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Abstract

Learning to infer object representations, and in particular part-whole hierarchies, has been the focus of extensive
research in computer vision, in pursuit of improving data efficiency, systematic generalisation, and robustness.
Models which are designed to infer part-whole hierarchies, often referred to as capsule networks, are typically
trained end-to-end on supervised tasks such as object classification, in which case it is difficult to evaluate whether
such a model actually learns to infer part-whole hierarchies, as claimed. To address this difficulty, we present
a SYNthetic DAtaset for CApsule Testing and Evaluation, abbreviated as SynDaCaTE, and establish its utility
by (1) demonstrating the precise bottleneck in a prominent existing capsule model, and (2) demonstrating that
permutation-equivariant self-attention is highly effective for parts-to-wholes inference, which motivates future
directions for designing effective inductive biases for computer vision.

1. Introduction

In recent years, a dominant trend in machine learning research has been towards finding model architectures that improve
with scale (Vaswani et al., 2017), and scaling them up (Sutton, 2019) with billions of parameters (Brown et al., 2020),
trillions of tokens (Yang et al., 2024), hundreds of millions of dollars (Maslej et al., 2025), and significant environmental
cost (Bengio et al., 2025). There are now strong and increasingly growing financial and environmental incentives to develop
machine learning algorithms that achieve similar performance more efficiently.

It is well established that data efficiency can be improved by using more appropriate inductive biases (Du et al., 2018; Li
et al., 2021), and that models with better data efficiency typically also train faster (Hardt et al., 2016). Developing better
inductive biases is therefore a promising strategy for improving the general efficiency of machine learning algorithms.
Substantial evidence from the cognitive sciences suggests that object representations (Kahneman et al., 1992) and in
particular part-whole hierarchies (Biederman, 1987) are ubiquitous in the human visual system. This has further motivated
extensive research in computer vision focusing on object-centric learning (Burgess et al., 2019; Locatello et al., 2020) and
models which are designed to learn part-whole hierarchies (Sabour et al., 2017; Hinton et al., 2018), commonly referred to
as capsule networks (Hinton et al., 2011).

Despite much early excitement and published work focusing on capsule networks, they have largely been forgotten in favour
of convolutional (He et al., 2016; Liu et al., 2022) and attention-based (Dosovitskiy et al., 2020; Liu et al., 2021) vision
models. Does this mean that exploring visual part-whole hierarchies as an inductive bias for improving data efficiency is a
hopeless endeavour? There is one reason to be hopeful. While it is claimed that capsule models learn to infer part-whole
hierarchies, to the best of our knowledge, there is no empirical evidence to suggest that they actually do this efficiently.
Before we can determine whether part-whole hierarchies are a useful inductive bias for improving data efficiency in computer
vision, we must first (1) define precisely what it means to infer a part-whole hierarchy, and (2) establish a procedure to
determine which models have the capacity to efficiently learn to infer part-whole hierarchies.

In order to evaluate the accuracy with which a model can infer part-whole hierarchies, we must have access to ground-truth
part information, which is typically not available in natural visual datasets. We could manually label an existing visual
dataset with part information, but this would be undesirably expensive and ambiguous. Instead, we introduce a synthetic

"Department of Computer Science, University of Oxford. Correspondence to: Jake Levi <jake.levi@stcatz.ox.ac.uk>.

Accepted at Methods and Opportunities at Small Scale (MOSS), ICML 2025, Vancouver, Canada.

1



SynDaCaTE: A Synthetic Dataset For Evaluating Part-Whole Hierarchical Inference

dataset that has optional ground-truth part-information built in. Our proposed dataset is elementary, but nonetheless it
enables us to draw unique conclusions, such as pinpointing the bottleneck in an existing capsule model, and motivating
future directions for designing effective inductive biases. More specifically, we make the following primary contributions:

1. (§2.1) We introduce a framework which clarifies the meaning of part-whole hierarchical inference.
2. (§2.2) We present a SYNthetic DAtaset for CApsule Testing and Evaluation, abbreviated as SynDaCaTE.

3. (§3) We use our SynDaCaTE dataset to demonstrate that:

(a) The bottleneck in an existing capsule model (Sabour et al., 2017) is inferring parts from an image (rather than
inferring wholes from parts), which has implications for designing capsule networks (discussed further in §4).

(b) Given explicit part-information, this capsule model is no more efficient than a CNN at inferring wholes from parts.

(c) A permutation-equivariant SetTransformer (Lee et al., 2019) is a strong baseline for inferring wholes from parts,
which motivates future directions for designing effective inductive biases (discussed further in §A).

2. Methods

2.1. A Framework For Mereological Inference

In general, an image may depict a set of several top-level objects, each of which may be considered a “whole” object
containing a set of “parts”. Each of those parts may be considered a whole containing its own set of parts, and so on
for several layers in a “part-whole hierarchy”. Each object (part or whole) in an image may be described by a discrete
“class” label and a continuous “pose” vector. The class describes the type of the object, and the pose describes everything
which is needed to render the object as seen in the image given its class, which might include (z, y)-position, size, rotation,
brightness, and so on. In this simplified framework we do not consider noise, or interactions between objects such as
reflection, illumination, or shadow. We define the generalised pose of an object to be a one-hot encoding of its class
concatenated with its pose. We will say “inferring an object” as a shorthand for inferring its generalised pose'. We define
inferring a part-whole hierarchy as inferring all objects (wholes and parts) from an image.

The formal study of part-whole hierarchies is known as mereology (Cotnoir & Varzi, 2021), and we will refer to inferring
part-whole hierarchies as mereological inference. We will refer to models which have the capacity to efficiently learn
mereological inference as having mereological capacity. In general, a model which has mereological capacity must be able
to efficiently learn to solve two distinct sub-tasks:

1. Image-to-parts: infer a set of parts PP from an image I € RE*H*xW

2. Parts-to-wholes: infer a set of wholes W from a set of parts P.

2.2. The SynDaCaTE Dataset

As previously mentioned, we want to determine which models have mereological capacity, and in order to do so we
need ground-truth part information. To this end, we introduce a SYNthetic DAtaset for CApsule Testing and Evaluation,
abbreviated as SynDaCaTE. Example images from different SynDaCaTE tasks are shown in Figure 5 in §C.

In total across all SynDaCaTE tasks, there are 21 types of object in three categories, which are lines, characters, and words.
A full description of the dimensionality and meaning of the poses of objects in each category is presented in §C.1.

The sampling procedure for images in SynDaCaTE is described in §C.2. When each image is sampled, we can control
various parameters (such as the maximum and minimum number of objects in an image), and observe various types of
data about objects, parts, and images. By appropriately controlling parameters and computing inputs and targets from the
available data, we can define many different tasks, which can be used to explore a variety of different research questions.
We consider several descriptively named tasks including ImToClass, ImToParts, PreTrainedPartsToClass, PartsToChars, and
PartsToClass. All tasks have 60k synthetically generated training samples and 10k test samples. A full description of these
and some other tasks, including the type and meaning of inputs and targets in all tasks, is included in §C.3.

'Inferring generalised pose is more general than object classification, detection, and segmentation. A class, bounding box, and
segmentation mask could all be computed from a generalised pose, however the generalised pose (in general) contains more information
than is available in those labels.
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Figure 1. Left: comparing data efficiency of various models trained on single-object classifcation, from images (ImToClass), pre-trained
part encodings (PreTrainedPartsToClass, “+PTPE”), and ground-truth sets of parts (PartsToClass, “+GTP”). Right: comparing MSE of
various models as a function of depth, trained to predict sets of wholes from sets of parts (PartsToChars). Abbreviations: pre-trained
part encodings (PTPE), ground-truth parts (GTP), SetTransformer (ST), DeepSetToSet (DSTS), element-wise (EW), 10x gradient steps
(10xS), 2x width (2xW). All experiments are repeated with 5 different random seeds.

2.3. Models

Vision models (including capsule networks) are most commonly evaluated on object classification, so we start in §3 by
considering ImToClass. For ImToClass and PreTrainedPartsToClass we will compare a prominent capsule architecture
(Sabour et al., 2017) against a lightweight modernised CNN architecture, containing a CoordConv layer (Liu et al., 2018)
followed by a CNN with ReZero residual connections (He et al., 2016; Bachlechner et al., 2021), depthwise-separable
convolutions (Chollet, 2017) with zero-padding to preserve dimensions, inverted bottlenecks (Vaswani et al., 2017; Liu et al.,
2022), and a stage-design (Liu et al., 2022) which divides the network into stages, each of which starts with a strided dense
convolution followed by several residual blocks. The final stage is followed by global average pooling and a linear layer.

For the ImToParts task we train the same modernised CNN architecture, except without global average pooling.

We study full parts-to-wholes inference in isolation using the PartsToChars task, and compare a SetTransformer (Lee et al.,
2019), a modified DeepSet (Zaheer et al., 2017) which predicts a separate output element for each input element (using
a permutation-invariant embedding of the input set) that we refer to as DeepSetToSet, an MLP which predicts output set
elements independently as an element-wise function of the input set, and an MLP which predicts the flattened output set as a
function of the flattened input set. Both MLPs use ReZero residual connections (He et al., 2016; Bachlechner et al., 2021).

We relate our previous results using PartsToClass, comparing a SetTransformer and the flattened MLP. The SetTransformer
uses global average pooling across the set-dimension after the final attention and MLP blocks, followed by a linear layer.

2.4. Loss Functions

For ImToClass, PreTrainedPartsToClass, and PartsToClass we use the cross-entropy loss. For ImToParts we use the Chamfer
MSE loss for set-prediction (Zhang et al., 2019). For PartsToChars we use the MSE loss averaged over the output set.

3. Experiments

ImToClass. We start by comparing the data-efficiency of our modernised CNN against CapsNet (Sabour et al., 2017) in
single-object classification. Both models are trained on the ImToClass task for Sk gradient steps, on subsets of the training
set with sample sizes ranging from 100 to 60k. The results are shown in red and orange in Figure 1 (left). Immediately we
can see that our CNN is more data-efficient than CapsNet, achieving significantly higher accuracy at smaller dataset sizes.

ImToParts. Given that the CapsNet fails to learn efficiently from small sample sizes, we want to understand if the CapsNet
is failing in image-to-parts inference, parts-to-wholes inference, or both. To this end, we train CNNss to predict sets of part
poses from an image. We train each CNN for 100 epochs on the ImToParts task, using the full 60k training set. Across 5
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random seeds, the CNNs reach an average test-set MSE of 0.0269 =+ 0.0026, with the best model reaching 0.02329. We can
qualitatively assess the performance of a model trained on ImToParts by evaluating the model on an image, feeding the
predictions of the model to the rendering pipeline used to create the dataset, and comparing against the ground-truth targets.
The predictions of the best CNN trained on ImToParts are shown in Figure 2 in §B, and are reasonably accurate, although
not perfect. We create the PreTrainedPartsToClass task by iterating through ImToClass, feeding each image through the best
CNN trained on ImToParts, and replacing the image with the activations in the final hidden layer of the CNN.

PreTrainedPartsToClass. Figure 1 (left) also shows the data-efficiency of (randomly initialised) CNNs and CapsNets
trained on PreTrainedPartsToClass for 5k gradient steps, in light green and dark green. When given access to part-information,
both models are significantly more data-efficient compared to training from images, and also have very similar performance
to each other, which suggests at least three important conclusions:

1. The bottleneck in CapsNet is inferring parts from images, rather than inferring wholes from parts (because the decrease
in performance after removing pre-trained part-information is much worse in CapsNet than in CNN).

2. A naive capsule model (CapsNet) is not substantially more efficient at learning parts-to-wholes inference than a CNN.

3. Part-information provides a useful representation for data-efficient classification, even though the part-representations
are noisy, and contain no explicit class-information.

PartsToChars. Should we expect that, in general, a CNN (or a CapsNet which is not substantially better) has the best
possible inductive bias for inferring wholes from parts? We begin to explore this question by turning to the PartsToChars
task, in which the input is a randomly ordered ground-truth set of poses of parts of between one and three objects, and the
target is the set of generalised poses of the objects. The input is designed to represent some of the challenges faced by
the receptive fields of neurons. Firstly, as an object transforms relative to a retina or camera (for example by rotating or
moving closer), part-representations may move into the receptive fields of other neurons in more complex ways than simple
translation. Secondly, the receptive field of any neuron might observe parts belonging to multiple distinct objects.

Because the input is a randomly ordered set, we primarily compare set-function models trained on this task. We want to
know which inductive bias is most effective for this task, and for any model, it is useful to know how performance varies
with important hyperparameters such as depth. To this end, we plot test MSE as a function of depth for several models in
Figure 1 (right). All models are trained for 100 epochs. The SetTransformer is strikingly effective at this task, outperforming
all other baselines by more than an order of magnitude at depths > 2, but not with a single layer of self-attention. Does
the SetTransformer rely on some fundamentally useful computation that needs > 2 layers of self-attention, or does the
shallow SetTransformer simply not have enough parameters? We address this question by sweeping over a SetTransformer
with double the width (= 4 x parameters), also shown in Figure 1 (right). Despite the extra parameters, the performance
is remarkably insensitive to width, which suggests that > 2 self-attention layers are in some way fundamentally useful.
Future work may examine this through the lens of mechanistic interpretability, which has shown that “Induction heads”
also arise in transformers with no fewer than two attention layers (Elhage et al., 2021). Rendered predictions from the best
SetTransformer and DeepSetToSet trained on PartsToChars are displayed in Figures 3 and 4 in §B.

PartsToClass. Finally, we return to data-efficiency and single-object classification, by comparing the performance of a
SetTransformer and a flattened MLP on PartsToClass. The results for various training sample sizes after training for 5k
gradient steps are shown in Figure 1 (left). Once again, the SetTransformer outperforms all other baselines, especially for
small training sample sizes. The flattened MLP with 5k gradient steps does not achieve good accuracy for any training
sample size. Using 50k gradient steps improves performance for larger but not smaller training sample sizes, which aligns
with theoretical results connecting generalisation performance to convergence speed (Hardt et al., 2016).

4. Conclusion

Although our proposed SynDaCaTE dataset is elementary, its thoughtful design has allowed us to draw unique conclusions
about an existing capsule model, and about the effectiveness of permutation-equivariant SetTransformers in parts-to-wholes
inference. Our conclusions about CapsNet have strong implications for future work exploring capsule networks, including
that image-to-parts inference should be considered explicitly and empirically (possibly using our dataset) and not taken
for granted. Our findings about parts-to-wholes inference with SetTransformers motivate future directions for designing
effective inductive biases for computer vision, which (because of space constraints) we discuss further in §A.
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Reproducability

Our code is available at <https://github.com/jakelevil996/syndacate-public>. We provide a full
description of hyperparameters in §D.
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A. Future work

Overview. Our findings in §3 (which were facilitated by our proposed synthetic dataset) motivate several promising
directions for future work. We first discuss intuition for designing effective inductive biases for computer vision, followed
by possible extensions to the SynDaCaTE dataset.

Visual Inductive Biases. We demonstrated in §3 that a permutation-invariant SetTransformer was significantly more
data-efficient than other baselines at classifying objects from a ground-truth ser of parts (which was designed to represent the
receptive field of a visual neuron). However, a general-purpose vision model must take its input from images. How should
we best encompass our findings in a general-purpose vision model? A simple approach would be to use our lightweight
modernised CNN as a starting point, and replace depthwise-separable convolutions with sliding-window self-attention? and
point-wise MLPs in alternating residual blocks. These changes maintain the overall structure of a CNN, while modifying the
inductive bias only within local neighbourhoods. The resulting model resembles Stand-Alone Self-Attention (Ramachandran
et al., 2019) without normalisation layers (Ioffe & Szegedy, 2015) or layer-wise relative positional embeddings (Shaw
et al., 2018) and with ReZero residual connections (Ramesh et al., 2021) and an initial CoordConv layer (Liu et al., 2018)
instead. Strided dense convolutions for inter-stage downsampling could be replaced with local linear average pooling, or
local attention-weighted average pooling. Our preliminary experiments with this model, which we refer to as MereoFormer,
demonstrate promising mereological capacity, however a remaining practical challenge is to improve the efficiency of our
software implementation.

Extending SynDaCaTE. The simplicity of our SynDaCaTE dataset has allowed us to draw fundamental scientific
conclusions without superfluous additional complexity. In future, we will want to draw analogous conclusions about more
complex visual environments which are more relevant to practical real-world applications of computer vision. This motivates
developing the SynDaCaTE dataset in several directions:

1. Generalisation: The training and test splits are currently sampled from the same distribution. These distributions could
be structurally modified to support investigations into systematic (Bahdanau et al., 2018) and compositional (Wiedemer
et al., 2023) generalisation.

2. Classes: The SynDaCaTE dataset contains a small number of object classes. More object classes (both wholes and
parts) could be added, which may also support investigating meta-learning and transfer-learning of new object classes.

3. 3D: The SynDaCaTE dataset is purely 2D, whereas the natural visual world is 3D. Synthetic 3D part-whole hierarchies
could be designed and implemented using a 3D rendering pipeline, to explore the extent to which mereological capacity
of various models is consistent between 2D and 3D visual environments.

4. Video: SynDaCaTE contains only static images, and our experiments only considered models which were trained on
supervised learning tasks. The SynDaCaTE dataset could be extended to include videos of moving objects, which may
be used to explore the extent to which models which have mereological capacity are also able to learn meaningful
representations of parts and wholes (which for example could be linearly decoded from hidden representations) from
unsupervised next-frame video prediction. We might refer to such a dataset as “Video SynDaCaTE”, or more concisely
as “VinDaCaTE”.

5. Interaction: VinDaCaTE could be designed to optionally include interactions between objects in a video, which could
be used to systematically investigate how well various models are able to learn to understand such interactions.

6. Noise: All inputs and targets in SynDaCaTE are noise-free by design. Future work may explore the effects of
various noise distributions on the data-efficiency and final performance of vision models trained on image-to-parts,
parts-to-wholes, and end-to-end learning tasks using the SynDaCaTE dataset.

*In sliding-window self-attention, each pixel is used as a query for keys and values in a local neighbourhood of pixels.
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B. Additional results
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Figure 2. Rendered part-predictions of the best CNN trained on ImToParts.
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Figure 3. Rendered character-predictions of the best SetTransformer trained on PartsToChars.
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Figure 5. Example images from three different SynDaCaTE tasks. Top row: ImToClass. Middle row: ImToChars. Bottom row: Words.

C. SynDaCaTE Specification
C.1. Object Types

Across all tasks in SynDaCaTE, there are 21 types of object in three categories:

1. Lines: these are the bottom-level parts in all tasks. There is only one type of line. Each line has a 6D pose-vector,
with dimensions referring to z and y coordinates of both endpoints, thickness, and brightness. When the ground-truth
set of parts is available, each line is included twice, once for each permutation of its endpoints. This is because both

permutations of endpoints render identical images, so a single permutation would not be identifiable from a rendered
image.

2. Characters: these are composite objects composed of lines. There are 10 types of characters. Each character has an
8D pose-vector, with dimensions referring to x-position, y-position, scale, rotation, wideness, italic, line-thickness, and
brightness.

3. Words: these are composite objects composed of characters. There are 10 types of words. The dimensionality and
meaning of the pose vector of a word is the same as for a character.
C.2. Sampling Procedure

Each image is sampled according to the following procedure:

1. Sample the number of top-level objects in the image.

2. For each object:

(a) Sample a discrete class label ¢; and continuous pose vector p;.

(b) Initialise a set of parts (in some canonical pose) as a function of c;.

(c) Transform each part as a function of p;.

(d) Recursively initialise the sub-parts of each part until reaching bottom-level parts (lines).
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3. Aggregate all bottom-level parts from all top-level objects into a single sequence and sort it by depth (in SynDaCaTE
we simply equate depth with inverse brightness, so brighter parts are in front).

4. Render the sorted parts in order to form an image.

C.3. Tasks

We present 7 supervised learning tasks, with inputs x and targets ¢ as follows:

1. ImToParts: x € [0, 1]} *190x100 j5 an image of a single character, t € R?*6 is the set of poses of the parts (lines) in
the character. The maximum number of parts per character is 4, each part is represented twice (see above), and the total
number of part-poses is padded with zeros up to 9 to ensure that ¢ always contains at least one all-zero pose vector. ¢
contains only 6D poses and no class information (because there is only one type of line). The order of parts in ¢ is
randomised.

2. PartsToChars: x € R?5%6 is a set of poses of the parts of between 1 and 3 characters, t € R?°*!® contains the
generalised pose of the character that each part belongs to. The outer dimensions of  and ¢ are padded with zeros up to
25. The order of parts in z is randomised, and the order of characters in ¢ is aligned to the order in . Each generalised
pose in ¢ is repeated according to its number of parts.

3. ImToChars: z € [0, 1]1*100%100 j5 an image of between 1 and 3 characters, ¢ € R**18 contains the generalised poses
of the characters, padded with zeros up to an outer dimension of 4. The order of parts in ¢ is randomised.

4. ImToClass: x € [0,1]1*100%100 j5 an image of a single character, t € {1,...,10} is the class of the character
(represented as an integer). Pose information is discarded.

5. PartsToClass: z € RY%C is the set of poses of the parts of a single character, t € {1,...,10} is the class of the
character.

6. PreTrainedPartsToClass: = € [0, 1] *H "XW" is the activations in the final hidden layer of a model trained on
ImToParts, frozen, and evaluated on an image of a single character, ¢t € {1,...,10} is the class of the character.

7. Words: x € [0, 1]1*100%100 j5 an image of between 1 and 3 words, t € R**18 contains the generalised poses of the
words, padded with zeros up to an outer dimension of 4.
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D. Hyperparameters

D.1. All Models
Optimiser Adam (Kingma & Ba, 2014)
Initial learning rate le-3
Final learning rate le-5
Learning rate schedule Cosine decay
Batch size 100

D.2. Data-efficiency Classification Sweeps

CNN (ImToClass) Kernel size 5
Model dimension 64
Expand ratio (in residual layers) 2
Number of stages 3
Number of blocks per stage 2
Stride per stage 2
Input embedding CoordConv (Liu et al., 2018)
CapsNet (ImToClass) Routing iterations 3
All other hyperparameters Default*
CNN (PreTrainedPartsToClass) Kernel size 5
Model dimension 64
Expand ratio (in residual layers) 2
Number of stages 1
Number of blocks per stage 3
Stride per stage 1
Input embedding CoordConv (Liu et al., 2018)
CapsNet (PreTrainedPartsToClass) Routing iterations 3
All other hyperparameters Default*
SetTransformer (PartsToClass) Depth 5
Model dimension 64
Number of heads 8
Expand ratio (in residual layers) 2
MLP (PartsToClass) Depth 5
Model dimension 100
Expand ratio (in residual layers) 2

*For CapsNets, we used the public implementation available at
<https://github.com/adambielski/CapsNet-pytorch>, including default hyperparameters.

D.3. PartsToChars Depth Sweeps

SetTransformer Model dimension 64
Number of heads 8
Expand ratio (in residual layers) | 2
SetTransformer (2xW) Model dimension 128
Number of heads 8
Expand ratio (in residual layers) | 2
DeepSetToSet Model dimension 100
MLP Model dimension 100
Expand ratio (in residual layers) | 2
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D.4. ImToParts
CNN Kernel size 5
Model dimension 64
Expand ratio (in residual layers) 2
Number of stages 3
Number of blocks per stage 2
Stride per stage 2
Input embedding CoordConv (Liu et al., 2018)

12



