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Abstract

Recently, text-to-image diffusion models have been widely used for style mimicry
and personalized customization through methods such as DreamBooth and Tex-
tual Inversion. This has raised concerns about intellectual property protection
and the generation of deceptive content. Recent studies, such as Glaze and Anti-
DreamBooth, have proposed using adversarial noise to protect images from these
attacks. However, recent purification-based methods, such as DiffPure and Noise
Upscaling, have successfully attacked these latest defenses, showing the vulnera-
bilities of these methods. Moreover, present methods show limited transferability
across models, making them less effective against unknown text-to-image models.
To address these issues, we propose a novel anti-mimicry method, StyleGuard. We
propose a novel style loss that optimizes the style-related features in the latent space
to make it deviate from the original image, which improves model-agnostic transfer-
ability. Additionally, to enhance the perturbation’s ability to bypass diffusion-based
purification, we designed a novel upscale loss that involves ensemble purifiers
and upscalers during training. Extensive experiments on the WikiArt and CelebA
datasets demonstrate that StyleGuard outperforms existing methods in robust-
ness against various transformations and purifications, effectively countering style
mimicry in various models. Moreover, StyleGuard is effective on different style
mimicry methods, including DreamBooth and Textual Inversion. The code is
available at https://github.com/PolyLiYJ/StyleGuard.

1 Introduction

Diffusion models have demonstrated remarkable effectiveness across various applications, such as
image generation [9} [13], image editing [21}, 41} 43]], and text-to-image synthesis [39, 38]. The
emergence of diffusion models has significantly transformed the art industry. These models allow
users to create detailed artwork from simple text prompts, a task that once required extensive time
and skill from professional artists. However, these technologies have also raised concerns about
copyrights and ethics. For example, Dreambooth [31] allows anyone to fine-tune an SD model to
imitate the artistic style of an artist with just a few paintings and generate high-quality artwork. This
seriously damages the intellectual property rights of artists.

To tackle the challenges associated with unauthorized image usage in text-to-image generation, recent
perturbation-based approaches have emerged. These methods are designed to subtly modify user
images, rendering them "unlearnable" for malicious applications and disrupting the functionality
of targeted diffusion models. For example, Anti-Dreambooth [35] shows some effectiveness by
alternately training diffusion models and executing PGD attacks, but it is fragile against simple data
transformations. MetaCloak [26]] builds on Anti-Dreambooth by incorporating simple transformations
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Figure 1: A comparison of the defensive performance of different methods in the presence of the
purification transformations. Previous methods, including Mist, AntiDreamBooth, and MetaCloak,
fail to defend against DiffPure and Noise Upscale, while our proposed method successfully resists
the style mimicry attack under various transformations for different customization methods.

into the attack pipeline. SIimAC [36] improves MetaCloak by selecting time steps with the highest
gradients to improve the stability of the training.

Although these methods have demonstrated effectiveness against style mimicry, recent purification-
based methods pose significant challenges to these protections. For example, DiffPure [29] and Noise
Upscaling [18] utilize LDM-based purifiers and upscalers to purify noise and successfully bypass the
defenses of these methods, as illustrated in Figure[T] These novel attacks highlight the vulnerabilities
of current anti-customization techniques. Moreover, in the real world, the finetuning model may
differ from the model used in the training phase, making cross-model transferability an important
issue. In light of these limitations, there is a need for a more efficient method to generate protective
noise that is resilient to diffusion-based purifications and has strong cross-model transferability.

To solve these problems, we propose StyleGuard, a more effective method based on style perturba-
tions to protect artists from unauthorized text-to-image diffusion-based style mimicry. To generate
transferable perturbations, inspired by style transfer [[16] and adversarial attacks in feature space
[40], we disrupt style-related features in latent space by adding subtle noise to the fine-tuning images
that is nearly imperceptible to the human eye. Our method prevents text-to-image models from
accurately extracting the style features of fine-tuning images, leading to false style correlations and
hindering attackers from mimicking the original image’s style. Moreover, compared to Mist [24]] that
uses Lo distance in the feature space, which is prone to causing local disturbances and sensitive to
image variations, style perturbations alter global features. As a result, our method is more robust
to transformations such as image cropping, rescaling, and Gaussian noise. Additionally, bypassing
diffusion-based purifications presents significant challenges, particularly because directly incorporat-
ing purifiers or upscalers into the optimization process can lead to memory overflow, as most purifiers
and upscalers are based on diffusion models [29} 23| [7]. To address this issue, we propose a novel
upscale loss function that maximizes the loss of denoise error on ensemble purifiers and upscalers
through a meta-learning approach. On the WikiArt and ClebA-HQ datasets, we show that StyleGuard
significantly outperforms existing approaches over various transformations and purification methods
and has higher cross-model transferability. Our main contributions are summarized as follows.

* We propose StyleGuard, a robust method designed to effectively protect artists from
DreamBooth-based style mimicry. StyleGuard accounts for various preprocessing tech-
niques that attackers may employ, enhancing its practical effectiveness.

* To improve the model-agnostic transferability, we introduce a novel style loss, which aligns
the style characteristics of the protected image more closely with those of the target image,
allowing the fine-tuned model to establish an incorrect style connection.

* To bypass purification transformations, we propose a novel upscale loss function to maximize
the denoise-error loss on the ensemble purifiers and upscalers. Experimental results show
that our approach exhibits strong robustness against the latest purification methods, including
DiffPure and Noise Upscaling, even on unseen purifiers.

» Experiments on the WikiArt and CelebA datasets demonstrate that StyleGuard offers en-
hanced protection against style mimicry and identity customization.

» Compared to previous defense methods, our approach shows improved efficacy and practical
effectiveness by considering various preprocessing techniques and model-agnostic scenarios.



2 Background

2.1 Style Mimicry and Copyright Concerns

Unauthorized style mimicry has become a significant concern in the Al art community, where
malicious actors exploit Al models to replicate an artist’s unique style without consent [4] |6} [27]].
Such attacks often begin with a naive approach, where a generic text-to-image model is queried
using the name of a well-known artist. More advanced mimicry attacks involve fine-tuning generic
text-to-image models on a small collection of an artist’s works, often as few as 20 pieces by models
such as DreamBooth [10} 31]. DreamBooth identifies key stylistic features and associates them with
a specific token in the fine-tuned model, enabling highly accurate style replication. Such techniques
have led to widespread incidents of unauthorized mimicry [4} 6} 27], for example, CivitAl [8] built
a large online website where people share their finetuned stable diffusion models. The potential
for unauthorized style mimicry threatens the livelihoods of artists, leading to discussions about
intellectual property rights in the digital age.

2.2 Protection Against Style Mimicry and Personalization

To address the unauthorized style mimicry issue, perturbation-based methods have been developed,
which add subtle image perturbations to the unprotected images to disrupt generative models. For ex-
ample, PhotoGuard [32] aligns protected images’ latent features with black-and-white images. Glaze
[33] minimizes the feature distance between perturbed images and target images while maintaining
perceptual similarity. AdvDM [25]] reduces the likelihood of perturbed images under pre-trained
diffusion models by disrupting the denoising process. Its enhanced version, Mist [24], utilizes
black-and-white periodic images as targets and incorporates semantic loss and textual loss to improve
protective strength. However, Mist directly minimizes the L2 distance between the original and target
latent features, which causes noticeable and unnatural textures that degrade the original image’s
quality. Anti-DreamBooth [35] proposes a novel scheme to defend the personalization attack that
alternately updates the diffusion model and protected images. MetaCloak [26] builds upon Anti-
DreamBooth by incorporating simple transformations, such as Gaussian blur and cropping, into the
attack pipeline to improve robustness against these transformations. SimAC [36] further extends
the work done by Anti-DreamBooth by selecting timesteps with maximum gradients to stabilize the
training process. Some other methods [[15} 44,42 [37]] protect copyrights by embedding watermarks
into images, subtly incorporating the author’s information. However, this kind of approach introduces
additional verification processes.

While these methods exhibit robustness to simple transformations, recent work has introduced
purification-based methods, including DiffPure [29] and Noise Upscaling [[18]], which first add noise
to images and then employ an LDM as purifier or upscaler to remove noise. These approaches
have demonstrated impressive results in removing protective noise, rendering many recent protective
methods ineffective. Therefore, there is an urgent need to develop more robust methods to defend
against such attacks.

3 Preliminary

3.1 Style Mimicry by Dreambooth

DreamBooth [31]] introduces a novel approach for personalizing text-to-image diffusion models by
enabling them to generate high-fidelity images of specific subjects based on a few reference images.
The method fine-tunes a pre-trained text-to-image model to bind a unique identifier (e.g., "[V]")
to the subject, allowing the model to synthesize the subject in diverse contexts while preserving
its key visual features. This is achieved through a fine-tuning process: the latent diffusion model
(LDM) is fine-tuned using input images paired with text prompts containing the unique identifier
and the subject’s class name (e.g., "An [V] painting"), while a class-specific prior preservation loss
ensures the model retains its semantic understanding of the broader class (e.g., "A painting"). The
DreamBooth loss function is defined as
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Figure 2: The pipeline of StyleGuard. We alternatively update the diffusion model and the protected
images. Ensemble image encoders and purifiers are included to compute the style loss and upscale
loss to improve cross-model transferability and the robustness to purifications.

By leveraging the model’s semantic prior and the text-guided denoising loss function, DreamBooth
enables tasks like subject recontextualization, text-guided view synthesis, and artistic rendering,
overcoming limitations of existing text-to-image models in reconstructing and modifying specific
subjects.

4 Methodology

The pipeline of StyleGuard is shown in Figure[2} We will first define the problem and then introduce
the loss functions. Finally, we will introduce the StyleGuard Algorithm.

4.1 Problem Statement

We frame the problem as follows: a user aims to safeguard a set of clean and unprotected images
X, = {zl}1_, from being exploited by unauthorized model trainers for generating style-mimicking
images. To accomplish this, the user applies a small perturbation to X, resulting in a modified set of
protected images X, = {x; 1, which can be safely released on the Internet. Adversary will then
gather and utilize X, to fine-tune a text-to-image generator 6 following the DreamBooth algorithm
or any other methods. We assume that the model trainer has some awareness of the protection and
tries to destroy the protection effectiveness through different pre-processing methods, such as random
transformations and purifications to the training image set X,.

The goal of the user is to create a protected and robust image set X, that diminishes the personalized
generation capabilities. This objective can be expressed as a bilevel optimization problem:

X, € arg )I(r;%% Lais(Xgen; Xe) M

where 6" € arg mgin {Lgen(T(Xp);¢,0)} . 2)

In these equations, c denotes the class-wise conditional vector. X e, = Mo~ x, (¢) is the generated
images of the fine-tuned LDM model M- x,. Lqis represents a perception-aligned distance function
used to evaluate the style discrepancy between the generated images X 4., and the clean reference
images X.. The Ly, is the finetuning loss function. We hypothesize the adversary tries to destroy
the protection of X, by applying some kinds of preprocessing methods (denoted by T).

4.2 Disturbing Style-related Features and Generating Transferable Perturbations

Previous work has found that the mean and variance of the feature space encapsulate the style
information [34} 40, [17, [19]. We consider the problem defined in Eq. [4.1]as maximizing the style-
related feature distance between the reference images and the perturbed images and making it closer
to the target images. Therefore, we propose a novel style loss function, which is defined as
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where X, is a set of target images that has a different style from X.. The px and o are the mean and
variance of the latent features of these images encoded by the LDM’s VAE or CLIP encoder f. To
improve the transferability to unknown models, we compute the style loss over a set of different
substitute encoders. The target image is selected to have a distinct style from the original images,
such as from different art movements (e.g., realistic and abstract). By disturbing the style-related
features, StyleGuard can make it difficult for DreamBooth or Textual Inversion to establish a correct
connection between the style features and the unique identifier.
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4.3 Why Previous Defenses are Ineffective to Noise Upscaling and DiffPure

Previous defenses, such as MetaCloak [26]] and SimAC [36]], involve transformations like random
cropping or Gaussian blur in the perturbation generation process to enhance robustness against
preprocessing methods. However, these approaches fail to counter attacks like DiffPure [29]] and
Noise Upscaling [18]], which use diffusion models as noise purifiers. Directly incorporating Noise
Upscaling or DiffPure into the optimization process can result in an excessively large computation
graph. To address this challenge, we first apply small noises to z,, according to the DiffPure and
Noise Upscale settings and then maximize the denoising error loss across a set of substitute DiffPure
and upscaling (super-resolution) models. The upscale loss function is defined as
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where O is the parameter of purification and upscaling models. Upscale loss function aims to cause
purifiers and upscalers to amplify protective perturbations instead of reducing it during the diffusion
process. The upscale loss is computed at a randomly-chosen timestep in the denoising sequence. Still,
this method is effective in breaking popular purifiers and upscalers (Sec[5.2))

4.4 The Algorithm of StyleGuard

A straightforward approach to tackle the bilevel problem in Sectiond.T]is to unroll all training steps
and optimize the protected examples X, through backpropagation. However, this would cause a very
large computation graph that would exceed the capacity of most current machines. To overcome this
challenge, inspired by Anti-DreamBooth [33], we use an approximate method to optimize the X;, and
0 alternatively. Specifically, in the ¢-th iteration, when the current model weights 6; and the protected
image set X zt) are available (with 6 initialized from a pretrained diffusion model and X g = X,),
we create a copy of the current model weights, denoted as 9270 < 0, for noise crafting. We then
optimize the UNet of LDM for K steps using DreamBooth loss:

;,j-i,-l = 0;73‘ - ﬂvégijgen(X;; 02,]‘)7 Q)

where j € {0,1,..., K — 1} and 8 > 0 is the step size. This unrolling process enables us to "look
ahead" during training and assess how current perturbations will influence the fine-tuned LDM.

Subsequently, we utilize the updated UNet model 6; ;; to optimize the upper-level problem, specifi-
cally updating the protected images X, by PGD. However, it is difficult to update the training images
X, of LDM by L directly because this needs to unroll the fine-tuning process. To make the gradient
computable, we maximize the denoising-error 10ss Lgenoise instead. Moreover, in real-world scenarios,
the pretrained text-to-image generator used by unauthorized model trainers is often unknown. To
enhance the transferability of the perturbed images to unknown models, we alternatively maximize
the denoising error across a group of LDMs. The denoise loss is defined as

Lenoise = _IEGN@Ezp,O,t,c,ENN(O,l) ||6 - 69($Up,t+17 t, C)Hg (6)

The total loss function is defined as:
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where 1 and X are hyperpameters. We set n=1 and A=10 in our experiments. Moreover, to improve
the robustness to other transformations like crop and resize, we involve random transformations T’ in
the optimization process based on the expectation over transformation (EoT) [26} 5]]. Then we update
the perturbed image X, using PGD with the attack budget B, for K5 steps through

X;+1 = ]ng']I" |:HBoo ()(;7 — sign (VX;Lstyleguard))] ) (8)

This expectation is estimated by Monte Carlo sampling with J samples (J = 1 in our setup). After
obtaining the updated protected images X ; + &%, the surrogate model 0; is trained on the perturbed
images for additional K; SGD steps:

Ori1 = 0y — BV, Lyen (X + 6%30,). ©)

The procedures outlined above will repeat N times, resulting in the final protected images X . The
final algorithm is shown in Algorithm [I]

Algorithm 1 The Algorithm of StyleGuard

1: Input: Initial substitute LDM model set Oy, initial protected images X 2 = X,, pretrained image
encoders I, number of iterations [V, target images X, and fine-tuning steps K7, PGD steps Ko,
pretrained LDM upscaler set O, random transformations T’.

2: fori =0to N — 1do

: Sample 6; from ©;; sample 01 from Or; sample random transformation g from T'.

3

4:  Copy model weights: 6 < 0;

5 forj=0to K1 —1do

6: Update copyed UNet model weights ¢} on X, according to Eq.
7

8

end for
: forj=0to Ky —1do
9: Compute the StyleGuard loss according to Eq. 3] Eq. ] Eq[6]and Eq. [7]

10: Optimize protected images X, using PGD attacks according to Eq. 8]
11:  end for
122 forj=0to K1 —1do
13: Update the surrogate model 6; according to Eq[9]
14:  end for
15: end for

16: Output: Final protected images X 7.

5 Experiments

5.1 Experiment Setup

Datasets We evaluate StyleGuard’s performance on the WikiArt and CelebA datasets to assess its
effectiveness against both style mimicry and personalization attacks. Notably, most previous work has
focused on only one of these attacks, whereas we are the first to successfully defend against both. The
WikiArt dataset comprises 42,129 artworks from 195 different artists, with each piece categorized by
its genre (such as impressionism or cubism). For our style mimicry attacks, we randomly selected
40 artists with different art styles and 20 artworks from each artist, using 10 for training and 10 for
evalution. For the CelebA dataset, we randomly select 100 identities, using 10 images per identity to
fine-tune the LDM model and another 10 images for evaluation.

Implementation details Initially, we use SD v1.4 and SD v1.5 as the substitute models to perturb
the images. The attack budget is set as % to be same with baselines. The images encoders used
to compute the style loss includes VAE, OpenCLIP-ViT-H-14 and OpenCLIP-ViT-bigG-14. The
StyleGuard training details and hyperparameters are included in Appendix [A.T| During testing, we
evaluate two popular fine-tuning methods: DreamBooth and Textual Inversion [11]. For DreamBooth,



we further assess two common settings: full-tuning (Full-FT) and LoRA fine-tuning (LoRA-FT) [14],
applied to both SD v2.1 and SD-XL (only LoRA on SD-XL, due to memory constraints). We used
the official script from the Diffusers library for DreamBooth fine-tuning. The training details for
DreamBooth and Textual Inversion are included in Appendix[A.2]and[A.3]

Attack Settings We consider three kinds of attacks, including random transformation, DiffPure,
and Noise Upscaling. For random transformations, we consider Gaussian noising, center cropping
and resizing. For the DiffPure, we use the official code, and use Guided Diffusion Model and DDPM
model during training, and use Stable Diffusion XL during evaluation. For Noise Upscaling, we
followed the settings outlined by Honig et al. [[18]. During the optimization, we generate perturbation
on the SD-x4-upscaler [30, 3]. During testing, we evaluate the defense effectiveness using the
SD-x2-latent-upscaler [2]], which has a different architecture compared to the SD-x4-upscaler (see
Appendix [A.3]for more details). The number of diffusion steps was set to 30 because large diffusion
steps will modify the image content. We also use an online black-box upscaler, Finegrain Image
Enhancer (FIE) [1]. For FIE, the upscale factor is set as 2, and the ControlNet scale is set as 0.6.

Baseline settings We compare our method with Glaze [33]], Mist [24]], Anti-DreamBooth [35]],
MetaCloak [26] and SimAC [36]. The attack budget are set as % for all baselines except Glaze,
which uses LPIPS as constraint. The implementation details are included in Appendix [A.4]

Evaluation Metrics To evaluate the defense performance for style mimicry, we use Fréchet
Inception Distance (FID)[[12] and precision [22] as assessment metrics (consistent with Mist[24])
and mimicry success rate [18]], which uses human as annotators. To exclude content influence in
the style mimicry attack, we use the model trained on clean images to generate 100 paintings in a
specific category (e.g., an <sks> painting of a house). We then generate another 100 images from the
model trained on style-guarded images using the same prompt and compute the FID and precision
between the two sets. For personalization attacks, we use identity match score (IMS) [35]] to access
the semantic closeness between faces. The metric details are shown in the Appendix [A.6]

5.2 Experiments Results

Comparison StyleGuard with Different Methods. we evaluate the protection efficacy of our
method and baselines under no preprocessing and different transformations. Table [I] shows the
evaluation results on the WikiArt using DreamBooth. The baseline trained on clean images with FID
(233.78) and Precision (0.60) serves as reference points. It is shown that when there is no attack, all
methods can successfully disrupt style mimicry, resulting in increased FID and reduced precision
compared to the baseline. The previous method, Mist, demonstrated vulnerabilities to straightforward
transformations like cropping and resizing, as well as Gaussian noise, yielding precision scores of
0.46 and 0.48. This weakness stems from its insufficient attention to global features and a lack of
consideration for transformations or purifications within its methodology. MetaCloak and SimAC
exhibit enhanced robustness to simple transformations because they incorporate these considerations
into their pipeline, resulting in high FID scores and low precision scores (0.20 and 0.18 for MetaCloak,
0.06 and 0.04 for SIimAC). However, their effectiveness diminishes in the presence of a purifier or
upscaler. Our method, StyleGuard, surpasses all existing techniques in both scenarios. It achieves the
highest FID and the lowest precision across different transformation settings, demonstrating strong
protective efficacy against transformations and purifications. Notably, when purifiers or upscalers are
present, our method significantly outperforms the baseline methods. We believe this is because our
upscale loss (Eq. |[4) can bypass the purifier or upscaler. Additionally, our human evaluation results
corroborate these findings, shown in Figure 4] (see Appendix for human evaluation details).

The Importance of Different Loss Functions The efficacy of various loss functions in safeguarding
against style mimicry is visualized and quantitatively analyzed in Figure 3] and Table[I] Figure[3]
illustrates the influence of different loss functions on image quality and the robustness of protection.
Although using denoise loss and style loss can result in a decrease in image quality for unprotected
images (Figure [3| (2)), it is still vulnerable to Noise Upscale, as shown in Figure |3| (3), in which
the image quality is improved. The integration of upscale loss significantly improves the protection
resilience, as evidenced in Figure[3](4). This underscores their collective contribution to a more robust
defense mechanism, ensuring that style mimicry is effectively countered even when purification
attacks exist. The quantitative results in Table [T|further validate the effectiveness of the loss functions.
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Figure 3: Visualizing the effects of different loss functions. It is shown that only using denoise loss
and style loss cannot defend the Noise Upscale well, as shown in (3). With the upscaler loss, the
image quality significantly decreases even with Noise Upscale, as shown in (4).
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Figure 4: Evaluation results of mimicry success rates by human evaluators. We asked users to
compare generated images based on clean and protected training images using the question: "Based
on the image style and quality, which image better fits the reference samples?" A lower mimicry
success rate indicates stronger perturbation noises affecting the image quality.

StyleGuard, which incorporates denosing loss, style loss, and upscale loss, achieves the highest FID
and the lowest Precision, indicating that the image quality is lower than using single loss.

Textual Inversion Results Textual Inversion optimizes only a small set of new token embeddings
that can later be appended to prompts to imitate the target style/image without fine-tuning the model.
We use the official code for the textual inversion from the diffusers package and use the SD v2-1-base
as the text-to-image model. The results of the experiment are shown in Table [ in the Appendix.
Experiments show that StyleGuard’s denoising loss is more effective against textual inversion. This is
because Textual Inversion does not modify model weights and the adversarial noise directly corrupts
the semantic alignment between learned tokens and the style. The style loss can destroy the quality
of the generated images further, as shown in the second-to-last line in Table [ It is shown that
StyleGuard remains effective even when attackers use a different method, including DreamBooth and
Textual Inversion, whereas traditional defenses (e.g., Glaze) fail.

Transferability on different models High transferability method is more practical for real-world
applications. Table [2]compares the transferability of Anti-DreamBooth (above the slash) and Style-
Guard (under the slash). We calculated the ratio of FID scores (%) for images generated on evaluation
models and substitute models. The higher the ratio, the better the transferability. The results demon-
strate that StyleGuard has better transferability across different SD models than Anti-DreamBooth.
This is because, compared to Anti-DreamBooth, which only uses denoising loss, StyleGuard incorpo-
rates style loss. This addition can perturb global style-related features that are independent of the
model parameters. We also evaluate the protection results on a black-box online upscaler, FIE. As
shown in Figure[§]in the Appendix, when using FIE for purification, the style of the image is more
similar to Van Gogh'’s style compared to images without purification. However, it still does not match
the quality of images generated from clean inputs.



Table 1: Comprehensive evaluation of text-to-image protection methods under different transfor-
mations for DreamBooth on the WikiArt Dataset. Metrics reported are FID1 (higher better) and
Precision] (lower better). The best data are shown in bold, and the second runners are in gray.

No Prep. Crop+Resize Gauss. Noise DiffPure Noise Up.
FID Prec. FID Prec. FID Prec. FID Prec. FID Prec.
No Protect 23378 0.60 27541 0.65 23825 0.62 23789 0.68 236.58 0.60

Method

Glaze 333.89 0.15 31522 040 340.10 035 31894 030 31273 0.60
Mist 382.50  0.00 29528 046 27577 048 29045 042 256.65 045
AntiDB 327.01 0.05 31088 0.25 32215 020 30574 035 293.14 0.50
MetaCloak  382.00 0.05 36252 020 35526 0.18 318.87 025 29520 0.40
SimAC 407.40 0.00 36547 0.06 38045 0.04 290.15 0.38 28452 045
Laenoise 348.15 0.03 35577 030 36242 0.15 358.89 0.12 31054 0.20

Lenoisessiyle  389.33 ~ 0.01 38245 0.25 38021 0.08 385.77 0.06 37592 0.10
StyleGuard 428.70  0.00 405.31 0.05 420.74 0.02 41833 0.03 401.80 0.00

Experiment Results on LoORA To evaluate cross-model transferability under different fine-tuning
settings, we apply LoRA-based training to SD models optimized with DreamBooth loss (3)). Quanti-
tative results demonstrate that our method achieves stronger performance on SD-XL (FID: 464.45,
Precision: 0.00) compared to SD-v2-1 (FID: 366.78, Precision: 0.16), though both scenarios signifi-
cantly outperform prior approaches. We hypothesize that the weaker protection efficacy on SD-v2-1
stems from architectural differences in parameter adaptation during LoRA fine-tuning. Specifically,
SD-v2-1 may undergo updates concentrated in fewer layers, particularly those less sensitive to
adversarial perturbations, resulting in a smaller effective attack surface (see Figure[6]in Appendix for
visual examples).

Evaluation Results on Personalization Attacks We also evaluate the effectiveness of our method
in defending against personalization attacks (see Appendix [A.§] for implementation details). As
shown in Figure[7]and Table[5]in the Appendix, we successfully defend against the personalization
attack by DreamBooth, even when Noise Scaling is used to preprocess the face images. We think this
is because the style loss can not only disrupt the style-related features but also the identity-related
features, which is consistent with the findings of StyleGAN [20].

Table 2: Cross-model transferabilities for An-  Table 3: Transferability to different fine-tuning

tiDreamBooth and StyleGuard. methods.

Evaluation model Finetuning Method LoRA/SD v2-1 LoRA/SD XL
Surrogate | ~— SD vi4 SDv1.5 SDv2.1 i 21:11(?4% PBC%T ZFIISD6i() Pg‘/;-;

can aseline . . B .
SDVL4_T0O0T00 55965 —Tesmed  CERDRERE 0 O SEE 0%
- " . y . . y MetaCloak 320.85 0.28 435.60 0.22
SD v2.1 73.5/89.2 76.4/92.5 100.0/100.0 SimAC 375.90 020 44575 0.12
Ours 36678  0.16 46445  0.00

6 Limitation and Conclusion

This work introduces StyleGuard, a novel and robust anti-mimicry method designed to protect artists
from unauthorized style mimicry in text-to-image diffusion models. By optimizing style-related
features in the latent space, StyleGuard effectively disrupts the extraction of correct style features,
making it difficult for attackers to replicate the original artistic style. Extensive experiments on the
WikiArt and CelebA-HQ datasets show that styleGuard exhibits strong cross-model transferability,
outperforming existing methods in terms of protection efficacy. Our approach also demonstrates
superior robustness against data transformations, including the state-of-the-art DiffPure and Noise
Upscaling. This work addresses critical challenges in intellectual property protection in the digital art
domain, providing artists with a powerful tool to safeguard their unique styles from unauthorized
exploitation. However, experiments indicate that StyleGuard is less effective with commercial
upscalers and LoRA-based fine-tuning methods. Future work could explore extending StyleGuard to
other customization methods and more complex purification methods.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] .
Justification: The abstract and introduction accurately reflect the paper’s contributions.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discusses the limitations of the work in our paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We does not include theoretical results in our paper.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We fully disclose all the information needed to reproduce the main experimen-
tal results of the paper.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We will provide code to reproduce the results in our paper in the supplemental
material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provided all the training and test details in our paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Our paper evaluated the statistical significance.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide sufficient information on the computer resources (type of compute
workers, memory, time of execution) needed to reproduce the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both potential positive societal impacts and negative
societal impacts of the work performed.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the original paper that produced the code package or dataset.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 StyleGuard Training Details

We generate the perturbations using eight NVIDIA 3090 GPUs. The fine-tuning steps, denoted as
K, are set to 3, while the PGD steps, denoted as K5, are set to 6. The total training steps N are
set to 100. The target image is randomly selected from a different art genre. The PGD budget is
configured to %, and the PGD step size is set to 0.005. Additionally, the weight of upscale loss (1)
is set to 1, and the weight of the style loss () is set to 10. The optimization time for each image is
approximately 20 minutes, compared to 15 minutes for MetaCloak [26] and 40 minutes for SimAC
[36]. This extended time for SimAC is due to the additional steps required to select time steps for the
denoising error loss, which we find provide minimal benefit for the defense.

A.2 DreamBooth Training Details

For the training of DreamBooth, we use a learning rate of 5e-6, with the prior reservation loss weight
set to 1.0. For the style mimicry attack, the customized prompt is set as "an <sks> painting" and the
prior prompt was set as "a painting". For the personalization attack, the customized prompt is set
as "a photo of <sks> person", and the prior prompt was set as "a photo of person". In the original
DreamBooth paper, they use 5 images for the personalization. However, we found that using only 5
images per artist was insufficient for generating high-quality mimicry. Therefore, we opted for 10
images per artist and trained for 1000 epochs. For LoRA fine-tuning, the dimension of the LoRA
update matrices is set as 4. We use mixed precision of bf16 to save memory. It takes about 20 minutes
for the full fine-tuning and 4 minutes for the LoRA fine-tuning.

A.3 Textual Inversion Implementation Details and Experiment Results

Textual Inversion is a technique for learning and replicating new visual concepts (e.g., artistic styles,
objects, or aesthetics) in a pretrained text-to-image diffusion model (such as Stable Diffusion) without
fine-tuning the model’s weights. Instead, it optimizes only a small set of new token embeddings
that can later be appended to prompts to imitate the target style/image. The method introduces
new (placeholder) text tokens (e.g., "sks_style") and optimizes their embeddings (vectors in the
text encoder’s space) to represent the target visual style. These tokens can later be inserted into
prompts (e.g., "A painting in the style of sks_style") and will guide the model to generate images
resembling the trained style. We use the official code for the textual inversion and use the SD
v2-1-base as the text-to-image model. In our experiment, we find that StyleGuard’s denoising loss is
most effective against Textual Inversion (Table[d) while the style loss is also important to destroy the
quality of generated images. This is because Textual Inversion does not modify model weights and
the adversarial noise directly corrupts the semantic alignment between learned tokens and the style.

Moreover, StyleGuard’s perturbations remain effective even when attackers use different mimicry
methods (Dreambooth, Textual Inversion, etc.), whereas traditional defenses (e.g., Glaze) fail. Pre-
vious work, like MetaCloak and SimAC, are robust to simple transformations like Crop+Resize
and Gaussian Noise. However, they are relatively vulnerable to attacks such as DiffPure and Noise
Upscaling. When there is DiffPure and Noise Upscaling, our methods achieve the highest FID and
the lowest precision. We think this is because the StyleGuard methods consider a variety of purifiers
and upscalers during training. However, when there is no purifying measure, our method performs
slightly worse than SimAC in textual inversion, because SimAC adds the step of selecting diffusion
timesteps. Although SimAC can further reduce the quality of the image, it will also increase the
optimization time.

A.4 Baseline Implementation Details

In this section, we outline the baseline settings for our comparisons with several protection methods:
Glaze, Mist, Anti-DreamBooth, MetaCloak, and SimAC. To ensure a fair evaluation, we maintain a
consistent perturbation budget of p = 8/255 for all methods except Glaze. Evaluating Glaze under
this specific budget presents challenges due to Glaze utilizes LPIPS for its image similarity metric,
which does not constrain the L°° norm. Consequently, we implement Glaze by our own according to
the Glaze paper. Our observations indicate that images processed with Glaze appear equally or less
perturbed compared to those processed with Mist and Anti-DreamBooth.
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Table 4: Comprehensive evaluation of text-to-image protection methods under different transforma-
tions for Text Inversion. Metrics reported are FID? (higher better) and Precision (lower better).

No Preprocess Crop+Resize Gaussian Noise DiffPure Noise Upscale
FID Prec. FID Prec. FID Prec. FID Prec. FID Prec.
No Protection 23756 0.9  280.63 0.88 24120 0.87 239.87 092 25531 0.85

Method

Glaze 24943 084 263.05 0.72 28511 0.75 26233 0.65 28547 0.71
Mist 45439 0.02 29790 080 422.17 0.10 301.25 0.78 294.60 0.75
AntiDB 371.12 022 32788 044 35345 031 26654 052 260.13 0.58
MetaCloak 416.25 0.04 380.52 020 398.76 0.12 31587 0.68 30842 0.72
SimAC 46582 0.02 370.87 0.18 44135 0.08 340.15 025 33579 0.30
Lgenoise 382.15 0.06 38567 0.08 37542 022 36879 0.19 362.84 0.25

Lenoisesstyle 41033 0.04 39245 0.05 40321 0.12 39567 0.10 38892 0.15
StyleGuard 428.57 0.00 398.21 0.05 419.84 0.08 41233 0.04 425.76 0.07

Next, we specify the hyperparameters utilized for replicating each protection method.

Glaze Due to the lack of access to a shared codebase from the Glaze authors, we implemented
Glaze independently. The LPIPS distance is computed using the VGG model. In Figure[5] we display
examples of images generated by Glaze. The results indicate that Glaze produces images that are a
mixture of the target and reference styles.

Mist We conducted our evaluation of Mist following the methodology [24]. The parameters set for
this evaluation include a PGD perturbation budget of p = 8/255, with Npgp = 100 iterations and a
PGD step size of @ = 1/255. The target image used for this evaluation is denoted as 7' = Target Mist,
as illustrated in Figure[3]

Anti-DreamBooth Anti-DreamBooth [335] is tailored to counter DreamBooth fine-tuning. We
adapted their approach for our setting focused on style mimicry, retaining their hyperparameters
where feasible. We established the following parameters: the number of iterations N = 50, PGD
perturbation budget p = 8/255, PGD step size v = 5 x 1073, and the number of PGD steps per ASPL
iteration Npgp = 6. The 10ss L pinetune 1S minimized within the vanilla fine-tuning framework over
300 training steps.

MetaCloak We implement MetaCloak [26] using the original setting, with a surrogate pool of 5
diffusion models (M = 5). The transformation set 7 includes Gaussian filtering (kernel=7), random
flips, and center cropping. We use Adam optimizer with 3 = 10~% and C' = 4000 crafting steps. The
denoising-error maximization loss combines with EOT to ensure transformation robustness.

SimAC Following [36], we implement their feature interference loss with adaptive timestep selec-
tion. The perturbation budget matches other baselines (¢, = 8/255), and we use their recommended
layer weights (9-11) for high-frequency feature disruption. The hyperparameters are same with the
official implementation, with a number of training epochs of 50 and each epoch include 3 steps for
surrogate model training and 9 steps for the PGD attacks. For the timestep search, the maximum
greedy search steps is set as 50.

A.5 Attack Implementation Details

The implementation details of noise upscaling. Previous work have found that upscaling images
can purify adversarial images [28]]. Recent work improve this by first applying Gaussian noises
and then upscales the noisy image [[18]]. However, [18]] does not specify the model they used for
upscaling the images. In our experiment, we train on the SD-x4-upscaler model and then test on the
SD-x2-latent-upscaler model. We select these two models because they have different architectures,
therefore we can test the transferability of our methods. Specifically, the SD-x4 first encodes the
image through a VAE encoder, producing latent features of shape [B, 4, H, W]. It then combines a
downscaled image with the latent features, resulting in a tensor of shape [B, 7, H, W]. In contrast,
the SD-x2-latent directly utilizes the latent features.
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Target Image used in S < 3 e
Glaze

Glaze, using paintings from Artist Rembrandt as target, with prompt “an sks painting of a house”

Target Image used in
Mist

Mist, with prompt “an sks painting of a house”

Figure 5: Visualization of Glaze and Mist. For Glaze, we use paintings from Van Gogh as the
reference and paintings from Rembrandt as the targets. The results indicate that Glaze produces
images that are a mixture of the target and reference styles. For Mist, we use a periodic image as the
target, according to the original paper.

A.6 Evaluation Metrics

For style mimicry attack, we use three different metrics, FID, precision and success rate.

* FID. The Fréchet Inception Distance (FID) measures the statistical similarity between real
and generated images by comparing their feature distributions in Inception-v3’s latent space.
High FID indicates that generated images deviate from the real data manifold, making
style imitation harder. Unlike Precision (which measures mode coverage), FID penalizes
unnatural artifacts, making it ideal for measuring adversarial disruption.

* Precision. The precision metric is computed to evaluate the quality of generated images by
assessing their fidelity to the target data manifold. Following the methodology proposed by
[22], we implement a manifold-based approach for precision computation. Given two sets
of feature embeddings—reference features Given feature embeddings F,. (real data) and
F, (generated data)—we proceed as follows: For each real sample f, € F,, compute its
k-nearest neighbor radius R,.(f,.) in F,..

Precision — % S U@ €,y — £l < Ry(£) (10)
9! f,eF,

where I(+) is the indicator function. Higher precision indicates better coverage of real data
modes. To exclude the influence of image content in the style mimicry attack, we first use
the fine-tuned model on a clean image to generate 100 new paintings in a specific category
(e.g., an SKS painting of a house). We then use the fine-tuned model on the style-guarded
images to generate another set of 100 images with the same prompt. These two sets of
images are then used to compute the precision.

* Mimicry Success Rate. Mimicry success rate employs human annotators in a pairwise
comparison protocol to evaluate generated images from unprotected inputs versus those
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(c) DreamBooth-LoRA, finetune SD XL on protected image
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(d) DreamBooth-LoRA, finetune SD XL on unprotected image

Figure 6: Comparison of images generated from unprotected and protected images using LoRA
methods. We utilized the DreamBooth loss to fine-tune the SD v2.1 and SD XL models. Our findings
reveal that our method significantly reduces image quality for the SD XL model. Although the image
quality degradation for the SD v2.1 model is less pronounced, there is still a notable change in style.

from protected images.

1
success rate = NPTN Z Z [robust mimicry preferred over unprotected mimicry]
(1D

@ prompt annotator
A perfectly robust mimicry method would thus obtain a success rate of 50%, indicating that
its outputs are indistinguishable compared with unprotected method. In contrast, a severely
restricted protection would result in success rates around 0% for robust mimicry methods,
indicating that mimicry on top of protected images always yields worse outputs. In the
experiment, we use 5 different annotators. Each annotator needs to compare 10 image pairs
for each transformation and protection method.

For personalization attack, we use identity match score (IMS), which computes the similarity between
the embedding of generated face images and an average of all reference images. We use VGG-
Face and CLIP-ViT-base-32 as embedding extractors to extract face features and employ the cosine
similarity.
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A.7 Human Evaluation Results on the Style Mimicry

To further evaluate the success rate under different transformation settings, we asked human anno-
tators to compare images generated by models fine-tuned on unprotected versus protected images.
Annotators assessed these two sets of images based on style and quality, selecting which set exhibited
better quality. Thus, a successful mimicry attack would yield a success rate of nearly 50%, indicating
competitiveness with images trained on clean samples.

We employed five different annotators, each tasked with comparing ten image pairs for 4 transforma-
tions and 6 protection methods. Metrics were computed using Equation [T} The results are presented
in Figure [ which shows that when purifications such as DiffPure and Noise Upscaling are applied,
our method’s success rate is significantly lower than baseline methods.

A.8 Evaluation Results on the Personalization

We evaluated the effectiveness of our method in defending against personalization attacks, where
an adversary attempts to generate customized face images using a fine-tuned model. As shown in
Figure[7] we successfully defend against the personalization attack by DreamBooth, even when Noise
Scaling is used to preprocess the face images. The top row, X jcqn , represents the original, unaltered
input, while the images labeled X, correspond to the perturbed images generated by StyleGuard.

For quantitative analysis, we selected 100 identities from the CelebA dataset, choosing 10 images
for each identity to fine-tune the LDM using the DreamBooth loss function. The PGD budget was
set to 16/255. The success of the defense is measured by the Identity Matching Score [35], which
computes the cosine distance between the generated images and the average face embedding of the
user’s clean image set using the VGG-Face and CLIP-ViT-base-32. A lower ISM indicates that
the model cannot reproduce images of the same identity. The results are shown in Table[5} It is
evident that when no purifications are applied, all methods achieve successful protection against
anti-personalization. The best method, MetaCloak, achieves an I M S¢p;p of 0.662 and an I M Sy ga
of -0.051. However, when noise upscaling is introduced, the protective strength of previous methods
significantly decreases. In contrast, our method continues to effectively mitigate personalization
attacks.

Table 5: Comparison of Identity Matching Score on the anti-personalization for different methods. The
lower the IMS, the stronger the protection is. When no purifications are applied, all methods achieve
successful protection against anti-personalization. However, when noise upscaling is introduced, the
protective strength of previous methods significantly decreases. In contrast, our method continues to
effectively mitigate personalization attacks.

Method IMScrip IMSvee IMScrprp with UpScale IM Sy ae with Upscale
Clean 0.814 0.432 0.805 0.429
Anti-DreamBooth 0.695 -0.012 0.725 0.379
SimAC 0.675 -0.022 0.780 0.373
MetaCloak 0.662 -0.051 0.748 0.354
Our Method 0.680 -0.039 0.685 0.120

A.9 Evaluation over Online Black-box Upscaler

We use an online black-box upscaler, Finegrain Image Enhancer (FIE) [1]], to further evaluate our
method. For FIE, we use the default setting, with the upscale factor set as 2 and the ControlNet
scale set as 0.6. The Gaussian noise standard deviation is set as 0.1. Figure 1 shows the results of
fine-tuning using a Van Gogh-style image. The first row is the result of fine-tuning using a clean
image. The second row is the result of fine-tuning using a protected image after purification and then
using Dreambooth. When using FIE for purification, the style of the image is somewhat similar to
Van Gogh'’s style, but it is still not as good as the fine-tuning result of the clean image. We believe
that this is because FIE has a high degree of denoising, which can purify noise to a certain extent, but
will also modify the content of the image to a certain extent, such as the details of the brushstrokes,
changes in lines, etc., thus causing the style of the fine-tuned image to change.
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A person of sks

A person of sks

Finetuning on .
wearing sunglass

X clean
X5 by
P
StyleGuard A person of sks
. . . A person of sks
Finetuning on Xp wearing sunglass
T(Xp) by
Noise Upscale A person of sks
Finetuning on A person of sks
T(Xp) wearing sunglass

Figure 7: Defense against Personalization Attack by Dreambooth using StyleGuard.

SD model trained with protected images (purified with FIE), with prompt “a <sks> painting of people waking on the street”

Figure 8: Visualization over Online Black-box Upscaler FIE. When using FIE for purification, the
style of the image is more similar to Van Gogh'’s style than without purifications, but it is still not as
good as the fine-tuning result from the clean images.
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B. Additional Demonstration of Visual Examples

B.1 Compare the Clean, Protected and Upscaled Images

To demonstrate the effectiveness of our method, Figure [9] presents a comparison of original clean
images without any processing, protected versions after applying our protection methods. and the
noise up-scaled images that the adversary applies Noise Upscale with a different version of the
upscale model (SD-x2-latent-upscaler) from the training stage to the protected images. We have
made some findings as follows. First, it is shown that the noise introduced by our method is very
small and does not affect the image quality. Second, Noise Upscale can better restore the details of
the image, such as the face in the sixth row. We think this may be because Van Gogh’s image appears
in the Upscaler training dataset. However, for some parts related to the image style, Noise Upscale
cannot be restored well, such as the sky in the first row and the grass in the fifth row, which become
more blurred after Upscale. We think this is because these images may not in the training images of
the Upscale model.

B.1 Compare the Images Trained on Clean Images and Protected Images

Figures[I0]and Figure[I0]compare the results of style mimicry on clean and protected images with the
StyleGuard protection. For StyleGuard, we generate perturbations using SD1.4 and SD x4 upscaler.
During the test, we first apply the Noise Upscale using the SD x2 upscaler and then train the SD1.5
model on the protected paintings. With protection, the quality of the protected image decreases
significantly and the style is also changed from the original images.
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Figure 9: Visual comparison between (a) clean/original images (left column), (b) protected images
(middle column), and (c) Noise Upscaled results (right column). Each row shows the same image
processed through different pipeline stages.
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Figure 10: The results of style mimicry on clean images without any protection. We train the SD
v1.5 model on Van Gogh’s paintings.
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Figure 11: The results of style mimicry on protected images that with the StyleGuard protection. For
the StyleGuard, we generate perturbations using SD1.4 and SD x4 upscaler. During the test, we first
apply the Noise Upscale using the SD x2 upscaler and then train the SD1.5 model on the protected
paintings.
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