
Published as a conference paper at ICLR 2024

IDEAL: INFLUENCE-DRIVEN SELECTIVE ANNOTA-
TIONS EMPOWER IN-CONTEXT LEARNERS IN LARGE
LANGUAGE MODELS

Shaokun Zhang1∗ Xiaobo Xia2∗† Zhaoqing Wang2 Ling-Hao Chen3 Jiale Liu4

Qingyun Wu1† Tongliang Liu2

1Pennsylvania State University 2The University of Sydney
3Tsinghua University 4Xidian University

shaokun.zhang@psu.edu xiaoboxia.uni@gmail.com

ABSTRACT

In-context learning is a promising paradigm that utilizes in-context examples as
prompts for the predictions of large language models. These prompts are crucial
for achieving strong performance. However, since the prompts need to be sam-
pled from a large volume of annotated examples, finding the right prompt may
result in high annotation costs. To address this challenge, this paper introduces
an influence-driven selective annotation method that aims to minimize annota-
tion costs while improving the quality of in-context examples. The essence of our
method is to select a pivotal subset from a large-scale unlabeled data pool to anno-
tate for the subsequent sampling of prompts. Specifically, a directed graph is first
constructed to represent unlabeled data. Afterward, the influence of candidate
unlabeled subsets is quantified with a diffusion process. A simple yet effective
greedy algorithm for unlabeled data selection is lastly introduced. It iteratively
selects the data if it provides a maximum marginal gain with respect to quantified
influence. Compared with previous efforts on selective annotations, our influence-
driven method works in an end-to-end manner, avoids an intractable explicit bal-
ance between data diversity and representativeness, and enjoys theoretical support.
Experiments confirm the superiority of the proposed method on various bench-
marks, achieving better performance under lower time consumption during subset
selection. The project page is available at https://skzhang1.github.io/IDEAL/.

1 INTRODUCTION

In-context learning (ICL) entails presenting a small set of examples with demonstrations as prompts
(called in-context examples) to large language models (LLMs), before making predictions on test
inputs (Wei et al., 2022a; Min et al., 2022; Akyürek et al., 2023). This emerging few-shot learn-
ing paradigm is an appealing alternative to supervised fine-tuning as it can avoid heavy parameter
updates of language models while improving accuracy (Liu et al., 2021; Yoo et al., 2022).

Recent studies indicate that obtaining prompts from a vast collection of annotated examples is cru-
cial to achieving strong performance (Rubin et al., 2022). Notably, these studies have illuminated
the substantial performance improvements when retrieving analogous examples (under specific em-
bedding criteria) as in-context examples tailored for each individual test input. Since different test
scenarios need distinct in-context examples, and each of them is equipped with its pertinent an-
notations, the necessity of a large volume of annotated examples is emphasized (Su et al., 2023).
However, obtaining large-scale annotated examples for ICL requires substantial manpower and fi-
nancial resources (Baldridge & Osborne, 2004; Engelson & Dagan, 1996; Snow et al., 2008). This
is because humans not only need to annotate the true label for each example but also need to provide
the example demonstration in the annotation process (Wei et al., 2022b).
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(a) Low-influence subset in unlabeled data.
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0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
di

ffu
sio

n 
st

ep
s

(b) High-influence subset in unlabeled data.

Figure 1: Visualization of the information diffusion process (Goldenberg et al., 2001) of two subsets
with equal sizes. Experiments are conducted using the SST-5 training set (Socher et al., 2013). To
avoid the denseness, we randomly sample 100 examples in total. In this visualization, black nodes
present the initial subset without information diffusion. White nodes correspond to the examples that
are not influenced by diffusion. For other nodes, darker nodes represent earlier influenced examples.
We can observe that the subset with high influence (b) can achieve better performance by influencing
a larger group of examples in the unlabeled data pool compared to the subset with low influence (a).

To reduce the annotation cost, the previous effort Vote-k (Su et al., 2023) made attempts by propos-
ing to select a diverse and representative subset from a large-scale unlabeled data pool to annotate.
Particularly, Vote-k initially selects a small portion of data for diversity and annotates them man-
ually. Then, these annotated data act as prompts for predictions on all other unlabeled data, and
choose the remaining ones that need to be annotated, based on diverse confidence scores. However,
despite its strong performance in empirical evaluations, Vote-k is still unsatisfactory in practice. We
detail the issues from three aspects. (1) The data selection procedure of Vote-k is not end-to-end.
This results in inconvenience, increased processing complexity, and added inference costs due to the
predictions on unlabeled data. (2) Diversity and representativeness need to be balanced carefully (Su
et al., 2023). Highlighting diversity in data selection is crucial for comprehensive coverage, but may
sacrifice representativeness by overlooking exemplary data. Besides, the excessive emphasis on di-
versity of Vote-k causes the selection of outliers (see evidence in Appendix C.2). (3) Vote-k lacks
theoretical guarantees, making it challenging to assess the algorithm’s reliability in realistic tasks
and constraining its practical utility.

In this paper, to minimize annotation costs for ICL and address the issues of existing work, an inno-
vative data selection method is introduced, where we utilize influence-driven selective annotations
to empower in-context learners (IDEAL). In essence, IDEAL aims to identify a subset of data that
acts as a proxy and closely approximates the vast unlabeled dataset. Once annotated, these selected
data can be considered a viable substitute for the large annotated examples in subsequent ICL tasks.
In further detail, our method works in an unsupervised and end-to-end manner. We first construct a
directed graph, where its vertices represent unlabeled data and its edges bridge different data based
on their similarities. Inspired by influence maximization that aims to select a vertex set at key posi-
tions in social graphs (Li et al., 2018), we then propose to quantify the influence of each candidate
unlabeled subset in our constructed graph, through a classic independent-cascade diffusion model il-
lustrated in Figure 2. To find the subset with high influence, a simple greedy algorithm for unlabeled
data selection is introduced. The algorithm does not need a delicate trade-off between diversity and
representativeness. Instead, it iteratively selects a vertex if it provides a maximum marginal gain to
the influence metric, until the selection is completed based on the annotation budget.

Theoretically, under the influence-driven selective paradigm, we provide the lower bound for the
subset influence selected by our method, demonstrating it is at least as large as a certain propor-
tion of the influence of the optimal solution. Empirically, we conduct comprehensive experiments
over 9 datasets across diverse tasks (covering classification, commonsense reasoning, dialogue, and
text/code generation). Various LLMs and prompt retrieval technologies are included in evaluations.
Experimental results demonstrate that our IDEAL can achieve better performance than Vote-k in 17
out of 18 cases in the experiments, with only 13% time consumption during subset selection. This
creates a strong baseline of selective annotations for follow-up research. Source codes have been
attached for the reproducibility of results.
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2 METHODOLOGY

In this section, to reduce the annotation cost of ICL, a framework of influence-driven selective
annotations is formulated. We discuss how examples should be selected to annotate, leading to
better in-context learners for LLMs.

2.1 PROBLEM SETUP

We begin by defining notations and setting up the research problem. Specifically, LLMs perform
in-context learning tasks based on a task-specific prompt Z = [z1, . . . , zc], where each zi represents
one example (xi, yi) consisting of the instance xi and label yi, with c examples in total. LLMs
generate the prediction for one test input xtest conditioned on the prompt Z followed by xtest, i.e.,
ytest = argmaxy∈CP (y|Z,xtest), where C denotes the label space. As each prompt needs dis-
tinct annotations, the importance of having a substantial number of annotated examples is stressed,
resulting in huge annotation costs. This motivates us to investigate selective annotations.

Given a pool of unlabeled instances Du = {xi}ni=1, where n is the number of unlabeled instances,
the aim of selective annotations is to select a subset Su ⊂ Du to make manual annotations, such that
performing ICL using prompts retrieved from the selected subset can yield good performance on an
unseen test set Dtest. The size of Su is controlled by the annotation budget m, i.e., |Su| = m.

2.2 INFLUENCE-DRIVEN SELECTIVE ANNOTATIONS

Overview. For selective annotations in ICL, we need to identify a subset that approximates vast
unlabeled data. Therefore, quantifying the coverage of each candidate subset is critical. To achieve
this, we construct a directed graph using the embeddings of unlabeled data and portray their rela-
tionships using the edges in the graph. We then quantify the influence of each candidate subset in
the constructed graph. An information diffusion model is used for this purpose. Through the infor-
mation diffusion model to quantifying the influence of each candidate subset, we avoid the delicate
trade-off between diversity and representativeness. After the quantification, we can search the subset
with maximum influence, which most closely approximates the unlabeled data. Below we detail the
above procedure step by step.

Constructing the directed graph. We first compute a vector embedding for each unlabeled instance
using Sentence-BERT (Reimers & Gurevych, 2019)1. The obtained embeddings are employed to
build a directed graph G = (V,E,P), where the vertices V = {vi}ni=1 represent the embeddings
of the unlabeled instances, E denotes the set of edges in the graph, and P denotes the set of weights
assigned to edges. In more detail, for each vertex v ∈ V, we connect it to its k nearest successors2

in terms of the cosine similarity between the embeddings and then get E. For the edge (v,u) ∈ E
that connects v and its successor u, we assign the weight p(v,u) = cos(v,u)/

∑
z∈N (v,k) cos(v, z)

with p ∈ P, where N (v, k) represents the set including k nearest successors of v, and cos(·, ·) is a
function that calculates the cosine similarity of two embeddings. The constructed graph depicts the
relationships between unlabeled examples in terms of the embedding similarity.

Quantifying subset influence. Here we propose to quantify each candidate subset within the con-
structed graph, which is detailed in Algorithm 1. Specifically, given the constructed graph G and a
candidate subset S, the quantification algorithm simulates the progression of information diffusion
originating from S. The number of influenced vertices can be considered as a measure of the in-
fluence of the candidate subset. In other words, the subset that influences more vertices within the
graph can provide a better approximation of the vast unlabeled data. The diffusion process unfolds
discretely, progressing through multiple steps. At the beginning, the subset S is activated. Then at
each step, each vertex v activates its successors that remained inactive in the last step with a proba-
bility defined by p(v,u). The activation can be conceptualized as a coin toss where the outcome is
determined by the head probability p(v,u). If the result is the head, the vertex v becomes activated;
otherwise, it remains inactive. Starting from S, the diffusion terminates when no further vertex can
be activated in the graph. Lastly, we quantify the influence of the set with the number of activated
vertices, where a larger number corresponds to greater influence. In order to get a stable result, we

1https://huggingface.co/sentence-transformers/all-mpnet-base-v2.
2In graph theory (Harary, 2018), a vertex u is the successor of a vertex v if it is at the end of an outgoing

directed edge (v,u).
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Figure 2: The procedure aims to quantify the influence of each subset of in-context examples. In
this procedure, we start with a subset of examples (the red points in (a)). Gradually, the successors
of this subset are activated based on the weight p and a random number r sampled from 0 to 1. From
(a) to (d). The influence of the subset is determined by the number of points that have been activated.

Algorithm 1: Subset influence quantification.
Input : Directed graph G = (V,E,P), subset S.
Output: Number of influenced vertices by S in G.
Sactive ← S, Snew ← ∅, L = 0;
while Sactive ̸= ∅ do

for each node v in Sactive do
for each successor u of v in G do

if u not in S then
Generate random number τ ∈ [0, 1];
if τ ≤ p(v,u) then
S ← S ∪ u; Snew ← Snew ∪ u;

Sactive ← Snew; L← L+ |Snew|; Snew ← ∅;
return L.

Algorithm 2: Searching the subset with maximum influence.
Input: The directed graph G = (V,E,P), the annotation budget m.
Result: The set Su that includes m examples to annotate.
Initialize S0 ← ∅, t = 0;
while t < m do

vt ← argmaxv∈V\St
fG(St ∪ {v});

St+1 ← St ∪ vt;
t← t+ 1;

Obtain Su with Sm using the correspondence between embeddings and instances;
return Su.

repeat this process ten times and take the average influence. To help understand the procedure of
Algorithm 1, we provide an illustration as shown in Figure 2. For convenience, we express Algo-
rithm 1 as an influence function fG(S) for the graph G that takes example set S as inputs, and returns
the number of activated vertices L.

Searching the subset with maximum influence. We exploit a simple yet effective greedy algo-
rithm (Kempe et al., 2003) to search the subset with maximum influence, which is illustrated in
Algorithm 2. Specifically, the algorithm is initialized with an empty set, and iteratively involves an
instance if it can provide the maximum marginal gain to the influence function. The search algorithm
terminates when the selected subset meets the annotation budget. Finally, we achieve the set Su that
includesm examples to annotate, using the correspondence between embeddings and instances. It is
worth mentioning that this searching process aims to maximize the influence of the whole selected
subset rather than considering each example separately. This is because combining all the individual
high-impact examples together does not necessarily achieve the highest-impact subset.
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2.3 PROMPT RETRIEVAL

After the above influence-driven selective annotations, the subset Su is achieved. By making man-
ual annotations on Su, a set of annotated examples is obtained. We can then retrieve examples from
the annotated set as in-context examples for each test input. Following previous studies (Liu et al.,
2021; Su et al., 2023), we will calculate embeddings for all annotated examples using Sentence-
BERT (Reimers & Gurevych, 2019) and identify the most similar instances to each test input based
on the cosine similarity. Notice that, the proposed method is agnostic to prompt retrieval methods.
As demonstrated in §4.3.3, our method can be combined with any other prompt retrieval technolo-
gies. Better prompt retrieval technologies can further boost final performance.

3 THEORETICAL ANALYSIS

In this section, we perform theoretical analysis on the influence of the subset searched by our
algorithm and provide the corresponding lower bound. For any constructed graph G, we ex-
ploit ψv(S) to denote the influence improvement of the subset S after adding v into S , i.e.,
ψv(S) = fG(S ∪ v) − fG(S). For convenience, we use ψt = fG(St) − fG(St−1) (t ≥ 1) to
denote the incremental value of the influence function fG after adding vt into St−1. Also, we em-
ploy S∗m to represent the subset with the optimal influence value in the graph G with annotation
budget m. Afterward, the optimal solution we expect to search in Algorithm 2 can be regarded as

S∗m = argmax
S⊂V

fG(S), s.t. |S| = m. (1)

In the following, we present the submodular condition to facilitate theoretical analysis of our method.
Condition 1 (submodular condition). In the problem of selective annotations, given any graph G
constructed by our procedure, the influence function fG is a submodular function which satisfies, for
∀v ∈ V, ∀Sa ⊂ Sb ⊂ V,

fG(Sa ∪ v)− fG(Sa) ≥ fG(Sb ∪ v)− fG(Sb). (2)

Remark 1. Intuitively speaking, given any graph G, we say the influence function fG satisfies the
submodular condition if adding one data point to a smaller subset provides more influence than
adding the same data point to a larger subset. In other words, it reflects the principle of diminishing
returns: the marginal gain of including a data point in a set decreases as the size of the set increases.
This condition can hold within the influence function (Li et al., 2019). Considering an extreme case,
when subset S = V, the influence improvement of adding any data point to S will be zero.
Proposition 1. In Algorithm 2, if the influence function fG satisfies Condition 1, then for fG(S∗

m),
∀t ∈ [0,m− 1), fG(S∗m) ≤ fG(St) +mψt+1. (3)

Remark 2. Proposition 1 proposes an upper bound for fG(S∗m) in the form of the influence fG(St)
and its improvement at next step t+ 1, when Algorithm 2 is applied to selective annotations.
Theorem 1. In Algorithm 2, if influence function fG satisfies Condition 1, when the algorithm
terminates at the step m− 1, fG(Sm) has a lower bound:

fG(Sm) ≥ (1− (1− 1/m)m)fG(S∗m). (4)

Remark 3. Theorem 1 provides an approximation guarantee for the influence of the selected subset
returned by our method. The influence of the selected subset is at least as large as a certain proportion
of the influence of the optimal solution, i.e., 1−(1−1/m)m. With the annotation budgetm increases,
this fraction gets closer to 1− 1/e.

For the proofs of Proposition 1 and Theorem 1, readers can refer to Appendix B.

4 EXPERIMENTS

In this section, we evaluate our method (IDEAL) on multiple datasets that have different categories
of tasks. Experimental setups are first introduced (§4.1). We then demonstrate that the proposed
method can find a better selective annotation subset in a more efficient way compared with base-
lines (§4.2). Moreover, we perform in-depth investigations to provide a better understanding of the
superiority of the proposed method (§4.3). Finally, a case study is also provided to further evaluate
the selected subset from our method in an automatic annotation scenario (§4.4).
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4.1 EXPERIMENTAL SETUPS

Datasets and tasks. Following previous work (Su et al., 2023), we employ 9 datasets for the eval-
uations, which can be categorized into 4 different tasks, including classification, multi-choice, dia-
logue, and generation. The details of the datasets are provided in Appendix D.1. For each dataset, the
original “train/dev/test” split from the Transformer library (Wolf et al., 2019) is utilized. We use test
data for evaluation if they are available publicly (SST-5 (Socher et al., 2013), DBpedia(Lehmann
et al., 2015), MWoZ (Budzianowski et al., 2018), and Xsum (Narayan et al., 2018)). Otherwise,
we follow the same setting in (Su et al., 2023) and use the development set. We use accuracy as
metric for all classifications and multiple choices tasks, joint accuracy (Budzianowski et al., 2018)
for MWoZ, test suite accuracy (Zhong et al., 2020) for GeoQuery (Zelle & Mooney, 1996), and
ROUGE-L (Lin, 2004) for Xsum.

Models. If not otherwise specified, we run all experiments on the GPT-J 6B model (Wang & Ko-
matsuzaki, 2021) except the GeoQuery and MWoZ datasets where we use Text-devinci-002 (Chen
et al., 2021). We also provide experiments on other models including GPT-Neo 2.7B (Black et al.,
2021) and more advanced models GPT-3.5-Turbo (Openai, 2023) in §4.3.4. Our implementation is
detailed in Appendix D.2.

Baselines. In the main experiments, we perform a comprehensive evaluation of our method that is
compared with previous state-of-the-art selective annotation baselines, i.e., Vote-k (Su et al., 2023)
and random selection (abbreviated as “Random” below). Note that, in §4.3.2, we also compare our
method with alternative methods that can select a coreset from large-scale unlabeled data on typical
datasets. For the baseline Vote-k, we conduct experiments by running its official code3.

4.2 MAIN RESULTS

Method Classification Multi-Choice Dialogue Generation

MRPC SST-5 MNLI DBpedia RTE HellaSwag MWoZ GeoQ Xsum

100 Random 64.3 49.6 38.2 89.8 55.3 66.7 39.9 55.3 15.3
100 Vote-k 64.6 46.6 38.9 89.2 57.6 67.9 48.3 58.8 17.2
100 IDEAL 66.4 51.4 41.0 90.6 58.9 68.6 52.2 58.2 19.9

18 Random 57.4 42.9 37.8 85.2 57.9 66.0 37.0 47.5 13.6
18 Vote-k 61.1 41.7 39.1 89.9 58.2 66.5 37.7 50.9 15.2
18 IDEAL 63.0 43.2 40.0 90.1 59.4 67.1 38.5 52.0 19.6

Table 1: The performance of our method and baselines on 9 different datasets with an annotation
budget of 100 and 18. We use similar-based prompt retrieval for all methods and report the average
results with 3 different runs for each method. We can observe that our method works better than
Random and Vote-k in almost all cases (17/18) under two annotation budgets. The best result in each
case is bolded. We also provide the maximum and minimum values of the results in Appendix C.3.

MRPC SST-5 MNLI DBpedia RTE Hswag MWoZ GeoQ XSum
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Figure 3: Comparison of our method and Vote-k with re-
spect to time consumption during subset selection under the
same hardware condition. Here the annotation budget is 18.
The y-axis represents the time consumption with a log scale.
We can observe that our method largely reduces the time
cost compared with Vote-k.

Measurement on performance. We
first perform the evaluations for Ran-
dom, Vote-k, and our method. The
annotation budget is set to 18 and 100
respectively following the same set-
ting as Vote-k. Note that we include
18 as the annotation budget consider-
ing all annotated examples can be fit
to the prompt of the large language
models within context limits. There-
fore, the prompt retrieve stage can be
ignored and the evaluation results can
naturally represent the quality of the
selected examples. We provide ex-
perimental results in Table 1. As can be seen, our method achieves better performance than baselines

3https://github.com/HKUNLP/icl-selective-annotation.
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in most of the evaluation scenarios (17 out of 18). Interestingly, we find that random selection outper-
forms Vote-k in 3 out of 18 cases. We conjecture that, under some ideal circumstances, the selected
subset by random selection can approximate the distribution of full data. If test data follows the
same distribution, good performance can be achieved. Note that we also illustrate selected examples
and label distributions in selective annotations in Appendix C.1 and Appendix C.4 respectively.

Measurement on time cost. Previous work Vote-k (Su et al., 2023) encompasses generating predic-
tion for most unlabeled data with a set of selected examples as prompts and performs data selection
according to the confidence scores of the prediction. However, this process results in large unnec-
essary costs at inference time. Meanwhile, LLMs are often used as a service and an extra charge
will appear with the usage of the token in both the input and output. In Figure 3, we compare the
time cost of subset selection in our method against Vote-k on all tasks with the same hardware.
The annotation budget is set to 18. We can observe that our method saves a tremendous amount
of cost compared to Vote-k. Specifically, under the same hardware conditions, IDEAL achieves a
7.8× lead on average over Vote-k. The speed improvement benefits from the fact that the proposed
method does not need to perform example selection by generating predictions on a large number of
unlabeled examples and is completely unsupervised.

4.3 MORE ANALYSIS

4.3.1 LARGER INFLUENCE BRINGS BETTER PERFORMANCE
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Figure 4: Influence vs. Performance. The illustra-
tion of the positive correlation between the influence
achieved by Algorithm 1 and final performance.

We conduct experiments to investigate the
correlation between subset influence and
its corresponding in-context learning perfor-
mance. Specifically, we randomly select a
collection of example subsets from a large
unlabeled data pool. We then evaluate each
subset as a prompt and record its performance
and influence in the constructed graph, result-
ing in a set of influence-performance pairs.
Our goal is to analyze the correlation between
these two metrics. To achieve this, we per-
form experiments on SST-5 and MNLI. We
sample 30 subsets and order them accord-
ing to their influences, where each subset in-
cludes 5 examples. We divide this sorted subset sequence equally into three influence levels, with
each level containing 10 subsets. We visualize the performance of subsets in each influence level in
Figure 4. Our analysis reveals that subsets with larger influence levels achieve better average, me-
dian, and worst-case performance. This finding further demonstrates that quantifying the influence
of each potential subset is an effective metric in the selective annotation problem.

4.3.2 COMPARISONS WITH ALTERNATIVE METHODS

Method K-Means MFL Fast Vote-k Vote-k IDEAL
MRPC 57.4 58.2 59.3 61.1 63.0
MNLI 35.8 38.8 39.5 39.1 40.0

HellaSwag 65.4 65.2 65.9 66.5 67.1

Table 2: Comparisons of alternative methods that can
select a coreset from large-scale unlabeled data. The an-
notation budget is 18. Experimental results are reported
by averaging over three random trials. The performance
of the baseline Vote-k is also included here. The best per-
formance in each case is bolded.

We also compare our method with other
alternative methods that can select the
coreset from large-scale unlabeled data.
We perform the evaluations on MRPC,
MNLI and HellaSwag. We include the
following alternative methods (1) K-
Means (Lloyd, 1982), which groups all
examples into m clusters, and selects
the centroid example from each clus-
ter. (2) Maximizing facility location
(MFL) (Lin & Bilmes, 2009), which
aims at optimizing the representative-
ness of the selected subset. (3) Fast Vote-k (Su et al., 2023), which is an efficient alternative to
Vote-k which directly picks m examples with the largest Vote-k scores.
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Method Datasets
Selection Retrieval MRPC MNLI HellaSwag

Vote-k Similar 64.6 38.9 67.9
IDEAL Similar 66.4 41.0 68.6
Vote-k Random 60.7 37.8 64.6
IDEAL Random 62.5 39.0 66.8

Table 3: Comparison of random and similar
prompt retrieval with Vote-k and IDEAL on
MRPC, MNLI, and HellaSwag. The subset se-
lection method with a similar prompt retrieve
achieves better performance compared with its
version with a random prompt retrieve method.
The best performance in each case is bolded.

Method Models Test Domain
IMDb BoolQ Cst.

Vote-k GPT-Neo 71.1 56.4
IDEAL GPT-Neo 72.2 58.0
Vote-k GPT-J 76.4 56.1
IDEAL GPT-J 76.8 56.4

Table 4: The evaluations on out-of-distribution
tasks. We show the performance of different
methods on IMDb and BoolQ Contrast Set (tar-
get domains). In the evaluations, the prompts
consist of selected SST-2 and BoolQ training ex-
amples, respectively (source domains). The best
performance in each case is bolded.

We show the results in Table 2. We can observe IDEAL consistently outperforms the baselines in
all datasets, demonstrating its superiority. Note that, the graph-based methods (Vote-k, Fast Vote-
k, and our IDEAL) outperform the methods non-graph-based methods (K-Means and MFL) in all
cases. This phenomenon suggests that graph-based methods are suitable for capturing similarity
relationships between examples in the selective annotation problem, which can lead to better results.

4.3.3 EVALUATION WITH DIFFERENT RETRIEVAL METHODS

In previous experiments, we used a similarity-based prompt retrieval method by default. In this
section, we conduct experiments to quantify the effect of different prompt retrieval methods under
the annotation 100. We present the results in Table 3. We observe that both Vote-k and IDEAL suffer
from a significant performance drop when the prompt retrieval method is changed from similarity-
based to random selection. Notably, IDEAL also achieves better performance than Vote-k when
combined with random retrieval in all datasets. It suggests that IDEAL can cultivate a more stable
training subset (Chang & Jia, 2023) for in-context learning tasks. Note that we also show that our
IDEAL is more stable and robust against the order of in-context examples in Appendix C.5.

4.3.4 EVALUATION ON OTHER LANGUAGE MODELS

Here we evaluate IDEAL on other language models, including GPT-Neo 2.7B (Black et al., 2021),
and the advanced chat model GPT-3.5-Turbo where we use the same instruction as other language
models for each dataset. While GPT-3.5-Turbo has mainly been optimized for chat, it also performs
well on traditional completion tasks (Kheiri & Karimi, 2023). To conduct experiments, we select
three classification tasks (MRPC, MNLI, and RTE), considering they are easier for prompting GPT-
3.5-Turbo to return responses without pleasantries or explanatory content.

The evaluation results are presented in Figure 5. Our evaluations reveal that IDEAL consistently
outperforms the baselines across all models tested. This demonstrates the versatility of our method
in the context of learning tasks using models of varying sizes. Notably, we observe that the largest
model, i.e., GPT-3.5-Turbo, performs worse than GPT-Neo and GPT-J. This situation arises because
GPT-3.5-Turbo is primarily optimized for chat tasks and faces challenges in following human in-
structions for classification. This scenario also has been identified in Ye et al. (2023).

4.3.5 EVALUATION ON OUT-OF-DISTRIBUTION TASKS

We further evaluate our method on out-of-distribution tasks (Zhou et al., 2022; Wang et al., 2022b;
Zhang et al., 2023b; Huang et al., 2023c;d), where there is a distribution shift between the selective
annotation data and test data. Following (Chang & Jia, 2023), we compare IDEAL and Vote-k using
SST-2 (Socher et al., 2013), BoolQ (Clark et al., 2019) as source tasks, and IMDb (Maas et al.,
2011), BoolQ Contrast Set (Gardner et al., 2020) as target tasks, respectively. In all evaluations, we
set the annotation budget as 18 and use the similarity-based retrieve to perform the evaluations on
the test set in target domains. We use GPT-J 6B and GPT-Neo 2.7B here and show the results in
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Figure 5: Comparisons with various models when the annotation budget is 18. IDEAL consistently
achieves the best performance compared with baselines in models with different datasets.

Table 4. We can observe that IDEAL still outperforms baselines on all datasets with two models,
implying that IDEAL could select the subset which could depict the invariant properties of this kind
of tasks and generalize to out-of-distribution scenarios.

4.4 CASE STUDY: AUTOMATIC ANNOTATION

Method MRPC SST-5 MNLI DBpedia RTE

Vote-k 63.8 48.6 39.5 90.2 55.7
IDEAL 65.2 49.4 40.3 90.8 57.4

Auto-IDEAL 65.8 50.4 39.8 91.8 58.3

Table 5: Comparison between Vote-k, IDEAL, and
Auto-IDEAL. Auto-IDEAL is an expanded version
of IDEAL for automatic annotation. We evaluate
these algorithms on all classification tasks and av-
erage their performance over three random trials.
The best performance in each case is bolded. The
results indicate that Auto-IDEAL can enhance the
performance of IDEAL and achieve the best perfor-
mance in 4 out of 5 cases.

In previous experiments, we used a small set
of manually annotated examples as candidate
prompts to make predictions. In contrast, here
we are interested in a case study that uti-
lizes the subset selected by IDEAL to anno-
tate all available unlabeled data automatically,
leading to a larger set of candidate prompts.
Specifically, we first choose an initial subset
from the pool of unlabeled data using IDEAL
and manually label this selected subset. Af-
terward, we simulate the information diffu-
sion process from the initial subset to all other
data, where we employ those activated data
as prompts to predict upcoming activated data
at each step and label them accordingly with
prediction results. This process ultimately
makes a fully labeled training dataset. Finally, all examples (including manual labeling and auto-
matic labeling ) are utilized as potential prompts in conjunction with the prompt retrieve technique
for final testing. We name this paradigm as Auto-IDEAL and compare it with Vote-k and origin
IDEAL on all classification datasets. We choose 300 training data for each dataset to perform exper-
iments. The manual annotation budget is set to 150, i.e., half of the labels of the candidate prompts
in Auto-IDEAL are annotated automatically. Experimental results are provided in Table 5. As can
be observed, Auto-IDEAL even achieves better performance than IDEAL in 4 of 5 cases. Notably,
although the performance is worse on MNLI, it is still competitive (better than Vote-k). It suggests
that expanding the candidate prompts through automatic annotation following the diffusion process
can further boost the performance of IDEAL. It benefits from the fact that information only diffuses
between similar examples. Therefore, unlabeled examples will be automatically annotated using the
most similar annotated examples as prompts leading to a promising annotation success rate.

5 CONCLUSION

A series of recent works have confirmed the powerful ability of in-context learning for large lan-
guage models. We investigate the ability from the perspective of selective annotations and propose
an influence-driven method that selects a subset of data that acts as a proxy and closely approximates
full data. Theoretical analysis is provided to establish an upper limit for the global optimal solution,
and demonstrate that our greedy search algorithm selects a subset with influence at least as sub-
stantial as a specific proportion of the optimal solution’s influence. Empirical evaluations illustrate
the superiority of our method across a range of benchmarks, delivering superior performance while
largely reducing the time required for subset selection. We hope this work can help researchers and
practitioners understand the promise and potential of selective annotations in in-context learning,
and facilitate them in the efficient conceptualization of novel language-based challenges.
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A RELATED WORK

A.1 IN-CONTEXT LEARNING

In-context learning (ICL) has become a new paradigm for natural language processing (NLP),
where large language models make predictions only based on contexts augmented with a few ex-
amples (Dong et al., 2023; Xie et al., 2022; Shin et al., 2022; Zhang et al., 2023a; Bai et al., 2023;
Huang et al., 2023b). A series of works attempts to revise, enhance, and understand ICL, which
include but are not limited to prompt tuning (Kim et al., 2022; Wang et al., 2022a; Mishra et al.,
2022), analyzing intrinsic mechanism (Bansal et al., 2022; Chan et al., 2022; Li et al., 2023a; Garg
et al., 2022), evaluations (Srivastava et al., 2023; Wang et al., 2022c), applications in multiple do-
mains (Chen et al., 2022; Lee et al., 2022; Cho et al., 2023), and etc.

Despite in-context learning has shown impressive performance in various domains, its efficacy is
sensitive to the selection of in-context learning examples (Zhao et al., 2021b; Lu et al., 2021).
Considering this, multiple methods have been proposed to select the optimal in-context learning
examples to achieve optimal performance. These methods retrieve the most relevant examples sub-
set with/without specific order for each query (Wu et al., 2022; Liu et al., 2021; Gao et al., 2020)
Alternatively, some methods aim to find a set of examples once for all queries on the same task (Li
& Qiu, 2023; Diao et al., 2023). Specifically, (Wu et al., 2022) formally defines the problem of
self-adaptive In-context learning, which aims to search for the best In-context learning examples
and corresponding order for each input query. While, Li & Qiu (2023); Diao et al. (2023) focus on
finding one fixed set of examples for each task. However, these methods rely on the assumption that
large-scale annotated training examples are always available.

Different from them, this paper studies selective annotations for ICL, which can effectively reduce
the annotation cost in ICL. Furthermore, compared with recent work (Su et al., 2023), as discussed in
the main paper, this work is superior in many aspects, such as the end-to-end manner, mitigation of
the trade-off between diversity and representativeness, theoretical guarantees, and better empirical
performance.
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A.2 CORESET SELECTION

Coreset selection focuses on selecting a small but highly informative subset from a large dataset
for follow-up tasks, which can significantly reduce the data storage cost and training consump-
tion (Huang et al., 2018; 2023a; Feldman & Zhang, 2020; Sorscher et al., 2022; Xia et al., 2023b; Li
et al., 2023b; Xia et al., 2022). Most of the works on coreset selection target the scenes of supervised
learning and classification (Sener & Savarese, 2018; Toneva et al., 2019; He et al., 2023). Only a
few works extend coreset selection into unsupervised cases (Sorscher et al., 2022; Su et al., 2023).
This paper studies unsupervised data selection for annotations in ICL, which reduces the annotation
expenses of prompts and helps large language models become better few-shot learners. Also, it en-
joys theoretical support. Therefore, this work is different from previous efforts and contributes to
the research community.

A.3 DATA DISTILLATION

Data distillation (Wang et al., 2018; Zhao et al., 2021a; Shin et al., 2023; Cui et al., 2023; Du et al.,
2023; Loo et al., 2023) is an alternative approach for dataset compression and curation, which is
inspired by knowledge distillation which could be categorized into efficient ML (Ma et al., 2023a;b;
Zheng et al., 2021; Zhang et al., 2021; Zheng et al., 2023). Different from coreset selection, this
series of works target synthesizing a small but informative dataset as an alternative to the original
dataset. However, data distillation is criticized for only synthesizing a small number of data points
due to computational source limitations (Xia et al., 2023a; Yang et al., 2023). The performances of
data distillation and data selection are therefore not compared directly. Besides, it is under-explored
about how to perform data distillation in an unsupervised manner on natural language processing
tasks. Based on this analysis, the data distillation strategy is not involved in empirical evaluations.

B PROOFS

B.1 PRELIMINARY THEORETICAL RESULTS

We first present some preliminary theoretical results and their corresponding proofs for the subse-
quential proofs of Proposition 1 and Theorem 1.

B.1.1 LEMMA 1

Lemma 1. Given a graph G = (V,E,P), if the influence function meets Condition 1, then for
∀Si,Sj ⊆ V:

fG(Si)− fG(Sj) ≤
∑

v∈Si−Sj

ψv(Sj)−
∑

v∈Sj−Si

ψv(Si ∪ Sj − v), (5)

where ψv(Sj) := fG(Sj ∪ v)− fG(Sj).

Proof. The proof is inspired by (Rolnick & Weed, 2014). We first let

Si − Sj = {a1, ...,ar} (6)

and
Sj − Si = {b1, ...,bq}, (7)

where r ∈ N+ and q ∈ N+. According to Eq. (6), for the subsets Si and Sj , we have

Sj ∪ Si = Sj ∪ {a1, ...,ar}. (8)

Afterward, we obtain

fG(Sj ∪ Si)− fG(Sj) = fG(Sj ∪ {a1, ...,ar})− fG(Sj). (9)
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At a high level, Eq. (9) is to calculate the influence improvement of Sj after adding data points
{a1, ...,ar} into Sj . As the influence improvement of adding one sequence of data points is equal
to the sum of the influence improvement at each step, we have,

fG(Sj ∪ Si)− fG(Sj) (10)

= fG(Sj ∪ a1)− fG(Sj) +
r∑

k=2

[fG(Sj ∪ {a1, ...,ak})− fG(Sj ∪ {a1, ...,ak−1})]

= ψa1
(Sj) +

r∑
k=2

ψak
(Sj ∪ {a1, ...,ak−1}).

Under Condition 1, as Sj ⊂ Sj ∪ {a1, ...,ak−1}, we have

fG(Sj ∪ Si)− fG(Sj) = ψa1
(Sj) +

r∑
k=2

ψak
(Sj ∪ {a1, ...,ak−1}) (11)

≤
r∑

k=1

ψak
(Sj) =

∑
a∈Si−Sj

ψa(Sj).

Similarly,

fG(Sj ∪ Si)− fG(Si) (12)

= ψb1(Si) +
q∑

k=2

ψbk
(Si ∪ {b1, ...,bk−1}) ≥

q∑
k=1

ψbk
(Si ∪ Sj − bk) =

∑
b∈Sj−Si

ψb(Si).

By subtracting (12) from (10), we have

fG(Si)− fG(Sj) ≤
∑

v∈Si−Sj

ψv(Sj)−
∑

v∈Sj−Si

ψv(Si ∪ Sj − v). (13)

B.1.2 LEMMA 2

Lemma 2. Given a graph G = (V,E,P), for any subset S ⊂ V and any v ∈ V, the influence
function fG satisfies

ψv(S) = fG(S ∪ v)− fG(S) ≥ 0 (14)

Proof. We consider two cases to finish the proof.

Case 1 (v ∈ V∧v /∈ S). In this case, the influence improvement is at least 1 since v itself has been
included, i.e.,

ψv(S) = fG(S ∪ v)− fG(S) ≥ 1. (15)

Case 2 (v ∈ V ∧ v ∈ S). In this case, the influence improvement is 0 since v has already been
included in S, i.e.,

ψv(S) = fG(S ∪ v)− fG(S) = 0. (16)

Combining the above two cases, we conclude that, for ∀v ∈ V, the influence function fG satisfies

fG(S ∪ v)− fG(S) ≥ 0. (17)
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B.2 PROOF OF PROPOSITION 1

Proof. Given a graph G = (V,E,P), for ∀Si,Sj ⊂ V, according to Lemma 2, we have∑
v∈Si−Sj

ψv(Si ∪ Sj − v) ≥ 0. (18)

Taking (18) into Lemma 1, we have

fG(Si)− fG(Sj) ≤
∑

v∈Si−Sj

ψv(Sj). (19)

We use S∗m to denote the optimal solution as discussed in the main paper. At any step t in Algo-
rithm 2, we substitute S∗m (resp. St) into Si (resp. Sj) in (19), we can derive

fG(S∗m) ≤ fG(St) +
∑

v∈S∗
m−St

ψv(St). (20)

According to Condition 1,
ψv(St) ≥ ψv(St+1) (21)

holds. Taking both (20) and (21) into (19), we have for any t,

fG(S∗m) ≤ fG(St) +mψt+1. (22)

B.3 PROOF OF THEOREM 1

Proof. Recall that

ψt = fG(St)− fG(St−1). (23)

According to Proposition 1, we have

fG(S∗m)− fG(St) ≤ mψt+1 = m(fG(St+1)− fG(St)). (24)

Afterwards, (24) equals to,

fG(S∗m)− fG(St)− (fG(S∗m)− fG(St+1)) ≥
1

m
(fG(S∗m)− fG(St)) (25)

⇐⇒ fG(S∗m)− fG(St+1) ≤
m− 1

m
(fG(S∗m)− fG(St)).

Based on (25), we have

fG(S∗m)− fG(St+1) ≤
m− 1

m
(fG(S∗m)− fG(St)) (26)

≤ (
m− 1

m
)2(fG(S∗m)− fG(St−1))

≤ ... ≤ (
m− 1

m
)t+1(fG(Sm∗ )− fG(S0)).

Since fG(S0) = fG(∅) = 0, we have

fG(S∗m)− fG(St+1)

fG(S∗m)
≤ (

m− 1

m
)t+1. (27)

When Algorithm 2 terminates at step t = m− 1, we have,

fG(Sm) ≥ (1− (1− 1/m)m)fG(S∗m). (28)
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C SUPPLEMENTARY EXPERIMENTAL RESULTS

C.1 SELECTED EXAMPLES

In Table 6, for illustration purposes, we provide a few examples from the selection by our method,
when the annotation size is 18.

Dataset Input

MRPC a. Input: The two Democrats on the five-member FCC held a press conference to sway opinion
against [...]

Output: not equivalent
a. Input: The report shows that drugs sold in Canadian pharmacies are manufactured in facili-
ties approved by Health Canada [...]

Output: equivalent
c. Input: The chief merchandising officer decides what the store is going to sell [...]

Output: equivalent

SST-5 a. Input: plodding, poorly written, murky and weakly acted, the picture feels as if everyone
making it lost their movie mojo.

Output: very negative
b. Input: duvall is strong as always .

Output: very positive
c. Input: lohman adapts to the changes required of her , but the actress and director peter
kosminsky never get the audience to break [...]

Output: neutral

MNLI a. Input: This prosperous city has many museums, including a well-endowed Musee des Beaux-
Arts (Square Verdrel) [...]

Output: False
b. Input: Duhame, who today makes her living as a graphic designer and illustrator, calls her
book [...]

Output: Inconclusive
c. Input: At the agency or program level, it included management’s public commitment to
reduce fraud and errors, as. Based on that information [...]

Output: True

DBpedia a. Input: Lars Nielsen (born 3 November 1960 in Copenhagen) is a Danish rower.
Output: athlete

b. Input: Calhoun County High School is a public secondary school in St. Matthews South
Carolina USA.

Output: educational institution
c. Input: David Goldschmid (sometimes credited as Dave Goldschmid) is an American televi-
sion writer and producer currently writing for the daytime drama General Hospital.

Output: artist

RTE a. Input: In sub-Saharan Africa about one in every 30 people is infected with HIV.. 30% of the
people infected with HIV live in Africa..

Output: False
b. Input: The drawbacks of legalization do not imply that our current version of prohibition is
the optimal drug strategy; it may well [...]

Output: False
c. Input: For example, the fields of Western farmers feed the United States and many other
parts of the world, and India’s irrigation [...]

Output: True

HellaSwag a. Input: The topic is Preparing salad. An illustrated egg, the website ”startcooking com” and
”vegetable salad” [...]

Output: is shown from above.
b. Input: The topic is Pets and Animals. [header] How to treat an injured rabbit’s paw [title]
Identify sore hocks. [step] Pododermatitis [...]

Output: Once the condition has set in, though, you’ll need to take quick action to treat the
injury. Leaving [...]
c. Input: The topic is Playing squash. Two men stand on a racquetball court. the men

Output: stretch then begin playing.

Table 6: For illustration purposes, under our method, we show randomly selected three examples
from each of the six datasets in one same run (excluding the other three datasets due to their length)
when the annotation budget is set to 18.
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C.2 VISUALIZATION OF SELECTED EXAMPLES

Here we provide a umap (McInnes et al., 2018) visualization of selected examples. To avoid the
denseness, we choose the annotation budget as 5. The visualization can be checked in Figure 6. First,
comparing subfigures (a) and (b), we can clearly see that the selection of Vote-k is much biased, and
our IDEAL can identify a subset that is more favorable to be a proxy of full data. Second, comparing
subfigures (c) and (d), we can see that the selected subset by Vote-k is distributed on the right of full
data. By comparison, our IDEAL can select a subset that is distributed more uniformly.
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(b) SST5, IDEAL.
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(c) MNLI, Vote-k.
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(d) MNLI, IDEAL.

Figure 6: Umap (McInnes et al., 2018) visualization to compare five selected examples from all
examples using fully unsupervised methods Vote-k and IDEAL (ours). Compared with Vote-k,
IDEAL could choose the examples to better represent the whole data rather than get involved in
diversity and including outliers.

C.3 DETAILED EXPERIMENTAL RESULTS IN TABLE 1

Method MRPC SST-5 MNLI DBpedia RTE

100 Random 64.3/68.4/58.6 49.6/51.1/47.2 38.2/40.2/36.7 89.8/91.0/88.2 55.3/55.9/55.1
100 Vote-k 64.6/68.8/62.1 46.6/47.2/46.1 38.9/43.8/35.5 89.2/89.8/88.7 57.6/58.2/57.4
100 IDEAL 66.4/67.9/64.8 51.4/53.5/49.6 41.0/41.4/40.2 90.6/91.4/89.5 58.9/60.9/57.4

18 Random 57.4/68.8/39.8 42.9/46.9/39.1 37.8/39.4/35.2 85.2/87.5/83.9 57.9/58.9/57.0
18 Vote-k 61.1/67.2/52.7 41.7/45.7/37.1 39.1/43.8/32.0 89.9/94.1/87.1 58.2/58.9/57.8
18 IDEAL 63.0/63.7/62.5 43.2/45.7/39.5 40.0/41.8/37.1 90.1/90.2/89.8 59.4/60.9/57.8

Table 7: Mean/maximum/minimum evaluation results of all methods on classification tasks in Ta-
ble 1 over three different trials. The best mean result in each case is bolded.

In the main paper (Table 1), we report the mean evaluation results for different methods over three
random trials. Here we provided the detailed results of Table 1 with mean/maximum/minimum
values. We can observe IDEAL achieves stable results compared with baselines. Moreover, the
worst-case performance of IDEAL is obviously better compared with baselines in most cases.
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Method HellaSwag MWoZ GeoQ Xsum

100 Random 66.7/70.3/64.1 39.9/48.4/39.9 55.3/57.8/53.1 15.3/16.4/14.8
100 Vote-k 67.9/69.9/64.0 48.3/50.8/46.9 58.8/60.5/57.0 17.2/17.6/16.4
100 IDEAL 68.6/71.9/65.2 52.2/55.9/49.1 58.2/60.5/54.7 19.9/20.2/19.5

18 Random 66.0/68.8/63.7 37.0/46.5/28.1 47.5/49.2/44.9 13.6/14.5/12.5
18 Vote-k 66.5/71.9/62.5 37.7/43.8/32.4 50.9/54.3/47.7 15.2/16.0/14.5
18 IDEAL 67.1/71.9/64.5 38.5/47.3/30.9 52.0/53.9/50.8 19.6/20.2/18.9

Table 8: Mean/maximum/minimum evaluation results of all methods on multi-choice, dialogue, and
generation tasks in Table 1 over three different trials. The best mean result in each case is bolded.

Method MRPC MNLI RTE
Equivalent Not equivalent True Inconclusive False True False

Original 2023 977 1051 965 984 1241 1249
Random 70 30 30 39 31 56 44
Vote-k 64 36 27 35 38 46 54
IDEAL 65 35 37 34 29 49 51

Table 9: The numbers of different labels in the selected examples for different methods. “Original”
denotes the label statistics of the original dataset. Under the annotation budget 100, IDEAL achieves
the smallest ratio between the numbers of the most frequent class and the least frequent class in 2
out of 3 cases (MNLI and RTE), implying IDEAL can indeed mitigate the label skew problem.

Method MRPC SST-5 RTE
Mean Std Mean Std Mean Std

Random 44.2 0.02 45.4 0.02 57.3 0.02
Vote-k 52.7 0.03 38.0 0.01 58.6 0.02
IDEAL 65.5 0.01 46.6 0.01 57.5 0.02

Table 10: The average performance of different methods by permuting the order of prompts for each
test instance 10 times. We conduct experiments on MRPC, SST-5, and RTE datasets and report the
average results with standard deviation. We can observe the subset selected by IDEAL achieves
the best performance compared with baselines in 2 out of 3 cases. IDEAL also achieves the lowest
standard deviations in all evaluations, which suggests IDEAL is a more stable and robust method
against the order of prompts.

C.4 LABEL DISTRIBUTIONS IN SELECTIVE ANNOTATIONS

Recall that the process of selective annotations is based entirely on similarities derived from sentence
embeddings without labels. Therefore, we investigate whether the selected examples have label
skew. Under an annotation budget of 100, we collect all selected examples in three classification
tasks (MRPC, MNLI, and RTE) and show the numbers of different labels for different methods in
Table 9. We also present the label statistics of the original training data. We observe that random
selection shows a great variance. However, in an ideal case, it should achieve a similar distribution
as the original training data. Notably, IDEAL achieves the smallest ratio between the numbers
of the most frequent class and the least frequent class in 2 out of 3 cases (MNLI and RTE). This
demonstrates that IDEAL can indeed balance the label distribution in the selected subset and mitigate
the problem of label skew.

C.5 PROMPT ORDER IN SELECTIVE ANNOTATION

As pointed out by (Lu et al., 2021), the performance of in-context learning is influenced not only
by the selection of prompts but also by the order in which the prompts are presented to models.
Although this work focuses solely on selective annotation problems, we are interested in explor-
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ing whether the selected subset can still lead to better performance when the order of prompts is
permuted. Under an annotation budget of 18, we first retrieve prompts for each test instance from
selected subsets achieved by different selective annotation methods. We then permute the order of
prompts for each test instance 10 times, resulting in 10 different experimental trials. We show the
average performance of these 10 trials and make a comparison between different selective annota-
tion methods. We conduct experiments on MRPC, SST-5, and RTE datasets and present the results
in Table 10. The results show that IDEAL outperforms baselines in 2 out of 3 cases, suggesting that
our method can choose more stable and robust subsets against changed prompt orders.

D SUPPLEMENTARY DESCRIPTIONS OF EXPERIMENTAL SETTINGS

D.1 DETAILS OF DATASETS

In this paper, to demonstrate the superiority of our method, we employ 9 datasets typical datasets
that have been widely used in previous NLP works (Su et al., 2023; Shi et al., 2023; Zhang et al.,
2021) which can be categorized into 4 different tasks, including classification (MRPC (Dolan et al.,
2004), SST-5 (Socher et al., 2013), MNLI (Williams et al., 2017), DBpedia (Lehmann et al.,
2015), and RTE (Bentivogli et al., 2009)), multi-choice (HellaSwag (Zellers et al., 2019)), dia-
logue (MWoZ (Budzianowski et al., 2018)), and generation (GeoQuery (Zelle & Mooney, 1996)
and Xsum (Narayan et al., 2018)). We list the datasets and the models used in Table 11.

Datasets Task Models

Classification

MRPC (Dolan et al., 2004) Paraphrase Detection GPT-Neo, GPT-J, GPT-3.5-Turbo
SST-5 (Socher et al., 2013) Sentiment Analysis GPT-J
DBpedia (Lehmann et al., 2015) Topic Classification GPT-J
RTE (Bentivogli et al., 2009)) Natural Language Inference GPT-Neo, GPT-J, GPT-3.5-Turbo
MNLI (Williams et al., 2017) Natural Language Inference GPT-Neo, GPT-J, GPT-3.5-Turbo

Multiple-Choice HellaSwag (Zellers et al., 2019) Commonsense Reasoning GPT-J

Dialogue MWoZ (Budzianowski et al., 2018) Dialogue State Tracking Text-davinci-002

Generation GeoQuery (Zelle & Mooney, 1996) Semantic Parsing Text-davinci-002
Xsum (Narayan et al., 2018) Summarization GPT-J

Table 11: The datasets and corresponding models used in our experiments. We use GPT-J 6B and
Text-davinci-002 by default. Other large language models are explored in §4.3.4.

To help readers better understand the datasets and tasks, for each of these datasets, we also list one
example including both the input and output.

D.1.1 MRPC

Input

Are the following two sentences ’equivalent’ or ’not equivalent’?\nA
federal judge yesterday disconnected a new national \" do-not-call \"
list , just days before it was to take effect , saying the agency

that created it lacked the authority ..\nA federal judge yesterday
struck down the national do-not-call registry slated to take effect
Oct. 1 , ruling the Federal Trade Commission had no authority to
create the list ..\nanswer:

Output

equivalent

D.1.2 SST-5

Input
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How do you feel about the following sentence?\nsmug , artificial ,
ill-constructed and fatally overlong ... it never finds a consistent
tone and lacks bite , degenerating into a pious , preachy soap opera
.\nanswer:

Output

neutral

D.1.3 MNLI

Input

yeah well the Cardinals i don’t know i think the Cowboys probably
have a a better team they just at the end of the season the kind of
got messed up with Aikman getting hurt because uh Laufenberg just
couldn’t never really get it together at all of course he sat along
the sidelines all season he never really got in a game never did a
whole lot. Based on that information, is the claim The Cowboys should
have started Laufenberg all season. \"True\", \"False\", or \"

Inconclusive\"?\nanswer:

Output

Inconclusive

D.1.4 DBPEDIA

Input

title: V\u00edctor David Loubriel; content: V\u00edctor David
Loubriel Ort\u00edz is a Puerto Rican politician and former member of
the Senate of Puerto Rico for the New Progressive Party (PNP).

Loubriel presented his candidacy for the Senate of Puerto Rico before
2004. He ran for a candidate slot in the 2003 primaries obtaining

the most votes in his district (Arecibo).In the 2004 general election
Loubriel won a seat in the 23rd Senate of Puerto Rico to represent

the district of Arecibo along with Jos\u00e9 Emilio Gonz\u00e1lez Vel
\u00e1zquez.

Output

office holder

D.1.5 RTE

Input

MEXICO CITY (Reuters) - A deadly strain of swine flu never seen
before has broken out in Mexico, killing as many as 60 people and
raising fears it is spreading across North America. The World Health
Organization said it was concerned about what it called 800 \"
influenza-like\" cases in Mexico, and also about a confirmed outbreak
of a new strain of swine flu in the United States. It said about 60

people had died in Mexico. Mexico’s government said it had confirmed
that at least 16 people had died of the swine flu in central Mexico
and that there could be another 45 fatal victims..\nquestion: 800
Mexicans have been affected by a new form of swine influenza.. True
or False?\nanswer:

Output

True
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D.1.6 HELLASWAG

Input
The topic is Work World. [header] How to become a high school social
studies teacher [title] Obtain your bachelor’s degree in education. [
step] All schools will require you to obtain at least your bachelor’s
degree in education. This degree will be proof that you are capable

of delivering information to students using the current educational
best practices.

Output
Make sure you’ve fully completed all of your course work and obtained
your bachelor’s degree before you seek certification or employment.

[substeps] Your electives should be based in social studies courses.

D.1.7 MULTIWOZ

Input
CREATE TABLE hotel(
name text,
......,
internet text CHECK (internet IN (dontcare, yes, no))

)
/*
4 example rows:
SELECT * FROM hotel LIMIT 4;
name pricerange type parking book_number_of_days book_day
book_people
area stars internet
a and b guest house moderate guest house dontcare 3 friday 5 east 4
yes
......
/*
......
-- Using valid SQLite, answer the following multi-turn conversational
questions for the tables provided above.
Example #1
[context] hotel-area: west, hotel-stars: 3, hotel-internet: yes
[system] the hobsons house is available in that area .
Q: [user] that sounds like it will work . can i book that for 3
nights
starting wednesday ?
SQL: SELECT * FROM hotel WHERE book_day = wednesday AND book_people =
1
AND book_number_of_days = 3 AND name = hobsons house;
......

Output
hotel WHERE book_day = wednesday AND book_number_of_days = 4 AND name
=
warkworth house;

D.1.8 GEOQ

Input
CREATE TABLE "border_info" ("state_name" text, "border" text)
/*
state_name border

alabama tennessee
alabama georgia
alabama florida

*/
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......
-- Using valid SQLite, answer the following questions for the tables
provided above.
......
-- what is the longest river in the state with the highest point
SELECT

Output

RIVERalias0.RIVER_NAME FROM HIGHLOW AS HIGHLOWalias0, RIVER AS
RIVERalias0 WHERE HIGHLOWalias0.HIGHEST_ELEVATION = (SELECT MAX(
HIGHLOWalias1.HIGHEST_ELEVATION) FROM HIGHLOW AS HIGHLOWalias1 ) AND
RIVERalias0.TRAVERSE = HIGHLOWalias0.STATE_NAME ORDER BY RIVERalias0.
LENGTH DESC LIMIT 1;

D.1.9 XSUM

Input

For decades, large numbers of Haitians have migrated - many of them
without papers - to the Dominican Republic, to escape the poverty and
lack of employment in their homeland.\nIn 2013, the Dominican

Republic’s highest court ruled that children born there to
undocumented migrants were not automatically eligible for Dominican
nationality.
......
\nThere he strips the trees for firewood to make charcoal, to sell to
Dominican traders for a few dollars.\nHe knows the practice damages

the fertility of the soil, but it’s the only available source of
income.\n\"This is the only way we can survive,\" he says, motioning
at his family, stuck inside the world’s forgotten migrant crisis.\
nYou can hear more of Will Grant’s report on Heart and Soul on the
BBC World Service.

Output

Immigration has long been a divisive issue on Hispaniola, the
Caribbean island shared by Haiti and the Dominican Republic.

D.2 IMPLEMENTATION DETAILS

General experimental conditions. We primarily use PyTorch (Paszke et al., 2019) to implement
our algorithm and baselines. For GPT-3.5-Turbo, we perform the experiments by calling the Ope-
nAI API using a single Intel Xeon CPU. The GPT-J 6B and GPT-Neo 2.7B models are from the
Huggingface transformer library (Wolf et al., 2019). We run all our experiments of GPT-J 6B and
GPT-Neo 2.7B on a single NVIDIA Tesla V100 (32GB) GPU.

Details of getting unlabeled data. Since obtaining unlabeled examples in realistic scenarios is also
a high-variance process, we follow the same setting as (Su et al., 2023) to simulate the realistic
setting. We perform selective annotations from 3k instances that are randomly sub-sampled from
training data for each task. For each experiment, we repeat the sub-sampling process three times
and average the results over all trials to ensure comprehensive evaluations.

Details of the graph construction. Except for the illustration experiment in Figure 2, we construct
the directed graph for all unlabeled data by connecting each vertex to its 10 nearest successors (k =
10). It is important to note that a larger k will lead to an increase in the computation cost. We have
chosen this setting because it provides good performance while maintaining efficient computation
costs. For Figure 2, we construct the graph by connecting each vertex to its 3 nearest successors in
order to avoid denseness.

Details of Algorithm 1. Considering the randomness of the diffusion process, when quantifying the
influence of the subset, we run Algorithm 1 10 times and use the averaged influence value. Note that
we also calculate the time cost in this repeated process when reporting the final results in the main
paper. As shown in Figure 3, our algorithm is still more effective than Vote-k.
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E TIME COMPLEXITY ANALYSIS

In this section, we perform a time-complexity analysis of our method. Given the constructed graph
with a nodes and b edges, and an annotation budget ofm, the whole algorithm involves the following
two parts that incur the following time costs: (1) Information diffusion process. The time complex-
ity of quantifying the influence of a specific subset isO(a+b). This is because it involves running an
independent cascade diffusion process (BFS-like traversals) through the graph. (2) Greedy search.
The greedy algorithm iteratively selects the example that provides the maximum marginal gain in
influence. When the annotation budget ism, the time complexity isO(m∗ (a+b)). This is because,
in the worst case, the algorithm needs to evaluate the influence of each node in the network. Besides,
for each node, the algorithm needs to perform a simulation with time complexity of O(a+ b).

F LIMITATIONS

Memory cost. Although in-context learning tasks avoid the heavy parameter update process, they
still require a large amount of memory to load models. For example, loading GPT-J 6B into a GPU
requires about 23GB GPU memory, without considering the size of the dataset. This is a relatively
high cost for individual researchers.

The limitation of Auto-IDEAL. Auto-IDEAL outperforms IDEAL in terms of performance, but
it has two main drawbacks that hinder its usability in practice. First, Auto-IDEAL suffers from a
model inference cost, especially in the era of large language models as a service. Specifically, when
performing automatic annotation, Auto-IDEAL has to make predictions for all unlabeled examples
to achieve automatic annotation. This makes it less practical than the native IDEAL. Second, Auto-
IDEAL may fail when the initial examples to be labeled are not very relevant to the initial examples
labeled, even though they have a similar embedding. Auto-IDEAL performs automatic annotation
by following the information diffusion process from the initial annotated subset to the examples to
be labeled with similar embedding. When the examples to be labeled are not relevant to the initial
examples labeled, it may lead to incorrect automatic annotations and then poor performance. Future
research may focus on maintaining superior performance while reducing the automatic annotation
cost of IDEAL.

Potential benchmark leakage in GPT-3.5-Turbo. There may potentially exist benchmark leakage
problems in the evaluation process (Zhou et al., 2023). Specifically, due to the fact that GPT-3.5-
Turbo is trained using huge text datasets as of 2021, the data related to evaluation sets may po-
tentially be used for model training. This could lead to potential risks in the evaluation process.
However, as our work does not involve the training data selection, the impact should be negligible.
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