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ABSTRACT

Deep clustering has recently achieved remarkable progress across various do-
mains. However, existing clustering methods typically treat all samples equally,
neglecting the inherent differences in their feature patterns and learning states.
Such redundant learning often drives models to overemphasize simple feature
patterns in high-density regions, weakening their ability to capture complex yet
diverse ones in low-density regions. To address this issue, we propose a novel
plug-in designed to mitigate overfitting to simple and redundant feature patterns
while encouraging the learning of more complex yet diverse ones. Specifically,
we introduce a density-aware clustering head initialization strategy that adap-
tively adjusts each sample’s contribution to cluster prototypes according to its
local density in the feature space. This strategy mitigates the bias towards high-
density regions and encourages a more comprehensive attention on medium- and
low-density ones. Furthermore, we design a dynamic sample selection strategy
that evaluates the learning state of samples based on the feature consistency and
pseudo-label stability. By removing sufficiently learned samples and prioritiz-
ing unstable ones, this strategy adaptively reallocates training resources, enabling
the model to consistently focus on samples that remain under-learned throughout
training. Our method can be integrated as a plug-in into a wide range of deep
clustering architectures. Extensive experiments on multiple benchmark datasets
demonstrate that our method improves clustering accuracy by up to 6.1% and en-
hances training efficiency by up to 1.3 . Code is available in the supplementary
material.

1 INTRODUCTION

Deep clustering integrates the representation learning ability of deep neural networks with the com-
mon objective used in traditional clustering algorithms, achieving significant advances in recent
years (Zhou et al., 2025; Ren et al., 2025). Existing deep clustering methods utilize self-supervised
learning techniques (He et al., 2020; Chen et al., 2020a; Grill et al., 2020) to handle complex high-
dimensional data effectively, thus mitigate the limits of traditional clustering algorithms (Xie et al.,
2016; Zhang et al., 2025).

Recent deep clustering methods (Gansbeke et al., 2020; Li et al., 2021; Jia et al., 2025) use pre-
trained encoders to obtain discriminative representations. A key property of these representations is
that adjacent representations often share semantic similarity. Consequently, these methods exploit
this underlying structure to generate supervisory signals for training. To further investigate the rep-
resentation distribution in the feature space, we analyze the local density using the k-nearest neigh-
bor distance and observe a consistent phenomenon across datasets, most samples concentrated in
high-density regions, while medium- and low-density regions contain far fewer samples (Fig. 1(a)).
Moreover, images selected from different density regions reveal distinct feature patterns. High-
density samples tend to be simple and redundant, while medium- and low-density samples exhibit
greater complexity and diversity (Fig. 1(b)). For example, in the STL-10 truck class, high-density
samples usually represent typical truck appearances, capturing views from the side or oblique front
with holistic features. In contrast, medium- and low-density samples present richer variations, cov-
ering various truck models, multiple viewpoints, and fine-grained local details. As illustrated in
Fig. 1(c), such differences in feature patterns lead to notable performance disparities, simple and
redundant high-density samples are learned quickly due to their abundance and ease, while more
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Figure 1: (a) Sample size distribution across varying densities in the STL-10 dataset, with density
estimated by k-nearest neighbor distance. (b) Random selected images from different density re-
gions of the STL-10 dataset. High-density samples are more simple and redundant, while medium-
and low-density samples are more complex and diverse. (c) Performance across different density
regions under three initialization strategies (i.e., Random, CDC, and Ours), showing our proposed
method’s consistent improvements, particularly in low-density samples.
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complex and diverse medium- and low-density samples remain difficult to master. We attribute this
phenomenon to the overfitting of simple and redundant feature patterns.

In this paper, we introduce a novel plug-in designed to mitigate overfitting to simple and redundant
feature patterns while encouraging the learning of more complex and diverse ones. Our method
tackles this challenge from two perspectives. First, we propose a density-aware clustering head
initialization strategy, which adaptively weights each sample’s contribution to its cluster prototype
based on local density, thus reducing the bias caused by simple and redundant high-density sam-
ples dominating the clustering head initialization. Second, we develop a dynamic sample selection
strategy guided by feature consistency and pseudo-label stability, which identifies and temporarily
suspends training on already well-learned samples. This strategy adaptively reallocates the model’s
learning capacity toward more unstable samples, thereby fostering a more efficient and comprehen-
sive learning trajectory.

The proposed method is plug-and-play, enabling seamless integration with existing deep cluster-
ing methods while significantly improving their clustering performance and training efficiency. In
summary, the main contributions of this work are as follows.

* We identify a general phenomenon in deep clustering where sample distributions are dominated
by simple and redundant samples in high-density regions. This dominance causes models overfit-
ting to simple and redundant samples and overlook complex and diverse samples in low-density
regions, limiting their discriminative power.

* We propose two strategies: (i) density-aware clustering head initialization employs local density
based adaptive weighting to prevent cluster prototype bias towards high-density regions; and (ii)
feature consistency and pseudo-label stability based dynamic sample selection identifies and tem-
porarily discards sufficiently learned samples during training, enabling models to allocate more
capacity to unstable samples.

» Extensive experiments on multiple benchmark datasets show that our method consistently boosts
the performance of state-of-the-art deep clustering methods by up to 6.1%. Moreover, it improves
training efficiency by up to 1.3x, achieving superior results with fewer training samples.

2 RELATED WORK

Deep Clustering. Deep clustering leverages the representation learning capability of deep neural
networks to perform clustering. Existing methods can be broadly divided into two categories. The
first paradigm consists of two-stage methods, where a deep neural network is first trained to ex-
tract low-dimensional representations, which are then clustered using traditional algorithms such
as K-Means or spectral clustering (Xie et al., 2016; Huang et al., 2014). While this paradigm
simplifies optimization, its performance is inherently constrained by the quality of extracted rep-
resentations, which may not be optimally aligned with the final clustering objective. The second
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paradigm encompasses end-to-end iterative methods that jointly optimize representations and clus-
ter assignments. These methods utilize the model’s own outputs as supervisory signals and can
be further distinguished by their learning strategy: self-training iteratively generates pseudo-labels
for all samples to guide optimization (Xie et al., 2016; Guo et al., 2017); self-labeling further se-
lects high-confidence predictions to provide more stable and reliable supervisory signals (Gansbeke
et al., 2020; Jia et al., 2025; Wu et al., 2025); and contrastive learning enhances representations
by managing similarity relationships across different data views (Shen et al., 2021; Li et al., 2021;
2025). Recently, methods that leverage large-scale pre-trained models like CLIP have emerged as
a powerful approach. By utilizing pseudo-labels derived from textual representations or enforcing
cross-modal neighborhood consistency, these techniques introduce rich external knowledge, leading
to significant performance gains (Cai et al., 2023; Li et al., 2024; Qiu et al., 2024). Overall, due to
their effective exploitation of high-confidence samples, end-to-end self-labeling methods represent
a particularly promising direction in deep clustering.

Sample Selection. Sample selection has been widely studied in deep learning for enhancing train-
ing efficiency, model robustness, and generalization. Existing methods can be broadly classified as
either static or dynamic. Static methods perform an one-time sample selection, either prior to or
during the initial stage of training, to construct a compact yet representative subset. For example,
data pruning techniques eliminate redundant or low-value samples based on metrics such as forget-
ting events (Toneva et al., 2019; Killamsetty et al., 2021c¢) or influence functions (Paul et al., 2021),
while core-set methods (Xia et al., 2023; Braverman et al., 2022) seek to identify a minimal subset
that best approximates the full data distribution. Although effective at reducing computational cost,
a key limitation of static methods is their inability to adapt to the evolving importance of samples
as training progresses. In contrast, dynamic methods continuously adjust sample weights or sam-
pling probabilities throughout the training process to prioritize the most informative or challenging
examples (Nguyen et al., 2023; Yuan et al., 2025). A prominent dynamic technique is importance
sampling, where a sample’s selection probability is proportional to its estimated utility. Common
utility metrics include loss values (i.e., emphasizing hard examples), gradient norms (i.e., quan-
tifying a sample’s contribution to parameter updates), and prediction uncertainty (i.e., identifying
ambiguous samples near decision boundaries) (Chang et al., 2017a; Mindermann et al., 2022; Kil-
lamsetty et al., 2021b). By adaptively focusing learning resources on such informative data, these
dynamic mechanisms promote more efficient training and improved model generalization.

Active Learning. Sampling strategies are also a central topic in Active Learning (AL), where the
goal is to improve model performance with limited annotation budgets. AL methods select infor-
mative samples based on criteria such as uncertainty (Gal et al., 2017) and diversity or representa-
tiveness (Sener & Savarese, 2018) . Recent work further shows that sample importance should be
updated dynamically as the model changes (Ash et al., 2020; Killamsetty et al., 2021a).

However, most existing sample selection methods are designed for supervised learning. These
strategies become inapplicable in the unsupervised deep clustering paradigm due to the absence
of ground-truth labels. To bridge this gap, we introduce a novel dynamic sample selection strategy
specifically tailored for deep clustering. Our method enables the model to adaptively discard suf-
ficiently learned samples throughout the training process, enhancing both clustering performance
and training efficiency in a fully unsupervised manner. Although AL focuses on selecting samples
for labeling, the idea of estimating how “valuable” each sample is is related to our setting. In deep
clustering, no labels are available, and our goal is different: instead of querying informative sam-
ples, we aim to remove samples that have already been well learned so the model can focus on more
challenging ones.

3 PROPOSED METHOD

Overview. Our proposed deep clustering enhancement component explicitly incorporates sample-
level diversity modeling during both the clustering head initialization and training phases. This
approach is designed to counteract learning bias caused by imbalanced sample feature patterns. The
method consists of two core components: a density-aware clustering head initialization strategy and
a dynamic sample filtering strategy based on feature consistency. In the initialization phase, we
use a pre-trained feature encoder to obtain preliminary feature representations (Sec. 3.1). These
representations are then used to execute our density-aware clustering head initialization strategy,



Under review as a conference paper at ICLR 2026

which aims to generate a set of initial cluster prototypes not dominated by high-density, redundant
samples. During the iterative training phase (Sec. 3.2), we adopt a dynamic training strategy. We
use the feature consistency-based filtering strategy to identify and temporarily remove samples that
have become stable. This allows the model to focus more learning resources on complex or unstable
samples that have not been fully learned. Notably, our method is designed as a plug-in that can be
readily incorporated into a wide range of deep clustering architectures, consistently improving their
clustering performance. We present the pseudo-code of our method in Appendix D.

Notation. Denote by D, = {z; : i € {1,2,...,N}} a training set of N unlabeled samples
belonging to K semantic clusters. A deep clustering model is composed of a feature encoder fy(-)
and a clustering head g(-), where 6 denotes the network parameters of the feature encoder. The
feature encoder maps an input sample to a high-dimensional feature representation z = fy(x),
while the clustering head predicts the pseudo-label distribution p = g4(2), where ¢ denotes the
parameters of the clustering head. For each sample z;, we apply weak augmentation 2% and strong
augmentation {2° to get two different views =}’ and x7, and their predictive distributions are denoted
as P/” and P;.

3.1 DENSITY-AWARE CLUSTERING HEAD INITIALIZATION

Most clustering-head-based methods leverage self-supervised learning to obtain a pre-trained fea-
ture encoder and then attach a clustering head for further training. However, the parameters of the
clustering head are typically initialized randomly (Gansbeke et al., 2020; Li et al., 2021), which
is unstable and often disrupts the pre-trained representations, thereby slowing convergence and re-
ducing robustness. To address this, CDC (Jia et al., 2025) introduces prototype-based initialization,
which mitigates the degradation caused by random initialization. Nevertheless, despite its stabil-
ity, prototype-based initialization struggles with imbalanced feature distributions. Since it computes
cluster prototypes by averaging all sample features, the resulting prototypes are inevitably domi-
nated by the abundant, redundant samples in high-density regions, failing to capture the true data
structure. Consequently, the initial prototypes biased toward high-density regions hinder the model
from effectively learning diverse feature patterns.

To mitigate this issue, we propose a density-aware :
clustering head initialization strategy to adaptively >
adjust each sample’s contribution to the initial pro-
totypes according to its local density in the feature X
space (Fig. 2(b)). The procedure consists of two key

steps: (1) perform an initial clustering assignment

using features extracted by a pre-trained backbone;

(2) recompute the cluster prototypes via a density-

weighted aggregation within each cluster. @ ®

Original Prototype * Desity-weighted Prototype
Specifically, we begin by extracting feature repre-
sentations for all samples using the pre-trained en- Figure 2: Left: Cluster prototypes dominated
coder fg(-), resulting in Z = {z,...,zy}. We Dy high-density samples. Right: Density-
then perform an initial clustering by applying the aware initialization, where sample weights
standard K-Means algorithm on Z to obtain pseudo- ~are adaptively adjusted according to density,
labels £ = {l1,...,lx}. Based on these assign- With color intensity indicating weight magni-
ments, we introduce density-aware re-estimation of tude.
cluster prototypes. For each sample, we first estimate its local density using the average k-nearest
neighbor distance within the same cluster. The corresponding local density weight w; is defined as:

k
1 ()
w; =exp|a- ngl lzi — 2" ll2 | » (1

where zfj ) denotes the j-th nearest neighbor of z; within its assigned cluster, and « is a tunable
hyperparameter controlling the sensitivity of the weights to distance. Larger values of oz make the
weights more sensitive to changes in local density. Once the density weights are computed, the
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prototype c; for cluster j is obtained by the weighted average:
Dosec, WiZi
Zzi eC;y Wy
where C'; denotes the set of samples assigned to cluster j. This density-aware re-estimation enhances
the contribution of low-density samples while attenuating the dominance of high-density ones. Fi-
nally, the refined prototypes C = {cy, ..., ckx } are employed to initialize the clustering head weights
of the deep clustering model. By incorporating density information, this strategy better preserves

cluster structures across regions of varying density and mitigates bias toward redundant samples,
thereby providing a stronger starting point for subsequent deep clustering training.

; 2

Cj:

3.2 DYNAMIC SAMPLE SELECTION

In unsupervised clustering tasks, models tend to quickly learn to group samples from high-density
regions, which are often characterized by simple and redundant patterns. Continuing to allocate
computational resources to these well-learned samples is inefficient and may hinder effective learn-
ing of samples from low-density regions, which are typically more complex and information-rich.
We initially considered a density-based sample removal strategy, where local density is estimated
via k-nearest neighbor distance to discard redundant samples in high-density regions. However,
this approach is computationally expensive due to repeated neighbor searches and global distance
computations, and density estimates in high-dimensional feature spaces may be imprecise, poten-
tially leading to the unintended removal of informative samples and limiting model generalization.
To address this challenge, we propose a dynamic sample selection strategy that adaptively allocates
learning resources based on each sample’s learning state during training. Unlike supervised learning,
clustering lacks explicit ground-truth labels, making it difficult to assess sample difficulty. Tradi-
tional sample difficulty measures based on loss or gradient dynamics often fail to accurately reflect
the actual learning state of samples. Although pseudo-labels offer an intuitive alternative, they are
prone to noise, particularly in the early stages of training, which risks introducing bias into sample
selection.

Our method builds upon the principle of prediction consistency. The central idea is that a well-
learned sample should yield stable and robust feature representations, such that the model produces
consistent predictions even when the input undergoes different transformations or perturbations. In
other words, if the model has developed a reliable understanding of a sample, its predicted distribu-
tion should remain largely invariant under reasonable augmentations. This property not only reflects
the stability of the learned representation but also serves as an implicit indicator of the sample’s
learning state. By leveraging prediction consistency, we can more effectively distinguish between
samples that are already well captured by the model and those that require further attention, thereby
guiding dynamic resource allocation during training.

Prediction Consistency Between Weak and Strong Views. For each input sample x;, we generate
two augmented versions: a weakly augmented view x;” and a strongly augmented view z;. Passing
these through the model yields their predictive distributions P and P;. To quantify their alignment,
we define the prediction consistency score .S; as the cosine similarity between the two distributions:

S; = cos(P”, P}) . 3)
A higher value of S; indicates that the model produces consistent predictions under different levels

of augmentation, suggesting that the corresponding sample is being reliably captured by the learned
representation.

Stability Evaluation via Second-Order Differences. High consistency at a single time step does
not necessarily indicate that a sample is stably learned, as even uncertain samples may occasionally
exhibit strong agreement by chance. To better capture temporal stability, we track each sample’s
prediction consistency over three consecutive training epochs. Let ¢ denote the current epoch index.
For sample x;, the second-order difference is computed across the tth, (¢ —1)th, and (¢ — 2)th epochs
as:

A250 = g1 250" 4 {2 4)

7 ) 2 2 :

This metric reflects the “acceleration” of consistency changes, effectively capturing fluctuations in
the learning dynamics. A sample is considered stable when

A25Y] <, 5)
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where € is a predefined stability threshold. Under this condition, the sample exhibits both high
prediction consistency and temporal stability, signifying that it has reached a well-learned state.

Pseudo-Label Consistency Check. As an additional requirement, we further impose that a sam-
ple’s pseudo-labels remain consistent across the most recent 3 epochs. If a sample’s pseudo-label
changes during this period, it is regarded as unstable, even if its prediction consistency shows only
minor fluctuations. This criterion helps filter out noisy or ambiguous samples that may otherwise be
misclassified as stable.

Based on the above criteria, we design a dynamic sample selection strategy that consists of two
steps:

* Exclusion. A sample is regarded as stable if it simultaneously satisfies the following two condi-
tions: (i) its prediction consistency remains stable, and (ii) its pseudo-label does not change over
the recent epochs. Such samples are temporarily excluded from the training batch in order to
avoid redundant computation.

* Reinclusion. In contrast, if a sample exhibits significant fluctuations in prediction consistency

(i.e., |A2S£t)| > ¢), or if its pseudo-label changes during the observation window, it is considered
unstable. These unstable samples are retained in the training queue and may even be assigned
higher training priority to encourage further refinement.

This strategy allows the model to adaptively allocate computational resources toward unstable sam-
ples that require further learning, while deprioritizing stable ones. As a result, it mitigates the
bias introduced by uneven feature distributions and promotes more balanced representation learning
across diverse data regions. Unlike most existing sample selection strategies in supervised learning,
which primarily rely on loss values or gradient magnitudes, our method is tailored for unsupervised
clustering by leveraging prediction consistency and pseudo-label stability as more reliable indicators
of the learning state.

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

Datasets. We evaluate our method on six standard benchmarks, including CIFAR-10 (Krizhevsky,
2009), CIFAR-20 (Krizhevsky, 2009), STL-10 (Coates et al., 2011), ImageNet-10 (Chang et al.,
2017b), ImageNet-Dogs (Chang et al., 2017b), and Tiny-ImageNet (Le & Yang, 2015). Following
previous works (Chang et al., 2017b; Jia et al., 2025), we construct ImageNet-10, ImageNet-Dogs,
and Tiny-ImageNet by selecting 10, 15, and 200 subsets from ImageNet-1k (Deng et al., 2009),
respectively. We strictly follow the experimental protocols of the corresponding baselines to ensure
a fair and consistent comparison.

Baselines. We integrate our proposed plug-in into four advanced deep clustering algorithms, includ-
ing CC (Li et al., 2021), TCL (Li et al., 2022), SCAN (Gansbeke et al., 2020), and CDC (Jia et al.,
2025). In addition, we compare the enhanced versions against several representative deep clustering
methods, including BYOL (Grill et al., 2020), NNM (Dang et al., 2021), GCC (Zhong et al., 2021),
IDFD (Tao et al., 2021), TCC (Shen et al., 2021), SPICE (Niu et al., 2022), ProPos (Huang et al.,
2023), SeCu (Qian, 2023), and CoNR (Yu et al., 2023).

Experiment Settings. We evaluate clustering performance using three standard metrics, i.e., Ac-
curacy (ACC) (Li & Ding, 2006), Normalized Mutual Information (NMI) (Strehl & Ghosh, 2002),
and Adjusted Rand Index (ARI) (Hubert & Arabie, 1985). Higher scores indicate better alignment
with the ground-truth clustering. For CC (Li et al., 2021), TCL (Li et al., 2022), SCAN (Gansbeke
et al., 2020), and CDC (Jia et al., 2025), we adopt MoCo-v2 (Chen et al., 2020b) as the pre-trained
backbone and strictly follow the data augmentation protocols of CDC (Jia et al., 2025).

Additional experiment settings details are provided in Appendix B.
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Table 1: Comparison of clustering performance (%) on six standard benchmarks. The best result for
each method is highlighted in bold, while the overall best result is marked with an underline.

CIFAR-10 CIFAR-20 STL-10 ImageNet-10  ImageNet-Dogs  Tiny-ImageNet

Method
ACC NMI ARI|ACC NMI ARI|ACC NMI ARI|ACC NMI

Avg.
ARI|ACC NMI ARI|ACC NMI ARI

BYOL [NeurIPS*20] | 87.5 78.0 75.2|52.3 53.3 36.0|86.1 754 71.5|/94.7 88.4
NNM [CVPR’21] 84.3 748 709|477 48.4 31.6|80.8 694 650| - -

GCC [1cev 2l 85.6 76.4 728|472 472 305|788 68.4 63.1]90.1 842
IDFD [ICLR’21] 81.5 71.1 663|425 42.6 264|756 643 575|954 89.8
TCC [NeurIPS'21] | 90.6 79.0 73.3|49.1 479 312|814 732 68.9]|89.7 84.0
SPICE [TIP’22] 91.7 85.8 83.6| 584 584 422|929 86.0 853|959 90.2

ProPos [TPAMI'22] | 94.3 88.6 88.4|61.4 60.6 45.1|86.7 758 73.7|96.2 90.8
SeCu [ICCV’23] 93.0 86.1 85.7|552 55.1 39.6|83.6 733 69.3| - -
CoNR [NeurIPS'23] | 93.2 86.7 86.1|60.4 60.4 44.3)92.6 852 84.6|/964 O9lI.1

88.9(729 69.7 60.9| - - - -
82.2(52.6 49.0 36.2|13.8 347 175 56.7
90.1]59.1 54.6 413]| - - -
825595 554 41.7| - - - -
91.2167.5 62.7 52.6|30.5 449 16.1 68.7
91.8|77.5 737 675|294 46.0 17.9 70.3

9221794 744 66.7]30.8 46.1 184 71.6

CC [AAAT21] 86.3 77.6 743|525 509 352]80.0 72.7 67.7|90.5 87.6
CC+Ours 89.5 81.3 79.7|57.4 57.5 42.3|91.4 832 82.5|97.2 93.1
TCL [ICV’22] ‘88.2 80.4 76.8|53.1 529 35.7|86.8 79.9 75.7|88.4 83.3
TCL+Ours 90.0 84.1 80.6|57.9 57.6 41.1|90.4 81.8 80.6| 95.3 91.1
SCAN [ECCV20] ‘90.2 83.7 81.0|52.1 544 38.0|91.4 834 82.6/97.2 929
SCAN+Ours 92.2 85.6 84.5| 554 57.3 40.2|92.7 85.1 84.9|97.8 94.3
CDC [ICLR’25] ‘94.2 88.1 88.1|61.9 609 46.1|93.0 85.8 85.6|97.1 92.7
CDC+Ours 94.7 88.7 89.0| 62.7 61.5 46.6| 93.6 86.9 86.8| 97.2 92.9

84.6(63.3 60.0 493|139 430 55| 608
93.9(66.1 633 52.8(19.1 465 7.6 66.9 (+6.1)
80.0| 644 623 516|172 455 74| 627
90.1(73.7 70.1 60.5|22.1 46.6 10.1 68.0 (+5.3)
93.9|71.8 69.1 60.6|274 519 14.1| 687
953|767 73.9 672|287 52.3 14.9 71.0(+2.3)
93.6|79.5 77.0 70.5|31.3 450 18.0| 727
93.8|84.3 782 73.8|32.2 46.1 18.6 73.8 (+1.1)

4.2 MAIN RESULTS

Significant Clustering Improvement. As shown in Table 1, our method delivers consistent and
substantial improvements when integrated with four representative deep clustering methods. On six
benchmark datasets, it achieves performance gains of up to 6.1% when integrated with CC (Li et al.,
2021) and a significant 1.1% even when combined with the state-of-the-art method CDC (Jia et al.,
2025). Furthermore, our plug-in enables CDC to achieve the highest performance on five out of
the six datasets (i.e., CIFAR-10, CIFAR-20, STL-10, ImageNet-Dogs, and Tiny-ImageNet), while
its integration with SCAN (Gansbeke et al., 2020) yields the best result on ImageNet-10. These
findings demonstrate the effectiveness of our method across a diverse range of baselines.

Improved Training Efficiency. Beyond clustering perfor-
mance, we evaluate the training efficiency of our method.
By dynamically pruning well-learned samples, the number
of samples involved in gradient updates decreases progres-
sively. This reduction lowers computational cost without
degrading clustering performance. As shown in Fig. 3, the
training time decreases consistently as more samples are re-
moved, highlighting the efficiency of our dynamic sample
selection strategy. Table 2 quantifies the average number of
samples retained per epoch when integrating our strategy
with SCAN (Gansbeke et al., 2020) and CDC (Jia et al.,
2025) on CIFAR-10, CIFAR-20, and STL-10. The results
demonstrate that our method consistently reduces the num-
ber of training samples across all settings, leading to notable
training time savings. Notably, this leads to an average ef-
ficiency improvement of 1.3x, confirming that our method
enhances both clustering performance and practical training
efficiency.
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Figure 3: Relationship between data
pruned and epoch time on CIFAR-
20. As training progresses, the model
prunes an increasing number of sam-
ples and reduces the computational
cost of subsequent training steps.

Table 2: Comparison of training efficiency.

Method CIFAR-10 CIFAR-20 STL-10  Avg.
CDC+Ours 17.4% 12.1% 143% 14.6%
SCAN+Ours 37.7% 52.9% 299%  40.2%
CC+Ours 44.5% 30.9% 28.1% 34.5%
Speed Up ~1.3x
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4.3 FURTHER ANALYSIS

Ablation Study. We conduct ablation studies on CIFAR-10, CIFAR-20, and STL-10 to validate the
contribution of each proposed module. As summarized in Table 3, both modules consistently im-
prove performance. Specifically, the Density-Aware Clustering Head Initialization (DACHI) yields
average gains of 1.2%, 1.6%, and 1.1% on CIFAR-10, CIFAR-20, and STL-10, respectively, for both
CDC (Jiaetal., 2025) and SCAN (Gansbeke et al., 2020). This indicates that the proposed clustering
head initialization strategy better captures diverse feature patterns. The Dynamic Sample Selection
(DSS) module further enhances robustness to diverse sample feature patterns, providing additional
performance gains. The synergistic effect of combining DACHI and DSS achieves the best results
on all datasets. For instance, on STL-10, our proposed method outperforms the original CDC and
SCAN by 1.0% and 1.8%, respectively. These consistent improvements validate the effectiveness of
our proposed modules in boosting clustering performance.

Table 3: Ablation study of our proposed modules on three benchmarks (i.e., CIFAR-10, CIFAR-20,
and STL-10). We enhance both CDC and SCAN with Density-Aware Clustering Head Initialization
(DACHI) and Dynamic Sample Selection (DSS).

CIFAR-10 CIFAR-20 STL-10

Method ACC NMI ARI | ACC NMI ARI [ ACC NMI ARI Avg.
CDC 942 88.1 881 | 619 609 46.1 | 93.0 8.8 85.6 78.2
+DACHI | 945 884 88.6 | 625 615 466 | 935 86.6 864 | 787,05
+DSS 945 884 887 | 623 614 464 | 933 863 86.0 | 78.6404
Ours 947 88.7 89.0 | 62.7 615 46.6 | 93.6 869 86.8 | 789,07
SCAN 90.2 837 81.0 | 521 544 380 | 914 834 826 73.0
+DACHI | 91.7 852 83.8 | 551 572 398 | 925 848 845 | 7494119
+DSS 90.5 839 814 | 539 564 39.6 | 919 84.0 834 | 73.9400
Ours 922 856 845 | 554 573 402 | 927 851 849 | 753,23

Mitigating Overfitting to Redundant Patterns. As shown in Table 4, all methods perform well
on high-density regions with relatively simple patterns, while differences become more pronounced
in medium- and low-density regions that contain more complex and diverse patterns. Compared
with CDC, our method maintains comparable or slightly better performance in high-density regions,
while consistently achieving gains in medium- and low-density regions. For instance, on STL-10,
our method improves accuracy by 1.0% in the medium-density region and 2.4% in the low-density
region. These results indicate that our approach performs better on complex, low-density patterns,
effectively mitigating the tendency of clustering models to overfit redundant high-density patterns
and enabling better learning of diverse and informative samples. Moreover, Fig. 4(a) illustrates the
training dynamics on ImageNet-Dogs. CDC rapidly fits simple high-density patterns in the early
stage but soon stagnates, suggesting overfitting to redundant patterns. In contrast, our method,
though slower to converge initially, continues to improve steadily in later stages and ultimately
surpasses CDC by a clear margin. This training behavior demonstrates that our approach not only
avoids early overreliance on simple patterns but also sustains the discovery of complex patterns in
medium- and low-density regions, leading to more generalizable representations.

Table 4: Comparison of clustering accuracy (%) across densities.

CIFAR-10 STL-10
High Medium Low High Medium Low

Random 96.3 88.4 85.6 90.1 84.1 70.1
CDC 97.5 90.3 87.1 954 89.2 79.1
Ours 97.7 90.9 884 95.6 90.2 81.5

Method

Effect of Sample Pruning Threshold €. Table 5 further investigates the effect of the sample pruning
threshold on clustering performance (i.e., ACC). The pruning ratio is directly proportional to the
threshold e. For instance, on CIFAR-10, the ratio rises from 17.4% at ¢ = 0.1 to nearly 49.9%
at e = 0.5 and a similar trend can be observed on STL-10. We find that moderate pruning (e =
0.1 ~ 0.3) improves ACC. This suggests that removing well-learned samples enables the model
to focus on more complex and informative examples, thereby enhancing performance. In contrast,
aggressive pruning (e = 0.4 ~ 0.5) causes performance degradation, indicating that excessive
sample removal discards valuable training samples. These results demonstrate the importance of
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Figure 4: (a) Training curves on the ImageNet-Dogs dataset. (b) Sensitivity of clustering perfor-
mance to the density weighting coefficient o on CIFAR-10, CIFAR-20, and STL-10. (c) Sensitivity
of clustering performance to the number of nearest neighbors &£ on CIFAR-10, CIFAR-20, and STL-
10
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Figure 5: (a) Comparison of different pruning strategies. (b) Comparison of mean A%S on CIFAR-
10, CIFAR-20, and STL-10. (¢) Comparison of mean A2S values on CIFAR datasets between our
method and CDC.

selecting an appropriate threshold € to balance performance gains with training efficiency (more
details can be seen in Appendix C.1).

Table 5: Effect of sample pruning threshold € on clustering performance.

e=0 e=0.1 €e=0.2 e=0.3 e=04 e=0.5
Dataset

Pruned ACC Pruned ACC Pruned ACC Pruned ACC Pruned ACC Pruned ACC
CIFAR-10 0% 942  174% 945 265% 945 351% 943 437% 940 499% 939
STL-10 0% 93.0 142% 933 27.0% 933 358% 93.0 58.1% 928 68.7% 924

Parameter Sensitivity Analysis. Fig. 4(b) shows the impact of the density weighting coefficient o
on clustering performance. When o = 0 (i.e., no density weighting), performance on CIFAR-10 and
STL-10 is relatively low. Increasing « to a moderate range (o = 1-2) steadily improves clustering,
achieving near-optimal results in most cases. Specifically, on CIFAR-10, ACC rises from 94.2% to
94.5%, while on STL-10, the peak ACC of 93.7% occurs at « = 4, though further increases in o
cause minor fluctuations. These observations suggest that moderate density weighting effectively
captures diverse feature structures, whereas excessively large weights provide little additional ben-
efit. Overall, setting o between 1 and 3 offers a robust and effective choice. Next, we analyze the
sensitivity of our method to the choice of k in density estimation, where sample density is measured
by the average distance to each sample’s &k nearest neighbors. Varying & from 10 to 50, Fig. 4(c)
shows that clustering performance remains highly stable, with maximum differences below 0.1%
across all k values. This confirms that our density estimation is robust to k£ and does not require
fine-tuning of this hyperparameter (more details can be seen in Appendix C.2).

Our Pruning Strategy is Better. Previous experiments demonstrated that our pruning strategy
achieves better performance with higher training efficiency. To further validate its effectiveness, we
compare DSS with several alternatives, including no pruning, loss-based pruning (where the second-
order difference—based feature consistency loss is replaced with the standard training loss), and
random pruning at different ratios(10% and 30%). As shown in Fig. 5(a), DSS consistently achieves
the best results on CIFAR-10, STL-10, and the averaged scores. In contrast, loss-based pruning
leads to a significant drop in performance (92.5% and 92.9%), while random pruning maintains
performance at a low ratio (10%) but degrades notably as the pruning ratio increases. These results
confirm that DSS is a superior pruning strategy.
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Stability Analysis of Feature Consistency. As mentioned earlier, our method evaluates the stability
of sample learning states using the second-order difference of feature consistency (A2S). A lower
AZS indicates smoother feature evolution and a more stable learning process. Fig. 5(b) illustrates the
overall trend of A2S during training. At the early stage, the model’s learning state is unstable, with
AZ2S values remaining high. As training progresses, the model gradually learns and adapts to more
samples, leading to a steady decrease in A2S. Notably, CDC maintains consistently higher A2S
values and continues to fluctuate in later training stages, suggesting that it overfits simple feature
patterns while failing to capture more complex ones. In contrast, our method converges to a more
stable state, effectively alleviating this issue. Further results in Fig. 5(c) confirm the superiority of
our approach, showing consistent improvements across CIFAR-10, CIFAR-20, and STL-10.

5 CONCLUSION

In this paper, we present a novel plug-in designed to mitigate overfitting to simple and redundant fea-
ture patterns, which adaptively adjusts training based on sample density and learning states. Analysis
of pre-trained features shows that high-density regions contain many redundant samples, while low-
density regions have fewer, more diverse samples. To address this issue, we incorporated neighbor-
hood density information into clustering head initialization, effectively reducing bias from redundant
high-density samples and enhancing representations of complex low-density samples. Additionally,
we introduced a dynamic sample selection strategy, defining a stability measure based on prediction
consistency between weakly and strongly augmented views to prioritize unstable or under-learned
samples. Extensive experiments across multiple datasets and baselines demonstrate that our method
consistently outperforms existing approaches, achieving smaller fluctuations in prediction consis-
tency and significantly improved clustering accuracy, especially on samples with complex patterns
where conventional methods often struggle.
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We confirm that our work on deep clustering adheres to the ICLR Code of Ethics. The research
utilizes publicly available datasets containing no personally identifiable information. As a strictly
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The complete code for implementing data preprocessing, model training, and evaluation is provided
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Appendix

A STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

The authors used the LLM solely to assist with grammar, spelling, and sentence clarity. The authors
reviewed and bear full responsibility for all content generated by the LLM. The LLM contributed
in no other way to the paper. The research idea, experiment design, and all other content were
developed and completed by the authors.

B MORE EXPERIMENT SETTINGS DETAILS

Datasets. Following (Gansbeke et al., 2020), Table 6: Summary of datasets.

we construct the CIFAR-20 dataset using 20

superclasses of the CIFAR-100 dataset, and Dataset # Samples | # Classes | Image Size

build the TmageNet-10, ImageNet-Dogs, and CIFAR-10 60,000 10 32x32x3

Tiny-ImageNet datasets from 10, 15, and 200 CIFAR-20 60,000 20 32x32x3

classes of ImageNet-1k, respectively. For Tiny- ?r;l;;ezl(\)let 0 3888 }8 23232:)3(3

Im rform th mpl rainin g ’

anci1 gtieljt?:{gvéeroii:esso on ttheza Ct?airll)ir?;e ste;d ang ImageNet-Dogs | 19,500 15 224x224x3
’ Tiny-ImageNet 100,000 200 64x64x3

adopt the merged datasets for both training and
testing for other datasets. Specifically, we extend the STL-10 dataset with 100,000 relevant unla-
beled samples during pre-training with MoCo-v2, which are removed afterwards.

Backbones. We adopt ResNet-34 as the backbone in both our method and all baselines to ensure
a fair comparison. To better accommodate feature extraction on small datasets such as CIFAR-10
and CIFAR-20, we replace the first convolutional filter (7x7, padding 3, stride 2) with a 3x3 filter
(padding 2, stride 1), and remove the first max-pooling layer following (Huang et al., 2023; Jia et al.,
2025). Besides backbone network, we attach a clustering head following the original design of each
baseline method to encode the learned representation to cluster assignments.

Experiment Settings. For representation learning, we strictly follow the experimental settings from
CDC (Jia et al., 2025) to pre-train the backbone with MoCo-v2. For data augmentation protocols, we
use strong and standard augmentation from SCAN (Gansbeke et al., 2020). We adopt the adaptive
moment estimation (adam) optimizer, and use learning rate from settings from CDC (Jia et al., 2025).
We set the number of training epochs to 100 epochs for all datasets. Meanwhile, in all experiments
that integrated our method, we set « = 2.0 and £ = 10 across all datasets. We set ¢ = 0.01 on
STL-10 and ImageNet-10 when applying our method to CC (Li et al., 2021), while ¢ = 0.1 for all
other cases. All experiments are conducted on an NVIDIA RTX 3090 GPU.

Baselines. To ensure fair comparison, we re-implement SCAN (Gansbeke et al., 2020), CC (Li
et al., 2021), TCL (Li et al., 2022) and CDC (Jia et al., 2025) using the same backbone pre-trained
with MoCo-v2 following the experimental settings of CDC, and we follow the original design of
the clustering heads from each baseline method. We directly copy the results reported by other deep
clustering methods, including BYOL (Grill et al., 2020), NNM (Dang et al., 2021), GCC (Zhong
et al., 2021), IDFD (Tao et al., 2021), TCC (Shen et al., 2021), SPICE (Niu et al., 2022), Pro-
Pos (Huang et al., 2023), SeCu (Qian, 2023) and CoNR (Yu et al., 2023).

C MORE EXPERIMENT
C.1 EFFECT OF PRUNING THRESHOLD €

Table 7: Effect of pruning threshold ¢ on pruned samples and clustering performance (ACC, NMI,
ARI).

e=0.1 €e=02 e=0.3 e=04 e=05
Pruned ACC NMI ARI Pruned ACC NMI ARI Pruned ACC NMI ARI Pruned ACC NMI ARI Pruned ACC NMI ARI

CIFAR-10 17.4% 945 884 887 265% 945 882 885 351% 943 831 832 437% 940 875 876 499% 939 87.1 873
STL-10 142% 933 863 86.0 27.0% 933 863 86.1 358% 930 859 856 581% 928 856 852 687% 924 847 843

Dataset
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C.2 SENSITIVITY ANALYSIS

Table 8: Sensitivity analysis of « in density weighting on CIFAR10, CIFAR20, and STL10.

Dataset a=0 a=1 a=2
ACC NMI ARI ACC NMI ARI ACC NMI ARI

CIFAR-10 942 88.1 88.1 944 882 884 945 884 88.6
CIFAR-20 619 609 46.1 625 615 46.6 625 615 46.6
STL-10 93.0 858 856 933 863 860 935 86.6 864

Dataset a=3 a=14 a=5
ACC NMI ARI ACC NMI ARI ACC NMI ARI

CIFAR-10 945 884 88.6 944 883 885 943 881 882
CIFAR-20 624 614 465 624 614 465 625 613 465
STL-10 934 864 862 937 869 868 934 864 862

Sensitivity Evaluation of Clustering Performance to Density Weighting. As shown in Table 8,
we further investigate the sensitivity of clustering performance to the density weighting coefficient
o. When o = 0 (i.e., without density weighting), the clustering performance across all three datasets
is relatively lower. As « increases to a moderate range (i.e., « = 1 ~ 2), the clustering performance
improves steadily, reaching an optimum in most cases. For instance, on CIFAR-10, ACC increases
from 94.2% to 94.5% and NMI from 88.1% to 88.4%. On STL-10, the peak ACC of 93.7% is
achieved at o = 4, but the clustering performance suffers from minor fluctuations with a further
increase in o. This indicates that moderate density weighting effectively captures diverse feature
structures, while excessively large weights yield no additional gains. In summary, a value of «
between 1 and 3 represents a robust and effective setting at most cases.

Sensitivity of Density Estimation to the Choice of k. Our method estimates sample density using
the average distance to its k nearest neighbors. To assess the sensitivity to k, we vary it from 10 to 50
and evaluate the clustering performance on CIFAR-10, CIFAR-20, and STL-10. As shown in Fig. 6,
the clustering performance across all metrics (i.e., ACC, NMI, and ARI) remains highly stable. For
example, on CIFAR-10, ACC fluctuates only between 94.4% and 94.5%, while variations in NMI
and ARI are within 0.2%. This stability is consistent across CIFAR-20 and STL-10, with maximum
performance differences below 0.2% across all k£ values. These results demonstrate that our density
estimation is robust to the choice of k, indicating that the method’s performance does not depend on
fine-tuning this hyperparameter.

CIFAR-10 CIFAR-20 STL-10
96
96 4 —e— ACC
—_ — NMI —_ 64 —_
9 —— AR | Q $ 921
< 92 > - acc | & —o— ACC
(0] o 56 NME | © NMI
bt o o
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O gg | ———0——o——9| o O Po ° ° .
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Figure 6: Sensitivity of clustering performance to the number of nearest neighbors & on CIFAR-10,
CIFAR-20, and STL-10.
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C.3 ACCURACY OF OVERALL SAMPLES AND REMOVED SAMPLES

We evaluated CDC+Ours on CIFAR-10 and STL-10, comparing the per-epoch accuracy of removed
samples with the accuracy over all samples, as shown in Fig. 7. The results show that removed
samples consistently have higher accuracy at each stage, indicating that the model usually makes
correct predictions when marking samples as “’stable”.

Training Accuracy vs. Removed-sample Accuracy Over Epochs o Training Accuracy vs. Removed-sample Accuracy Over Epochs
97
96
94
95
> >
%3 <
e Qo2
S 94 =1
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93 90
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911 —e— Overall Accuracy —e— Overall Accuracy
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90
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Figure 7: (a) Training accuracy and removed-sample accuracy curves on CIFAR-10 over epochs.
(b) Training accuracy and removed-sample accuracy curves on STL-10 over epochs.

C.4 VISUALIZATION OF SEVERAL STABLE (REMOVED) AND UNSTABLE (KEPT) SAMPLES

Figure 9: Visualization of some stable samples from STL-10

C.5 DISCUSSION ON INITIALIZATION STRATEGIES

K-Means is one of the most common strategies in clustering, and it works well on most natural
image datasets. For many natural datasets, such as CIFAR-10 and STL-10, using K-Means directly
can give reasonable and reliable initial centers for later clustering steps. However, the success of
K-Means depends on its basic assumptions: the clusters should be roughly spherical, convex, and
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balanced. When a dataset does not satisfy these assumptions, K-Means may not provide a good
starting point.

COIL-20 is a non-natural image dataset with a complex manifold structure. Its feature distribution
is not spherical or convex. In this case, K-Means initialization cannot capture the true structure
of the data and may lead to suboptimal clustering results. Therefore, we explored a more suitable
initialization method for this type of data. Based on the distribution of COIL-20, we use spectral
clustering as the initialization strategy. Spectral clustering builds a similarity graph and performs
clustering in a low-dimensional space, which makes it more suitable for datasets with complex
geometric shapes. After obtaining the spectral embedding, we apply our density-weighted center
correction to the final K-Means step, so the initial centers better match the true data structure.

The results in Table 9 show that spectral clustering performs much better than K-Means on COIL-
20, and adding our module on top of it gives a further improvement. Moreover, the results further
show that choosing an appropriate initialization strategy for different data distributions is important.
They also support the generality of our approach: as long as the initialization fits the data well, our
density-aware correction module can further improve the clustering quality.

Table 9: Performance of different initialization strategies on COIL-20.

Method ACC NMI ARI
SCAN 926 952 903
SCAN + K-Means 82.7 921 773
SCAN + Spectral Clustering 99.2 989 984

SCAN + Spectral Clustering + Ours  99.3  99.0 98.6

C.6 ADDITIONAL RESULTS UNDER MULTIPLE RANDOM SEEDS

To further evaluate the stability of our method, we conducted experiments with five different random
seeds on CIFAR-10, CIFAR-20, and STL-10. The results reported in Table 10 show that our method
consistently improves clustering performance across all metrics (ACC, NMI, ARI) and across all
datasets. Compared with the baseline methods (SCAN and CDC), the performance gains of our
approach remain stable under different random initializations, with low standard deviations.

Table 10: Clustering performance (ACC, NMI, ARI; mean4std %) on CIFAR-10, CIFAR-20, and
STL-10 over five runs with different random seeds.

CIFAR-10 CIFAR-20 STL-10
Method ACC NMI ARI ACC NMI ARI ACC NMI ARI
SCAN 88.6+1.9 83.24+03 794413 51.0+1.0 539409 37.1+£0.7 91.440.5 83.5+0.6 82.7+0.8
SCAN+Ours  91.840.5 85.04+0.6 83.7+1.0 55.3+04 56.7+0.5 40.5+0.7 92.5+0.1 85.0+0.3 84.6+0.3
CDC 94.1+£0.3 87.9+04 87.8+0.6 61.7+£0.3 61.1+£0.2 46.0+£0.2 93.0+£0.1 85.94+0.1 85.630.1

CDC+Ours 94.6+0.2 88.5+0.2 88.7+0.4 62.4+03 61.4+0.1 463103 93.5+0.1 86.7+0.2 86.6+0.3

C.7 EARLY STOPPING STRATEGY

We further conducted experiments showing that our sample stability assessment can indeed serve as
a practical heuristic for early stopping. Empirically, as training progresses, the number of samples
that the model has "mastered” and therefore temporarily removes keeps increasing. This growth
gradually slows down and eventually becomes stable. Based on this observation, we designed a
simple but effective stopping rule: we track the number of removed samples at each epoch and
record the maximum removed count. When this maximum remains unchanged for the most recent
K epochs, we stop training.

We evaluated our proposed stopping strategy in combination with CDC on CIFAR-10 and STL-10,
testing several values of K(10, 20, 30, 40). We report the stopping time, the performance at the
stopping point, and the best achievable performance. As shown in Table 11, for K = 10, 20, the
performance at stopping is within 1% of the best performance. For K = 30, 40, the stopped model

17



Under review as a conference paper at ICLR 2026

Table 11: Performance of the sample stability based early stopping strategy on CIFAR-10 and STL-
10.

| CIFAR-10 | STL-10
| Stop Epoch  ACC NMI ARI | Stop Epoch ACC NMI ARI
Epoch=100 - 944 88.3 88.5 - 934 86.5 86.2
Best - 946 885 88.7 - 935 86.6 86.7
K=10 49 940 872 874 59 93.0 858 855
K=20 69 943 879 88.2 77 93.1 859 85.7
K=30 69 943 879 882 98 934 86.6 864
K=40 - - - - 98 934 86.6 864

achieves performance almost identical to the optimal result. This shows that our stopping strategy
can find a point that is very close to the best result without training for all epochs.

C.8 EXPERIMENTS ON NON-IMAGE DATA

To further evaluate the generality of our method, we conduct additional experiments on three non-
image datasets: CNAE-9, Semeion, and News20. These datasets cover diverse modalities, including
high-dimensional sparse TF-IDF vectors and binarized digit patterns. We apply our module on top
of SCAN and report the results in Table 12. Across all datasets, our method consistently improves
over the SCAN baseline, indicating the effectiveness of our approach. These results show that our
module is not tied to any specific data type and can generalize well to non-image modalities.

Table 12: Generality of our method across different data modalities.

CNAE-9 Semeion News20
ACC NMI ARI | ACC NMI ARI | ACC NMI ARI
SCAN 559 436 348 | 540 468 334 | 606 59.6 46.5
SCAN+Qurs | 63.9 51.7 433 | 558 523 408 | 625 60.2 475
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D ALGORITHM

We present the pseudo-code of our proposed method in Algorithm 1.

Algorithm 1: The proposed algorithm

1: Input: Unlabeled training data D,, = {x; : i € {1,2,...,N}}.

2: Output: Encoder fy(-), clustering head g(-), and K clusters.

3: Load the pre-trained parameters of fy(-).

4: Extract features using fp(-) and perform K-Means.

5. Compute density weight by Eq. (1) and re-estimate density-weighted prototypes using Eq. (2).
6: Initialize clustering head parameters with the proposed density-weighted prototypes.

7: Initialize an empty set of stable samples D, and an updated set of retained samples D; = D,,.
8: for epoch=1, 2, ... do

9:  for each sample z; € D, do

10: Forward pass to get P} and P and compute .S; using Eq. (3);

11: Check second-order difference using Eq. (5) and check pseudo-label consistencys;
12: if prediction consistency is stable and pseudo-labels are consistent then

13: Add z; to Dy;

14: end if

15:  end for

16:  Update model parameters using samples in Dy = D,, — Dq;

17: end for
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