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Abstract: Recent works in the robot learning community have successfully intro-
duced generalist models capable of controlling various robot embodiments across
a wide range of tasks, such as navigation and locomotion. However, achieving
agile control, which pushes the limits of robotic performance, still relies on spe-
cialist models that require extensive parameter tuning. To leverage generalist-
model adaptability and flexibility while achieving specialist-level agility, we pro-
pose AnyCar, a transformer-based generalist dynamics model designed for agile
control of various wheeled robots. To collect training data, we unify multiple sim-
ulators and leverage different physics backends to simulate vehicles with diverse
sizes, scales, and physical properties across various terrains. With robust train-
ing and real-world fine-tuning, our model enables precise adaptation to different
vehicles, even in the wild and under large state estimation errors. In real-world
experiments, AnyCar shows both few-shot and zero-shot generalization across
a wide range of vehicles and environments, where our model, combined with a
sampling-based MPC, outperforms specialist models by up to 54%. These results
represent a key step toward building a foundation model for agile wheeled robot
control. We will also open-source our framework to support further research.

Keywords: Dynamics Learning, Foundation Model, Agile Control

1 Introduction

The use of the transformer [1] architecture in contemporary robot learning is ubiquitous across
perception [2, 3], planning [4] and control [5] tasks. Reinforcement learning with transformers, such
as [6] and [7], is used in many downstream applications in bi-manual manipulation [8], navigation
[9], humanoid locomotion [10], and whole-body tele-operation [11, 12]. Vision-language-action
(VLA) models such as OpenVLA [13], RT-1 [14], and RT-2 [15] demonstrate the scalability of
employing transformers in robotics. These models trained on internet-scale data can generalize
knowledge and skills to different complex tasks.

Recent advances in robot learning have also introduced more “specialist” systems that can perform
highly agile locomotion tasks [16, 17, 18, 19]. In particular, on wheeled robots, previous works have
achieved high-speed autonomous driving on racetracks [20], grass fields [21], loose sand [22, 23],
and off-road terrain [24, 25]. However, most of these efforts [24, 25] are optimized for specific
car models and environments, requiring extensive system identification and model training [22, 21],
which is costly to fine-tune and difficult to transfer to other wheeled platforms.

On the other hand, agile wheeled control for safety-critical applications requires precise dynamics
modeling when running at high speed, since small errors can lead to catastrophic failures such as
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Figure 1: Performance of AnyCar and baselines in the wild under state estimation errors. Above: A
10 cm tolerance corridor is set as a checkpoint. Below: each row represents the true trajectory of
one method, and each column corresponds to a specific setting for the 1/16 scale car: high speed (2
m/s), towing a box, and replacing the front left tire with a plastic wheel. All settings significantly
alter the vehicle dynamics.

crashes [26, 21]. There are works that attempt to mitigate this issue by applying neural system iden-
tification [5, 27, 26] to adapt the model to different environmental factors such as tire degradation,
ground surface imperfections [27], and towed objects [26]. Nevertheless, these methods still require
assumptions about the specific car setup (e.g., size and wheelbase of the car).

A key question that arises is: Can we train a generalist wheeled-robot dynamics model that achieves
the performance of a specialist model for each setup? In this work, we propose AnyCar (depicted
in Figure 2), an initial effort to train a vehicle dynamics transformer that can predict the trajectory
of various cars in various settings through in-context adaptation. Our contributions are three-fold:

• We build a universal synthetic data generator that collects data across diverse vehicles and
environments, using physics engines with varying levels of fidelity (e.g., DBM, MuJoCo,
Isaac Sim, Assetto Corsa Gym).

• We propose a two-phase robust vehicle dynamics transformer training method that lever-
ages simulation pre-training and real-world fine-tuning to handle sim2real mismatches and
state-estimation errors.

• We integrate the dynamics transformer with a sampling-based MPC and demonstrate real-
world performance on different car platforms and in different environments, both indoor
and outdoor, achieving up to 54% performance improvement over the baseline methods.

2 Related Work

2.1 Neural Dynamics Model and Adaptive Control

Neural networks, especially transformers, can be used to learn the dynamics of any arbitrary sys-
tems [28, 29] or a residual on top of a nominal model, which is expressed in traditional state-space
equations [5, 30, 31, 32, 33]. Data-driven techniques can help robots adapt to time-varying dynam-
ics. In particular, open-loop adaptation based on teacher-student training can effectively bridge the
Sim2Real gap in RL, such as rapid motor adaptation (RMA) [34]. When real-world ground truth is
available, the adaptation can be learned in a more supervised fashion. Safe deep policy adaptation
(SafeDPA) [26] performs self-supervised real-world fine-tuning. Neural-Fly [30] trains a residual
dynamics model to learn a good representation of environment disturbances with a small amount of
real-world data. Learning model predictive control (LMPC) [35, 20] directly regresses a local linear
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approximation of the state-space dynamics based on a neighborhood of nearest historical states col-
lected in the real world. However, adaptation-at-scale remains an open challenge, particularly when
dynamics differ significantly, such as with robots varying in parameters or embodiments.

2.2 Cross Embodiment

Recent research shows that deep learning models trained at scale can control a variety of robots
using the same policy [36, 37]. CrossFormer [36] highlights that training a single transformer on
tasks across six embodiments (wheeled robot, quadruped, manipulator, etc.) works even without
aligning the action space of these embodiments. The open X-Embodiment dataset [38, 39] focuses
on robot manipulation across different embodiments. However, no existing generalist performs agile
control. To reconcile generalist adaptability and specialist agility, AnyCar addresses generalization
across the same form of wheeled embodiment, which is a scope reduction from cross-embodiment.

2.3 Transformer for Low-Level Control

Transformers have shown potential in low-level control, with attention patterns in Trajectory Trans-
former effectively capturing properties of Markov decision processes (MDPs) [6]. This raises the
question of whether transformers, with their inductive bias on pairwise attention between sequence
elements, can achieve efficient training and representation of Markovian dynamics for low-level con-
trol. Recent work has begun exploring this area. [12] uses a transformer for humanoid whole-body
control, though without addressing cross-embodiment generalization. [5] applies a transformer for
online system identification in vehicular robots, using historical states to generate a context vec-
tor for a neural dynamics model. Despite these advancements, current literature lacks examples of
transformers excelling in both specialized tasks (e.g., agile locomotion or dexterous manipulation)
and generalization across different robots or tasks.

3 Overview

Notation. xt, at are state and action at time step t. We use x1:t to denote a sequence {x1, · · · , xt}.
x̂ denotes estimation of x (e.g., from VIO) and â is a with noise.

To demonstrate the practical application of our method, we focus on trajectory tracking in unstruc-
tured environments for a range of vehicles, which can be formulated as follows:

maximize
a0:T

T∑
t=0

R(xt, at)

subject to xt+1 = f(xt, at, ct), ∀t = 0, 1, . . . , T

whereR(xt, at) is the reward function and xt+1 = f(xt, at, ct) represents the system dynamics with
ct representing all physics characteristics related to car dynamics and the environment conditions
such as terrain, payload, .etc. The state is defined by xt ≜ [pxt , p

y
t , ψt, ṗ

x
t , ṗ

y
t , ω], which contains

position (pxt , p
y
t ), heading angle ψt, linear velocity (ṗxt , ṗ

y
t ), and angular velocity ω. The action at ≜

[T , δ] contains throttle T and steering angle δ. Our model is a seq2seq model that can predict the
future state sequence from imperfect state and action history sequence and future action sequence:

xt+1:t+H ≈ fAnyCar
θ ( x̂t−K:t, ât−K:t−1︸ ︷︷ ︸

noisy state and action history

, at:t+H−1︸ ︷︷ ︸
future actions

), (1)

where K denotes history length and H denotes prediction horizon (illustrated in Figure 2 Phase
2). We train a transformer to approximate Equation (1) for various cars and terrains via its in-
context adaptation capability. Our model not only can learn adaptive dynamics but also a filter
that can handle noisy state estimation x̂ and action â. Compared with previous works that assumes
one specific car model with limited adaptable parameters [27, 20, 26, 22, 5], AnyCar can adapt to
various types of car with or without assumptions about the environment. To learn θ, we design
two-stage training pipeline. In the first stage, in Section 4, we generate large scale dataset which
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Figure 2: AnyCar System Pipeline. Phase 1: We collect 100M data in 4 different simulations for
pre-training and 0.02M few-shot real-world data for fine-tuning the model. Phase 2: We pre-train
the model with the simulation dataset and enhance prediction robustness through masking, adding
noise, and attacking the inputs. We also fine-tune using the fine-tuning dataset. Phase 3: We deploy
AnyCar in the wild under state estimation error (using SLAM [40, 41, 42] and VIO [43]) to control
different vehicles (1/10 scale, 1/16 scale) with different settings (tow object, 3D-printed wheels) on
different terrains.

contains trajectories of various cars in different terrains using different physics simulations; we then
pre-train the AnyCar transformer fAnyCar

θsim
(Figure 2 Phase 2) in Section 4.2. In the second stage, we

collect few-shot real-world data and fine-tune the transformer fAnyCar
θfine-tune

in Section 4.3. After these
two stages, the model fAnyCar

θfine-tune
can accurately predict future trajectory for different cars even under

state-estimation error.

With an accurate dynamics model, we apply the Model Predictive Path Integral (MPPI) to perform
trajectory tracking. MPPI is a sampling-based MPC approach that minimizes the cost-to-go for sam-
pled trajectories and selects optimal controls by weighting multiple candidate trajectories based on
their performance. We choose MPPI for its ability to leverage parallel computation and its training-
free nature, with no need for a reduced-order model. In Section 5.1, we describe the detailed system
design for trajectory tracking using AnyCar transformer with MPPI to achieve control at 50Hz in
the real world. Finally, in Section 6, we showcase the deployment of AnyCar in various real-world
scenarios, demonstrating its versatility and robustness across different vehicles and environments.

4 MODEL AND DATA

In this section, we describe the dataset collection and model training strategies of AnyCar. As shown
in Figure 2 Phase 1 and Phase 2, we highlight our data collection in massive simulation and few-shot
real-world data, and our robust training and finetuning pipeline.

4.1 Pre-Training with Massive Simulated Data

Scene Generation. To collect a diverse dataset, we leverage the low-cost nature of simulation and
generate a large amount of simulated data. Our data generation has three sources of diversity: 1)
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dynamics, 2) scenario, 3) controller. As illustrated in Figure 2 Phase 1, we synthesize trajectories
of various cars and terrains via four distinct simulators: Dynamic Bicycle Model [27] (DBM)-based
numeric simulation, MuJoCo, IsaacSim, and Assetto Corsa Gym [44].
Curriculum Model Training. To ensure data distribution coverage, we diversify between on-policy
and off-policy data via a two-stage curriculum learning method. In stage one, we collect high-
volume off-policy data as warm-up, by building a hybrid controller where we use a pure pursuit
controller for steering δ and a PD controller for throttle T , to track randomly synthesized reference
tracks. After collecting 200M timesteps that are usable for training a general model for non-agile
tasks (in which the target velocity is smaller than the physical limit), we switch to stage two, where
we deploy an on-policy NN-MPPI controller (described in Section 5.1) to track agile trajectories,
and periodically update the network with the collected on-policy trajectory.

4.2 Robust In-Context Adaptive Dynamics Model

Model Structure. As illustrated in Figure 2 Phase 2, the historical states in Equation (1) are linearly
projected into a 64-dimensional latent space with an encoder layer Pstate(x) : R6 → R64. The
historical actions pass through a different encoder Pact(a) : R2 → R64 of similar size. We then
interleave and stack them to make a complete history token sequence S2K−1×64, which is supplied
to the transformer as the context. The future actions are tokenized with Pact(a) and stacked as a
sequenceAH×64. Both S andA sequences are then summed with two learnable positional encoders.
After passing the context S and input A to the transformer decoder, we obtain S′H×64, which is
then down-projected into the state-space with DPstate(x) : R64 → R6. This becomes the final state
sequence prediction.

Robust Training. To learn a robust model fθ for Equation (1) under various disturbances, we
propose to add three techniques in pre-training, i.e., mask out, add noise, and attack (Figure 2). We
implement mask out by applying randomized cross-attention mask to transformer, then add noise
ϵ ∼ N (0, ϵmax). We also add attack: unreasonably large or small values to random dimensions
in history to simulate state estimation errors in the real-world. As discussed in Section 4, these
techniques collaboratively improves robustness for successful real-world deployment.

4.3 Fine-Tuning with state-estimation error reduction

After pre-training fAnyCar
θsim

, we fine-tune the model with 10 minutes of real-world data (0.02M) to
reduce the sim2real gap and mitigate state-estimation error. To collect real-world data, we control the
car via joystick to follow a few random curved trajectories in a motion capture field and collect both
the state from on-board state-estimators and the ground truth states provided by the Vicon system,
as shown in Figure 2 Phase 1. We then fine-tune fAnyCar

θsim
on collected data under the constraint of

||θfine-tune−θsim||2 ≤ ϵtune to prevent catastrophic forgetting. In practice, we also apply data rehearsal
to assist. The model after fine-tuning fAnyCar

θfine-tune
is ready to deploy at zero-shot.

5 SYSTEM DESIGN

5.1 MPPI Controller

As introduced in Section 3, we choose to evaluate our method with MPPI instead of RL and MPC,
because RL would have required optimizing additional policy and value function parameters, which
is outside the scope of this work. Likewise, neural MPC [45] would have resulted in a reduced-order
approximation of our neural dynamics model that is undesired for a fair evaluation.

We employ a variant of MPPI called Covariance-Optimal MPC (CoVO-MPC) [46], which improves
upon vanilla MPPI with adaptive sampling covariance to achieve an optimal convergence rate on the
cost function.

5



Step: 0-50 50-100 100-150 150-200 200-250 

More attention (a) 0.5m/s 
(b) 2m/s 
(c) Tow box 

t=250 
(current) 

t=0 

Less attention 

Figure 3: Visualization of AnyCar’s transformer attention in three real-world settings: (a) low speed
at 0.5 m/s, (b) high speed at 2 m/s, and (c) towing an object at 2 m/s, all tracking the same reference
trajectory. AnyCar’s transformer consistently focuses on the nearest 50 steps across all settings and
adaptively attends to different sections of the track. For example, it attends to the first corner in
setting (b) and the second corner in setting (c).

5.1.1 Trajectory Sampling

Let xt, at be state and action at time t. For given control horizon H , we randomly sample N
action sequences {ait:t+H−1}Ni in a normal distribution, whose mean and covariance are computed
with [46]. We roll out each action sequence with the AnyCar model and compute their cumulative
rewards. In order to generate smooth action sequences, we re-parameterize the control sequence
a0:T with a set of time-indexed knots represented by θ0:k [47]. Given query point τ , the control can
be evaluated by aτ = spline(τ ; (τ0:k, θ0:k)).

5.1.2 Reward function

To motivate tracking reference waypoints, we use the single-step reward function from [24], which
is given by r(x, a, x̂) = w1||p − p̂||2 + w2||ψ − ψ̂|| + w3||vx − v̂x|| + w4||δa||, where p denotes
position, ψ is heading angle, vx is longitude velocity, and δa is action increment.

5.1.3 Computation

We implement the MPPI in JAX [48] and the transformer model in TransformerEngine. We eval-
uate 600 action sequence samples on the model in parallel, achieving 20 ms (50 Hz) real-time
performance on a RTX 4090 GPU. We note that further optimizations, such as KV caching, sharing
history token attentions between samples, and TensorRT conversion can enable edge deployment.

5.2 State Estimation

In our experiments with ground truth data, we use a motion capture system to directly observe the
position and velocity of the vehicle. For in-the-wild experiments, we estimate the linear and angular
velocity of the vehicle by fusing motor odometry and IMU data using an Extended Kalman Filter
(EKF) [49]. We then correct for the odometry drifting using 2D LiDAR SLAM [40, 41, 42], or 3D
SLAM with visual-inertial odometry (VIO). We will demonstrate AnyCar’s fine-tuning pipeline can
adapt to state estimation error in Section 6.

5.3 Low-Level Controller

Upon receiving a throttle (acceleration) and steering (angle) command, a low-level module maps the
throttle to motor current with a simple linear mapping, and maps the steering angle to servo angle.
Adapting to the discrepancies in these rough mappings and the latency in actuator responses is also
a goal of our fine-tuning pipeline.

6 Experiment

In this section, we aim to demonstrate the capability of the proposed AnyCar by addressing the
following questions:
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Table 1: Indoor Results using Ground Truth State-
Estimation (Motion Capture)

Setting Method EPrediction ↓ ETracking ↓

Few-shot performance in fine-tuned scenarios

1/10 Scale Car PP - 0.45 ± 0.02
+ Tow Box AnyCar (Ours) 0.27 ± 0.24 0.35 ± 0.04

AnyCar w/o FT 0.54 ± 0.55 0.47 ± 0.23
Specialist 0.14 ± 0.09 0.43 ± 0.05

1/10 Scale Car PP - 0.54 ± 0.03
+ Payloads AnyCar (Ours) 0.11 ± 0.08 0.41 ± 0.03

AnyCar w/o FT 0.21 ± 0.11 0.47 ± 0.17
Specialist 0.26 ± 0.11 0.51 ± 0.03

Zero-shot generalization in unseen scenarios

1/10 Scale Car PP - 0.79 ± 0.62
+ Plastic wheels AnyCar (Ours) 0.26 ± 0.32 0.335 ± 0.03
(All 4 wheels) AnyCar w/o FT 0.32 ± 0.21 0.45 ± 0.15

Specialist 0.35 ± 0.15 0.334 ± 0.06

1/10 Scale Car PP - 0.52 ± 0.05
+ Plastic wheels AnyCar (Ours) 0.12 ± 0.08 0.39 ± 0.05
(Front 2 wheels) AnyCar w/o FT 0.20 ± 0.11 0.49 ± 0.09

Specialist 0.27 ± 0.11 0.41 ± 0.04

1/10 Scale Car PP - 0.57 ± 0.03
+ Plastic wheels AnyCar (Ours) 0.09 ± 0.06 0.49 ± 0.09
+ Tow box AnyCar w/o FT 0.18 ± 0.11 0.52 ± 0.09

Specialist 0.14 ± 0.05 0.60 ± 0.04

1/16 Scale Car PP - 0.37 ± 0.16
+ Plastic wheels AnyCar (Ours) 0.17 ± 0.08 0.31 ± 0.06

AnyCar w/o FT 0.25 ± 0.14 0.44 ± 0.08
Specialist 0.26 ± 0.11 0.55 ± 0.07

Table 2: Indoor Results under State-Estimation
Error

Setting Method EPrediction ↓ ETracking ↓

Few-shot performance in fine-tuned scenarios

1/16 Scale Car AnyCar (Ours) 0.30 ± 0.06 0.35 ± 0.02
+ Low Speed AnyCar w/o FT 0.32 ± 0.07 0.48 ± 0.06

Specialist 0.33 ± 0.05 0.42 ± 0.01

Zero-shot generalization in unseen scenarios

1/16 Scale Car AnyCar (Ours) 0.44 ± 0.11 0.57 ± 0.03
+ High Speed AnyCar w/o FT 0.52 ± 0.15 1.30 ± 0.11

Specialist 0.48 ± 0.10 1.26 ± 0.89

1/16 Scale Car AnyCar (Ours) 0.34 ± 0.10 0.57 ± 0.02
+ Tow 2 Box AnyCar w/o FT 0.41 ± 0.14 1.41 ± 0.09

Specialist 0.39 ± 0.09 0.93 ± 0.62

• Q1: Can our model generalize to various cars and terrains, and outperform specialist mod-
els?

• Q2: Can our model maintain its adaptation capability even with imperfect state estimation?

• Q3: Why does the proposed robust vehicle dynamics transformer outperform other baseline
models?

Baselines. We compare AnyCar with three baseline methods: 1) AnyCar w/o FT: AnyCar without
the real-world fine-tuning phase, 2) PP: Pure Pursuit controller for steering and PID controller for
velocity tracking, and 3) Specialist: a DBM model with system identification. We also consider two
types of state estimator setups: 1) motion capture (indoor), which can be treated as ground truth,
and 2) SLAM [40, 41, 42] (indoor or outdoor), which is less accurate than motion capture and much
prone to drifting issues.

Metrics. We use the model prediction error EPrediction ≜ ||xpred
t+1:t+H − xgt

t+1:t+H ||2 to assess pre-
diction accuracy. We also define ETracking ≜ w2||pt − p̂t||2 + w3||vt − v̂t||2, where w2 and w3 are
the same weights defined for position and velocity tracking rewards in Section 5.1, representing the
weighted sum of lateral error and velocity tracking error, to evaluate trajectory tracking performance.

6.1 Evaluate Model In-context Adaptation Capability

To answer Q1, we isolate the estimation error and use motion capture to provide ground truth for
state estimation in the real world. An 1/10 Scale Car was employed to tow objects and carry pay-
loads, to create a fine-tuning dataset collected by human teleoperation. This dataset was then used
to fine-tune our dynamics model. The model was evaluated across two categories: few-shot per-
formance (e.g., towing objects and varying payloads, both present in the fine-tuning dataset) and
zero-shot generalization (e.g., changing 3D-printed wheels, towing objects with modified wheels,
and using a smaller car model with altered wheels). We use a trajectory optimization method [20]
to compute an on-the-edge reference trajectory on a raceline. Our method, along with other base-
lines (AnyCar w/o FT, PP, Specialist), was then deployed to track this trajectory. The evaluation
considered both model prediction error and closed-loop tracking error with the full controller. Re-
sults in Table 1 show AnyCar reaching and outperforming baselines in terms of prediction error and
tracking error in both few-shot and zero-shot cases. We observed the same “emergent skill” seen
in RT-X[38] that after fine-tuning the model with data of one robot (1/10 scale car) performing a
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Figure 4: Comparison with baselines in the wild.

certain task (track curves at low speed), a different robot (1/16 scale car) also gets a performance
boost in doing a different task (agile raceline tracking).

6.2 Evaluate Model Capability in the Wild

To address Q2, we set up a 2D LiDAR-based SLAM stack on an 1/16 scale car. The car was
teleoperated to follow an S-shaped path at low speed, collecting odometry data from both the SLAM
system and motion capture to create a small-scale dataset of 24,000 timesteps. The model was then
fine-tuned using the method in Section 4.3. Using the fine-tuned model (AnyCar), we first evaluated
our method in an indoor environment under different conditions (low speed, high speed, towing two
boxes) with SLAM, and computed metrics using ground truth data. The results in Table 2 show
AnyCar outperforms baselines with peak improvement of 54%. Based on Table 1 and Table 2, we
prove the necessity of fine-tuning that aligning the dynamics model to handle state estimation error.

Next, the system was moved to an outdoor environment without further modification. To validate
the robustness to state-estimation capabilities of AnyCar, we set up a narrow corridor along the
reference trajectory, allowing the car to pass with a 10 cm tolerance (demonstrated in Figure 1). Poor
tracking performance would result in the car colliding with the walls. We compared our method with
AnyCar w/o FT and Specialist by calculating the percentage of times the car successfully passed all
checkpoints without collision (success rate) for each method. The results in Table 2 show AnyCar
achieves the highest success rate in all settings, with the specialist failing consistently due to the state
estimation error. We also visualize the transformer attention across different settings in Figure 3,
which demonstrates AnyCar’s in-context adaptation in various settings. In addition to SLAM-based
state-estimator, we also show the deployment with ZED-VIO [43] on the website1.

6.3 Interpret the expressiveness and robustness of AnyCar

To address Q3, we apply ablation studies on model architecture and training pipeline. Due to the
limit of page, we put the detailed results in Appendix .1. The combination of model selection, large-
scale data, and robust training explains why the AnyCar performs better than the baseline models.

7 Limitations And Future Work

In this paper, we propose AnyCar, a first step towards foundation model for agile wheeled control.
In the future, there are three interesting research directions. One is to use KV caching in the trans-
former for full onboard computation. The second is to optimize the MPPI control to be aware of
model uncertainty and safety. The third is to integrate with existing foundation models for visual
navigation [9] to achieve fully agile autonomy in the wild.

1wesite: https://lecar-lab.github.io/anycar/
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Appendix

.1 Ablation Study on Model Design

We conducted experiments on datasets of varying sizes, encompassing trajectories of different cars
running in different terrains with timesteps ranging from 1 million (1M) to 100 million (100M).
Various model architectures, including transformer, LSTM, GRU, CNN, and MLP, were evaluated,
and the normalized prediction error was calculated for each. To ensure the models could be used with
MPPI for 50Hz control, we limited the maximum number of parameters for each model to 200K.
We create a testing dataset with 1M data points sampled i.i.d. from the simulation, independent of
the training dataset, and evaluate all trained models on the same testing dataset. The results shown
in Figure 6 demonstrate that as the training dataset size increased from 10M to 100M timesteps, the
prediction errors decreased significantly, with the transformer model performing best at the 100M
scale. This highlights that the transformer structure is the most effective for modeling diverse car
dynamics and environments compared with baseline models.

However, scaling the data and using the appropriate model structure alone are insufficient. Under
the optimal data scale and model configuration, we found it crucial to apply the proposed robust
training methods (including attack, noise, and mask-out strategies), as discussed in Section 4.2. We
systematically evaluate all combinations of these components, resulting in a total of 8 pre-trained
models. Each model is fine-tuned using the same dataset and evaluated on real trajectory. The
results, shown in Figure 5(a), demonstrate that the model achieves the highest prediction accuracy
and stability only when all robust training components are activated. For instance, Figure 5(b)
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Figure 5: Comparison of AnyCar robust training methods. (a) Evaluate prediction error in real-
world trajectories. (b) Demonstrate predicted trajectory of different methods.
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Figure 6: Comparison of different model structures and data scales. The reported testing error is
normalized using the mean and standard deviation of the evaluation dataset.

shows that without full robust training, the transformer’s predictions are vulnerable to noisy state
estimation, leading to significant errors. The combination of model selection, large-scale data, and
robust training explains why the AnyCar performs better than the baseline models.
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