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Abstract

Molecular property prediction aims to learn rep-
resentations that map chemical structures to func-
tional properties. While multimodal learning has
emerged as a powerful paradigm to learn molec-
ular representations, prior works have largely
overlooked textual and taxonomic information of
molecules for representation learning. We intro-
duce TRIDENT, a novel framework that integrates
molecular SMILES, textual descriptions, and tax-
onomic functional annotations to learn rich molec-
ular representations. To achieve this, we curate a
comprehensive dataset of molecule-text pairs with
structured, multi-level functional annotations. In-
stead of relying on conventional contrastive loss,
TRIDENT employs a volume-based alignment
objective to jointly align tri-modal features at the
global level, enabling soft, geometry-aware align-
ment across modalities. Additionally, TRIDENT
introduces a novel local alignment objective that
captures detailed relationships between molecular
substructures and their corresponding sub-textual
descriptions. A momentum-based mechanism dy-
namically balances global and local alignment, en-
abling the model to learn both broad functional se-
mantics and fine-grained structure-function map-
pings. TRIDENT achieves state-of-the-art per-
formance on 11 downstream tasks, demonstrat-
ing the value of combining SMILES, textual, and
taxonomic functional annotations for molecular
property prediction.
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1. Introduction
Molecular representation learning, which converts complex
chemical structures into computational features, has been
instrumental in advancing various aspects of drug discovery
including virtual screening, and molecular design (Liu et al.,
2022a; Chibani & Coudert, 2020; Shen & Nicolaou, 2019).
Multi-modal molecular models further enhance representa-
tion quality by integrating structural, textual, and functional
information, enabling better generalization and predictive
performance (Liu et al., 2023a). These approaches hold
promise for unlocking deeper insights into chemical space
and accelerating the discovery of therapeutic compounds
with desired properties.

However, current multimodal approaches (Luo et al., 2023;
Su et al., 2022) face three key limitations: (1) Overlooking
fine-grained annotations across taxonomies: Most exist-
ing methods simplify the representation of molecules by fo-
cusing on unified functional descriptions, neglecting the nu-
anced annotations provided by different taxonomic systems.
The same molecule may have distinct emphases depending
on the taxonomy: for example, the LOTUS Tree (Rutz et al.,
2022) taxonomy highlights natural product classifications,
whereas the MeSH (Medical Subject Headings) Tree (Lip-
scomb, 2000) taxonomy emphasizes medical functionalities
of the same molecule. Ignoring these taxonomy-specific,
fine-grained annotations risks reducing molecules to flat
entities, thereby failing to capture the multi-faceted and
structured nature of chemical functions. (2) Alignment lim-
itations: Aligning modalities such as molecular structures,
textual descriptions, and taxonomic functional annotations
is inherently complex. Existing methods rely on pairwise
alignment schemes anchored to a single modality, which
struggle to model the interdependencies across all modal-
ities (Zhu et al., 2023; Liu et al., 2022b; Xu et al., 2023;
Chen et al., 2023), particularly when one modality encodes
nested or multi-level information (Cicchetti et al., 2024). (3)
Neglect of local correspondences: Many approaches focus
exclusively on molecule-level alignment, disregarding the
fine-grained relationships between molecular substructures
(e.g., functional groups) and their corresponding sub-textual
descriptions. This omission limits the expressivity of the
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learned representations and constrains their applicability in
molecular property prediction tasks.

To address these limitations, we introduce the TRIDENT
(Tri-modal Representation Integrating Descriptions, Enti-
ties, and Taxonomies) framework for molecules that jointly
models molecular SMILES, textual descriptions, and multi-
faceted Hierarchical Taxonomic Annotation (HTA). Cen-
tral to TRIDENT is the HTA modality, which organizes
molecular function across hierarchical classification levels.
We curate a high quality dataset of 47,269 <SMILES, Text,
HTA> triplets from PubChem (Kim et al., 2016), annotated
under 32 classification systems. To tackle the challenge
of aligning these diverse modalities, TRIDENT leverages
a volume-based contrastive loss, enabling soft, geometry-
aware alignment of all three modalities. While recently
proposed for general-purpose modality alignment (Cicchetti
et al., 2024), we extend this formulation to the molecular
domain for the first time, where the modalities are struc-
turally diverse and include taxonomic semantic labels. Fur-
thermore, TRIDENT introduces a novel local alignment
module that links molecular substructures to their associ-
ated sub-textual descriptions, capturing fine-grained struc-
ture–function relationships. A momentum-based balancing
mechanism dynamically integrates global and local align-
ments to optimize the representation learning process (see
Figure 1 for an overview).

We demonstrate that TRIDENT achieves consistent and
substantial improvements over existing molecular repre-
sentation learning methods. Our framework sets a new
benchmark, delivering state-of-the-art performance across
11 downstream molecular property prediction tasks on estab-
lished benchmarks, while remaining modular and flexible,
allowing integration of different modality encoders with-
out the need for architectural modifications. We have also
created a high-quality, comprehensive dataset of molecule-
text-function triplets, which forms the foundation for this
work and future research. To summarize, we make the
following contributions:

• Introducing a Hierarchical Taxonomic Annotation
(HTA) modality for molecules, supported by a newly
curated high-quality multimodal dataset consisting of
47,269 <SMILES, Text, HTA> triplets annotated across
32 diverse taxonomic classification systems. This en-
ables a structured, multi-level functional understanding
of molecules, providing a novel resource for molecular
representation learning.

• A unified global–local alignment strategy that inte-
grates a volume-based contrastive loss for tri-modal
global alignment with a novel local alignment module
for substructure–subtext correspondence, dynamically
balanced via a momentum-based mechanism.

• Demonstrated state-of-the-art performance across 11
molecular property prediction tasks, validating the ef-
fectiveness of hierarchical taxonomic annotations as a
modality, the proposed alignment strategies, and the
quality of the curated dataset.

2. Method
In this section, we provide a detailed introduction to the im-
plementation of the TRIDENT framework, as illustrated in
Figure 1 which addresses the shortcomings of existing meth-
ods in capturing a structured understanding of molecular
functions across different hierarchical functional categories.

2.1. Hierarchical Taxonomic Annotation (HTA)

Traditional PubChem descriptions provide narrow func-
tional annotations lacking broader biological and industrial
context. We construct a dataset of 47,269 <SMILES, Text,
HTA> triplets by mapping molecules across 32 hierarchi-
cal classification systems (e.g., LOTUS Tree, MeSH Tree),
expanding flat descriptors into multi-domain semantic repre-
sentations. HTAs are generated through GPT-4o synthesis of
structured annotations, encoding cross-domain knowledge
including chemical derivation, natural sources, functional
applications, and regulatory associations. This process is
validated by domain experts to ensure factual accuracy and
captures complementary information to traditional annota-
tions. Detailed data collection and processing procedures
are provided in the Appendix.

2.2. Geometry-based Global Alignment

We aim to learn meaningful multimodal representations by
jointly modeling three data modalities: molecule SMILES
(M ), textual descriptions (T ), and HTA (H). SMILES
representations utilize the encoder Em, while both textual
descriptions (T ) and HTA (H) share a common text encoder
Et.

Traditional multimodal approaches typically rely on
pairwise similarity metrics such as cosine similarity:
cos(θij) =

⟨Mi,Mj⟩
∥Mi∥·∥Mj∥ . However, these methods often

anchor one modality and align others to it independently,
failing to capture higher-order relationships across all
modalities. To address this, GRAM (Cicchetti et al., 2024)
introduced a geometry-based alignment approach that
uses the volume of the parallelotope spanned by modality
vectors as a global measure of alignment. Specifically,
for three normalized embeddings m, t, and h, the volume
of the parallelotope is computed as Vol(m, t, h) =√

1− ⟨m, t⟩2 − ⟨m,h⟩2 − ⟨t, h⟩2 + 2⟨m, t⟩⟨t, h⟩⟨h,m⟩,
which reflects the overall geometric alignment of the
embeddings. The volume shrinks as the modalities
converge and grows as they diverge. Unlike pairwise
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Figure 1. Overview of TRIDENT. TRIDENT jointly models molecular SMILES, natural language descriptions, and Hierarchical
Taxonomic Annotations (HTAs) to learn rich molecular representations. The framework employs a volume-based contrastive loss for
soft global tri-modal alignment and a local alignment module that links molecular substructures to sub-text spans. A momentum-based
mechanism dynamically balances the contribution of global and local objectives during training. This multimodal, multi-level alignment
enables precise and semantically grounded molecular understanding.

contrastive learning methods, this formulation was shown
to capture the global structure of cross-modal interactions
in a principled and scalable way for audio-video-text
pairs (Cicchetti et al., 2024).

Global Volume-based Contrastive Loss. Following the
approach introduced in GRAM (Cicchetti et al., 2024), we
construct a global contrastive objective over the three modal-
ities—SMILES, traditional text descriptions, and HTA an-
notations. Each modality is processed through a modality-
specific encoder followed by a modality-specific projection
head (implemented as a three-layer MLP) to map the em-
beddings into a shared latent space, yielding embeddings m,
t, and h for SMILES, text, and HTA, respectively.

To holistically align the three modalities, we compute
the volume of the parallelotope formed by the triplet of
unit-normalized vectors (m, t, h). We define a bidirec-
tional global contrastive loss that captures two comple-
mentary retrieval directions. In the first direction, denoted
LM2TH, the model is trained to retrieve the correct seman-
tic context—comprising both textual and taxonomic an-
notations—given a molecular embedding. That is, given
mi, the loss encourages the volume Vol(mi, ti, hi) to be
smaller than volume spanned by any mismatched triplets
(mi, tj , hj) for j ̸= i:

LM2TH = − 1

B

B∑
i=1

log
exp(−Vol(mi, ti, hi)/τ)∑B

j=1 exp(−Vol(mi, tj , hj)/τ)
,

where B is the batch size and τ is a learnable temperature
parameter.

Conversely, the second direction, LTH2M, considers the re-
trieval of the correct molecule given the semantic context.

Here, the volume of the correct triplet (mi, ti, hi) is mini-
mized relative to all volumes spanned by mismatched triples
(mj , ti, hi):

LTH2M = − 1

B

B∑
i=1

log
exp(−Vol(mi, ti, hi)/τ)∑B
j=1 exp(−Vol(mj , ti, hi)/τ)

.

The final loss averages both directions to ensure mutual
semantic alignment of all three modalities:

Lg =
1

2
(LM2TH + LTH2M).

This bidirectional formulation encourages robust triadic
alignment, capturing global structure across modalities more
effectively than traditional pairwise contrastive losses.

2.3. Fine-grained Local Alignment

Although multimodal fusion effectively learns cross-modal
information (Jiang et al., 2024a;b), some existing fusion
methods only consider global alignment while neglect-
ing fine-grained alignment, which may lead to subopti-
mal performance in capturing detailed cross-modal rela-
tionships (Dang et al., 2024; 2025; Li et al., 2023; Wang
et al., 2024). While the global alignment captures the over-
all semantic relationships among modality embeddings, it
may overlook fine-grained correspondences between molec-
ular functional sub-groups and their sub-textual descrip-
tions. For instance, local features such as aromatic rings,
hydroxyl groups, or aliphatic chains often correspond to
specific phrases in molecular descriptions or to fine-level
taxonomic labels.

To address this limitation, we introduce a local alignment
contrastive loss that complements the global volume-based
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Table 1. Performance comparison on molecule property prediction. We present the ROC-AUC(%) scores of the molecular property
prediction task on MoleculeNet. For baselines that report results, we directly use their reported outcomes. Note that MolCA-SMILES
does not report results for the MUV and HIV datasets. The best results are marked in bold, and the second-best are underlined.

Method BBBP Tox21 ToxCast Sider ClinTox MUV HIV Bace Avg

MOLFORMER 70.74±1.34 74.74±0.56 65.51±0.63 61.75±1.23 77.64±0.98 67.58±1.01 75.64±1.76 78.64±2.35 71.53
KV-PLM 70.50±0.54 72.12±1.02 55.03±1.65 59.83±0.56 89.17±2.73 54.63±4.81 65.40±1.69 75.80±2.73 67.81
MegaMolBART 68.89±0.17 73.89±0.67 63.32±0.79 59.52±1.79 78.12±4.62 61.51±2.75 71.04±1.70 82.46±0.84 69.84
MoleculeSTM-SMILES 70.75±1.90 75.71±0.89 65.17±0.37 63.70±0.81 86.60±2.28 65.69±1.46 77.02±0.44 81.99±0.41 73.33
MolFM 72.90±0.10 77.20±0.70 64.40±0.20 64.20±0.90 79.70±1.60 76.00±0.80 78.80±1.10 83.90±1.10 74.64
MoMu 70.50±2.00 75.60±0.30 63.40±0.50 60.50±0.90 79.90±4.10 70.50±1.40 75.90±0.80 76.70±2.10 71.63
Atomas 73.72±1.67 77.88±0.36 66.94±0.90 64.40±1.90 93.16±0.50 76.30±0.70 80.55±0.43 83.14±1.71 77.01
MolCA-SMILES 70.80±0.60 76.00±0.50 56.20±0.70 61.10±1.20 89.00±1.70 - - 79.30±0.80 72.10

TRIDENT (M-S) 73.14±0.44 78.23±0.12 67.79±0.56 64.62±0.47 95.75±0.71 82.88±1.41 79.64±1.15 84.19±0.95 78.3
TRIDENT (M-M) 73.95±1.01 79.36±0.13 67.80±0.37 63.64±0.56 95.41±0.66 83.51±0.48 81.63±0.52 82.39±0.56 78.5

objective. Unlike GRAM (Cicchetti et al., 2024), which
operates solely at the level of full modality embeddings, our
method leverages the compositional nature of molecules to
align substructures with their semantic counterparts in text
and taxonomy.

By decomposing each molecule into interpretable substruc-
tures and anchoring them to matched textual or taxonomic
segments, we encourage the model to learn fine-grained
correspondences across modalities. This local supervision
enforces semantic consistency not only at the global level
but also within the internal structure of molecular represen-
tations.

2.3.1. FUNCTIONAL GROUP-LEVEL REPRESENTATION

We construct a dataset linking 85 functional groups with
semantic descriptions through GPT-4o (Achiam et al.,
2023) generation and expert review. Using RDKit, we
extract functional groups from molecules and encode
them through modality-specific encoders, obtaining struc-
tural embeddings fg1, fg2, . . . , fgk and textual embed-
dings fgt1, fgt2, . . . , fgtk. Consolidated representations
use max-pooling: fgpooled = Pool(fg1, fg2, . . . , fgk),
fgtpooled = Pool(fgt1, fgt2, . . . , fgtk)

2.3.2. LOCAL ALIGNMENT LOSS

Using these pooled representations, we define our bidirec-
tional local alignment contrastive loss as follows.

LFG2T = − 1

B

B∑
i=1

log
exp(fgpooled,i · fgtpooled,i/τ)∑B
j=1 exp(fgpooled,i · fgtpooled,j/τ)

,

LT2FG = − 1

B

B∑
i=1

log
exp(fgpooled,i · fgtpooled,i/τ)∑B
j=1 exp(fgpooled,j · fgtpooled,i/τ)

,

Ll =
1

2
(LFG2T + LT2FG),

where B is the batch size and τ is the temperature parameter.
The bidirectional loss ensures mutual semantic grounding:

Table 2. Performance of different methods on DILI, Carcinogens,
and Skin Reaction tasks, reporting AUC and Accuracy. The best
results are marked in bold, and the second-best are underlined.

Method DILI (475 drugs) Carcinogens (278 drugs) Skin Reaction (404 drugs)

AUC ACC AUC ACC AUC ACC

MOLFORMER 85.59±1.39 76.39±5.24 77.27±0.76 77.32±1.47 63.75±1.41 60.98±3.44
KV-PLM 73.46±0.61 62.50±2.08 75.18±3.71 76.01±1.75 62.88±2.30 59.76±5.17
MolT5 77.37±1.15 69.44±1.20 86.89±1.00 84.45±1.11 68.67±3.99 62.22±1.41
MoMu 80.44±2.47 75.00±4.17 80.11±1.50 78.00±2.62 61.63±1.94 56.10±3.45
MolCA-SMILES 88.34±1.28 80.56±2.40 82.00±1.80 78.76±0.52 65.13±0.88 62.20±1.72
MoleculeSTM-SMILES 91.20±2.02 84.72±2.41 83.87±1.30 81.05±0.63 67.72±0.50 61.60±0.73
Atomas 90.17±1.30 85.08±2.16 82.47±2.11 80.75±0.50 70.33±0.88 61.79±6.14

TRIDENT (M-S) 95.08±0.70 86.81±2.40 83.42±1.10 81.47±0.92 70.33±0.63 63.42±4.22
TRIDENT (M-M) 94.56±0.88 86.80±3.18 87.07±0.77 84.62±1.07 72.00±1.09 62.60±1.40

LFG2T retrieves descriptions from functional group embed-
dings, while LT2FG recovers structures from text descrip-
tions. This dual supervision encourages chemically mean-
ingful substructure embeddings while associating them with
precise textual counterparts.

2.4. Momentum-based Integration

To effectively integrate global and local alignments, we
adopt a momentum-based approach that dynamically ad-
justs the importance of each alignment component:L =
αLg + (1− α)Ll, where α is a momentum coefficient that
balances global and local alignments. Instead of using a
fixed α, we employ an exponential moving average to up-

date it during training: αt = βαt−1 + (1− β) · L(t)
g

L(t)
g +L(t)

l

,

where β is a momentum parameter (0.9), and L(t)
g and L(t)

l
are the respective loss values at training step t. This dy-
namic adjustment ensures that the model focuses more on
the alignment component that currently has higher loss, ef-
fectively addressing the most pressing alignment challenges
at each training stage.

3. Experiments
We evaluate TRIDENT on 11 molecular property prediction
tasks from MoleculeNet (Wu et al., 2018) and Therapeutics
Data Commons (TDC) (Huang et al., 2021) benchmarks,
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comparing against recent state-of-the-art baselines includ-
ing Atomas (Zhang et al., 2025). Additional experimental
details, ablation studies, and comprehensive results are pro-
vided in the Appendix.

As shown in Table 1, TRIDENT achieves state-of-the-art
performance across MoleculeNet tasks, substantially outper-
forming strong baselines such as Atomas and MolFM while
achieving best-in-class performance on multiple challenging
benchmarks. Table 2 demonstrates superior performance on
TDC datasets, showing robustness and adaptability across
different dataset scales and prediction challenges. The supe-
rior performance stems from three key innovations: (1) HTA
modality provides multi-dimensional, hierarchical molec-
ular annotations that capture richer semantic information
than flat functional descriptions used by prior methods; (2)
Volume-based global alignment effectively handles the com-
plex interdependencies across three modalities, overcoming
limitations of pairwise alignment schemes; (3) Local align-
ment captures fine-grained substructure-function relation-
ships typically overlooked by molecule-level approaches,
while momentum-based integration dynamically balances
global and local objectives throughout training.

4. Conclusion
TRIDENT introduces a tri-modal molecular representa-
tion framework that unifies SMILES, textual descriptions,
and hierarchical taxonomic annotations through geometry-
aware volume-based global alignment and fine-grained lo-
cal substructure correspondence. Trained on 47,269 triplets
across 32 taxonomic systems, it achieves state-of-the-art
performance on molecular property prediction benchmarks,
demonstrating the value of structured, multi-level functional
understanding in molecular learning. This work opens new
directions for hierarchical, semantically grounded represen-
tation learning in chemical sciences.
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A. Hierarchical Taxonomic Annotation (HTA)

Molecule PubChem

{
“Path”:
root
└── Chemicals and Drugs Category

└── Organic Chemicals
└── Hydrocarbons

└── Terpenes
└── Monoterpenes

└── Acyclic Monoterpenes
└── Supplementary Records

└── citronellol
“Description”: “alcohol form of citronellal; found 
in rose oil; RN given refers to parent cpd without 
isomeric designation; structure” }

“HTA”: “Citronellol is an acyclic monoterpene 
alcohol derived from citronellal, commonly found 
in rose oil. It is characterized by its chemical 
structure as oct-6-ene with a hydroxy group at 
position 1 and methyl groups at positions 3 and 7. 
Citronellol is widely used as a fragrance in various 
products and has been identified as part of the 
blood exposome. It is also noted for causing skin 
irritation. In terms of biological taxonomy, it is 
associated with the plant Eucalyptus astringens. 
The compound is actively used in commercial 
applications and is regulated by environmental 
protection agencies.”

"Description": "This molecule is a monoterpenoid that is oct-6-ene substituted by a hydroxy group 
at position 1 and methyl groups at positions 3 and 7. It has a role as a plant metabolite."

Molecular Functional Description

SummaryHierarchical Taxonomic Functional Description

{
“Path”:
root
└── Biological Tree

└── Eukaryota
└── Archaeplastida

└── Streptophyta
└── Magnoliopsida

└── Myrtales
└── Myrtaceae

└── Eucalypteae
└── Eucalyptus

└── Eucalyptus astringens
“Description": “………"}

MeSH Tree LOTUS Tree

…

Hierarchical Taxonomic Annotation

Figure 2. Traditional molecular functional descriptions are typically obtained by inputting a molecule into PubChem, where a general
functional annotation is provided, as shown in Steps 1 and 2 of the figure. To achieve more comprehensive knowledge, functional
annotations of the molecule are first obtained under different classification systems, as illustrated in Step 3. Then, these annotations are
summarized using GPT-4o, resulting in a higher-quality textual description, as depicted in Step 4. The blue and green highlighted sections
illustrate the different perspectives between traditional text and HTA text descriptions.

To enable structured, hierarchical molecular representations, we introduce the Hierarchical Taxonomic Annotation (HTA)
framework, which organizes molecular functions across multiple classification levels. This setup allows the model to capture
fine-grained, hierarchical semantics essential for understanding complex molecular properties and their biological roles. We
curate a high-quality dataset of 47,269 <SMILES, Text, HTA> triplets sourced from PubChem (Kim et al., 2016). As shown
in Figure 2, these triplets are annotated across 32 diverse hierarchical classification systems, providing a comprehensive,
multi-level understanding of molecular behavior. Figure 2 illustrates the construction pipeline for HTA. Beginning with
a molecule’s SMILES representation, the molecule is queried against PubChem (Kim et al., 2016). This yields a set of
traditional functional descriptions, which are typically concise, ontology-aware summaries based on cheminformatics rules.
For example, citronellol is described as a monoterpenoid... with a role as a plant metabolite. While such descriptors
are chemically accurate, they often lack broader context, such as ecological origin, industrial relevance, or toxicological
implications.

To address this limitation, we augment the molecule’s annotation space through structured taxonomic enrichment by
mapping it into multiple biological and chemical taxonomies. For example, the LOTUS Tree (Rutz et al., 2022) highlights
natural product classifications, whereas the MeSH (Medical Subject Headings) Tree (Lipscomb, 2000) emphasizes medical
functionalities of the same molecule. Through this multi-perspective approach, these hierarchies expand the molecular
profile beyond flat descriptors into deeply nested semantic trees spanning chemistry, biology, and pharmacology.

In the final stage, we leverage a GPT-4o (Achiam et al., 2023; Ouyang et al., 2022) to synthesize the retrieved structured
annotations into a high-fidelity, human-readable HTA. Unlike traditional descriptors, HTAs encode multi-perspective
knowledge: they trace the chemical derivation (e.g., from citronellal), mention natural sources (e.g., rose oil), functional
applications (e.g., fragrance in various products), and regulatory or biomedical associations (e.g., environmental protection
agencies, blood exposome). This generative synthesis is guided by structural prompts and validated by domain experts to
ensure factual accuracy and interoperability.

Crucially, the information content in HTAs is complementary to traditional functional annotations. While the latter provides
standardized yet narrow chemical definitions, HTAs integrate cross-domain knowledge that aligns better with how biological
and industrial experts interpret molecular function. The results indicate that simultaneously incorporating HTAs and
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Algorithm 1 Hierarchical Taxonomic Annotation: retrieval of molecule classification from PubChem.
Input preparation
Load CID list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {from CIDs.txt file}
Configure batch size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {batch size = 20}

Batch processing setup
Thread pool executor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .{max workers = 5}
Retry mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {max retries = 3, backoff factor = 2}
Rate limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {0.5s between API calls, 3s batches}

API interaction
Classification headers retrieval
Endpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .{PubChem /pug view/data/compound/{cid}/JSON/?heading=Classification}
Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .{list of classification systems with HIDs}
Classification path retrieval
Endpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {PubChem /classification 2.fcgi?hid={hid}&search uid={cid}}
Path construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {recursive traversal of parent-child nodes}
Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {hierarchical path string, description}

Result processing
Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {CID → {classification system → {path, description}}}
Intermediate saving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .{save after each batch for resumability}
Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {log warnings and errors, continue processing}

Output
JSON file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . {complete taxonomy annotation for all CIDs}

traditional functional annotations helps the model capture both fine-grained structural features and broader biological
semantics, leading to improved performance across a range of molecular property prediction tasks.

B. Related Works
B.1. Molecule-Text Multimodal Learning

Recent advancements in molecular representation learning have demonstrated the power of multimodal approaches that
integrate information from molecular graphs, SMILES strings, and textual descriptions to enhance property prediction
and drug discovery. Graph Neural Networks (GNNs) have become the backbone of graph-based methods, with models
like GROVER (Rong et al., 2020) and MolCLR (Wang et al., 2022) leveraging contrastive learning to produce richer
molecular embeddings. Multimodal models such as KV-PLM (Zeng et al., 2022) and MolT5 (Edwards et al., 2022) treat
SMILES and text as separate languages for pre-training via auto-encoding objectives, while MoMu (Su et al., 2022) and
MoleculeSTM (Liu et al., 2023a) utilize independent encoders with cross-modal contrastive learning to align graphs and texts.
MolFM (Luo et al., 2023) extends this paradigm by incorporating molecular structures, biomedical texts, and knowledge
graphs to capture more comprehensive molecular relationships. However, despite this progress, the textual modality in
existing models often derives from unstructured or single-layered descriptions, limiting the capacity to represent molecular
functions across diverse biological roles and hierarchical categories. This lack of structured semantic alignment limits the
ability of models to reason over complex molecular behaviors and relationships. Our work addresses this gap by introducing
a high quality dataset to incorporate hierarchical taxonomic annotations for molecules, learning fine-grained hierarchical
molecule-function relationships.
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Algorithm 2 MultiModal Contrastive Learning: three-modal alignment with momentum integration.
Input: SMILES encoder, Text encoder, Category encoder
Output: Trained multimodal representations

1 Input modality encoders
SMILES encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MoLFormer (768-dim)
Text description encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SciBERT (768-dim)
Category encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . shared with text encoder (768-dim)

2 Projection layers
SMILES projection . . . . . . Linear→GELU→LayerNorm→Dropout→Linear→GELU→LayerNorm→Linear (512-dim)
Text projection . . . . . . . . . . .Linear→GELU→LayerNorm→Dropout→Linear→GELU→LayerNorm→Linear (512-dim)

3 Global contrastive loss (GRAM3Modal)
Volume computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . determinant of Gram matrix
Temperature scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . τ = 0.07
Volume-based alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cross entropy on negative volumes
InfoNCE alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . standard contrastive across modalities

4 Local functional group alignment
Functional group detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RDKit Fragments
FG representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . weighted pooling of fragment embeddings
FG contrastive loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . local InfoNCE between SMILES and text

5 Momentum-based loss integration
Momentum coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .β = 0.9
Initial alpha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . α = 0.5
Dynamic update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . α = β · αprev + (1− β) · (global loss/total loss)

6 Training configuration
Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Adam (lr=1e-5)
Encoder freezing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . both text and SMILES encoders
Distributed training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DDP, NCCL backend
Batch size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 per GPU, multi-GPU

B.2. Contrastive Learning for Multimodal Alignment

Contrastive learning has emerged as a powerful strategy for aligning representations across modalities. Seminal models
such as CLIP (Radford et al., 2021) demonstrated effective image-text alignment, inspiring extensions to other domains
including audio (CLAP) (Elizalde et al., 2023), video (CLIP4Clip) (Luo et al., 2022), and point clouds (PointCLIP) (Zhang
et al., 2022). These models typically learn by pulling semantically similar cross-modal pairs closer while pushing dissimilar
ones apart. More recent approaches such as CLIP4VLA (Ruan et al., 2023), ImageBind (Girdhar et al., 2023), and
LanguageBind (Zhu et al., 2023) explore multimodal fusion, often anchoring learning around a central modality like images
or text. GRAM (Cicchetti et al., 2024) advances this direction by introducing geometry-aware volume based contrastive
objective, but it primarily focuses on audio-video-text pairs without structured semantic hierarchies. Unlike existing methods,
our TRIDENT framework tackles the unique challenges of molecule-text alignment by incorporating hierarchical taxonomic
relationships to capture functional semantics, and introducing global and local alignment modules with momentum-based
mechanism. This enables fine-grained substructure-function correspondence and a richer multimodal embedding space
tailored to molecular understanding.
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C. Experimental Setup
C.1. Model Architecture

As shown in Algorithm A, our multimodal contrastive learning framework consists of the following key components:

1. Three-modal encoding: MoLFormer processes SMILES structures, while SciBERT encodes molecular text descrip-
tions and category information, outputting 768-dimensional features.

2. Feature projection: Multi-layer MLPs project features from each modality into a 512-dimensional shared space with
L2 normalization.

3. Two-level contrastive learning:

• Global contrast: Applies GRAM3Modal method to calculate volume loss and InfoNCE loss across three modalities
• Local contrast: Aligns SMILES and text representations at the functional group level

4. Dynamic loss integration: Employs a momentum update mechanism (β = 0.9) to adaptively adjust weights between
global and local losses, with total loss L = α · Lglobal + (1− α) · Llocal.

D. Data Collection and Processing
We obtain a dataset containing 320,000 molecule-text pairs from the PubChem database and preprocess the text descriptions
following the MolecularSTM method. Specifically, molecule names are replaced with “this molecule is...” or “these
molecules are...” to prevent the model from recognizing molecules based solely on their names. Additionally, to create
unique SMILES-text pairs, we merge molecules with the same CID (chemical identifier) and filter out text descriptions with
fewer than 18 characters.

Moreover, we use PubChem’s classification system to obtain up to 32 classification descriptions for each molecule, as
illustrated in Algorithm A. Ultimately, we generate 47,269 <SMILES, Text, Hierarchical Taxonomic Annotation> triplets.
As shown in Figure 3, to further optimize and summarize the classification annotations, we use GPT-4 to generate summarized
descriptions, resulting in high-quality HTA text descriptions.

The model is implemented in a distributed training environment, freezing pre-trained encoders and optimizing only projection
layer parameters.

D.1. Training Configuration

Our multimodal contrastive learning model was trained on two NVIDIA H100 GPUs with the following configuration, as
shown in Table 10.

Each training epoch takes approximately 5 minutes. During training, we used DistributedSampler to ensure consistent data
distribution across different GPUs and shuffled the data by setting different random seeds at the beginning of each epoch.
Due to the large size of MoLFormer and SciBERT models, we adopted a strategy of freezing pre-trained encoder parameters
and only training projection layer parameters, which significantly reduced computation and memory requirements while
maintaining model expressiveness. We observe that the dynamic integration of global and local losses (dynamic adjustment
of α value) demonstrates good adaptability during the training process, enabling reasonable balancing of the contributions
from the two losses at different training stages.

D.2. Evaluation Metrics

To comprehensively evaluate the performance of our multimodal contrastive learning model on molecular property prediction
tasks, we adopt appropriate evaluation metrics based on the characteristics of different datasets.

D.2.1. MOLECULENET DATASETS

For binary classification tasks in MoleculeNet datasets, we employ ROC-AUC (Receiver Operating Characteristic Area
Under Curve) and standard deviation as the primary evaluation metric. The ROC-AUC is calculated as follows:
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Figure 3. The workflow for summarizing Hierarchical Taxonomic Annotations (HTA). Using GPT-4o, detailed classification annotations
are processed and summarized, resulting in high-quality HTA text descriptions for molecular data.

AUC =

∫ 1

0

TPR(FPR−1(t)) dt (1)
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where the True Positive Rate (TPR) and False Positive Rate (FPR) are defined as:

TPR =
TP

TP + FN
(2)

FPR =
FP

FP + TN
(3)

ROC-AUC values range from 0 to 1, with values closer to 1 indicating better model performance. This metric demonstrates
good robustness to class imbalance issues, making it particularly suitable for molecular property prediction tasks in the
pharmaceutical domain where positive and negative samples are often unevenly distributed.

STD =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2 (4)

where n is the number of experiments, xi is the result of the i-th experiment, and x̄ is the mean of n experiments. The
standard deviation reflects the stability and reliability of model performance, with smaller standard deviations indicating
more stable performance across different data splits and random seeds.

D.2.2. TDC DATASETS

For TDC (Therapeutics Data Commons) datasets, we employ both ROC-AUC and Accuracy as evaluation metrics:

1. ROC-AUC: Same definition as in MoleculeNet datasets, used to measure the model’s classification performance and
discriminative ability.

2. Accuracy: The accuracy is calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

where TP, TN, FP, and FN represent the number of true positives, true negatives, false positives, and false negatives,
respectively.

Accuracy intuitively reflects the proportion of correctly predicted samples by the model. When used in combination with
ROC-AUC, it provides a more comprehensive evaluation of model performance. ROC-AUC primarily focuses on the
model’s ranking ability and threshold-independent performance, while accuracy directly reflects the model’s classification
effectiveness under specific thresholds.

E. Downstream Tasks Datasets
To comprehensively evaluate the performance of our proposed multimodal contrastive learning framework on molecular
property prediction tasks, we conduct extensive experiments on two major benchmark dataset collections: MoleculeNet and
TDC (Therapeutics Data Commons).

E.1. MoleculeNet Datasets

MoleculeNet is one of the most authoritative benchmark dataset collections in the field of molecular machine learning,
specifically designed to evaluate the performance of molecular property prediction methods. Table 3 summarizes the detailed
information of the 8 MoleculeNet datasets we used.

E.2. TDC Datasets

TDC (Therapeutics Data Commons) is a large-scale dataset collection specifically designed for therapeutics research,
providing more challenging and practically valuable molecular property prediction tasks. Table 4 presents the detailed
information of the 5 TDC datasets we selected.
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Table 3. MoleculeNet Datasets Details
Dataset Sample Size Prediction Task Task Description

BBBP 2,050 Blood-Brain Barrier Penetration Predicts whether compounds can penetrate the blood-brain barrier
Tox21 7,831 Toxicity Assessment Evaluates compound activity across 12 different toxicity pathways
ToxCast 8,597 Toxicity Prediction Predicts compound toxicity across 617 biological assays
SIDER 1,427 Side Effect Prediction Predicts adverse drug reactions covering 27 types of side effects
ClinTox 1,483 Clinical Toxicity Evaluates clinical toxicity and FDA approval status of compounds
MUV 93,087 Biological Activity Molecular activity prediction with 17 highly imbalanced biological targets
HIV 41,127 Antiviral Activity Predicts compound inhibition of HIV replication
BACE 1,513 Enzyme Inhibition Predicts β-secretase inhibitor activity for Alzheimer’s disease drug discovery

Table 4. TDC Datasets Details
Dataset Sample Size Prediction Task Task Description

DILI 475 Liver Injury Prediction Predicts drug-induced liver injury, a critical safety consideration in drug development
Carcinogens 278 Carcinogenicity Prediction Predicts compound carcinogenicity, crucial for drug and chemical safety evaluation
Skin Reaction 404 Skin Reaction Prediction Predicts whether compounds cause skin reactions, important for topical drug development
AMES 7,255 Mutagenicity Prediction Predicts compound mutagenicity based on Ames test, standard method for genetic toxicity
hERG 648 Cardiotoxicity Prediction Predicts compound blocking activity against hERG potassium channels, major cause of cardiotoxicity

These datasets cover key property prediction tasks in the drug discovery process, including pharmacokinetics (ADME),
toxicity, and biological activity across multiple aspects. Both dataset collections are characterized by diversity, challenging
nature, standardization, and authority, and are widely recognized and used by both academia and industry.

F. Baselines
In this section, we provide descriptions of the baseline methods used for comparison in our experiments. These baselines
represent current approaches in molecular representation learning and multimodal molecular modeling.

F.1. Single-Modal Baselines

MOLFORMER (Ross et al., 2022): A transformer-based model that processes SMILES string representations using
masked language modeling. The model employs linear attention with rotary positional embeddings and is pre-trained on 1.1
billion molecules from PubChem and ZINC databases in an unsupervised fashion. MegaMolBART (Reidenbach et al.,
2022): A BART-based encoder-decoder model adapted for molecular data. It processes SMILES representations and applies
bidirectional and auto-regressive transformers for molecular understanding and generation tasks.

F.2. Multimodal Baselines

MoleculeSTM (Liu et al., 2023a): A bi-modal model with separate encoders for molecular structures (SMILES/graphs)
and textual descriptions. It uses contrastive learning to align structure-text pairs and is trained on over 280,000 molecule-text
pairs from PubChem. MoMu (Su et al., 2022): A multimodal foundation model that uses separate encoders for molecular
graphs and natural language text. The model employs contrastive learning to bridge molecular structures with textual
descriptions using paired molecule-text datasets. MolFM (Luo et al., 2023): A tri-modal model that integrates molecular
structures (2D graphs), biomedical texts, and knowledge graphs. It uses cross-modal attention mechanisms and is pre-trained
with four objectives: structure-text contrastive learning, cross-modal matching, masked language modeling, and knowledge
graph embedding. KV-PLM (Zeng et al., 2022): A BERT-based unified framework that processes both SMILES-encoded
molecular structures and natural language text through masked language modeling pre-training. The system enables cross-
modal understanding between molecular structures and biomedical text. MolCA-SMILES (Liu et al., 2023b): A molecular
graph-language model that uses a Q-Former as a cross-modal projector to bridge graph encoders and language models. The
approach employs LoRA adapters and follows a three-stage training pipeline for efficient fine-tuning. Atomas (Zhang
et al., 2025): A hierarchical alignment framework that introduces Adaptive Polymerization Module (APM) and Weighted
Alignment Module (WAM) to learn fine-grained correspondences between SMILES and text at atom, fragment, and molecule
levels. It uses a unified encoder and end-to-end training for joint alignment and generation.
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Figure 4. The ablation experiments are conducted on the Tox21, ToxCast, BBBP and Bace datasets. “w/o HTA” denotes that only not
use hierarchical taxonomic annotation; “w/o local alignment” denotes that the local alignment is removed; and “w/o volume
loss” indicates that only the volume-based loss is changed to the standard contrastive loss.

F.3. Comparison with TRIDENT

Our proposed TRIDENT framework differs from these baselines in several key aspects:

1. Hierarchical Taxonomic Annotations: Unlike existing methods that rely on generic textual descriptions, TRIDENT
incorporates structured, multi-level functional annotations across 32 taxonomic classification systems, providing richer
semantic understanding.

2. Tri-modal Architecture: While most baselines focus on bi-modal alignment (structure-text), TRIDENT introduces a
novel tri-modal approach that jointly models SMILES, textual descriptions, and hierarchical taxonomic annotations.

3. Volume-based Global Alignment: Instead of traditional pairwise contrastive learning, TRIDENT employs a geometry-
aware volume-based alignment objective that captures higher-order relationships across all three modalities simultane-
ously.

4. Local-Global Integration: TRIDENT uniquely combines global tri-modal alignment with fine-grained local alignment
between molecular substructures and their corresponding textual descriptions, balanced through a momentum-based
mechanism.

5. Dynamic Alignment Strategy: The momentum-based integration of global and local objectives allows TRIDENT to
adaptively focus on different alignment components during training, leading to more robust representation learning.

These innovations enable TRIDENT to achieve state-of-the-art performance across 11 downstream molecular property
prediction tasks, demonstrating the effectiveness of our comprehensive multimodal approach.

G. Additional Results
In this section, we present additional experimental results that complement the main findings reported in the paper. These
include performance evaluations on larger-scale datasets from the TDC benchmark, more extensive ablation experiments,
and additional analyses that provide deeper insights into TRIDENT’s capabilities.

G.1. Ablation Study

To understand the contribution of different components in our TRIDENT framework, we conduct a detailed ablation study.
We compare several model variants on representative tasks to disentangle the impact of local functional group and sub-textual
description alignment loss, hierarchical taxonomic supervision as well as the volume loss for global alignment.

As shown in Figure 4, removing HTA information (w/o HTA) leads to a noticeable drop in model performance, highlighting
the importance of HTA in capturing a rich, multi-level understanding of molecular behavior through hierarchical taxonomy
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Table 5. Performance comparison of molecular property prediction methods based on different input modalities (SMILES, Text, and HTA)
across various datasets (ROC-AUC%). Best results in bold.

Method Input Datasets

SMILES Text HTA BBBP Tox21 ToxCast Sider Bace

TRIDENT (M-M) ✓ × ✓ 72.02±0.36 78.21±0.19 67.04±0.38 63.18±0.31 81.28±0.92
TRIDENT (M-M) ✓ ✓ ✓ 73.95±1.01 79.36±0.13 67.80±0.37 63.64±0.56 82.39±0.56

annotations. Similarly, excluding the local-alignment component (w/o local alignment) results in a clear performance
decline, showing how fine-grained alignment plays a critical role in enhancing the model’s capability. Interestingly, replacing
our volume loss with standard contrastive loss (w/o volume loss) causes significant instability on datasets like Tox21,
ToxCast, and BBBP. This is likely because traditional alignment approaches struggle to handle multiple modalities effectively
(Cicchetti et al., 2024). In addition, our momentum-based mechanism further strengthens generalization by dynamically
balancing global and local objectives during training, as demonstrated in Table 6. Overall, the full TRIDENT framework
consistently outperforms all ablated versions, confirming the value and necessity of each individual component.

Table 6. Strategies for combining global and local loss functions
(ROC-AUC%). Sum: direct addition; Curve: sigmoid-weighted
combination with increasing local loss weight; Momentum: dynamic
alignment approach. Best results in bold.

Method Tox21 ToxCast BBBP Bace

Sum 77.79±0.81 66.73±0.65 72.15±0.81 81.42±0.69
Curve 76.68±0.79 65.49±0.82 71.68±0.79 80.91±0.83
Momentum 79.36±0.13 67.80±0.37 73.95±1.01 82.39±0.56

In addition, to further explore the relationship between
HTA and general molecular descriptions, we directly use
HTA and molecular SMILES as inputs for the global mod-
ule during pretraining, replacing the volume loss with
standard contrastive learning loss while keeping other
settings unchanged. The results are shown in Table 5.
When using HTA as the sole text input, the model al-
ready outperforms most baselines but still falls short of
the tri-modal input. This may be because HTA text and
traditional molecular descriptions complement each other
in terms of information representation. HTA text contains
up to 32 categorical annotations, providing more diverse and multi-angled molecular information, while traditional func-
tional descriptions are more direct and highlight the core features of molecular structures. Therefore, by simultaneously
leveraging HTA text and traditional descriptions as multimodal inputs, the model captures molecular characteristics more
comprehensively, thereby further improving its performance.

G.2. Performance on Larger TDC Datasets

While the main paper focused on smaller TDC datasets to demonstrate TRIDENT’s data efficiency, we also evaluated our
method on larger-scale molecular property prediction tasks. Table 7 presents the results on the AMES mutagenicity dataset
(7,255 molecules) and the hERG cardiotoxicity dataset (648 molecules). In summary, TRIDENT’s superior performance on
both the large-scale AMES dataset and the moderately-sized hERG dataset demonstrates the versatility and scalability of our
approach. The consistent improvements across different dataset sizes—from hundreds to thousands of molecules—validate
that the tri-modal alignment strategy and hierarchical taxonomic annotations provide robust molecular representations that
generalize well across various scales and prediction tasks. These results complement our findings on larger datasets and
further establish TRIDENT as a powerful framework for molecular property prediction across the full spectrum of practical
applications in drug discovery.

G.3. Performance without LLM Summary

To evaluate the contribution of LLM-based summarization in our HTA generation process, we conduct an ablation study
comparing the performance of TRIDENT when using raw JSON taxonomic annotations versus LLM-synthesized HTA
descriptions. In this experiment, we directly input the structured JSON files containing hierarchical taxonomic paths and
descriptions from the 32 classification systems, bypassing the GPT-4o summarization step described in Section 3.1.

The results in Table 8 demonstrate the effectiveness of LLM-based synthesis in our HTA generation pipeline. When using
raw JSON taxonomic annotations without LLM summarization (TRIDENT w/o LLM), the model achieves competitive
performance but consistently underperforms compared to the full TRIDENT framework across all datasets.
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Table 7. Performance of different methods on AMES and hERG tasks, reporting AUC and Accuracy. The best results are marked in bold,
and the second-best are underlined.

Method AMES (7,255 drugs) hERG (648 drugs)

AUC ACC AUC ACC

MOLFORMER 83.20±0.32 78.05±0.76 79.65±1.19 81.82±3.03
KV-PLM 78.23±0.90 71.70±0.94 75.87±2.76 75.30±3.08
MolT5 76.93±0.84 70.87±2.22 76.25±1.22 77.04±4.90
MoMu 77.20±0.85 70.78±0.36 75.68±1.89 73.27±3.55
MolCA-SMILES 77.62±1.49 71.74±1.07 78.40±1.84 73.94±4.38
MoleculeSTM-SMILES 83.60±1.00 77.68±0.64 79.46±4.63 79.19±4.94
Atomas 82.63±0.72 77.32±0.83 83.34±1.79 78.02±2.00

TRIDENT (M-S) 85.37±0.30 78.74±0.50 87.60±1.20 81.11±2.64
TRIDENT (M-M) 86.87±0.60 80.20±1.44 83.31±1.63 83.33±2.62

Table 8. Ablation study on the impact of LLM-based summarization in HTA generation. Comparison between using raw JSON taxonomic
annotations versus LLM-synthesized HTA descriptions across molecular property prediction datasets (ROC-AUC%). Best results in bold.

Method Input Datasets

SMILES Text HTA BBBP Tox21 ToxCast Sider Bace

TRIDENT (M-M) w/o LLM ✓ ✓ ✓ 71.89±0.56 79.01±0.33 66.86±0.75 62.78±0.45 81.12±0.69
TRIDENT (M-M) ✓ ✓ ✓ 73.95±1.01 79.36±0.13 67.80±0.37 63.64±0.56 82.39±0.56

This performance gap highlights several key advantages of LLM-based summarization: (1) Information Integration: The
LLM synthesis process effectively combines information from multiple taxonomic systems into coherent, contextually
rich descriptions that capture cross-domain knowledge spanning chemistry, biology, and pharmacology. (2) Semantic
Coherence: Raw JSON annotations often contain fragmented or inconsistent terminology across different classification
systems, while LLM synthesis produces semantically coherent descriptions that are more amenable to natural language
processing. (3) Contextual Enrichment: The synthesis process adds relevant contextual information and relationships
between different taxonomic levels that may not be explicitly present in individual classification paths.

While the raw taxonomic annotations still provide valuable structural information that outperforms traditional text-only
approaches, the LLM synthesis step proves crucial for maximizing the utility of hierarchical taxonomic knowledge in
molecular representation learning. This finding validates our design choice to incorporate GPT-4o in the HTA generation
pipeline and demonstrates that the additional computational cost of LLM synthesis is justified by the consistent performance
improvements across all molecular property prediction tasks.

G.4. Impact of Tri-modal vs. Concatenated Text Architecture

To validate the necessity of our tri-modal architecture, we conduct an ablation study comparing our approach with a simpler
alternative that concatenates HTA and traditional text descriptions into a single textual input. This experiment evaluates
whether treating HTA and text as separate modalities provides advantages over a straightforward concatenation approach.

The results in Table 9 demonstrate the effectiveness of our tri-modal architecture over the concatenation approach. The
concatenated version (TRIDENT Concatenated) combines HTA and traditional molecular descriptions into a single text input
using simple string concatenation with separator tokens, then processes this unified text through the same text encoder used
in our tri-modal framework. While this approach still benefits from the rich semantic information in HTA, it consistently
underperforms the tri-modal architecture across all datasets. These consistent improvements highlight several key advantages
of treating HTA and text as separate modalities:

Modality-Specific Representation Learning: The tri-modal architecture allows the model to learn distinct representation
spaces for hierarchical taxonomic information and functional descriptions. This separation enables the capture of different
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Table 9. Ablation study comparing tri-modal architecture (SMILES + Text + HTA as separate modalities) versus concatenated text
approach (SMILES + concatenated HTA⊕Text as single text modality). The concatenated approach combines HTA and traditional
molecular descriptions using string concatenation with separator tokens, while the tri-modal approach processes each information source
through separate encoders with volume-based alignment. Performance reported across molecular property prediction datasets using
ROC-AUC(%). Best results in bold.

Method Architecture Datasets

Modalities Text Processing BBBP Tox21 ToxCast Sider Bace

TRIDENT (Concatenated) SMILES + Text HTA⊕Text 70.918±0.82 76.67±0.59 64.59±0.72 61.74±0.83 79.15±0.69
TRIDENT (M-M) SMILES + Text + HTA Separate 73.95±1.01 79.36±0.13 67.80±0.37 63.64±0.56 82.39±0.56

semantic aspects—taxonomic relationships in HTA versus direct functional properties in traditional text—that may require
different representational strategies.

Enhanced Alignment Flexibility: The volume-based tri-modal alignment objective can capture complex geometric
relationships between SMILES, text, and HTA that are not accessible when HTA and text are merged into a single modality.
This geometric awareness enables more nuanced understanding of how molecular structure relates to both functional
properties and taxonomic classifications.

Reduced Information Interference: Concatenation may lead to interference between the structured, multi-level taxonomic
information and the more direct functional descriptions, potentially diluting the distinct contributions of each information
source. Separate processing preserves the unique characteristics of each modality.

Dynamic Weighting Capabilities: The tri-modal framework allows for dynamic balancing of different information sources
during training through our momentum-based mechanism, whereas concatenation fixes the relative importance of HTA and
text information at the input level.

These findings validate our design choice to maintain HTA and traditional text as separate modalities, demonstrating that the
additional architectural complexity of tri-modal learning is justified by consistent performance gains across all molecular
property prediction tasks.
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Table 10. Training Configuration Details

Parameter Configuration

Hardware environment 2 × NVIDIA H100 GPU
Training framework PyTorch DistributedDataParallel (DDP)
Communication backend NCCL
Optimizer Adam
Learning rate 1e-5
Batch size 40 per GPU (total batch size = 80)
Weight decay 1e-4
Training epochs 60 epochs
Training dataset size 47,269 molecule-text-HTA pairs
Gradient accumulation steps 1
Learning rate schedule Fixed learning rate, no decay
Early stopping Stop after 5 epochs without validation loss improvement

Loss Function Configuration

Contrastive temperature τ = 0.07
Momentum coefficient β = 0.9
Initial loss weight α = 0.5
Global loss composition GRAM3Modal volume loss + InfoNCE loss
Local loss composition Functional group level InfoNCE loss
Label smoothing parameter 0.1

Model Configuration

Modality encoders Frozen (feature extraction only)
Projection layers Fully fine-tuned (768-dim → 512-dim)
Dropout rate 0.1
Gradient clipping Max norm 1.0
Mixed precision training FP16
Checkpoint saving frequency Every 2 epochs
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