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TRAINING-FREE CONSISTENT MANGA GENERATION
VIA PHASED DIFFUSION
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Figure 1: MangaCrafter achieves a strong balance between character consistency and prompt align-
ment, producing diverse imagery that follows the artistic and evolving storylines of the input prompt.
Notably, consistent characters are not limited to humans but extend to a wide range of entities. Read-
ing order follows Japanese manga convention: top to bottom, right to left.

ABSTRACT

The generation of consistent characters across an entire manga page is important
yet challenging, as characters must remain coherent under diverse poses, actions,
and layouts. Unlike conventional face or human consistency methods that focus
on isolated portraits, this broader narrative setting cannot be directly addressed by
per-subject fine-tuning or narrowly scoped identity-preservation techniques. We
introduce MangaCrafter, a 3-phase training-free framework that achieves layout-
aware, multi-character manga generation by altering the denoising processes of
latent diffusion. Our key insight is that character consistency can be secured not
through persistent identity injection but through a phased control of the diffusion
trajectory that front-loads identity anchoring while gradually relaxing constraints
to enable expressive, prompt-driven detail. In Phase 1, Structural Resonance In-
jection (SRI) augments the UNet’s attention with cached reference features to ro-
bustly establish structural similarity in the high-noise regime. The centerpiece of
our contribution lies in Phase 2, where the Predictive Drift Controller (PDC), a
proportional-integral-derivative feedback system, dynamically measures feature
drift between the evolving latent and the reference to modulate the denoising
process, ensuring robust identity preservation while suppressing “pasted-on” and
“blurry” artifacts. Finally, in Phase 3, we strategically zero out reference injec-
tions, transferring identity control to the early imprints while allowing the model
to synthesize fine, prompt-driven details without over-similarity. Together with
a lightweight preprocessing workflow that resolves multi-character fusion, Man-
gaCrafter delivers training-free, consistent yet flexible manga synthesis and sug-
gests a general paradigm for controlled narrative generation across diffusion-based
media. Extensive experiments on the challenging ConsiStory+ benchmark show
that our framework achieves state-of-the-art identity preservation while maintain-
ing high prompt alignment. Ablations confirm the effectiveness of our phased
design in balancing consistency, diversity, and aesthetic quality.
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1 INTRODUCTION

The advent of large-scale text-to-image diffusion models has transformed digital content creation,
enabling the synthesis of photorealistic and stylistically diverse imagery from natural language de-
scriptions. This capability has sparked growing interest in automated visual narrative generation,
which requires not only high-quality image synthesis but also coherence and consistency across im-
age sequences. Among various narrative forms, manga (Figure 1), with its distinctive artistic style,
complex panel layouts, and emphasis on expressive character arcs, poses a particularly difficult
challenge that remains largely unmet by current generative frameworks.

Existing text-to-image models excel at generating isolated images but struggle with the sequential
and relational demands of manga creation. A central challenge is maintaining character consistency,
as state-of-the-art models often fail to preserve identity, including facial features, attire, and overall
appearance, across panels with varied poses, expressions, and actions. Conventional methods for
enforcing identity typically face a consistency-alignment trade-off: they either preserve the character
too rigidly, restricting alignment to prompt-driven actions or emotions, or they prioritize the prompt
at the expense of the character’s core, consistent identity.

Prior work can be categorized into training-based and training-free approaches. Training-based
methods, such as DreamBooth (Ruiz et al., 2023) and textual inversion (Gal et al., 2022), fine-
tune models to learn a new concept for a specific character. These methods are effective at identity
preservation but are computationally expensive, require per-subject optimization, and risk overfitting
to limited reference images, limiting generalization to novel contexts. Training-free methods offer
greater efficiency but still encounter significant trade-offs. For example, StoryDiffusion (Zhou et al.,
2024a) may fail to maintain strong identity adherence especially when the generated image’s aspect
ratio deviates largely from that of the reference image, while One-Prompt-One-Story (Liu et al.,
2025) can produce over-similar results, especially if the reference image primarily consists of large,
spatial features, rigidly copying the reference pose.

To address these limitations, we propose MangaCrafter, a 3-phase, training-free framework for
layout-aware, multi-character manga generation. The core idea is to maintain character consistency
not through persistent identity injection but through phased control of the denoising processes, front-
loading identity anchoring while gradually relaxing constraints to allow prompt-driven expression.

Phase 1: Structural Resonance Injection (SRI). In the early, high-noise timesteps (t > Tphase1),
SRI manipulates the UNet’s self-attention mechanism. For each attention block, the query derived
from the current noisy latent attends to key and value matrices formed from the concatenation of
the current latent features and precomputed reference character features, imprinting fundamental
structural and visual attributes.

Phase 2: Predictive Drift Control (PDC). Once the core structure is established (Tphase2 < t ≤
Tphase1), the PDC computes feature-space drift between the current latent and a noisy reference
latent using an L1 loss. This drift is fed into a proportional-integral-derivative (PID) controller,
producing a modulation factor that dynamically adjusts latent blending. The result is continuous
correction of identity without the rigidity of direct feature injection, while avoiding artifacts such as
blurriness or a pasted-on appearance.

Phase 3: Refinement and Zero-Out. In the final low-noise timesteps (t ≤ Tphase2), reference
injections are zeroed out, transferring identity control to the early phases and allowing the model
to synthesize fine, prompt-driven details without over-similarity. This phase ensures that characters
remain consistent while enabling expressive variation crucial for narrative progression.

Our contributions are summarized as follows:

• We present a novel, end-to-end training-free framework for customized manga generation
that jointly addresses layout complexity and robust character consistency.

• We introduce a multi-phase generation process with Structural Resonance Injection (SRI)
and Predictive Drift Control (PDC), the first application of PID control theory to the dif-
fusion feature space for identity preservation, establishing a new paradigm for controllable
generation.

• Extensive experiments on the ConsiStory+ benchmark demonstrate state-of-the-art perfor-
mance, showing that our framework outperforms existing training-free methods in charac-
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ter consistency, prompt alignment, and image quality, while ablations confirm the effec-
tiveness of the phased design in balancing identity, diversity, and aesthetics.

2 RELATED WORK
Consistent Generation. Achieving consistent character identity and spatial coherence across mul-
tiple generated images without costly fine-tuning is a key challenge in generative modeling. A
common strategy is manipulating attention mechanisms in pre-trained diffusion models. ConsiS-
tory (Tewel et al., 2024) introduces a Subject-Driven Self-Attention (SDSA) block that lets images
attend to subject-specific patches in other frames via a mask. While effective, masking limits di-
versity and often yields a “pasted-on” look. StoryDiffusion (Zhou et al., 2024a) is similarly con-
strained, maintaining consistency for only one character per panel and failing with multi-character
interactions central to manga. It is also brittle: deviations in panel aspect ratio cause major quality
degradation and identity loss. MasaCtrl (Cao et al., 2023) also uses mutual self-attention without
training, but targets editing rather than narrative variation. For manga, where diverse poses, angles,
and expressions are essential, such restrictions are severe. Identity-preserving methods such as ID-
Booth (Tomašević et al., 2025) and ID3 (Li et al., 2024) focus on faces, while CoDi (Gao et al., 2025)
extends consistency to varied poses. Other approaches include IP-Adapter (Ye et al., 2023), which
injects image features via cross-attention; The Chosen One (Avrahami et al., 2023), which clusters
large image sets for identity distillation; and One-Prompt-One-Story (Liu et al., 2025), which con-
catenates prompts to exploit text encoder self-attention. StoryMaker (Zhou et al., 2024b) further
enforces consistency across characters, clothing, and environments in story-driven generation.

Other recent training-free approaches, such as CharacterFactory (Wang et al., 2024), FastCom-
poser (Xiao et al., 2023), OPT2I (Mañas et al., 2024), and CharaConsist (Wang et al., 2025),
use latent-space control, prompt optimization, or fine-grained feature alignment to improve identity
consistency, but often trade off diversity or require iterative refinement. Unlike prior work, Man-
gaCrafter implements phased control along the diffusion trajectory, embedding a physics-inspired
mechanism directly into the generation process. This approach provides adaptive, phase-wise reg-
ulation of both identity and spatial layout, without masking, iterative refinement, or rigid prompt
concatenation. It enables higher identity consistency while maintaining the expressive flexibility
critical for manga storytelling.

Manga and Layout Generation. Manga generation poses unique challenges due to complex panel
layouts and distinct visual grammar. Early methods focused on style transfer rather than de novo
generation (Zhou et al., 2024a). Recent approaches such as DiffSensei (Wu et al., 2024) integrate a
Multimodal Large Language Model (MLLM) as a text-compatible identity adapter, masked cross-
attention, and dialog layout embedding, enabling fine-grained control over character poses, expres-
sions, and interactions within panels. MangaDiffusion (Chen et al., 2024) uses transformer-based
intra- and inter-panel blocks to manage both panel content coherence and flexible page layouts, and
introduces the Manga109 dataset for training and evaluating layout controllable multi-panel manga
generation. Studies like “How Panel Layouts Define Manga” (Feng et al., 2024) investigate the
structural importance of panel layout itself, showing that panels’ spacing, alignment, and ordering
encode stylistic and narrative cues that are characteristic of manga works.

Our layout module uses the training-free LayoutPrompter (Lin et al., 2023), which leverages the
MangaZero dataset in retrieval-and-composition manner. This enables diverse and coherent page
layouts without requiring learned generative models. Unlike DiffSensei and MangaDiffusion, which
are trained generative models for layout control, our method avoids large-scale training for layout
generation, reducing computational costs while maintaining layout diversity and coherence aligned
with narrative structure.

Control Theory in Generative Models. Integrating classical control principles into deep gener-
ative models is an emerging area. Proportional-Integral-Derivative (PID) controllers (Åström &
Hägglund, 1995) are foundational in control systems, known for minimizing the error between a
measured variable and a desired setpoint while providing robustness and stability. Prior works such
as RCDM (Xu et al., 2024) and optimal control perspectives on diffusion-based models (Berner
et al., 2022) explore using control-theoretic ideas to guide stochastic generation. To our knowledge,
MangaCrafter’s Predictive Drift Controller (PDC) is the first to apply a PID-like loop directly in the
feature space of a diffusion model for identity preservation. By treating character identity as the set-
point and feature-space divergence as the error, the PDC enables adaptive, fine-grained control that

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: The pipeline of MangaCrafter. Top shows the overall pipeline; bottom is a detailed
illustration of the per-panel generation loop. In the top figure, the process in the box labeled “Panel
Post-Processing” adds dialog bubbles onto the generated manga panels. In the bottom figure, the
blue box in Phase 3 represents the “zero-out” operation. Please zoom in for details.

corrects past deviations and anticipates future drift, offering a more robust and flexible alternative to
static attention mechanisms.

3 METHOD

In this section, we present the pipeline of our training-free manga generation framework, which
combines layout generation with a multi-phase process to ensure prompt-adherent character con-
sistency. We first obtain input prompts for each manga panel either from raw user inputs or LLM-
generated results. We then employ LayoutPrompter (Lin et al., 2023), a training-free retrieval and
composition module, to generate page layouts from a story description. Leveraging the MangaZero
dataset (Wu et al., 2024), LayoutPrompter analyzes narrative requirements such as character count
and scene transitions, retrieves analogous layouts, and composes new page structures. The output
provides precise panel coordinates along with bounding boxes for characters and dialogue, serving
as a structural guide for subsequent image generation. This training-free approach enables diverse,
conventional manga layouts without costly fine-tuning or architectural modification.

The core of our contribution to identity preservation is a multi-phase generation process that dy-
namically manages the influence of a reference character image throughout the denoising process
(Figure 2). This method ensures robust identity replication in the early, formative phases of genera-
tion while allowing for prompt-driven flexibility and refinement in the later phases.

3.1 PHASE 1: STRUCTURAL RESONANCE INJECTION (SRI)

In the initial high-noise timesteps, where t > Tphase1, the primary objective is to imprint the fun-
damental structural and visual characteristics of the reference character onto the canvas. To achieve
this, we introduce a custom attention mechanism. First, the reference character image is processed
through the UNet to extract and cache its intermediate self-attention features, href .

During the generation of the target image, for each self-attention layer within the UNet, we augment
the Key (K) and Value (V ) projections. While the Query (Q) is derived solely from the current noisy
latent’s hidden states, hcurrent, the Key and Value matrices are derived from the concatenation of
hcurrent and the cached reference features href . This can be formulated as:

Q = WQ · hcurrent

K = WK · concat(hcurrent, href )

V = WV · concat(hcurrent, href )

4
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This forces the generation to “resonate” with the reference character’s features, ensuring core at-
tributes like facial structure, hair, and attire are established early. This approach helps navigate the
consistency-alignment trade-off. By separating the query from the keys and values, SRI disentan-
gles the character’s static identity from their dynamic, prompt-driven state. The query, driven by
the target prompt (e.g., “a girl walking”), dictates what to generate, while the augmented key-value
space provides the reference character’s visual vocabulary for how it should be rendered. This en-
ables selective feature retrieval, preserving identity while accurately executing the prompt, avoiding
“concept bleed” where the reference pose overrides the target action.

3.2 PHASE 2: PREDICTIVE DRIFT CONTROL (PDC)

After the initial structure is set (for timesteps Tphase2 < t ≤ Tphase1), the process transitions from
the aggressive attention manipulation of Phase 1 to a more nuanced guidance mechanism. This
phase introduces the Predictive Drift Controller (PDC), a novel application of Proportional-Integral-
Derivative (PID) control theory to the diffusion process.

The PDC operates as a closed-loop feedback system. At each step t, it first calculates the “drift,”
d(t), which we define as the L1 loss between the UNet’s noise prediction for the target prompt,
ϵθ(zt, t, ctarget), and a parallel prediction for the reference character, ϵθ(z

ref
t , t, cref ). Here, zreft is

the noisy version of the reference latent at the same timestep. The drift d(t) quantifies the feature-
space error between the current generation and the desired character identity.

This error is then fed into the PID controller, which calculates a modulation factor MPDC(t) to
correct the generation trajectory:

P (t) = Kp · d(t)
I(t) = I(t− 1) +Ki · d(t)

D(t) = Kd · (d(t)− d(t− 1))

MPDC(t) = 1.0 + P (t) + I(t) +D(t)

where Kp, Ki, and Kd are the proportional, integral, and derivative gains, respectively. This modula-
tion factor does not act in isolation; it scales a schedule that we term the Inertial Guidance Schedule,
G(t). It provides the foundational, non-reactive “momentum” for the guidance strength, and defines
a pre-determined trajectory of influence that resists deviation, analogous to an object’s inertia for
maintaining its state of motion. The PDC then acts as the active, corrective force that adjusts this
inertial path. For this schedule, we utilized a quadratic decay schedule:

G(t) =

(
1.0−

(
Tstart − t

Tstart − Tend

)2
)

· Gmax

where Tstart and Tend define the timesteps for Phase 2, and Gmax is the maximum strength. This
non-linear function ensures that the base guidance strength remains high and stable during the early
phases of Phase 2, providing a robust foundation for the PDC to operate upon. As the denoising
process approaches its final phases, the schedule’s value drops off more rapidly, gracefully receding
the influence of the reference latent.

Crucially, the PDC reduces visual defects that arise from an overly prolonged Structural Resonance
Injection phase. If SRI persists too long, it not only creates a “pasted-on look” but also a distinct
“blurriness,” where the image appears unnaturally smoothed and aesthetically unpleasing. The PDC
counters this with a regularising effect, removing the artifact and yielding high-quality images with
strong reference similarity. This mechanism emerges from two complementary control signals: the
macro-level trajectory of the Inertial Guidance Schedule and the micro-level, real-time corrections
from the PDC. The blended latent zblendt is then computed through this factor, subtly guiding gener-
ation back toward the reference identity at each step.

3.3 PHASE 3: STRATEGIC REFINEMENT AND LIBERATED SYNTHESIS

The final denoising phase, for timesteps t ≤ Tphase2, represents a strategic transition from foun-
dational control to creative refinement. A key innovation of our framework is the “zero-out” of the
previous phases. This is not simply a shutdown of the identity preservation mechanisms, but a strate-
gic and essential transfer of control. This strategic withdrawal is a direct testament to the efficacy
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Figure 3: Qualitative Comparison. Existing methods either enforce multiple characters to share
the same appearance or fail to respect non-human entities (e.g. clothes), leading to identity collapse
or missing elements. In contrast, our multi-phase framework maintains distinct character identities,
captures diverse poses and expressions, and preserves compositional and aesthetic coherence across
all elements in the scene.

of the preceding phases, where the structural imprinting from SRI and the continuous correction
from the PDC are so robust at anchoring the character’s core identity in the high-noise, high-impact
early timesteps that persistent and heavy-handed intervention becomes not only unnecessary but
counterproductive.

By ceasing direct attention manipulation, we free the model from the rigid constraints of refer-
ence features, allowing it to synthesize high-frequency, prompt-specific details such as subtle fa-
cial expressions, clothing textures under varied lighting, and nuanced emotional states. These de-
tails, absent in static references, are essential for dynamic storytelling. This phase mitigates the
“over-similarity” problem common in consistency-focused methods, ensuring the character inte-
grates naturally into the scene rather than appearing superimposed. This front-loaded efficiency,
where identity is secured early in denoising, enables effective and controllable generation. More-
over, the SRI/PDC architecture shows promise for domains like text-to-video synthesis or complex
scene composition, where establishing a core subject or style early while permitting temporal or
spatial variation later maximizes both consistency and flexibility.

3.4 MULTI-CHARACTER PANEL SYNTHESIS

A common failure in multi-subject generation is “multi-character fusion,” where distinct identi-
ties blend together. We address this, a limitation in prior works like DiffSensei (Wu et al., 2024),
with a three-phase workflow for robust multi-character handling. First, each character specified in
the prompt is generated individually at high resolution using the full generation pipeline, ensuring
robust identity preservation. Second, backgrounds are removed from these individual character im-
ages, and the resulting foregrounds are composited onto a transparent canvas, arranged according
to the layout’s spatial coordinates. This produces a spatially coherent multi-character reference. Fi-
nally, the composite canvas guides a final generation pass with the full panel prompt and stronger
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identity-preservation hyperparameters. This step integrates all characters naturally into the scene
while preserving their unique identities, handling interactions, overlapping poses, and relative scale
consistently.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Comparison with SOTA methods. We compare our method against a suite of state-of-the-art
training-free consistent generation approaches, including One-Prompt-One-Story, StoryDiffusion,
DiffSensei, and Consistory. We also include the base SDXL model as a performance baseline. To
ensure a comprehensive and challenging evaluation, we utilize 1000 prompts from the extensive
ConsiStory+ benchmark, as introduced by Liu et al. (2025).

Evaluation Metrics. We compute the CLIP-T (Hessel et al., 2022) for evaluating prompt alignment
and utilizing two metrics for the evaluation of identity consistency: CLIP-I (Hessel et al., 2022)
and DreamSim (Fu et al., 2023), which has been shown to correlate strongly with human percep-
tual judgment. To provide a quantitative measure of visual quality, we also employed the Fréchet
Inception Distance (FID) (Heusel et al., 2018) to assess the aesthetic quality of the generated images.

4.2 EXPERIMENTAL RESULTS

Figure 4: Trade-off between iden-
tity preservation and prompt alignment.
Points near the upper-right indicate bet-
ter balance; our method achieves the
best overall balance with the lowest
FID, outperforming other approaches.

Qualitative Comparison. Qualitative comparisons in
Figure 3 and Figure 6 illustrate the practical advantages
of our framework over existing methods. Existing ap-
proaches often enforce multiple characters to share the
same appearance or fail to respect non-human entities,
such as clothing, props, or non-human characters, which
can result in identity collapse or missing elements. In
contrast, our multi-phase framework maintains distinct
character identities, captures diverse poses and expres-
sions, and preserves compositional and aesthetic coher-
ence across all elements in the scene.

Our multi-phase process achieves substantially better
character consistency and yields a richer diversity of
poses and expressions, which is vital for narrative pro-
gression, compared to other approaches. Furthermore,
our framework demonstrably produces images with su-
perior aesthetic appeal, balanced panel composition, and
coherent spatial relationships between characters and objects. This ensures that each generated scene
not only faithfully represents individual character traits but also maintains the integrity of interac-
tions and narrative context, highlighting the expressive flexibility and robustness of our approach
over prior work.

Quantitative Comparison. Figure 4 shows that our method achieves state-of-the-art performance
in striking a balance between identity preservation, textual alignment, as well as visual quality,
outperforming all other approaches. The more towards the upper right corner in the figure, the better
the balance between identity preservation and prompt alignment; the FID scores are labeled on the
methods that are compared; ours is closest to the upper right corner with the best FID.

Table 1: User study wherein 20 participants were
asked to indicate their best-preferred mangas.

Method DiffSensei StoryDiffusion SDXL Ours
Percent (%) 1 10 21 68

User Study. To assess alignment with human
perceptual judgment, a user study was con-
ducted, assessing MangaCrafter against a co-
hort of prominent methods, including SDXL,
DiffSensei, and StoryDiffusion. In this study,
twenty users made selections to identify the framework that produces the most compelling results,
based on a holistic assessment of reference character similarity, prompt consistency, image quality,
and storytelling ability. Table 1 tabulates the findings, which reveal a decisive preference for Man-
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Reference Image Phase 1 Only Phase 1 + 2 Only Phase 1 + 2 + 3

Figure 5: Qualitative Ablation. The reference prompt is: “a happy girl, pink eyes, wearing a jacket
and trousers”. The modification prompt is: “reading a book, eyes down, dutch angle”.

gaCrafter, confirming its substantially better quality and ability to generate manga outputs better
aligning with human creative intent.

Ablation Study. Figure 4, Figure 5 and Table 2 show our ablation study to validate the efficacy
of our multi-phase design. The sole inclusion of SRI in Phase 1 yields a strong CLIP-T at the
expense of less reference similarity. Adding the PDC in Phase 2 with the exclusion of Phase 3 can
drastically improve identity preservation, boosting CLIP-I and dropping DreamSim exceptionally.
Crucially, the final results for our complete pipeline (Phase 1+2+3) demonstrate the substantial
impact of the “zero-out” strategy, as the CLIP-I and DreamSim scores shift to a much more balanced,
meaningfully lower position than for Phase 1+2. This study quantitatively confirms that Phase 3
successfully mitigates the over-similarity problem while retaining excellent identity control, striking
an optimal balance for high-quality narrative generation.

5 DISCUSSIONS AND LIMITATIONS Table 2: Quantitative Ablation. We evalu-
ated the impact of each phase of MangaCrafter.
“Ours (Phase 1 + 2 + 3)” represents the complete
pipeline.

Method CLIP-T↑ CLIP-I↑ DreamSim↓
SDXL (Baseline) 0.9045 0.8601 0.2360
Phase 1 0.9135 0.8610 0.2460
Phase 1 + 2 0.8462 0.9845 0.0058
Phase 1 + 2 + 3 (Ours) 0.9151 0.8983 0.1412

Our framework introduces a new paradigm for
controllable narrative generation, demonstrat-
ing state-of-the-art identity preservation with
high prompt fidelity. While our approach shows
remarkable robustness, its performance is gov-
erned by a set of hyperparameters, including the
phase transition timesteps (Tphase1, Tphase2)
and the PDC gains (Kp,Ki,Kd). However, we have found that our provided default configura-
tions are highly effective across a wide range of scenarios, and the modular nature of the phases
allows for intuitive tuning. Additionally, our solution to the multi-character fusion problem involves
an explicit multi-pass generation workflow. While this introduces computational overhead, it is a
deliberate trade-off that significantly eradicates the identity-bleed issues plaguing concurrent meth-
ods. Finally, compared to full-page generation frameworks where a single modification necessitates
regenerating the entire page, often with unpredictable results, our work is much more convenient
for users as they can quickly change one manga panel just by modifying that panel’s prompt while
maintaining the original layout, which is much more favoured by users in real-life settings.

6 CONCLUSION

We present MangaCrafter, a training-free, multi-phased framework for consistent manga genera-
tion that addresses the long-standing challenge of preserving character identity while enabling ex-
pressive, prompt-driven synthesis. By introducing Structural Resonance Injection (SRI) to establish
early structural similarity, the Predictive Drift Controller (PDC) to dynamically stabilize feature
drift, and a strategic zero-out phase to balance identity control with creative flexibility, our method
achieves robust identity preservation and high-quality, diverse character synthesis without any fine-
tuning. Extensive experiments on the ConsiStory+ benchmark demonstrate that MangaCrafter con-
sistently outperforms state-of-the-art training-free methods in both quantitative metrics and user
studies, confirming its superior abilities. Ablations further validate the efficacy of our phased de-
sign in striking an optimal balance between similarity, diversity, and visual appeal. Together with a
lightweight multi-character preprocessing workflow, MangaCrafter establishes a practical and scal-
able paradigm for controlled narrative generation in diffusion-based media.
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Figure 6: Additional Qualitative Comparison. The results presented in this figure compare the
outputs of our framework with those from prominent baselines, namely SDXL, StoryDiffusion, and
DiffSensei.
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Darian Tomašević, Fadi Boutros, Chenhao Lin, Naser Damer, Vitomir Štruc, and Peter
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APPENDIX

A ADDITIONAL QUALITATIVE RESULTS

Further results in Figure 7 and Figure 8 confirms the exceptional performance of our framework
in generating complex, multi-character manga pages with a high degree of textual alignment and
aesthetic appeal. Our method demonstrates a remarkable capacity to preserve the intrinsic qualities
of the base model, a crucial attribute that quantitative metrics often fail to capture. These results
affirm our method’s state-of-the-art standing in producing coherent, high-quality, and practically
useful narrative visuals.

B ADDITIONAL QUALITATIVE COMPARISON RESULTS

Qualitative comparisons in Figure 6 and Figure 9 underscore the practical superiority of our method,
revealing the significant limitations of current state-of-the-art approaches. While the baseline SDXL
(Podell et al., 2023) offers no mechanism for character consistency, even specialized frameworks fal-
ter. StoryDiffusion (Zhou et al., 2024a), for example, exhibits poor reference similarity and fails to
capture the dynamic storytelling nature of manga. Similarly, DiffSensei (Zhou et al., 2024a) strug-
gles with weak character similarity, producing low-quality, monochrome outputs. In stark contrast,
our framework excels, delivering an outstanding balance between robust reference similarity and
precise prompt alignment. This synergy results in aesthetically superior images that cohere into
compelling narratives, demonstrating a profound leap in storytelling capability. For the purposes
of a fair and direct qualitative comparison, ConsiStory (Tewel et al., 2024) and One-Prompt-One-
Story (Liu et al., 2025) have been omitted from this evaluation, as their architectures do not natively
support image-based conditioning.

C IMPLEMENTAION DETAILS

Our training-free framework’s multi-phase control process is dynamically configured based on the
panel’s complexity. For single-character generation, the Structural Resonance Injection (SRI) phase
is active for timesteps t > 850, with the Predictive Drift Controller (PDC) operating during 800 <
t ≤ 850, using gains of Kp = 0.25, Ki = 0.3, and Kd = 0.25. For the more demanding multi-
character generation pass, as detailed in Section 3.4, these parameters are intensified for robust
identity separation: SRI is active for t > 675, the PDC for 575 < t ≤ 675, and controller gains are
elevated to Kp = 0.55, Ki = 0.5, and Kd = 0.55.

D USER STUDY DETAILS

We conducted a comprehensive user study involving 20 participants. As illustrated in Figure 10,
for each task, participants were presented with a complete one-page manga narrative, including the
high-level story summary, reference characters, and detailed per-panel prompts. They were then
shown several full-page manga generations from our method and competing baselines, and were
asked to select the single best entry based on a holistic evaluation of four distinct criteria: Reference
Similarity, Textual Consistency, Image Quality, and Storytelling Ability. This robust evaluation
protocol was designed to capture the nuanced, multifaceted qualities of a compelling visual narrative
that are often missed by quantitative analysis.

E USE OF LARGE LANGUAGE MODELS

Large Language Models(LLMs) were only used to polish writing sporadically in the paper.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Figure 7: More Additional Qualitative Results. Additional results from our method.
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Figure 8: Additional Qualitative Results On Three Consistent Characters. Additional results
showing our method capable of generating more than two consistent characters within the same
manga panel.
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Figure 9: More Additional Qualitative Comparison. Additional results showcasing the difference
between our method with SDXL, StoryDiffusion, and DiffSensei.
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Figure 10: User Study Details. Participants were given clear instructions and criteria for selection.
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