19. Springer, 2015, pp. 44–61.

[4] Z. Yuan, Q. Yuan, and J. Wu, “Phishing detection on ethereum via
learning representation of transaction subgraphs,” in Blockchain and
Trustworthy Systems: Second International Conference, BlockSys 2020,
Dali, China, August 6–7, 2020, Revised Selected Papers 2. Springer,
2020, pp. 178–191.

[5] J. Wu, J. Liu, W. Chen, H. Huang, Z. Zheng, and Y. Zhang, “Detecting
mixing services via mining bitcoin transaction network with hybrid
motifs,” IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 52, no. 4, pp. 2237–2249, 2021.

[6] M. Russon, “Ethereum under siege: Scammers make 700000 in 6 days
from slack and reddit phishing attacks,” 2017.

[7] X. Liu, Z. Tang, P. Li, S. Guo, X. Fan, and J. Zhang, “A graph learning
based approach for identity inference in dapp platform blockchain,”
IEEE Transactions on Emerging Topics in Computing, vol. 10, no. 1,
pp. 438–449, 2020.

[8] W. Chen, Z. Zheng, J. Cui, E. Ngai, P. Zheng, and Y. Zhou, “Detecting
ponzi schemes on ethereum: Towards healthier blockchain technology,”
in Proceedings of the 2018 world wide web conference, 2018, pp. 1409–
1418.

[9] Z. Liu, D. Yang, S. Wang, and H. Su, “Adaptive multi-channel bayesian
graph attention network for iot transaction security,” Digital Communi-
cations and Networks, 2022.

[10] A. Lazarenko and S. Avdoshin, “Financial risks of the blockchain
industry: A survey of cyberattacks,” in Proceedings of the Future
Technologies Conference (FTC) 2018: Volume 2. Springer, 2019, pp.
368–384.

[11] C. F. Torres, M. Steichen, and R. State, “The art of the scam:
Demystifying honeypots in ethereum smart contracts,” arXiv preprint
arXiv:1902.06976, 2019.

[12] B. B. Gupta, N. A. Arachchilage, and K. E. Psannis, “Defending
against phishing attacks: taxonomy of methods, current issues and future
directions,” Telecommunication Systems, vol. 67, pp. 247–267, 2018.

[13] A. Almomani, M. Alauthman, M. T. Shatnawi, M. Alweshah, A. Al-
rosan, W. Alomoush, and B. B. Gupta, “Phishing website detection with
semantic features based on machine learning classifiers: A comparative
study,” International Journal on Semantic Web and Information Systems
(IJSWIS), vol. 18, no. 1, pp. 1–24, 2022.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3355089

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 06,2024 at 08:55:05 UTC from IEEE Xplore. Restrictions apply.

13

[14] W. Zheng, Z. Zheng, H.-N. Dai, X. Chen, and P. Zheng, “Xblock-
eos: Extracting and exploring blockchain data from eosio,” Information
Processing & Management, vol. 58, no. 3, p. 102477, 2021.

[15] R. Li, Z. Liu, Y. Ma, D. Yang, and S. Sun, “Internet financial fraud
detection based on graph learning,” Ieee Transactions on Computational
Social Systems, 2022.

[16] D. Lin, J. Wu, Q. Yuan, and Z. Zheng, “Modeling and understanding
ethereum transaction records via a complex network approach,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 11,
pp. 2737–2741, 2020.

[17] S. Li, G. Gou, C. Liu, C. Hou, Z. Li, and G. Xiong, “Ttagn: Temporal
transaction aggregation graph network for ethereum phishing scams
detection,” in Proceedings of the ACM Web Conference 2022, 2022,
pp. 661–669.

[18] W. Hou, B. Cui, and R. Li, “Detecting phishing scams on ethereum
using graph convolutional networks with conditional random field,”
in 2022 IEEE 24th Int Conf on High Performance Computing &
Communications; 8th Int Conf on Data Science & Systems; 20th Int
Conf on Smart City; 8th Int Conf on Dependability in Sensor, Cloud
& Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys).
IEEE, 2022, pp. 1495–1500.

[19] W. Chen, X. Guo, Z. Chen, Z. Zheng, and Y. Lu, “Phishing scam detec-
tion on ethereum: Towards financial security for blockchain ecosystem.”
in IJCAI, vol. 7, 2020, pp. 4456–4462.

[20] F. Wu, T. Zhang, and A. H. de Souza Jr, “au2, christopher fifty, tao yu,
and kilian q,” Weinberger. Simplifying graph convolutional networks,
vol. 5, 2019.

[21] L. Chen, J. Peng, Y. Liu, J. Li, F. Xie, and Z. Zheng, “Phishing
scams detection in ethereum transaction network,” ACM Transactions
on Internet Technology (TOIT), vol. 21, no. 1, pp. 1–16, 2020.

[22] M. Ndiaye and P. K. Konate, “Cryptocurrency crime: Behaviors of ma-
licious smart contracts in blockchain,” in 2021 International Symposium
on Networks, Computers and Communications (ISNCC). IEEE, 2021,
pp. 1–8.

[23] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra,
“Beyond homophily in graph neural networks: Current limitations and
effective designs,” Advances in Neural Information Processing Systems,
vol. 33, pp. 7793–7804, 2020.

[24] J. Li, H. Li, N. Cheng, W. Zhang, Y. Xu, H. Zhang, and J. Li, “Multi-
channel walk embedding based ethereum phishing scam detection
method,” in 2022 IEEE 28th International Conference on Parallel and
Distributed Systems (ICPADS). IEEE, 2023, pp. 289–295.

[25] Z. Liu, W. Zhang, Y. Fang, X. Zhang, and S. C. Hoi, “Towards
locality-aware meta-learning of tail node embeddings on networks,” in
Proceedings of the 29th ACM International Conference on Information
& Knowledge Management, 2020, pp. 975–984.

[26] Z. Liu, D. Yang, Y. Wang, M. Lu, and R. Li, “Egnn: Graph structure
learning based on evolutionary computation helps more in graph neural
networks,” Applied Soft Computing, p. 110040, 2023.

[27] P. Li, H. Yu, X. Luo, and J. Wu, “Lgm-gnn: A local and global
aware memory-based graph neural network for fraud detection,” IEEE
Transactions on Big Data, 2023.

[28] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2014, pp. 701–710.

[29] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, 2016, pp. 855–
864.

[30] C. She and S. Zeng, “An enhanced local outlier detection using random
walk on grid information graph,” The Journal of Supercomputing,
vol. 78, no. 12, pp. 14 530–14 547, 2022.

[31] Z. Liu, Y. Wang, S. Wang, X. Zhao, H. Wang, and H. Yin, “Heteroge-
neous graphs neural networks based on neighbour relationship filtering,”
Expert Systems with Applications, p. 122489, 2023.

[32] S. Fu, S. Wang, W. Liu, B. Liu, B. Zhou, X. You, Q. Peng, and X.-Y.
Jing, “Adaptive graph convolutional collaboration networks for semi-
supervised classification,” Information Sciences, vol. 611, pp. 262–276,
2022.

[33] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[34] W.-L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C.-J. Hsieh,
“Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks,” in Proceedings of the 25th ACM SIGKDD

international conference on knowledge discovery & data mining, 2019,
pp. 257–266.

[35] B. Fu, X. Yu, and T. Feng, “Ct-gcn: a phishing identification model
for blockchain cryptocurrency transactions,” International Journal of
Information Security, vol. 21, no. 6, pp. 1223–1232, 2022.

[36] K. Zhang, Y. Zhu, J. Wang, and J. Zhang, “Adaptive structural fin-
gerprints for graph attention networks,” in International Conference on
Learning Representations, 2019.

[37] T. He, Y. S. Ong, and L. Bai, “Learning conjoint attentions for
graph neural nets,” Advances in Neural Information Processing Systems,
vol. 34, pp. 2641–2653, 2021.

[38] J. Wu, Q. Yuan, D. Lin, W. You, W. Chen, C. Chen, and Z. Zheng, “Who
are the phishers? phishing scam detection on ethereum via network
embedding,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 52, no. 2, pp. 1156–1166, 2020.

[39] Y. Wang, Z. Liu, J. Xu, and W. Yan, “Heterogeneous network repre-
sentation learning approach for ethereum identity identification,” IEEE
Transactions on Computational Social Systems, 2022.

[40] Y. Xia, J. Liu, and J. Wu, “Phishing detection on ethereum via attributed
ego-graph embedding,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 69, no. 5, pp. 2538–2542, 2022.

[41] T. Wen, Y. Xiao, A. Wang, and H. Wang, “A novel hybrid feature
fusion model for detecting phishing scam on ethereum using deep neural
network,” Expert Systems with Applications, vol. 211, p. 118463, 2023.

[42] L. Wang, M. Xu, and H. Cheng, “Phishing scams detection via tem-
poral graph attention network in ethereum,” Information Processing &
Management, vol. 60, no. 4, p. 103412, 2023.

[43] J. Liu, J. Zheng, J. Wu, and Z. Zheng, “Fa-gnn: Filter and augment
graph neural networks for account classification in ethereum,” IEEE
Transactions on Network Science and Engineering, vol. 9, no. 4, pp.
2579–2588, 2022.

[44] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line:
Large-scale information network embedding,” in Proceedings of the 24th
international conference on world wide web, 2015, pp. 1067–1077.

[45] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio
et al., “Graph attention networks,” stat, vol. 1050, no. 20, pp. 10–48 550,
2017.

[46] R. Wang, S. Mou, X. Wang, W. Xiao, Q. Ju, C. Shi, and X. Xie,
“Graph structure estimation neural networks,” in Proceedings of the Web
Conference 2021, 2021, pp. 342–353.

[47] X. Wang, M. Zhu, D. Bo, P. Cui, C. Shi, and J. Pei, “Am-gcn: Adaptive
multi-channel graph convolutional networks,” in Proceedings of the 26th
ACM SIGKDD International conference on knowledge discovery & data
mining, 2020, pp. 1243–1253.

This article has been accepted for publication in IEEE Transactions on Network Science and Engineering. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2024.3355089

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Columbia University Libraries. Downloaded on March 06,2024 at 08:55:05 UTC from IEEE Xplore. Restrictions apply.

