

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 SAMPLES ARE NOT EQUAL: A SAMPLE SELECTION APPROACH FOR DEEP CLUSTERING

Anonymous authors

Paper under double-blind review

ABSTRACT

Deep clustering has recently achieved remarkable progress across various domains. However, existing clustering methods typically treat all samples equally, neglecting the inherent differences in their feature patterns and learning states. Such redundant learning often drives models to overemphasize simple feature patterns in high-density regions, weakening their ability to capture complex yet diverse ones in low-density regions. To address this issue, we propose a novel plug-in designed to mitigate overfitting to simple and redundant feature patterns while encouraging the learning of more complex yet diverse ones. Specifically, we introduce a density-aware clustering head initialization strategy that adaptively adjusts each sample’s contribution to cluster prototypes according to its local density in the feature space. This strategy mitigates the bias towards high-density regions and encourages a more comprehensive attention on medium- and low-density ones. Furthermore, we design a dynamic sample selection strategy that evaluates the learning state of samples based on the feature consistency and pseudo-label stability. By removing sufficiently learned samples and prioritizing unstable ones, this strategy adaptively reallocates training resources, enabling the model to consistently focus on samples that remain under-learned throughout training. Our method can be integrated as a plug-in into a wide range of deep clustering architectures. Extensive experiments on multiple benchmark datasets demonstrate that our method improves clustering accuracy by up to **6.1%** and enhances training efficiency by up to **1.3 \times** . **Code is available in the supplementary material.**

1 INTRODUCTION

Deep clustering integrates the representation learning ability of deep neural networks with the common objective used in traditional clustering algorithms, achieving significant advances in recent years (Zhou et al., 2025; Ren et al., 2025). Existing deep clustering methods utilize self-supervised learning techniques (He et al., 2020; Chen et al., 2020a; Grill et al., 2020) to handle complex high-dimensional data effectively, thus mitigate the limits of traditional clustering algorithms (Xie et al., 2016; Zhang et al., 2025).

Recent deep clustering methods (Gansbeke et al., 2020; Li et al., 2021; Jia et al., 2025) use pre-trained encoders to obtain discriminative representations. A key property of these representations is that adjacent representations often share semantic similarity. Consequently, these methods exploit this underlying structure to generate supervisory signals for training. To further investigate the representation distribution in the feature space, we analyze the local density using the k -nearest neighbor distance and observe a consistent phenomenon across datasets, most samples concentrated in high-density regions, while medium- and low-density regions contain far fewer samples (Fig. 1(a)). Moreover, images selected from different density regions reveal distinct feature patterns. High-density samples tend to be simple and redundant, while medium- and low-density samples exhibit greater complexity and diversity (Fig. 1(b)). For example, in the STL-10 truck class, high-density samples usually represent typical truck appearances, capturing views from the side or oblique front with holistic features. In contrast, medium- and low-density samples present richer variations, covering various truck models, multiple viewpoints, and fine-grained local details. As illustrated in Fig. 1(c), such differences in feature patterns lead to notable performance disparities, simple and redundant high-density samples are learned quickly due to their abundance and ease, while more

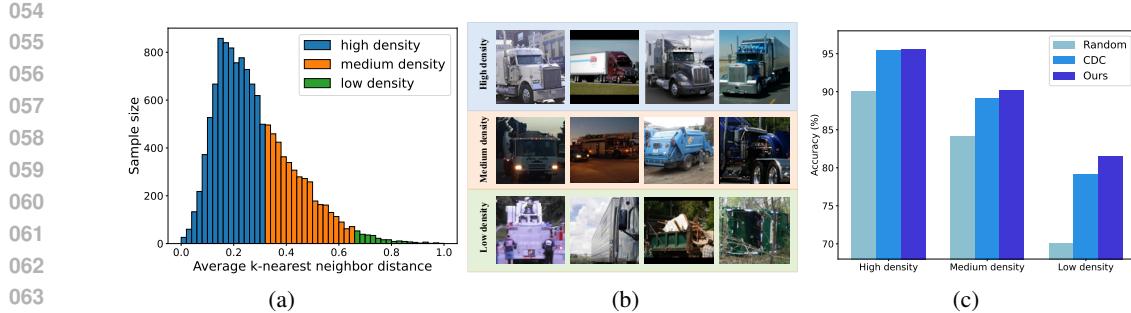


Figure 1: (a) Sample size distribution across varying densities in the STL-10 dataset, with density estimated by k -nearest neighbor distance. (b) Random selected images from different density regions of the STL-10 dataset. High-density samples are more simple and redundant, while medium- and low-density samples are more complex and diverse. (c) Performance across different density regions under three initialization strategies (i.e., Random, CDC, and Ours), showing our proposed method’s consistent improvements, particularly in low-density samples.

complex and diverse medium- and low-density samples remain difficult to master. We attribute this phenomenon to the overfitting of simple and redundant feature patterns.

In this paper, we introduce a novel plug-in designed to mitigate overfitting to simple and redundant feature patterns while encouraging the learning of more complex and diverse ones. Our method tackles this challenge from two perspectives. First, we propose a density-aware clustering head initialization strategy, which adaptively weights each sample’s contribution to its cluster prototype based on local density, thus reducing the bias caused by simple and redundant high-density samples dominating the clustering head initialization. Second, we develop a dynamic sample selection strategy guided by feature consistency and pseudo-label stability, which identifies and temporarily suspends training on already well-learned samples. This strategy adaptively reallocates the model’s learning capacity toward more unstable samples, thereby fostering a more efficient and comprehensive learning trajectory.

The proposed method is **plug-and-play**, enabling seamless integration with existing deep clustering methods while significantly improving their clustering performance and training efficiency. In summary, the main contributions of this work are as follows.

- We identify a general phenomenon in deep clustering where sample distributions are dominated by simple and redundant samples in high-density regions. This dominance causes models overfitting to simple and redundant samples and overlook complex and diverse samples in low-density regions, limiting their discriminative power.
- We propose two **strategies**: (i) density-aware clustering head initialization employs local density based adaptive weighting to prevent cluster prototype bias towards high-density regions; and (ii) feature consistency and pseudo-label stability based dynamic sample selection identifies and temporarily discards sufficiently learned samples during training, enabling models to allocate more capacity to unstable samples.
- Extensive experiments on multiple benchmark datasets show that our method consistently boosts the performance of state-of-the-art deep clustering methods by up to **6.1%**. Moreover, it improves training efficiency by up to **1.3x**, achieving superior results with fewer training samples.

2 RELATED WORK

Deep Clustering. Deep clustering leverages the representation learning capability of deep neural networks to perform clustering. Existing methods can be broadly divided into two categories. The first paradigm consists of two-stage methods, where a deep neural network is first trained to extract low-dimensional representations, which are then clustered using traditional algorithms such as K-Means or spectral clustering (Xie et al., 2016; Huang et al., 2014). While this paradigm simplifies optimization, its performance is inherently constrained by the quality of extracted representations, which may not be optimally aligned with the final clustering objective. The second

108 paradigm encompasses end-to-end iterative methods that jointly optimize representations and cluster
 109 assignments. These methods utilize the model’s own outputs as supervisory signals and can
 110 be further distinguished by their learning strategy: self-training iteratively generates pseudo-labels
 111 for all samples to guide optimization (Xie et al., 2016; Guo et al., 2017); self-labeling further se-
 112 lects high-confidence predictions to provide more stable and reliable supervisory signals (Gansbeke
 113 et al., 2020; Jia et al., 2025; Wu et al., 2025); and contrastive learning enhances representations
 114 by managing similarity relationships across different data views (Shen et al., 2021; Li et al., 2021;
 115 2025). Recently, methods that leverage large-scale pre-trained models like CLIP have emerged as
 116 a powerful approach. By utilizing pseudo-labels derived from textual representations or enforcing
 117 cross-modal neighborhood consistency, these techniques introduce rich external knowledge, leading
 118 to significant performance gains (Cai et al., 2023; Li et al., 2024; Qiu et al., 2024). Overall, due to
 119 their effective exploitation of high-confidence samples, end-to-end self-labeling methods represent
 120 a particularly promising direction in deep clustering.

121 **Sample Selection.** Sample selection has been widely studied in deep learning for enhancing training
 122 efficiency, model robustness, and generalization. Existing methods can be broadly classified as
 123 either static or dynamic. Static methods perform an one-time sample selection, either prior to or
 124 during the initial stage of training, to construct a compact yet representative subset. For example,
 125 data pruning techniques eliminate redundant or low-value samples based on metrics such as forgetting
 126 events (Toneva et al., 2019; Killamsetty et al., 2021c) or influence functions (Paul et al., 2021),
 127 while core-set methods (Xia et al., 2023; Braverman et al., 2022) seek to identify a minimal subset
 128 that best approximates the full data distribution. Although effective at reducing computational cost,
 129 a key limitation of static methods is their inability to adapt to the evolving importance of samples
 130 as training progresses. In contrast, dynamic methods continuously adjust sample weights or sam-
 131 pling probabilities throughout the training process to prioritize the most informative or challenging
 132 examples (Nguyen et al., 2023; Yuan et al., 2025). A prominent dynamic technique is importance
 133 sampling, where a sample’s selection probability is proportional to its estimated utility. Common
 134 utility metrics include loss values (i.e., emphasizing hard examples), gradient norms (i.e., quanti-
 135 fying a sample’s contribution to parameter updates), and prediction uncertainty (i.e., identifying
 136 ambiguous samples near decision boundaries) (Chang et al., 2017a; Mindermann et al., 2022; Kil-
 137 lamsetty et al., 2021b). By adaptively focusing learning resources on such informative data, these
 138 dynamic mechanisms promote more efficient training and improved model generalization.

139 **Active Learning.** Sampling strategies are also a central topic in Active Learning (AL), where the
 140 goal is to improve model performance with limited annotation budgets. AL methods select infor-
 141 mative samples based on criteria such as uncertainty (Gal et al., 2017) and diversity or representa-
 142 tiveness (Sener & Savarese, 2018). Recent work further shows that sample importance should be
 143 updated dynamically as the model changes (Ash et al., 2020; Killamsetty et al., 2021a).

144 However, most existing sample selection methods are designed for supervised learning. These
 145 strategies become inapplicable in the unsupervised deep clustering paradigm due to the absence
 146 of ground-truth labels. To bridge this gap, we introduce a novel dynamic sample selection strategy
 147 specifically tailored for deep clustering. Our method enables the model to adaptively discard suf-
 148 ficiently learned samples throughout the training process, enhancing both clustering performance
 149 and training efficiency in a fully unsupervised manner. Although AL focuses on selecting samples
 150 for labeling, the idea of estimating how “valuable” each sample is is related to our setting. In deep
 151 clustering, no labels are available, and our goal is different: instead of querying informative sam-
 152 ples, we aim to remove samples that have already been well learned so the model can focus on more
 153 challenging ones.

154 3 PROPOSED METHOD

155 **Overview.** Our proposed deep clustering enhancement component explicitly incorporates sample-
 156 level diversity modeling during both the clustering head initialization and training phases. This
 157 approach is designed to counteract learning bias caused by imbalanced sample feature patterns. The
 158 method consists of two core components: a density-aware clustering head initialization strategy and
 159 a dynamic sample filtering strategy based on feature consistency. In the initialization phase, we
 160 use a pre-trained feature encoder to obtain preliminary feature representations (Sec. 3.1). These
 161 representations are then used to execute our density-aware clustering head initialization strategy,

which aims to generate a set of initial cluster prototypes not dominated by high-density, redundant samples. During the iterative training phase (Sec. 3.2), we adopt a dynamic training strategy. We use the feature consistency-based filtering strategy to identify and temporarily remove samples that have become stable. This allows the model to focus more learning resources on complex or unstable samples that have not been fully learned. Notably, our method is designed as a plug-in that can be readily incorporated into a wide range of deep clustering architectures, consistently improving their clustering performance. We present the pseudo-code of our method in Appendix D.

Notation. Denote by $\mathcal{D}_u = \{x_i : i \in \{1, 2, \dots, N\}\}$ a training set of N unlabeled samples belonging to K semantic clusters. A deep clustering model is composed of a feature encoder $f_\theta(\cdot)$ and a clustering head $g(\cdot)$, where θ denotes the network parameters of the feature encoder. The feature encoder maps an input sample to a high-dimensional feature representation $z = f_\theta(x)$, while the clustering head predicts the pseudo-label distribution $p = g_\phi(z)$, where ϕ denotes the parameters of the clustering head. For each sample x_i , we apply weak augmentation Ω^w and strong augmentation Ω^s to get two different views x_i^w and x_i^s , and their predictive distributions are denoted as P_i^w and P_i^s .

3.1 DENSITY-AWARE CLUSTERING HEAD INITIALIZATION

Most clustering-head-based methods leverage self-supervised learning to obtain a pre-trained feature encoder and then attach a clustering head for further training. However, the parameters of the clustering head are typically initialized randomly (Gansbeke et al., 2020; Li et al., 2021), which is unstable and often disrupts the pre-trained representations, thereby slowing convergence and reducing robustness. To address this, CDC (Jia et al., 2025) introduces prototype-based initialization, which mitigates the degradation caused by random initialization. Nevertheless, despite its stability, prototype-based initialization struggles with imbalanced feature distributions. Since it computes cluster prototypes by averaging all sample features, the resulting prototypes are inevitably dominated by the abundant, redundant samples in high-density regions, failing to capture the true data structure. Consequently, the initial prototypes biased toward high-density regions hinder the model from effectively learning diverse feature patterns.

To mitigate this issue, we propose a density-aware clustering head initialization strategy to adaptively adjust each sample’s contribution to the initial prototypes according to its local density in the feature space (Fig. 2(b)). The procedure consists of two key steps: (1) perform an initial clustering assignment using features extracted by a pre-trained backbone; (2) recompute the cluster prototypes via a density-weighted aggregation within each cluster.

Specifically, we begin by extracting feature representations for all samples using the pre-trained encoder $f_\theta(\cdot)$, resulting in $\mathcal{Z} = \{z_1, \dots, z_N\}$. We then perform an initial clustering by applying the standard K-Means algorithm on \mathcal{Z} to obtain pseudo-labels $\mathcal{L} = \{l_1, \dots, l_N\}$. Based on these assignments, we introduce density-aware re-estimation of cluster prototypes. For each sample, we first estimate its local density using the average k -nearest neighbor distance within the same cluster. The corresponding local density weight w_i is defined as:

$$w_i = \exp\left(\alpha \cdot \frac{1}{k} \sum_{j=1}^k \|z_i - z_i^{(j)}\|_2\right), \quad (1)$$

where $z_i^{(j)}$ denotes the j -th nearest neighbor of z_i within its assigned cluster, and α is a tunable hyperparameter controlling the sensitivity of the weights to distance. Larger values of α make the weights more sensitive to changes in local density. Once the density weights are computed, the

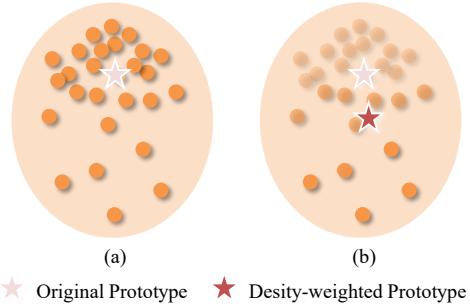


Figure 2: Left: Cluster prototypes dominated by high-density samples. Right: Density-aware initialization, where sample weights are adaptively adjusted according to density, with color intensity indicating weight magnitude.

216 prototype c_j for cluster j is obtained by the weighted average:
 217

$$218 \quad c_j = \frac{\sum_{z_i \in C_j} w_i z_i}{\sum_{z_i \in C_j} w_i}, \quad (2)$$

219 where C_j denotes the set of samples assigned to cluster j . This density-aware re-estimation enhances
 220 the contribution of low-density samples while attenuating the dominance of high-density ones. Fi-
 221 nally, the refined prototypes $\mathcal{C} = \{c_1, \dots, c_K\}$ are employed to initialize the clustering head weights
 222 of the deep clustering model. By incorporating density information, this strategy better preserves
 223 cluster structures across regions of varying density and mitigates bias toward redundant samples,
 224 thereby providing a stronger starting point for subsequent deep clustering training.
 225

227 3.2 DYNAMIC SAMPLE SELECTION

228 In unsupervised clustering tasks, models tend to quickly learn to group samples from high-density
 229 regions, which are often characterized by simple and redundant patterns. Continuing to allocate
 230 computational resources to these well-learned samples is inefficient and may hinder effective learn-
 231 ing of samples from low-density regions, which are typically more complex and information-rich.
 232 We initially considered a density-based sample removal strategy, where local density is estimated
 233 via k -nearest neighbor distance to discard redundant samples in high-density regions. However,
 234 this approach is computationally expensive due to repeated neighbor searches and global distance
 235 computations, and density estimates in high-dimensional feature spaces may be imprecise, poten-
 236 tially leading to the unintended removal of informative samples and limiting model generalization.
 237 To address this challenge, we propose a dynamic sample selection strategy that adaptively allocates
 238 learning resources based on each sample’s learning state during training. Unlike supervised learning,
 239 clustering lacks explicit ground-truth labels, making it difficult to assess sample difficulty. Tradi-
 240 tional sample difficulty measures based on loss or gradient dynamics often fail to accurately reflect
 241 the actual learning state of samples. Although pseudo-labels offer an intuitive alternative, they are
 242 prone to noise, particularly in the early stages of training, which risks introducing bias into sample
 243 selection.

244 Our method builds upon the principle of prediction consistency. The central idea is that a well-
 245 learned sample should yield stable and robust feature representations, such that the model produces
 246 consistent predictions even when the input undergoes different transformations or perturbations. In
 247 other words, if the model has developed a reliable understanding of a sample, its predicted distribu-
 248 tion should remain largely invariant under reasonable augmentations. This property not only reflects
 249 the stability of the learned representation but also serves as an implicit indicator of the sample’s
 250 learning state. By leveraging prediction consistency, we can more effectively distinguish between
 251 samples that are already well captured by the model and those that require further attention, thereby
 252 guiding dynamic resource allocation during training.

253 **Prediction Consistency Between Weak and Strong Views.** For each input sample x_i , we generate
 254 two augmented versions: a weakly augmented view x_i^w and a strongly augmented view x_i^s . Passing
 255 these through the model yields their predictive distributions P_i^w and P_i^s . To quantify their alignment,
 256 we define the prediction consistency score S_i as the cosine similarity between the two distributions:
 257

$$258 \quad S_i = \cos(P_i^w, P_i^s). \quad (3)$$

259 A higher value of S_i indicates that the model produces consistent predictions under different levels
 260 of augmentation, suggesting that the corresponding sample is being reliably captured by the learned
 261 representation.

262 **Stability Evaluation via Second-Order Differences.** High consistency at a single time step does
 263 not necessarily indicate that a sample is stably learned, as even uncertain samples may occasionally
 264 exhibit strong agreement by chance. To better capture temporal stability, we track each sample’s
 265 prediction consistency over three consecutive training epochs. Let t denote the current epoch index.
 266 For sample x_i , the second-order difference is computed across the t th, $(t-1)$ th, and $(t-2)$ th epochs
 267 as:

$$268 \quad \Delta^2 S_i^{(t)} = S_i^{(t)} - 2S_i^{(t-1)} + S_i^{(t-2)}. \quad (4)$$

269 This metric reflects the “acceleration” of consistency changes, effectively capturing fluctuations in
 270 the learning dynamics. A sample is considered stable when

$$271 \quad |\Delta^2 S_i^{(t)}| < \epsilon, \quad (5)$$

270 where ϵ is a predefined stability threshold. Under this condition, the sample exhibits both high
 271 prediction consistency and temporal stability, signifying that it has reached a well-learned state.
 272

273 **Pseudo-Label Consistency Check.** As an additional requirement, we further impose that a sample's
 274 pseudo-labels remain consistent across the most recent 3 epochs. If a sample's pseudo-label
 275 changes during this period, it is regarded as unstable, even if its prediction consistency shows only
 276 minor fluctuations. This criterion helps filter out noisy or ambiguous samples that may otherwise be
 277 misclassified as stable.

278 Based on the above criteria, we design a dynamic sample selection strategy that consists of two
 279 steps:

280 • **Exclusion.** A sample is regarded as *stable* if it simultaneously satisfies the following two conditions:
 281 (i) its prediction consistency remains stable, and (ii) its pseudo-label does not change over
 282 the recent epochs. Such samples are temporarily excluded from the training batch in order to
 283 avoid redundant computation.

284 • **Reinclusion.** In contrast, if a sample exhibits significant fluctuations in prediction consistency
 285 (i.e., $|\Delta^2 S_i^{(t)}| \geq \epsilon$), or if its pseudo-label changes during the observation window, it is considered
 286 unstable. These unstable samples are retained in the training queue and may even be assigned
 287 higher training priority to encourage further refinement.

288 This strategy allows the model to adaptively allocate computational resources toward unstable samples
 289 that require further learning, while deprioritizing stable ones. As a result, it mitigates the
 290 bias introduced by uneven feature distributions and promotes more balanced representation learning
 291 across diverse data regions. Unlike most existing sample selection strategies in supervised learning,
 292 which primarily rely on loss values or gradient magnitudes, our method is tailored for unsupervised
 293 clustering by leveraging prediction consistency and pseudo-label stability as more reliable indicators
 294 of the learning state.

300 4 EXPERIMENT

301 4.1 EXPERIMENT SETTINGS

302 **Datasets.** We evaluate our method on six standard benchmarks, including CIFAR-10 (Krizhevsky,
 303 2009), CIFAR-20 (Krizhevsky, 2009), STL-10 (Coates et al., 2011), ImageNet-10 (Chang et al.,
 304 2017b), ImageNet-Dogs (Chang et al., 2017b), and Tiny-ImageNet (Le & Yang, 2015). Following
 305 previous works (Chang et al., 2017b; Jia et al., 2025), we construct ImageNet-10, ImageNet-Dogs,
 306 and Tiny-ImageNet by selecting 10, 15, and 200 subsets from ImageNet-1k (Deng et al., 2009),
 307 respectively. We strictly follow the experimental protocols of the corresponding baselines to ensure
 308 a fair and consistent comparison.

309 **Baselines.** We integrate our proposed plug-in into four advanced deep clustering algorithms, including
 310 CC (Li et al., 2021), TCL (Li et al., 2022), SCAN (Gansbeke et al., 2020), and CDC (Jia et al.,
 311 2025). In addition, we compare the enhanced versions against several representative deep clustering
 312 methods, including BYOL (Grill et al., 2020), NNM (Dang et al., 2021), GCC (Zhong et al., 2021),
 313 IDFD (Tao et al., 2021), TCC (Shen et al., 2021), SPICE (Niu et al., 2022), ProPos (Huang et al.,
 314 2023), SeCu (Qian, 2023), and CoNR (Yu et al., 2023).

315 **Experiment Settings.** We evaluate clustering performance using three standard metrics, i.e., Acc-
 316 curacy (ACC) (Li & Ding, 2006), Normalized Mutual Information (NMI) (Strehl & Ghosh, 2002),
 317 and Adjusted Rand Index (ARI) (Hubert & Arabie, 1985). Higher scores indicate better alignment
 318 with the ground-truth clustering. For CC (Li et al., 2021), TCL (Li et al., 2022), SCAN (Gansbeke
 319 et al., 2020), and CDC (Jia et al., 2025), we adopt MoCo-v2 (Chen et al., 2020b) as the pre-trained
 320 backbone and strictly follow the data augmentation protocols of CDC (Jia et al., 2025).

321 Additional experiment settings details are provided in Appendix B.

324 Table 1: Comparison of clustering performance (%) on six standard benchmarks. The best result for
 325 each method is highlighted in **bold**, while the overall best result is marked with an underline.
 326

Method	CIFAR-10			CIFAR-20			STL-10			ImageNet-10			ImageNet-Dogs			Tiny-ImageNet			Avg.
	ACC	NMI	ARI	ACC	NMI	ARI	ACC	NMI	ARI										
BYOL [NeurIPS'20]	87.5	78.0	75.2	52.3	53.3	36.0	86.1	75.4	71.5	94.7	88.4	88.9	72.9	69.7	60.9	-	-	-	-
NNM [CVPR'21]	84.3	74.8	70.9	47.7	48.4	31.6	80.8	69.4	65.0	-	-	-	-	-	-	-	-	-	-
GCC [ICCV'21]	85.6	76.4	72.8	47.2	47.2	30.5	78.8	68.4	63.1	90.1	84.2	82.2	52.6	49.0	36.2	13.8	34.7	7.5	56.7
IDFD [ICLR'21]	81.5	71.1	66.3	42.5	42.6	26.4	75.6	64.3	57.5	95.4	89.8	90.1	59.1	54.6	41.3	-	-	-	-
TCC [NeurIPS'21]	90.6	79.0	73.3	49.1	47.9	31.2	81.4	73.2	68.9	89.7	84.0	82.5	59.5	55.4	41.7	-	-	-	-
SPICE [TIP'22]	91.7	85.8	83.6	58.4	58.4	42.2	92.9	86.0	85.3	95.9	90.2	91.2	67.5	62.7	52.6	30.5	44.9	16.1	68.7
ProPos [TPAMI'22]	94.3	88.6	88.4	61.4	60.6	45.1	86.7	75.8	73.7	96.2	90.8	91.8	77.5	73.7	67.5	29.4	46.0	17.9	70.3
SeCu [ICCV'23]	93.0	86.1	85.7	55.2	55.1	39.6	83.6	73.3	69.3	-	-	-	-	-	-	-	-	-	-
CoNR [NeurIPS'23]	93.2	86.7	86.1	60.4	60.4	44.3	92.6	85.2	84.6	96.4	91.1	92.2	79.4	74.4	66.7	30.8	46.1	18.4	71.6
CC [AAAI'21]	86.3	77.6	74.3	52.5	50.9	35.2	80.0	72.7	67.7	90.5	87.6	84.6	63.3	60.0	49.3	13.9	43.0	5.5	60.8
CC+Ours	89.5	81.3	79.7	57.4	57.5	42.3	91.4	83.2	82.5	97.2	93.1	93.9	66.1	63.3	52.8	19.1	46.5	7.6	66.9 (+6.1)
TCL [IJCV'22]	88.2	80.4	76.8	53.1	52.9	35.7	86.8	79.9	75.7	88.4	83.3	80.0	64.4	62.3	51.6	17.2	45.5	7.4	62.7
TCL+Ours	90.0	84.1	80.6	57.9	57.6	41.1	90.4	81.8	80.6	95.3	91.1	90.1	73.7	70.1	60.5	22.1	46.6	10.1	68.0 (+5.3)
SCAN [ECCV'20]	90.2	83.7	81.0	52.1	54.4	38.0	91.4	83.4	82.6	97.2	92.9	93.9	71.8	69.1	60.6	27.4	51.9	14.1	68.7
SCAN+Ours	92.2	85.6	84.5	55.4	57.3	40.2	92.7	85.1	84.9	97.8	94.3	95.3	76.7	73.9	67.2	28.7	52.3	14.9	71.0 (+2.3)
CDC [ICLR'25]	94.2	88.1	88.1	61.9	60.9	46.1	93.0	85.8	85.6	97.1	92.7	93.6	79.5	77.0	70.5	31.3	45.0	18.0	72.7
CDC+Ours	94.7	88.7	89.0	62.7	61.5	46.6	93.6	86.9	86.8	97.2	92.9	93.8	84.3	78.2	73.8	32.2	46.1	18.6	73.8 (+1.1)

4.2 MAIN RESULTS

Significant Clustering Improvement. As shown in Table 1, our method delivers consistent and substantial improvements when integrated with four representative deep clustering methods. On six benchmark datasets, it achieves performance gains of up to **6.1%** when integrated with CC (Li et al., 2021) and a significant 1.1% even when combined with the state-of-the-art method CDC (Jia et al., 2025). Furthermore, our plug-in enables CDC to achieve the highest performance on five out of the six datasets (i.e., CIFAR-10, CIFAR-20, STL-10, ImageNet-Dogs, and Tiny-ImageNet), while its integration with SCAN (Gansbeke et al., 2020) yields the best result on ImageNet-10. These findings demonstrate the effectiveness of our method across a diverse range of baselines.

Improved Training Efficiency. Beyond clustering performance, we evaluate the training efficiency of our method. By dynamically pruning well-learned samples, the number of samples involved in gradient updates decreases progressively. This reduction lowers computational cost without degrading clustering performance. As shown in Fig. 3, the training time decreases consistently as more samples are removed, highlighting the efficiency of our dynamic sample selection strategy. Table 2 quantifies the average number of samples retained per epoch when integrating our strategy with SCAN (Gansbeke et al., 2020) and CDC (Jia et al., 2025) on CIFAR-10, CIFAR-20, and STL-10. The results demonstrate that our method consistently reduces the number of training samples across all settings, leading to notable training time savings. Notably, this leads to an average efficiency improvement of 1.3×, confirming that our method enhances both clustering performance and practical training efficiency.

Table 2: Comparison of training efficiency.

Method	CIFAR-10	CIFAR-20	STL-10	Avg.
CDC+Ours	17.4%	12.1%	14.3%	14.6%
SCAN+Ours	37.7%	52.9%	29.9%	40.2%
CC+Ours	44.5%	30.9%	28.1%	34.5%
Speed Up				~1.3×

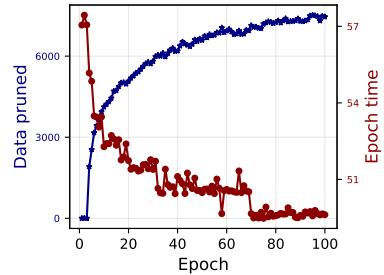


Figure 3: Relationship between data pruned and epoch time on CIFAR-20. As training progresses, the model prunes an increasing number of samples and reduces the computational cost of subsequent training steps.

378 4.3 FURTHER ANALYSIS
379

380 **Ablation Study.** We conduct ablation studies on CIFAR-10, CIFAR-20, and STL-10 to validate the
381 contribution of each proposed module. As summarized in Table 3, both modules consistently im-
382 prove performance. Specifically, the Density-Aware Clustering Head Initialization (DACHI) yields
383 average gains of 1.2%, 1.6%, and 1.1% on CIFAR-10, CIFAR-20, and STL-10, respectively, for both
384 CDC (Jia et al., 2025) and SCAN (Gansbeke et al., 2020). This indicates that the proposed clustering
385 head initialization strategy better captures diverse feature patterns. The Dynamic Sample Selection
386 (DSS) module further enhances robustness to diverse sample feature patterns, providing additional
387 performance gains. The synergistic effect of combining DACHI and DSS achieves the best results
388 on all datasets. For instance, on STL-10, our proposed method outperforms the original CDC and
389 SCAN by 1.0% and 1.8%, respectively. These consistent improvements validate the effectiveness of
390 our proposed modules in boosting clustering performance.
391

391 Table 3: Ablation study of our proposed modules on three benchmarks (i.e., CIFAR-10, CIFAR-20,
392 and STL-10). We enhance both CDC and SCAN with Density-Aware Clustering Head Initialization
393 (DACHI) and Dynamic Sample Selection (DSS).
394

Method	CIFAR-10			CIFAR-20			STL-10			Avg.
	ACC	NMI	ARI	ACC	NMI	ARI	ACC	NMI	ARI	
CDC	94.2	88.1	88.1	61.9	60.9	46.1	93.0	85.8	85.6	78.2
+DACHI	94.5	88.4	88.6	62.5	61.5	46.6	93.5	86.6	86.4	$78.7^{+0.5}$
+DSS	94.5	88.4	88.7	62.3	61.4	46.4	93.3	86.3	86.0	$78.6^{+0.4}$
Ours	94.7	88.7	89.0	62.7	61.5	46.6	93.6	86.9	86.8	$78.9^{+0.7}$
SCAN	90.2	83.7	81.0	52.1	54.4	38.0	91.4	83.4	82.6	73.0
+DACHI	91.7	85.2	83.8	55.1	57.2	39.8	92.5	84.8	84.5	$74.9^{+1.9}$
+DSS	90.5	83.9	81.4	53.9	56.4	39.6	91.9	84.0	83.4	$73.9^{+0.9}$
Ours	92.2	85.6	84.5	55.4	57.3	40.2	92.7	85.1	84.9	$75.3^{+2.3}$

403 **Mitigating Overfitting to Redundant Patterns.** As shown in Table 4, all methods perform well
404 on high-density regions with relatively simple patterns, while differences become more pronounced
405 in medium- and low-density regions that contain more complex and diverse patterns. Compared
406 with CDC, our method maintains comparable or slightly better performance in high-density regions,
407 while consistently achieving gains in medium- and low-density regions. For instance, on STL-10,
408 our method improves accuracy by 1.0% in the medium-density region and 2.4% in the low-density
409 region. These results indicate that our approach performs better on complex, low-density patterns,
410 effectively mitigating the tendency of clustering models to overfit redundant high-density patterns
411 and enabling better learning of diverse and informative samples. Moreover, Fig. 4(a) illustrates the
412 training dynamics on ImageNet-Dogs. CDC rapidly fits simple high-density patterns in the early
413 stage but soon stagnates, suggesting overfitting to redundant patterns. In contrast, our method,
414 though slower to converge initially, continues to improve steadily in later stages and ultimately
415 surpasses CDC by a clear margin. This training behavior demonstrates that our approach not only
416 avoids early overreliance on simple patterns but also sustains the discovery of complex patterns in
417 medium- and low-density regions, leading to more generalizable representations.
418

419 Table 4: Comparison of clustering accuracy (%) across densities.
420

Method	CIFAR-10			STL-10		
	High	Medium	Low	High	Medium	Low
Random	96.3	88.4	85.6	90.1	84.1	70.1
CDC	97.5	90.3	87.1	95.4	89.2	79.1
Ours	97.7	90.9	88.4	95.6	90.2	81.5

425 **Effect of Sample Pruning Threshold ϵ .** Table 5 further investigates the effect of the sample pruning
426 threshold on clustering performance (i.e., ACC). The pruning ratio is directly proportional to the
427 threshold ϵ . For instance, on CIFAR-10, the ratio rises from 17.4% at $\epsilon = 0.1$ to nearly 49.9%
428 at $\epsilon = 0.5$ and a similar trend can be observed on STL-10. We find that moderate pruning ($\epsilon =$
429 $0.1 \sim 0.3$) improves ACC. This suggests that removing well-learned samples enables the model
430 to focus on more complex and informative examples, thereby enhancing performance. In contrast,
431 aggressive pruning ($\epsilon = 0.4 \sim 0.5$) causes performance degradation, indicating that excessive
432 sample removal discards valuable training samples. These results demonstrate the importance of
433

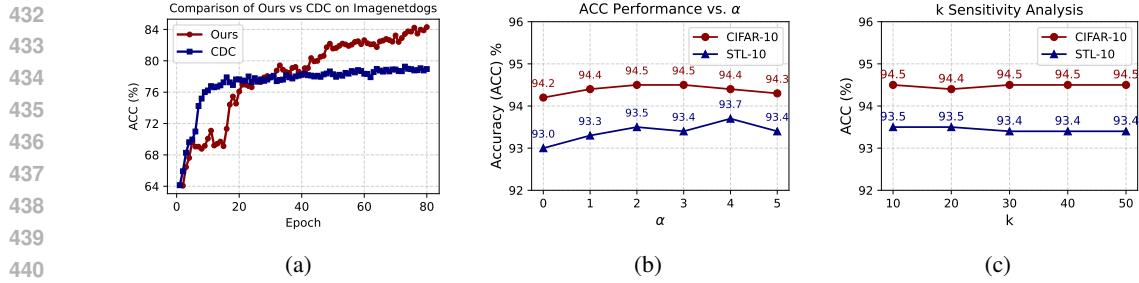


Figure 4: (a) Training curves on the ImageNet-Dogs dataset. (b) Sensitivity of clustering performance to the density weighting coefficient α on CIFAR-10, CIFAR-20, and STL-10. (c) Sensitivity of clustering performance to the number of nearest neighbors k on CIFAR-10, CIFAR-20, and STL-10

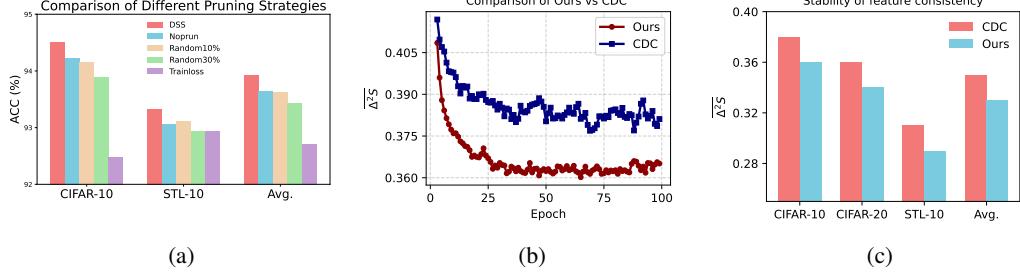


Figure 5: (a) Comparison of different pruning strategies. (b) Comparison of mean $\Delta^2 S$ on CIFAR-10, CIFAR-20, and STL-10. (c) Comparison of mean $\Delta^2 S$ values on CIFAR datasets between our method and CDC.

selecting an appropriate threshold ϵ to balance performance gains with training efficiency (more details can be seen in Appendix C.1).

Table 5: Effect of sample pruning threshold ϵ on clustering performance.

Dataset	$\epsilon = 0$		$\epsilon = 0.1$		$\epsilon = 0.2$		$\epsilon = 0.3$		$\epsilon = 0.4$		$\epsilon = 0.5$	
	Pruned	ACC	Pruned	ACC	Pruned	ACC	Pruned	ACC	Pruned	ACC	Pruned	ACC
CIFAR-10	0%	94.2	17.4%	94.5	26.5%	94.5	35.1%	94.3	43.7%	94.0	49.9%	93.9
STL-10	0%	93.0	14.2%	93.3	27.0%	93.3	35.8%	93.0	58.1%	92.8	68.7%	92.4

Parameter Sensitivity Analysis. Fig. 4(b) shows the impact of the density weighting coefficient α on clustering performance. When $\alpha = 0$ (i.e., no density weighting), performance on CIFAR-10 and STL-10 is relatively low. Increasing α to a moderate range ($\alpha = 1-2$) steadily improves clustering, achieving near-optimal results in most cases. Specifically, on CIFAR-10, ACC rises from 94.2% to 94.5%, while on STL-10, the peak ACC of 93.7% occurs at $\alpha = 4$, though further increases in α cause minor fluctuations. These observations suggest that moderate density weighting effectively captures diverse feature structures, whereas excessively large weights provide little additional benefit. Overall, setting α between 1 and 3 offers a robust and effective choice. Next, we analyze the sensitivity of our method to the choice of k in density estimation, where sample density is measured by the average distance to each sample’s k nearest neighbors. Varying k from 10 to 50, Fig. 4(c) shows that clustering performance remains highly stable, with maximum differences below 0.1% across all k values. This confirms that our density estimation is robust to k and does not require fine-tuning of this hyperparameter (more details can be seen in Appendix C.2).

Our Pruning Strategy is Better. Previous experiments demonstrated that our pruning strategy achieves better performance with higher training efficiency. To further validate its effectiveness, we compare DSS with several alternatives, including no pruning, loss-based pruning (where the second-order difference-based feature consistency loss is replaced with the standard training loss), and random pruning at different ratios(10% and 30%). As shown in Fig. 5(a), DSS consistently achieves the best results on CIFAR-10, STL-10, and the averaged scores. In contrast, loss-based pruning leads to a significant drop in performance (92.5% and 92.9%), while random pruning maintains performance at a low ratio (10%) but degrades notably as the pruning ratio increases. These results confirm that DSS is a superior pruning strategy.

486 **Stability Analysis of Feature Consistency.** As mentioned earlier, our method evaluates the stability
 487 of sample learning states using the second-order difference of feature consistency ($\Delta^2 S$). A lower
 488 $\Delta^2 S$ indicates smoother feature evolution and a more stable learning process. Fig. 5(b) illustrates the
 489 overall trend of $\Delta^2 S$ during training. At the early stage, the model’s learning state is unstable, with
 490 $\Delta^2 S$ values remaining high. As training progresses, the model gradually learns and adapts to more
 491 samples, leading to a steady decrease in $\Delta^2 S$. Notably, CDC maintains consistently higher $\Delta^2 S$
 492 values and continues to fluctuate in later training stages, suggesting that it overfits simple feature
 493 patterns while failing to capture more complex ones. In contrast, our method converges to a more
 494 stable state, effectively alleviating this issue. Further results in Fig. 5(c) confirm the superiority of
 495 our approach, showing consistent improvements across CIFAR-10, CIFAR-20, and STL-10.
 496

497 5 CONCLUSION

498 In this paper, we present a novel plug-in designed to mitigate overfitting to simple and redundant fea-
 499 ture patterns, which adaptively adjusts training based on sample density and learning states. Analysis
 500 of pre-trained features shows that high-density regions contain many redundant samples, while low-
 501 density regions have fewer, more diverse samples. To address this issue, we incorporated neighbor-
 502 hood density information into clustering head initialization, effectively reducing bias from redundant
 503 high-density samples and enhancing representations of complex low-density samples. Additionally,
 504 we introduced a dynamic sample selection strategy, defining a stability measure based on prediction
 505 consistency between weakly and strongly augmented views to prioritize unstable or under-learned
 506 samples. Extensive experiments across multiple datasets and baselines demonstrate that our method
 507 consistently outperforms existing approaches, achieving smaller fluctuations in prediction consis-
 508 tency and significantly improved clustering accuracy, especially on samples with complex patterns
 509 where conventional methods often struggle.

510 ETHICS STATEMENT

511 We confirm that our work on deep clustering adheres to the ICLR Code of Ethics. The research
 512 utilizes publicly available datasets containing no personally identifiable information. As a strictly
 513 technical contribution focused on algorithmic improvement, we foresee no ethical issues or potential
 514 for misuse.

516 517 REPRODUCIBILITY STATEMENT

518 The complete code for implementing data preprocessing, model training, and evaluation is provided
 519 in the Supplementary Material to facilitate the reproduction of our results. Also, our experimental
 520 setup is described in detail in the paper. The basic experimental setup and dataset-specific hyperpa-
 521 rameters for reproducing the results in Sec. 4.2 detailed in Appendix B.

523 524 REFERENCES

525 Jordan T. Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep
 526 batch active learning by diverse, uncertain gradient lower bounds, 2020.

527 Vladimir Braverman, Vincent Cohen-Addad, Shaofeng H.-C. Jiang, Robert Krauthgamer, Chris
 528 Schwiegelshohn, Mads Bech Toftrup, and Xuan Wu. The power of uniform sampling for coresets.
 529 In *Annual Symposium on Foundations of Computer Science*, pp. 462–473, 2022.

531 Shaotian Cai, Liping Qiu, Xiaojun Chen, Qin Zhang, and Longteng Chen. Semantic-enhanced
 532 image clustering. In *Proceedings of the AAAI Conference on Artificial Intelligence*, pp. 6869–
 533 6878, 2023.

534 Haw-Shiuan Chang, Erik G. Learned-Miller, and Andrew McCallum. Active bias: Training more
 535 accurate neural networks by emphasizing high variance samples. In *Advances in Neural Infor-
 536 mation Processing Systems*, pp. 1002–1012, 2017a.

538 Jianlong Chang, Lingfeng Wang, Gaofeng Meng, Shiming Xiang, and Chunhong Pan. Deep adap-
 539 tive image clustering. In *Proceedings of the IEEE/CVF International Conference on Computer
 Vision*, pp. 5880–5888, 2017b.

540 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple framework
 541 for contrastive learning of visual representations. In *Proceedings of the International Conference*
 542 *on Machine Learning*, pp. 1597–1607, 2020a.

543

544 Xinlei Chen, Haoqi Fan, Ross B. Girshick, and Kaiming He. Improved baselines with momentum
 545 contrastive learning. *CoRR*, abs/2003.04297, 2020b.

546

547 Adam Coates, Andrew Y. Ng, and Honglak Lee. An analysis of single-layer networks in unsuper-
 548 vedied feature learning. In *Proceedings of the Fourteenth International Conference on Artificial*
 549 *Intelligence and Statistics*, pp. 215–223, 2011.

550

551 Zhiyuan Dang, Cheng Deng, Xu Yang, Kun Wei, and Heng Huang. Nearest neighbor matching for
 552 deep clustering. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 553 *Recognition*, pp. 13693–13702, 2021.

554

555 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
 556 hierarchical image database. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 557 *and Pattern Recognition*, pp. 248–255, 2009.

558

559 Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep Bayesian active learning with image data.
 560 In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International Conference on*
 561 *Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pp. 1183–1192.
 562 PMLR, 06–11 Aug 2017.

563

564 Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, Marc Proesmans, and Luc Van
 565 Gool. SCAN: learning to classify images without labels. In *Proceedings of the European Confer-*
 566 *ence on Computer Vision*, pp. 268–285, 2020.

567

568 Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
 569 Buchatskaya, Carl Doersch, Bernardo Ávila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
 570 Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent - A
 571 new approach to self-supervised learning. In *Advances in Neural Information Processing Systems*,
 572 2020.

573

574 Xifeng Guo, Long Gao, Xinwang Liu, and Jianping Yin. Improved deep embedded clustering with
 575 local structure preservation. In *Proceedings of the International Joint Conference on Artificial*
 576 *Intelligence*, pp. 1753–1759, 2017.

577

578 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross B. Girshick. Momentum contrast for
 579 unsupervised visual representation learning. In *Proceedings of the IEEE/CVF conference on*
 580 *computer vision and pattern recognition*, pp. 9726–9735, 2020.

581

582 Peihao Huang, Yan Huang, Wei Wang, and Liang Wang. Deep embedding network for clustering.
 583 In *Proceedings of the International Conference on Pattern Recognition*, pp. 1532–1537, 2014.

584

585 Zhizhong Huang, Jie Chen, Junping Zhang, and Hongming Shan. Learning representation for clus-
 586 tering via prototype scattering and positive sampling. *IEEE Transactions on Pattern Analysis and*
 587 *Machine Intelligence*, 45(6):7509–7524, 2023.

588

589 Lawrence Hubert and Phipps Arabie. Comparing partitions. *Journal of classification*, 2:193–218,
 590 1985.

591

592 Yuheng Jia, Jianhong Cheng, Hui Liu, and Junhui Hou. Towards calibrated deep clustering network.
 593 In *The International Conference on Learning Representations*, 2025.

594

595 Krishnateja Killamsetty, Durga S. Ganesh Ramakrishnan, Abir De, and Rishabh Iyer. Grad-match:
 596 Gradient matching based data subset selection for efficient deep model training. In Marina Meila
 597 and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning*,
 598 volume 139 of *Proceedings of Machine Learning Research*, pp. 5464–5474. PMLR, 18–24 Jul
 599 2021a.

594 KrishnaTeja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, Abir De, and Rishabh K.
 595 Iyer. GRAD-MATCH: gradient matching based data subset selection for efficient deep model
 596 training. In *Proceedings of the International Conference on Machine Learning*, pp. 5464–5474,
 597 2021b.

598 KrishnaTeja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh K. Iyer.
 599 GLISTER: generalization based data subset selection for efficient and robust learning. In *Pro-
 600 ceedings of the AAAI conference on artificial intelligence*, pp. 8110–8118, 2021c.

602 Alex Krizhevsky. Learning multiple layers of features from tiny images.
 603 <https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf>, 2009.

604 Yann Le and Xuan Yang. Tiny imagenet visual recognition challenge. *CS 231N*, 7(7):3, 2015.

606 Tao Li and Chris H. Q. Ding. The relationships among various nonnegative matrix factorization
 607 methods for clustering. In *Proceedings of the International Conference on Data Mining*, pp.
 608 362–371, 2006.

610 Yunfan Li, Peng Hu, Jerry Zitao Liu, Dezhong Peng, Joey Tianyi Zhou, and Xi Peng. Contrastive
 611 clustering. In *Proceedings of the AAAI Conference on Artificial Intelligence*, pp. 8547–8555,
 612 2021.

613 Yunfan Li, Mouxing Yang, Dezhong Peng, Taihao Li, Jiantao Huang, and Xi Peng. Twin contrastive
 614 learning for online clustering. *International Journal of Computer Vision*, 130(9):2205–2221,
 615 2022.

617 Yunfan Li, Peng Hu, Dezhong Peng, Jiancheng Lv, Jianping Fan, and Xi Peng. Image clustering
 618 with external guidance. In *Proceedings of the International Conference on Machine Learning*,
 619 2024.

620 Zhixin Li, Yuheng Jia, Hui Li, and Junhui Hou. Learning from sample stability for deep clustering.
 621 In *Proceedings of the International Conference on Machine Learning*, 2025.

623 Sören Mindermann, Jan Markus Brauner, Muhammed Razzak, Mrinank Sharma, Andreas Kirsch,
 624 Winnie Xu, Benedikt Höltgen, Aidan N. Gomez, Adrien Morisot, Sebastian Farquhar, and Yarin
 625 Gal. Prioritized training on points that are learnable, worth learning, and not yet learnt. In
 626 *Proceedings of the International Conference on Machine Learning*, pp. 15630–15649, 2022.

627 Truong Thao Nguyen, Balazs Gerofi, Edgar Josafat Martinez-Noriega, François Trahay, and Mo-
 628 hamed Wahib. KAKURENBO: adaptively hiding samples in deep neural network training. In
 629 *Advances in Neural Information Processing Systems*, 2023.

631 Chuang Niu, Hongming Shan, and Ge Wang. SPICE: semantic pseudo-labeling for image clustering.
 632 *IEEE Transactions on Image Processing*, 31:7264–7278, 2022.

633 Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet:
 634 Finding important examples early in training. In *Advances in Neural Information Processing
 635 Systems*, pp. 20596–20607, 2021.

637 Qi Qian. Stable cluster discrimination for deep clustering. In *Proceedings of the IEEE/CVF Inter-
 638 national Conference on Computer Vision*, pp. 16599–16608, 2023.

640 Liping Qiu, Qin Zhang, Xiaojun Chen, and Shaotian Cai. Multi-level cross-modal alignment for
 641 image clustering. In *Proceedings of the AAAI conference on artificial intelligence*, pp. 14695–
 642 14703, 2024.

643 Yazhou Ren, Jingyu Pu, Zhimeng Yang, Jie Xu, Guofeng Li, Xiaorong Pu, Philip S. Yu, and Lifang
 644 He. Deep clustering: A comprehensive survey. *IEEE Transactions on Neural Networks and
 645 Learning Systems*, 36(4):5858–5878, 2025.

646 Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
 647 approach, 2018.

648 Yuming Shen, Ziyi Shen, Menghan Wang, Jie Qin, Philip H. S. Torr, and Ling Shao. You never
 649 cluster alone. In *Advances in Neural Information Processing Systems*, pp. 27734–27746, 2021.
 650

651 Alexander Strehl and Joydeep Ghosh. Cluster ensembles — A knowledge reuse framework for
 652 combining multiple partitions. *Journal of machine learning research*, 3:583–617, 2002.

653 Yaling Tao, Kentaro Takagi, and Kouta Nakata. Clustering-friendly representation learning via
 654 instance discrimination and feature decorrelation. In *International Conference on Learning Rep-
 655 resentations*, 2021.

656

657 Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
 658 and Geoffrey J. Gordon. An empirical study of example forgetting during deep neural network
 659 learning. In *International Conference on Learning Representations*, 2019.

660 Jianlong Wu, Zihan Li, Wei Sun, Jianhua Yin, Liqiang Nie, and Zhouchen Lin. Clusmatch: Improv-
 661 ing deep clustering by unified positive and negative pseudo-label learning. *IEEE Transactions on
 662 Pattern Analysis and Machine Intelligence*, 2025.

663

664 Xiaobo Xia, Jiale Liu, Jun Yu, Xu Shen, Bo Han, and Tongliang Liu. Moderate coresnet: A universal
 665 method of data selection for real-world data-efficient deep learning. In *International Conference
 666 on Learning Representations*, 2023.

667

668 Junyuan Xie, Ross B. Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering anal-
 669 ysis. In Maria-Florina Balcan and Kilian Q. Weinberger (eds.), *Proceedings of the International
 670 Conference on Machine Learning*, pp. 478–487, 2016.

671

672 Chunlin Yu, Ye Shi, and Jingya Wang. Contextually affinitive neighborhood refinery for deep clus-
 673 tering. In *Advances in Neural Information Processing Systems*, 2023.

674

675 Suqin Yuan, Runqi Lin, Lei Feng, Bo Han, and Tongliang Liu. Instance-dependent early stopping.
 676 In *International Conference on Learning Representations*, 2025.

677

678 Xu Zhang, Yuheng Jia, Mofei Song, and Ran Wang. Similarity and dissimilarity guided co-
 679 association matrix construction for ensemble clustering. *IEEE Transactions on Knowledge and
 680 Data Engineering*, 2025.

681

682 Huasong Zhong, Jianlong Wu, Chong Chen, Jianqiang Huang, Minghua Deng, Liqiang Nie,
 683 Zhouchen Lin, and Xian-Sheng Hua. Graph contrastive clustering. In *Proceedings of the
 684 IEEE/CVF International Conference on Computer Vision*, pp. 9204–9213, 2021.

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 703 704 705 Appendix

706 A STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMs)

707 The authors used the LLM solely to assist with grammar, spelling, and sentence clarity. The authors
708 reviewed and bear full responsibility for all content generated by the LLM. The LLM contributed
709 in no other way to the paper. The research idea, experiment design, and all other content were
710 developed and completed by the authors.

711 B MORE EXPERIMENT SETTINGS DETAILS

712 **Datasets.** Following (Gansbeke et al., 2020),
713 we construct the CIFAR-20 dataset using 20
714 superclasses of the CIFAR-100 dataset, and
715 build the ImageNet-10, ImageNet-Dogs, and
716 Tiny-ImageNet datasets from 10, 15, and 200
717 classes of ImageNet-1k, respectively. For Tiny-
718 ImageNet, we perform the complete training
719 and testing process on the training set, and
720 adopt the merged datasets for both training and
721 testing for other datasets. Specifically, we extend the STL-10 dataset with 100,000 relevant unlabeled
722 samples during pre-training with MoCo-v2, which are removed afterwards.

Table 6: Summary of datasets.

Dataset	# Samples	# Classes	Image Size
CIFAR-10	60,000	10	32x32x3
CIFAR-20	60,000	20	32x32x3
STL-10	13,000	10	96x96x3
ImageNet-10	13,000	10	224x224x3
ImageNet-Dogs	19,500	15	224x224x3
Tiny-ImageNet	100,000	200	64x64x3

723 **Backbones.** We adopt ResNet-34 as the backbone in both our method and all baselines to ensure
724 a fair comparison. To better accommodate feature extraction on small datasets such as CIFAR-10
725 and CIFAR-20, we replace the first convolutional filter (7×7 , padding 3, stride 2) with a 3×3 filter
726 (padding 2, stride 1), and remove the first max-pooling layer following (Huang et al., 2023; Jia et al.,
727 2025). Besides backbone network, we attach a clustering head following the original design of each
728 baseline method to encode the learned representation to cluster assignments.

729 **Experiment Settings.** For representation learning, we strictly follow the experimental settings from
730 CDC (Jia et al., 2025) to pre-train the backbone with MoCo-v2. For data augmentation protocols, we
731 use strong and standard augmentation from SCAN (Gansbeke et al., 2020). We adopt the adaptive
732 moment estimation (adam) optimizer, and use learning rate from settings from CDC (Jia et al., 2025).
733 We set the number of training epochs to 100 epochs for all datasets. Meanwhile, in all experiments
734 that integrated our method, we set $\alpha = 2.0$ and $k = 10$ across all datasets. We set $\epsilon = 0.01$ on
735 STL-10 and ImageNet-10 when applying our method to CC (Li et al., 2021), while $\epsilon = 0.1$ for all
736 other cases. All experiments are conducted on an NVIDIA RTX 3090 GPU.

737 **Baselines.** To ensure fair comparison, we re-implement SCAN (Gansbeke et al., 2020), CC (Li
738 et al., 2021), TCL (Li et al., 2022) and CDC (Jia et al., 2025) using the same backbone pre-trained
739 with MoCo-v2 following the experimental settings of CDC, and we follow the original design of
740 the clustering heads from each baseline method. We directly copy the results reported by other deep
741 clustering methods, including BYOL (Grill et al., 2020), NNM (Dang et al., 2021), GCC (Zhong
742 et al., 2021), IDFD (Tao et al., 2021), TCC (Shen et al., 2021), SPICE (Niu et al., 2022), Pro-
743 Pos (Huang et al., 2023), SeCu (Qian, 2023) and CoNR (Yu et al., 2023).

744 C MORE EXPERIMENT

745 C.1 EFFECT OF PRUNING THRESHOLD ϵ

Table 7: Effect of pruning threshold ϵ on pruned samples and clustering performance (ACC, NMI, ARI).

Dataset	$\epsilon = 0.1$			$\epsilon = 0.2$			$\epsilon = 0.3$			$\epsilon = 0.4$			$\epsilon = 0.5$			
	Pruned	ACC	NMI	ARI	Pruned	ACC	NMI	ARI	Pruned	ACC	NMI	ARI	Pruned	ACC	NMI	ARI
CIFAR-10	17.4%	94.5	88.4	88.7	26.5%	94.5	88.2	88.5	35.1%	94.3	88.1	88.2	43.7%	94.0	87.5	87.6
STL-10	14.2%	93.3	86.3	86.0	27.0%	93.3	86.3	86.1	35.8%	93.0	85.9	85.6	58.1%	92.8	85.6	85.2

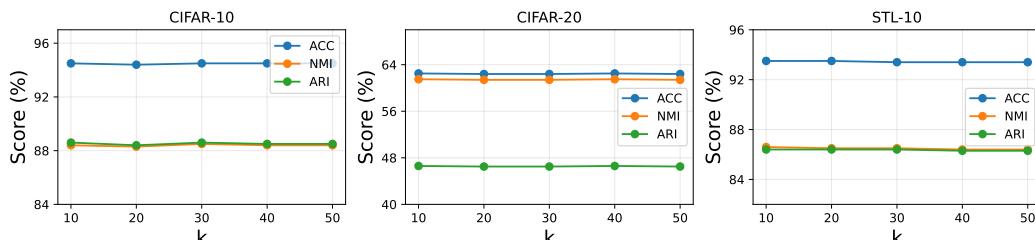
756 C.2 SENSITIVITY ANALYSIS
757758 Table 8: Sensitivity analysis of α in density weighting on CIFAR10, CIFAR20, and STL10.
759

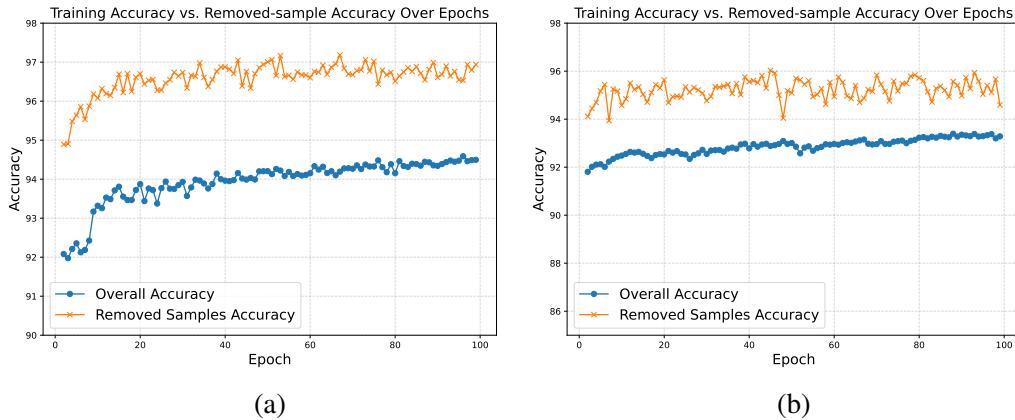
Dataset	$\alpha = 0$			$\alpha = 1$			$\alpha = 2$		
	ACC	NMI	ARI	ACC	NMI	ARI	ACC	NMI	ARI
CIFAR-10	94.2	88.1	88.1	94.4	88.2	88.4	94.5	88.4	88.6
CIFAR-20	61.9	60.9	46.1	62.5	61.5	46.6	62.5	61.5	46.6
STL-10	93.0	85.8	85.6	93.3	86.3	86.0	93.5	86.6	86.4

Dataset	$\alpha = 3$			$\alpha = 4$			$\alpha = 5$		
	ACC	NMI	ARI	ACC	NMI	ARI	ACC	NMI	ARI
CIFAR-10	94.5	88.4	88.6	94.4	88.3	88.5	94.3	88.1	88.2
CIFAR-20	62.4	61.4	46.5	62.4	61.4	46.5	62.5	61.3	46.5
STL-10	93.4	86.4	86.2	93.7	86.9	86.8	93.4	86.4	86.2

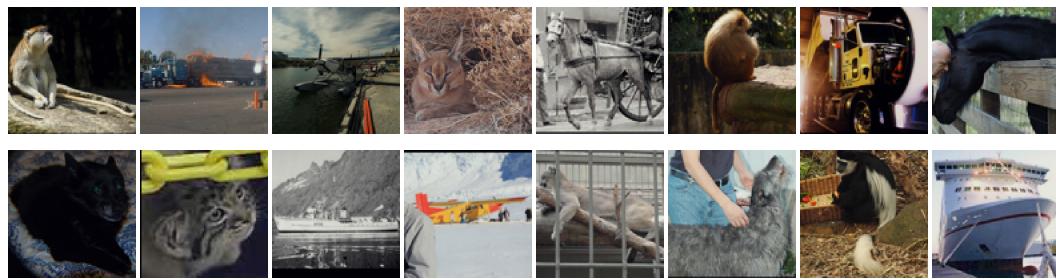
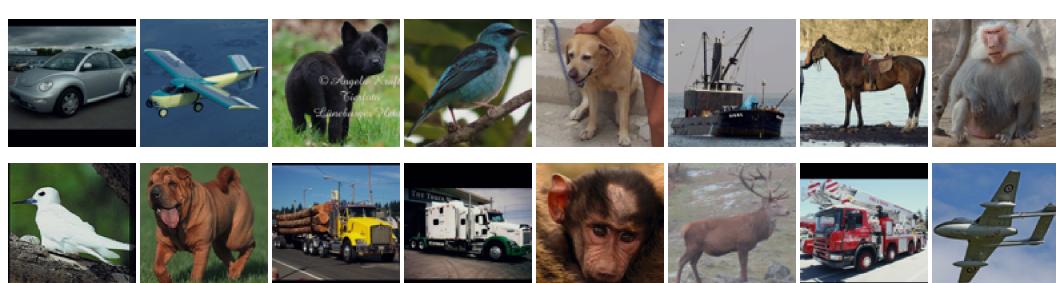
773 **Sensitivity Evaluation of Clustering Performance to Density Weighting.** As shown in Table 8,
774 we further investigate the sensitivity of clustering performance to the density weighting coefficient
775 α . When $\alpha = 0$ (i.e., without density weighting), the clustering performance across all three datasets
776 is relatively lower. As α increases to a moderate range (i.e., $\alpha = 1 \sim 2$), the clustering performance
777 improves steadily, reaching an optimum in most cases. For instance, on CIFAR-10, ACC increases
778 from 94.2% to 94.5% and NMI from 88.1% to 88.4%. On STL-10, the peak ACC of 93.7% is
779 achieved at $\alpha = 4$, but the clustering performance suffers from minor fluctuations with a further
780 increase in α . This indicates that moderate density weighting effectively captures diverse feature
781 structures, while excessively large weights yield no additional gains. In summary, a value of α
782 between 1 and 3 represents a robust and effective setting at most cases.

783 **Sensitivity of Density Estimation to the Choice of k .** Our method estimates sample density using
784 the average distance to its k nearest neighbors. To assess the sensitivity to k , we vary it from 10 to 50
785 and evaluate the clustering performance on CIFAR-10, CIFAR-20, and STL-10. As shown in Fig. 6,
786 the clustering performance across all metrics (i.e., ACC, NMI, and ARI) remains highly stable. For
787 example, on CIFAR-10, ACC fluctuates only between 94.4% and 94.5%, while variations in NMI
788 and ARI are within 0.2%. This stability is consistent across CIFAR-20 and STL-10, with maximum
789 performance differences below 0.2% across all k values. These results demonstrate that our density
790 estimation is robust to the choice of k , indicating that the method’s performance does not depend on
791 fine-tuning this hyperparameter.

800 Figure 6: Sensitivity of clustering performance to the number of nearest neighbors k on CIFAR-10,
801 CIFAR-20, and STL-10.
802

810
811 C.3 ACCURACY OF OVERALL SAMPLES AND REMOVED SAMPLES812 We evaluated CDC+Ours on CIFAR-10 and STL-10, comparing the per-epoch accuracy of removed
813 samples with the accuracy over all samples, as shown in Fig. 7. The results show that removed
814 samples consistently have higher accuracy at each stage, indicating that the model usually makes
815 correct predictions when marking samples as "stable".830 Figure 7: **(a)** Training accuracy and removed-sample accuracy curves on CIFAR-10 over epochs.
831 **(b)** Training accuracy and removed-sample accuracy curves on STL-10 over epochs.

832 C.4 VISUALIZATION OF SEVERAL STABLE (REMOVED) AND UNSTABLE (KEPT) SAMPLES

844 Figure 8: Visualization of some **unstable** samples from STL-10
845846 Figure 9: Visualization of some **stable** samples from STL-10
847
848
849
850
851
852
853
854
855856 C.5 DISCUSSION ON INITIALIZATION STRATEGIES
857858 K-Means is one of the most common strategies in clustering, and it works well on most natural
859 image datasets. For many natural datasets, such as CIFAR-10 and STL-10, using K-Means directly
860 can give reasonable and reliable initial centers for later clustering steps. However, the success of
861 K-Means depends on its basic assumptions: the clusters should be roughly spherical, convex, and

864 balanced. When a dataset does not satisfy these assumptions, K-Means may not provide a good
 865 starting point.

866 COIL-20 is a non-natural image dataset with a complex manifold structure. Its feature distribution
 867 is not spherical or convex. In this case, K-Means initialization cannot capture the true structure
 868 of the data and may lead to suboptimal clustering results. Therefore, we explored a more suitable
 869 initialization method for this type of data. Based on the distribution of COIL-20, we use spectral
 870 clustering as the initialization strategy. Spectral clustering builds a similarity graph and performs
 871 clustering in a low-dimensional space, which makes it more suitable for datasets with complex
 872 geometric shapes. After obtaining the spectral embedding, we apply our density-weighted center
 873 correction to the final K-Means step, so the initial centers better match the true data structure.

874 The results in Table 9 show that spectral clustering performs much better than K-Means on COIL-
 875 20, and adding our module on top of it gives a further improvement. Moreover, the results further
 876 show that choosing an appropriate initialization strategy for different data distributions is important.
 877 They also support the generality of our approach: as long as the initialization fits the data well, our
 878 density-aware correction module can further improve the clustering quality.

880 Table 9: Performance of different initialization strategies on COIL-20.
 881

Method	ACC	NMI	ARI
SCAN	92.6	95.2	90.3
SCAN + K-Means	82.7	92.1	77.3
SCAN + Spectral Clustering	99.2	98.9	98.4
SCAN + Spectral Clustering + Ours	99.3	99.0	98.6

889 C.6 ADDITIONAL RESULTS UNDER MULTIPLE RANDOM SEEDS

890 To further evaluate the stability of our method, we conducted experiments with five different random
 891 seeds on CIFAR-10, CIFAR-20, and STL-10. The results reported in Table 10 show that our method
 892 consistently improves clustering performance across all metrics (ACC, NMI, ARI) and across all
 893 datasets. Compared with the baseline methods (SCAN and CDC), the performance gains of our
 894 approach remain stable under different random initializations, with low standard deviations.

895 Table 10: Clustering performance (ACC, NMI, ARI; mean \pm std %) on CIFAR-10, CIFAR-20, and
 896 STL-10 over five runs with different random seeds.
 897

Method	CIFAR-10			CIFAR-20			STL-10		
	ACC	NMI	ARI	ACC	NMI	ARI	ACC	NMI	ARI
SCAN	88.6 \pm 1.9	83.2 \pm 0.3	79.4 \pm 1.3	51.0 \pm 1.0	53.9 \pm 0.9	37.1 \pm 0.7	91.4 \pm 0.5	83.5 \pm 0.6	82.7 \pm 0.8
SCAN+Ours	91.8\pm0.5	85.0\pm0.6	83.7\pm1.0	55.3\pm0.4	56.7\pm0.5	40.5\pm0.7	92.5\pm0.1	85.0\pm0.3	84.6\pm0.3
CDC	94.1 \pm 0.3	87.9 \pm 0.4	87.8 \pm 0.6	61.7 \pm 0.3	61.1 \pm 0.2	46.0 \pm 0.2	93.0 \pm 0.1	85.9 \pm 0.1	85.6 \pm 0.1
CDC+Ours	94.6\pm0.2	88.5\pm0.2	88.7\pm0.4	62.4\pm0.3	61.4\pm0.1	46.3\pm0.3	93.5\pm0.1	86.7\pm0.2	86.6\pm0.3

905 C.7 EARLY STOPPING STRATEGY

906 We further conducted experiments showing that our sample stability assessment can indeed serve as
 907 a practical heuristic for early stopping. Empirically, as training progresses, the number of samples
 908 that the model has "mastered" and therefore temporarily removes keeps increasing. This growth
 909 gradually slows down and eventually becomes stable. Based on this observation, we designed a
 910 simple but effective stopping rule: we track the number of removed samples at each epoch and
 911 record the maximum removed count. When this maximum remains unchanged for the most recent
 912 K epochs, we stop training.

913 We evaluated our proposed stopping strategy in combination with CDC on CIFAR-10 and STL-10,
 914 testing several values of K (10, 20, 30, 40). We report the stopping time, the performance at the
 915 stopping point, and the best achievable performance. As shown in Table 11, for $K = 10, 20$, the
 916 performance at stopping is within 1% of the best performance. For $K = 30, 40$, the stopped model

918
919
920
Table 11: Performance of the sample stability based early stopping strategy on CIFAR-10 and STL-
10.
921
922
923

	CIFAR-10				STL-10			
	Stop Epoch	ACC	NMI	ARI	Stop Epoch	ACC	NMI	ARI
Epoch=100	–	94.4	88.3	88.5	–	93.4	86.5	86.2
Best	–	94.6	88.5	88.7	–	93.5	86.6	86.7
K=10	49	94.0	87.2	87.4	59	93.0	85.8	85.5
K=20	69	94.3	87.9	88.2	77	93.1	85.9	85.7
K=30	69	94.3	87.9	88.2	98	93.4	86.6	86.4
K=40	–	–	–	–	98	93.4	86.6	86.4

930
931
932 achieves performance almost identical to the optimal result. This shows that our stopping strategy
933 can find a point that is very close to the best result without training for all epochs.
934935
C.8 EXPERIMENTS ON NON-IMAGE DATA936
937 To further evaluate the generality of our method, we conduct additional experiments on three non-
938 image datasets: CNAE-9, Semeion, and News20. These datasets cover diverse modalities, including
939 high-dimensional sparse TF-IDF vectors and binarized digit patterns. We apply our module on top
940 of SCAN and report the results in Table 12. Across all datasets, our method consistently improves
941 over the SCAN baseline, indicating the effectiveness of our approach. These results show that our
942 module is not tied to any specific data type and can generalize well to non-image modalities.
943944
Table 12: Generality of our method across different data modalities.
945

	CNAE-9			Semeion			News20		
	ACC	NMI	ARI	ACC	NMI	ARI	ACC	NMI	ARI
SCAN	55.9	43.6	34.8	54.0	46.8	33.4	60.6	59.6	46.5
SCAN+Ours	63.9	51.7	43.3	55.8	52.3	40.8	62.5	60.2	47.5

972 D ALGORITHM
973974 We present the pseudo-code of our proposed method in Algorithm 1.
975976 **Algorithm 1:** The proposed algorithm
977

 978 1: **Input:** Unlabeled training data $\mathcal{D}_u = \{x_i : i \in \{1, 2, \dots, N\}\}$.
 979 2: **Output:** Encoder $f_\theta(\cdot)$, clustering head $g(\cdot)$, and K clusters.
 980 3: Load the pre-trained parameters of $f_\theta(\cdot)$.
 981 4: Extract features using $f_\theta(\cdot)$ and perform K-Means.
 982 5: Compute density weight by Eq. (1) and re-estimate density-weighted prototypes using Eq. (2).
 983 6: Initialize clustering head parameters with the proposed density-weighted prototypes.
 984 7: Initialize an empty set of stable samples \mathcal{D}_s and an updated set of retained samples $\mathcal{D}_t = \mathcal{D}_u$.
 985 8: **for** epoch=1, 2, ... **do**
 986 9: **for** each sample $x_i \in \mathcal{D}_u$ **do**
 987 10: Forward pass to get P_i^w and P_i^s and compute S_i using Eq. (3);
 988 11: Check second-order difference using Eq. (5) and check pseudo-label consistency;
 989 12: **if** prediction consistency is stable **and** pseudo-labels are consistent **then**
 990 13: Add x_i to \mathcal{D}_s ;
 991 14: **end if**
 992 15: **end for**
 993 16: Update model parameters using samples in $\mathcal{D}_t = \mathcal{D}_u - \mathcal{D}_s$;
 994 17: **end for**

 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025