

MANGACRAFTER: TRAINING-FREE CONSISTENT MANGA GENERATION VIA PHASED DIFFUSION

Anonymous authors

Paper under double-blind review

Figure 1: **MangaCrafter** achieves a strong balance between character consistency and prompt alignment, producing diverse imagery that follows the artistic and evolving storylines of the input prompt. Notably, consistent characters are not limited to humans but extend to a wide range of entities. Reading order follows Japanese manga convention: top to bottom, right to left.

ABSTRACT

The generation of consistent characters across an entire manga page is important yet challenging, as characters must remain coherent under diverse poses, actions, and layouts. Unlike conventional face or human consistency methods that focus on isolated portraits, this broader narrative setting cannot be directly addressed by per-subject fine-tuning or narrowly scoped identity-preservation techniques. We introduce **MangaCrafter**, a 3-phase training-free framework that achieves layout-aware, multi-character manga generation by altering the denoising processes of latent diffusion. Our key insight is that character consistency can be secured not through persistent identity injection but through a phased control of the diffusion trajectory that front-loads identity anchoring while gradually relaxing constraints to enable expressive, prompt-driven detail. In **Phase 1**, *Structural Resonance Injection (SRI)* augments the UNet’s attention with cached reference features to robustly establish structural similarity in the high-noise regime. The centerpiece of our contribution lies in **Phase 2**, where the *Predictive Drift Controller (PDC)*, a proportional-integral-derivative feedback system, dynamically measures feature drift between the evolving latent and the reference to modulate the denoising process, ensuring robust identity preservation while suppressing “pasted-on” and “blurry” artifacts. Finally, in **Phase 3**, we strategically zero out reference injections, transferring identity control to the early imprints while allowing the model to synthesize fine, prompt-driven details without over-similarity. Together with a lightweight preprocessing workflow that resolves multi-character fusion, MangaCrafter delivers training-free, consistent yet flexible manga synthesis and suggests a general paradigm for controlled narrative generation across diffusion-based media. Extensive experiments on the challenging ConSiStory+ benchmark show that our framework achieves state-of-the-art identity preservation while maintaining high prompt alignment. Ablations confirm the effectiveness of our phased design in balancing consistency, diversity, and aesthetic quality.

054
055
056
1 INTRODUCTION057
058
059
060
061
062
063
The advent of large-scale text-to-image diffusion models has transformed digital content creation,
enabling the synthesis of photorealistic and stylistically diverse imagery from natural language de-
scriptions. This capability has sparked growing interest in automated visual narrative generation,
which requires not only high-quality image synthesis but also coherence and consistency across im-
age sequences. Among various narrative forms, manga (Figure 1), with its distinctive artistic style,
complex panel layouts, and emphasis on expressive character arcs, poses a particularly difficult
challenge that remains largely unmet by current generative frameworks.064
065
066
067
068
069
070
Existing text-to-image models excel at generating isolated images but struggle with the sequential
and relational demands of manga creation. A central challenge is maintaining character consistency,
as state-of-the-art models often fail to preserve identity, including facial features, attire, and overall
appearance, across panels with varied poses, expressions, and actions. Conventional methods for
enforcing identity typically face a consistency-alignment trade-off: they either preserve the character
too rigidly, restricting alignment to prompt-driven actions or emotions, or they prioritize the prompt
at the expense of the character’s core, consistent identity.071
072
073
074
075
076
077
078
079
Prior work can be categorized into training-based and training-free approaches. Training-based
methods, such as DreamBooth (Ruiz et al., 2023) and textual inversion (Gal et al., 2022), fine-
tune models to learn a new concept for a specific character. These methods are effective at identity
preservation but are computationally expensive, require per-subject optimization, and risk overfitting
to limited reference images, limiting generalization to novel contexts. Training-free methods offer
greater efficiency but still encounter significant trade-offs. For example, StoryDiffusion (Zhou et al.,
2024a) may fail to maintain strong identity adherence especially when the generated image’s aspect
ratio deviates largely from that of the reference image, while One-Prompt-One-Story (Liu et al.,
2025) can produce over-similar results, especially if the reference image primarily consists of large,
spatial features, rigidly copying the reference pose.080
081
082
083
084
To address these limitations, we propose **MangaCrafter**, a 3-phase, training-free framework for
layout-aware, multi-character manga generation. The core idea is to maintain character consistency
not through persistent identity injection but through phased control of the denoising processes, front-
loading identity anchoring while gradually relaxing constraints to allow prompt-driven expression.085
086
087
088
089
Phase 1: Structural Resonance Injection (SRI). In the early, high-noise timesteps ($t > T_{phase1}$),
SRI manipulates the UNet’s self-attention mechanism. For each attention block, the query derived
from the current noisy latent attends to key and value matrices formed from the concatenation of
the current latent features and precomputed reference character features, imprinting fundamental
structural and visual attributes.090
091
092
093
094
Phase 2: Predictive Drift Control (PDC). Once the core structure is established ($T_{phase2} < t \leq T_{phase1}$),
the PDC computes feature-space drift between the current latent and a noisy reference
latent using an L_1 loss. This drift is fed into a proportional-integral-derivative (PID) controller,
producing a modulation factor that dynamically adjusts latent blending. The result is continuous
correction of identity without the rigidity of direct feature injection, while avoiding artifacts such as
blurriness or a pasted-on appearance.095
096
097
098
099
Phase 3: Refinement and Zero-Out. In the final low-noise timesteps ($t \leq T_{phase2}$), reference
injections are zeroed out, transferring identity control to the early phases and allowing the model
to synthesize fine, prompt-driven details without over-similarity. This phase ensures that characters
remain consistent while enabling expressive variation crucial for narrative progression.100
Our contributions are summarized as follows:101
102
103
104
105
106
107

- We present a novel, end-to-end training-free framework for customized manga generation
that jointly addresses layout complexity and robust character consistency.
- We introduce a multi-phase generation process with Structural Resonance Injection (SRI)
and Predictive Drift Control (PDC), the first application of PID control theory to the
diffusion feature space for identity preservation, establishing a new paradigm for controllable
generation.
- Extensive experiments on the ConsiStory+ benchmark demonstrate state-of-the-art perfor-
mance, showing that our framework outperforms existing training-free methods in charac-

108
 109 ter consistency, prompt alignment, and image quality, while ablations confirm the effec-
 110 tiveness of the phased design in balancing identity, diversity, and aesthetics.
 111

112 2 RELATED WORK

113 **Consistent Generation.** Achieving consistent character identity and spatial coherence across mul-
 114 tiple generated images without costly fine-tuning is a key challenge in generative modeling. A
 115 common strategy is manipulating attention mechanisms in pre-trained diffusion models. ConsiS-
 116 tory (Tewel et al., 2024) introduces a Subject-Driven Self-Attention (SDSA) block that lets images
 117 attend to subject-specific patches in other frames via a mask. While effective, masking limits di-
 118 versity and often yields a “pasted-on” look. StoryDiffusion (Zhou et al., 2024a) is similarly con-
 119 strained, maintaining consistency for only one character per panel and failing with multi-character
 120 interactions central to manga. It is also brittle: deviations in panel aspect ratio cause major quality
 121 degradation and identity loss. MasaCtrl (Cao et al., 2023) also uses mutual self-attention without
 122 training, but targets editing rather than narrative variation. For manga, where diverse poses, angles,
 123 and expressions are essential, such restrictions are severe. Identity-preserving methods such as ID-
 124 Booth (Tomašević et al., 2025) and ID³ (Li et al., 2024) focus on faces, while CoDi (Gao et al., 2025)
 125 extends consistency to varied poses. Other approaches include IP-Adapter (Ye et al., 2023), which
 126 injects image features via cross-attention; The Chosen One (Avrahami et al., 2023), which clusters
 127 large image sets for identity distillation; and One-Prompt-One-Story (Liu et al., 2025), which con-
 128 catenates prompts to exploit text encoder self-attention. StoryMaker (Zhou et al., 2024b) further
 129 enforces consistency across characters, clothing, and environments in story-driven generation.
 130

131 Other recent training-free approaches, such as CharacterFactory (Wang et al., 2024), FastCom-
 132 poser (Xiao et al., 2023), OPT2I (Mañas et al., 2024), and CharaConsist (Wang et al., 2025),
 133 use latent-space control, prompt optimization, or fine-grained feature alignment to improve identity
 134 consistency, but often trade off diversity or require iterative refinement. Unlike prior work, Manga-
 135 Crafter implements phased control along the diffusion trajectory, embedding a physics-inspired
 136 mechanism directly into the generation process. This approach provides adaptive, phase-wise reg-
 137 ulation of both identity and spatial layout, without masking, iterative refinement, or rigid prompt
 138 concatenation. It enables higher identity consistency while maintaining the expressive flexibility
 139 critical for manga storytelling.
 140

141 **Manga and Layout Generation.** Manga generation poses unique challenges due to complex panel
 142 layouts and distinct visual grammar. Early methods focused on style transfer rather than de novo
 143 generation (Zhou et al., 2024a). Recent approaches such as DiffSensei (Wu et al., 2024) integrate a
 144 Multimodal Large Language Model (MLLM) as a text-compatible identity adapter, masked cross-
 145 attention, and dialog layout embedding, enabling fine-grained control over character poses, expres-
 146 sions, and interactions within panels. MangaDiffusion (Chen et al., 2024) uses transformer-based
 147 intra- and inter-panel blocks to manage both panel content coherence and flexible page layouts, and
 148 introduces the Manga109 dataset for training and evaluating layout controllable multi-panel manga
 149 generation. Studies like “How Panel Layouts Define Manga” (Feng et al., 2024) investigate the
 150 structural importance of panel layout itself, showing that panels’ spacing, alignment, and ordering
 151 encode stylistic and narrative cues that are characteristic of manga works.
 152

153 Our layout module uses the training-free LayoutPrompter (Lin et al., 2023), which leverages the
 154 MangaZero dataset in retrieval-and-composition manner. This enables diverse and coherent page
 155 layouts without requiring learned generative models. Unlike DiffSensei and MangaDiffusion, which
 156 are trained generative models for layout control, our method avoids large-scale training for layout
 157 generation, reducing computational costs while maintaining layout diversity and coherence aligned
 158 with narrative structure.
 159

160 **Control Theory in Generative Models.** Integrating classical control principles into deep gener-
 161 ative models is an emerging area. Proportional-Integral-Derivative (PID) controllers (Åström &
 162 Hägglund, 1995) are foundational in control systems, known for minimizing the error between a
 163 measured variable and a desired setpoint while providing robustness and stability. Prior works such
 164 as RCDM (Xu et al., 2024) and optimal control perspectives on diffusion-based models (Berner
 165 et al., 2022) explore using control-theoretic ideas to guide stochastic generation. To our knowledge,
 166 MangaCrafter’s Predictive Drift Controller (PDC) is the first to apply a PID-like loop directly in the
 167 feature space of a diffusion model for identity preservation. By treating character identity as the set-
 168 point and feature-space divergence as the error, the PDC enables adaptive, fine-grained control that
 169

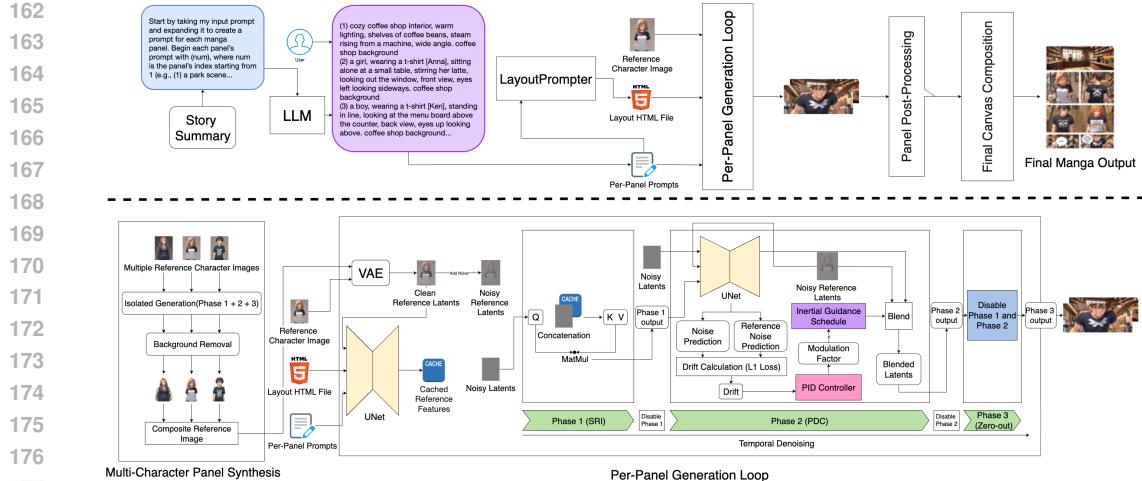


Figure 2: **The pipeline of MangaCrafter.** Top shows the overall pipeline; bottom is a detailed illustration of the per-panel generation loop. In the top figure, the process in the box labeled “Panel Post-Processing” adds dialog bubbles onto the generated manga panels. In the bottom figure, the blue box in Phase 3 represents the “zero-out” operation. Please zoom in for details.

corrects past deviations and anticipates future drift, offering a more robust and flexible alternative to static attention mechanisms.

3 METHOD

In this section, we present the pipeline of our training-free manga generation framework, which combines layout generation with a multi-phase process to ensure prompt-adherent character consistency. We first obtain input prompts for each manga panel either from raw user inputs or LLM-generated results. We then employ LayoutPrompter (Lin et al., 2023), a training-free retrieval and composition module, to generate page layouts from a story description. Leveraging the MangaZero dataset (Wu et al., 2024), LayoutPrompter analyzes narrative requirements such as character count and scene transitions, retrieves analogous layouts, and composes new page structures. The output provides precise panel coordinates along with bounding boxes for characters and dialogue, serving as a structural guide for subsequent image generation. This training-free approach enables diverse, conventional manga layouts without costly fine-tuning or architectural modification.

The core of our contribution to identity preservation is a multi-phase generation process that dynamically manages the influence of a reference character image throughout the denoising process (Figure 2). This method ensures robust identity replication in the early, formative phases of generation while allowing for prompt-driven flexibility and refinement in the later phases.

3.1 PHASE 1: STRUCTURAL RESONANCE INJECTION (SRI)

In the initial high-noise timesteps, where $t > T_{phase1}$, the primary objective is to imprint the fundamental structural and visual characteristics of the reference character onto the canvas. To achieve this, we introduce a custom attention mechanism. First, the reference character image is processed through the UNet to extract and cache its intermediate self-attention features, h_{ref} .

During the generation of the target image, for each self-attention layer within the UNet, we augment the Key (K) and Value (V) projections. While the Query (Q) is derived solely from the current noisy latent’s hidden states, $h_{current}$, the Key and Value matrices are derived from the concatenation of $h_{current}$ and the cached reference features h_{ref} . This can be formulated as:

$$Q = W_Q \cdot h_{current}$$

$$K = W_K \cdot \text{concat}(h_{current}, h_{ref})$$

$$V = W_V \cdot \text{concat}(h_{current}, h_{ref})$$

This forces the generation to “resonate” with the reference character’s features, ensuring core attributes like facial structure, hair, and attire are established early. This approach helps navigate the consistency-alignment trade-off. By separating the query from the keys and values, SRI disentangles the character’s static identity from their dynamic, prompt-driven state. The query, driven by the target prompt (e.g., “a girl walking”), dictates *what* to generate, while the augmented key-value space provides the reference character’s visual vocabulary for *how* it should be rendered. This enables selective feature retrieval, preserving identity while accurately executing the prompt, avoiding “concept bleed” where the reference pose overrides the target action.

3.2 PHASE 2: PREDICTIVE DRIFT CONTROL (PDC)

After the initial structure is set (for timesteps $T_{phase2} < t \leq T_{phase1}$), the process transitions from the aggressive attention manipulation of Phase 1 to a more nuanced guidance mechanism. This phase introduces the Predictive Drift Controller (PDC), a novel application of Proportional-Integral-Derivative (PID) control theory to the diffusion process.

The PDC operates as a closed-loop feedback system. At each step t , it first calculates the “drift,” $d(t)$, which we define as the L_1 loss between the UNet’s noise prediction for the target prompt, $\epsilon_\theta(z_t, t, c_{target})$, and a parallel prediction for the reference character, $\epsilon_\theta(z_t^{ref}, t, c_{ref})$. Here, z_t^{ref} is the noisy version of the reference latent at the same timestep. The drift $d(t)$ quantifies the feature-space error between the current generation and the desired character identity.

This error is then fed into the PID controller, which calculates a modulation factor $M_{PDC}(t)$ to correct the generation trajectory:

$$\begin{aligned} P(t) &= K_p \cdot d(t) \\ I(t) &= I(t-1) + K_i \cdot d(t) \\ D(t) &= K_d \cdot (d(t) - d(t-1)) \\ M_{PDC}(t) &= 1.0 + P(t) + I(t) + D(t) \end{aligned}$$

where K_p , K_i , and K_d are the proportional, integral, and derivative gains, respectively. This modulation factor does not act in isolation; it scales a schedule that we term the Inertial Guidance Schedule, $\mathcal{G}(t)$. It provides the foundational, non-reactive “momentum” for the guidance strength, and defines a pre-determined trajectory of influence that resists deviation, analogous to an object’s inertia for maintaining its state of motion. The PDC then acts as the active, corrective force that adjusts this inertial path. For this schedule, we utilized a quadratic decay schedule:

$$\mathcal{G}(t) = \left(1.0 - \left(\frac{T_{start} - t}{T_{start} - T_{end}} \right)^2 \right) \cdot \mathcal{G}_{max}$$

where T_{start} and T_{end} define the timesteps for Phase 2, and \mathcal{G}_{max} is the maximum strength. This non-linear function ensures that the base guidance strength remains high and stable during the early phases of Phase 2, providing a robust foundation for the PDC to operate upon. As the denoising process approaches its final phases, the schedule’s value drops off more rapidly, gracefully receding the influence of the reference latent.

Crucially, the PDC reduces visual defects that arise from an overly prolonged Structural Resonance Injection phase. If SRI persists too long, it not only creates a “pasted-on look” but also a distinct “blurriness,” where the image appears unnaturally smoothed and aesthetically unpleasing. The PDC counters this with a regularising effect, removing the artifact and yielding high-quality images with strong reference similarity. This mechanism emerges from two complementary control signals: the macro-level trajectory of the Inertial Guidance Schedule and the micro-level, real-time corrections from the PDC. The blended latent z_t^{blend} is then computed through this factor, subtly guiding generation back toward the reference identity at each step.

3.3 PHASE 3: STRATEGIC REFINEMENT AND LIBERATED SYNTHESIS

The final denoising phase, for timesteps $t \leq T_{phase2}$, represents a strategic transition from foundational control to creative refinement. A key innovation of our framework is the “zero-out” of the previous phases. This is not simply a shutdown of the identity preservation mechanisms, but a strategic and essential transfer of control. This strategic withdrawal is a direct testament to the efficacy

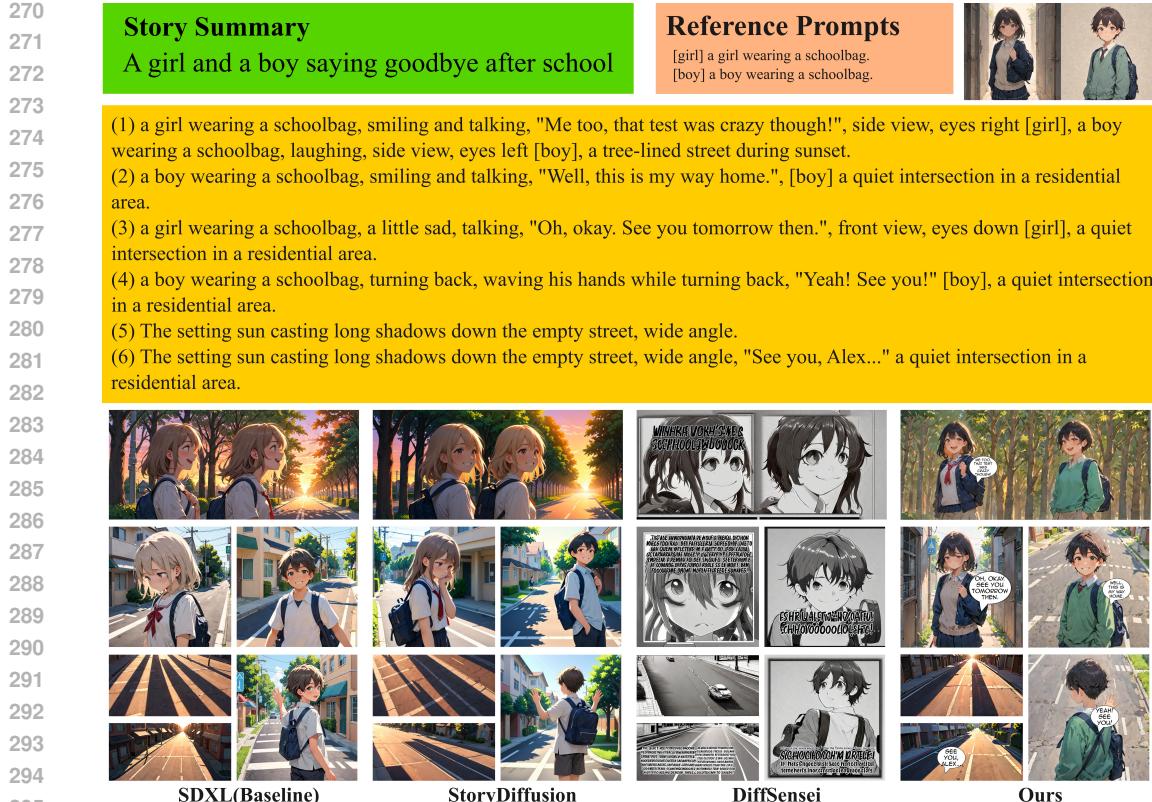


Figure 3: **Qualitative Comparison.** Existing methods either enforce multiple characters to share the same appearance or fail to respect non-human entities (e.g. clothes), leading to identity collapse or missing elements. In contrast, our multi-phase framework maintains distinct character identities, captures diverse poses and expressions, and preserves compositional and aesthetic coherence across all elements in the scene.

of the preceding phases, where the structural imprinting from SRI and the continuous correction from the PDC are so robust at anchoring the character’s core identity in the high-noise, high-impact early timesteps that persistent and heavy-handed intervention becomes not only unnecessary but counterproductive.

By ceasing direct attention manipulation, we free the model from the rigid constraints of reference features, allowing it to synthesize high-frequency, prompt-specific details such as subtle facial expressions, clothing textures under varied lighting, and nuanced emotional states. These details, absent in static references, are essential for dynamic storytelling. This phase mitigates the “over-similarity” problem common in consistency-focused methods, ensuring the character integrates naturally into the scene rather than appearing superimposed. This front-loaded efficiency, where identity is secured early in denoising, enables effective and controllable generation. Moreover, the SRI/PDC architecture shows promise for domains like text-to-video synthesis or complex scene composition, where establishing a core subject or style early while permitting temporal or spatial variation later maximizes both consistency and flexibility.

3.4 MULTI-CHARACTER PANEL SYNTHESIS

A common failure in multi-subject generation is “multi-character fusion,” where distinct identities blend together. We address this, a limitation in prior works like DiffSensei (Wu et al., 2024), with a three-phase workflow for robust multi-character handling. First, each character specified in the prompt is generated individually at high resolution using the full generation pipeline, ensuring robust identity preservation. Second, backgrounds are removed from these individual character images, and the resulting foregrounds are composited onto a transparent canvas, arranged according to the layout’s spatial coordinates. This produces a spatially coherent multi-character reference. Finally, the composite canvas guides a final generation pass with the full panel prompt and stronger

324 identity-preservation hyperparameters. This step integrates all characters naturally into the scene
 325 while preserving their unique identities, handling interactions, overlapping poses, and relative scale
 326 consistently.

328 4 EXPERIMENTS

330 4.1 EXPERIMENTAL SETUPS

333 **Comparison with SOTA methods.** We compare our method against a suite of state-of-the-art
 334 training-free consistent generation approaches, including One-Prompt-One-Story, StoryDiffusion,
 335 DiffSensei, and Consistory. We also include the base SDXL model as a performance baseline. To
 336 ensure a comprehensive and challenging evaluation, we utilize 1000 prompts from the extensive
 337 ConsiStory+ benchmark, as introduced by Liu et al. (2025).

338 **Evaluation Metrics.** We compute the CLIP-T (Hessel et al., 2022) for evaluating prompt alignment
 339 and utilizing two metrics for the evaluation of identity consistency: CLIP-I (Hessel et al., 2022)
 340 and DreamSim (Fu et al., 2023), which has been shown to correlate strongly with human percep-
 341 tual judgment. To provide a quantitative measure of visual quality, we also employed the Fréchet
 342 Inception Distance (FID) (Heusel et al., 2018) to assess the aesthetic quality of the generated images.

344 4.2 EXPERIMENTAL RESULTS

346 **Qualitative Comparison.** Qualitative comparisons in
 347 Figure 3 and Figure 6 illustrate the practical advantages
 348 of our framework over existing methods. Existing
 349 approaches often enforce multiple characters to share the
 350 same appearance or fail to respect non-human entities,
 351 such as clothing, props, or non-human characters, which
 352 can result in identity collapse or missing elements. In
 353 contrast, our multi-phase framework maintains distinct
 354 character identities, captures diverse poses and expres-
 355 sions, and preserves compositional and aesthetic coher-
 356 ence across all elements in the scene.

357 Our multi-phase process achieves substantially better
 358 character consistency and yields a richer diversity of
 359 poses and expressions, which is vital for narrative pro-
 360 gression, compared to other approaches. Furthermore,
 361 our framework demonstrably produces images with su-
 362 perior aesthetic appeal, balanced panel composition, and
 363 coherent spatial relationships between characters and objects
 364 not only faithfully represents individual character traits but also maintains the integrity of interac-
 365 tions and narrative context, highlighting the expressive flexibility and robustness of our approach
 366 over prior work.

367 **Quantitative Comparison.** Figure 4 shows that our method achieves state-of-the-art performance
 368 in striking a balance between identity preservation, textual alignment, as well as visual quality,
 369 outperforming all other approaches. The more towards the upper right corner in the figure, the better
 370 the balance between identity preservation and prompt alignment; the FID scores are labeled on the
 371 methods that are compared; ours is closest to the upper right corner with the best FID.

372 **User Study.** To assess alignment with human
 373 perceptual judgment, a user study was con-
 374 ducted, assessing MangaCrafter against a co-
 375 hort of prominent methods, including SDXL,
 376 DiffSensei, and StoryDiffusion. In this study,
 377 twenty users made selections to identify the framework that produces the most compelling results,
 378 based on a holistic assessment of reference character similarity, prompt consistency, image quality,
 379 and storytelling ability. Table 1 tabulates the findings, which reveal a decisive preference for Man-

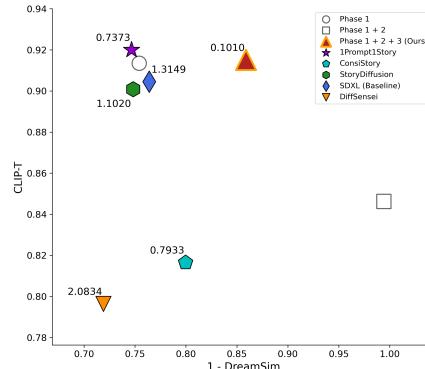


Figure 4: Trade-off between identity preservation and prompt alignment. Points near the upper-right indicate better balance; our method achieves the best overall balance with the lowest FID, outperforming other approaches.

This ensures that each generated scene

also maintains the integrity of interactions and narrative context, highlighting the expressive flexibility and robustness of our approach over prior work.

Table 1: User study wherein 20 participants were asked to indicate their best-preferred mangas.

Method	DiffSensei	StoryDiffusion	SDXL	Ours
Percent (%)	1	10	21	68

378
379
380
381
382
383
384
385386
387 **Figure 5: Qualitative Ablation.** The reference prompt is: “a happy girl, pink eyes, wearing a jacket
388 and trousers”. The modification prompt is: “reading a book, eyes down, dutch angle”.389
390 gaCrafter, confirming its substantially better quality and ability to generate manga outputs better
391 aligning with human creative intent.392 **Ablation Study.** Figure 4, Figure 5 and Table 2 show our ablation study to validate the efficacy
393 of our multi-phase design. The sole inclusion of SRI in Phase 1 yields a strong CLIP-T at the
394 expense of less reference similarity. Adding the PDC in Phase 2 with the exclusion of Phase 3 can
395 drastically improve identity preservation, boosting CLIP-I and dropping DreamSim exceptionally.
396 Crucially, the final results for our complete pipeline (Phase 1+2+3) demonstrate the substantial
397 impact of the “zero-out” strategy, as the CLIP-I and DreamSim scores shift to a much more balanced,
398 meaningfully lower position than for Phase 1+2. This study quantitatively confirms that Phase 3
399 successfully mitigates the over-similarity problem while retaining excellent identity control, striking
400 an optimal balance for high-quality narrative generation.

401

5 DISCUSSIONS AND LIMITATIONS

402

403 Our framework introduces a new paradigm for
404 controllable narrative generation, demonstrating
405 state-of-the-art identity preservation with
406 high prompt fidelity. While our approach shows
407 remarkable robustness, its performance is gov-
408 erned by a set of hyperparameters, including the
409 phase transition timesteps (T_{phase1}, T_{phase2})
410 and the PDC gains (K_p, K_i, K_d). However, we have found that our provided default configura-
411 tions are highly effective across a wide range of scenarios, and the modular nature of the phases
412 allows for intuitive tuning. Additionally, our solution to the multi-character fusion problem involves
413 an explicit multi-pass generation workflow. While this introduces computational overhead, it is a
414 deliberate trade-off that significantly eradicates the identity-bleed issues plaguing concurrent meth-
415 ods. Finally, compared to full-page generation frameworks where a single modification necessitates
416 regenerating the entire page, often with unpredictable results, our work is much more convenient
417 for users as they can quickly change one manga panel just by modifying that panel’s prompt while
418 maintaining the original layout, which is much more favoured by users in real-life settings.

419

6 CONCLUSION

420

421 We present **MangaCrafter**, a training-free, multi-phased framework for consistent manga genera-
422 tion that addresses the long-standing challenge of preserving character identity while enabling ex-
423 pressive, prompt-driven synthesis. By introducing *Structural Resonance Injection (SRI)* to establish
424 early structural similarity, the *Predictive Drift Controller (PDC)* to dynamically stabilize feature
425 drift, and a strategic zero-out phase to balance identity control with creative flexibility, our method
426 achieves robust identity preservation and high-quality, diverse character synthesis without any fine-
427 tuning. Extensive experiments on the ConsiStory+ benchmark demonstrate that MangaCrafter con-
428 sistently outperforms state-of-the-art training-free methods in both quantitative metrics and user
429 studies, confirming its superior abilities. Ablations further validate the efficacy of our phased de-
430 sign in striking an optimal balance between similarity, diversity, and visual appeal. Together with a
431 lightweight multi-character preprocessing workflow, MangaCrafter establishes a practical and scal-
432 able paradigm for controlled narrative generation in diffusion-based media.Table 2: **Quantitative Ablation.** We eval-
uated the impact of each phase of MangaCrafter.
“Ours (Phase 1 + 2 + 3)” represents the complete
pipeline.

Method	CLIP-T↑	CLIP-I↑	DreamSim↓
SDXL (Baseline)	0.9045	0.8601	0.2360
Phase 1	0.9135	0.8610	0.2460
Phase 1 + 2	0.8462	0.9845	0.0058
Phase 1 + 2 + 3 (Ours)	0.9151	0.8983	0.1412

432

Story Summary

A worried girl making a phone call

435

(1) a school girl, wearing golden glasses, looking at phone with a worried expression, chest up, front view, eyes down [Ceci], living room background.
 (2) a school girl, wearing golden glasses, holding phone to her ear, anxious look, upper body, eyes up [Ceci], living room background.
 (3) a school girl, wearing golden glasses, talking animatedly on the phone, frustrated expression, "I just don't know what to do anymore!", upper body, drone view, eyes looking down [Ceci], living room background.
 (4) a school girl, wearing golden glasses, listening carefully to her phone, side view, drone view, wide angle, eyes closed [Ceci], living room background.
 (5) a school girl, wearing golden glasses, a small smile of relief while on the phone, "That... that might actually work. Thank you.", low angle, chest up, eyes up right looking above [Ceci], living room background.
 (6) a school girl, wearing golden glasses, ending the phone call with calmness, looking relieved and peaceful, exhaling with a relief, eye level, upper body, eyes closed [Ceci], living room background.

444

SDXL(Baseline)

StoryDiffusion

DiffSensei

Ours

455

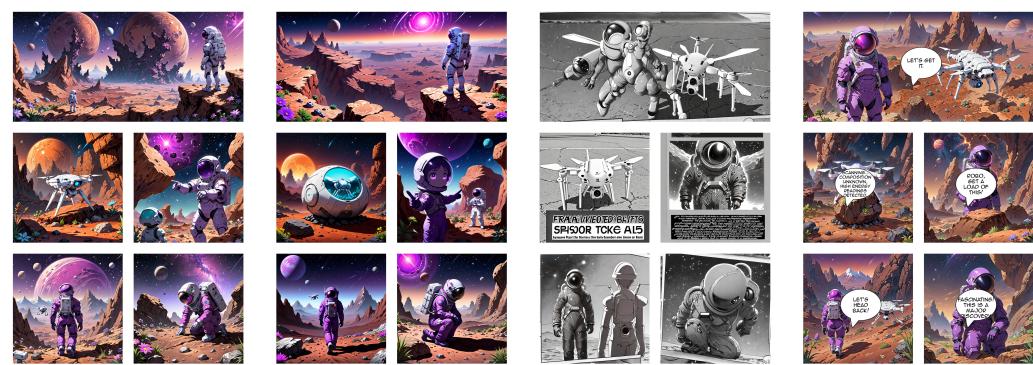
Story Summary

A purple astronaut exploring a distant planet with his robot assistant

461

(1) a purple astronaut, standing on a cliff, looking over a vast alien landscape, wide angle, eye level, eyes right. "Let's get it." [Astro], a white drone, by his side, [Robo], distant alien planet background, rocky terrain, strange flora.
 (2) a purple astronaut, pointing towards a strange, glowing rock formation, "Robo, get a load of this!", upper body, eyes up right [Astro], distant alien planet background, rocky terrain, strange flora.
 (3) a white drone, its optical sensors on its round body glowing as it analyzes the rock, "Scanning... composition unknown, high energy readings detected.", front view [Robo], distant alien planet background, rocky terrain, strange flora.
 (4) a purple astronaut, kneeling down, looking at a big rock, his helmet reflecting the light, "Fascinating! This is a major discovery.", low angle, eyes down [Astro], distant alien planet background, rocky terrain, strange flora.
 (5) a purple astronaut, walking off towards a mountain range in the distance, "Let's head back!", full body, back view [Astro], a white drone, floating beside him, [Robo], distant alien planet background, rocky terrain, strange flora..

470



SDXL(Baseline)

StoryDiffusion

DiffSensei

Ours

483

Figure 6: **Additional Qualitative Comparison.** The results presented in this figure compare the outputs of our framework with those from prominent baselines, namely SDXL, StoryDiffusion, and DiffSensei.

486 REFERENCES
487

488 Omri Avrahami, Amir Hertz, Yael Vinker, Moab Arar, Shlomi Fruchter, Ohad Fried, Daniel Cohen-
489 Or, and Dani Lischinski. The chosen one: Consistent characters in text-to-image diffusion models.
490 *arXiv preprint arXiv:2311.10093*, 2023. URL <https://arxiv.org/abs/2311.10093>.

491 Julius Berner, Lorenz Richter, and Karen Ullrich. An optimal control perspective on diffusion-based
492 generative modeling. *arXiv preprint arXiv:2211.01364*, 2022. URL <https://arxiv.org/abs/2211.01364>.
493

494 Mingdeng Cao, Xintao Wang, Zhongang Qi, Ying Shan, Xiaohu Qie, and Yinjiang Zheng. Mas-
495 actrl: Tuning-free mutual self-attention control for consistent image synthesis and editing. *arXiv
496 preprint arXiv:2304.08465*, 2023. URL <https://arxiv.org/abs/2304.08465>.
497

498 Siyu Chen, Dengjie Li, Zenghao Bao, Yao Zhou, Lingfeng Tan, Yujie Zhong, and Zheng Zhao.
499 Manga generation via layout-controllable diffusion. *arXiv preprint arXiv:2412.19303*, 2024. URL
500 <https://arxiv.org/abs/2412.19303>.
501

502 Siyuan Feng, Teruya Yoshinaga, Katsuhiko Hayashi, Koki Washio, and Hidetaka Kamigaito.
503 How panel layouts define manga: Insights from visual ablation experiments. *arXiv preprint
504 arXiv:2412.19141*, 2024. URL <https://arxiv.org/abs/2412.19141>.
505

506 Stephanie Fu, Netanel Tamir, Shobhita Sundaram, Lucy Chai, Richard Zhang, Tali Dekel, and
507 Phillip Isola. Dreamsim: Learning new dimensions of human visual similarity using synthetic
508 data. *arXiv preprint arXiv:2306.09344*, 2023. URL [https://arxiv.org/abs/2306.
509 09344](https://arxiv.org/abs/2306.09344).

510 Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H. Bermano, Gal Chechik, and Daniel
511 Cohen-Or. An image is worth one word: Personalizing text-to-image generation using textual
512 inversion. *arXiv preprint arXiv:2208.01618*, 2022. URL [https://arxiv.org/abs/2208.
513 01618](https://arxiv.org/abs/2208.01618).

514 Zhanxin Gao, Beier Zhu, Liang Yao, Jian Yang, and Ying Tai. Subject-consistent and pose-diverse
515 text-to-image generation. *arXiv preprint arXiv:2507.08396*, 2025. URL [https://arxiv.
516 org/abs/2507.08396](https://arxiv.org/abs/2507.08396).
517

518 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
519 reference-free evaluation metric for image captioning. *arXiv preprint arXiv:2104.08718*, 2022.
520 URL <https://arxiv.org/abs/2104.08718>.
521

522 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
523 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *arXiv preprint
524 arXiv:1706.08500*, 2018. URL <https://arxiv.org/abs/1706.08500>.
525

526 Shen Li, Jianqing Xu, Jiaying Wu, Miao Xiong, Ailin Deng, Jiazen Ji, Yuge Huang, Wenjie Feng,
527 Shouhong Ding, and Bryan Hooi. Id³: Identity-preserving-yet-diversified diffusion models for
528 synthetic face recognition. *arXiv preprint arXiv:2409.17576*, 2024. URL [https://arxiv.
529 org/abs/2409.17576](https://arxiv.org/abs/2409.17576).
530

531 Jiawei Lin, Jiaqi Guo, Shizhao Sun, Zijiang James Yang, Jian-Guang Lou, and Dongmei
532 Zhang. Layoutprompter: Awaken the design ability of large language models. *arXiv preprint
533 arXiv:2311.06495*, 2023. URL <https://arxiv.org/abs/2311.06495>.
534

535 Tao Liu, Kai Wang, Senmao Li, Joost van de Weijer, Fahad Shahbaz Khan, Shiqi Yang, Yaxing
536 Wang, Jian Yang, and Ming-Ming Cheng. One-prompt-one-story: Free-lunch consistent text-to-
537 image generation using a single prompt. *arXiv preprint arXiv:2501.13554*, 2025. URL <https://arxiv.org/abs/2501.13554>.
538

539 Oscar Mañas, Pietro Astolfi, Melissa Hall, Candace Ross, Jack Urbanek, Adina Williams, Aish-
540 warya Agrawal, Adriana Romero-Soriano, and Michal Drozdzal. Improving text-to-image con-
541 sistency via automatic prompt optimization. *arXiv preprint arXiv:2403.17804*, 2024. URL
542 <https://arxiv.org/abs/2403.17804>.
543

540 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 541 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 542 synthesis. *arXiv preprint arXiv:2307.01952*, 2023. URL <https://arxiv.org/abs/2307.01952>.

543

544 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 545 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. *arXiv
 546 preprint arXiv:2208.12242*, 2023. URL <https://arxiv.org/abs/2208.12242>.

547

548 Yoad Tewel, Omri Kaduri, Rinon Gal, Yoni Kasten, Lior Wolf, Gal Chechik, and Yuval Atzmon.
 549 Training-free consistent text-to-image generation. *arXiv preprint arXiv:2402.03286*, 2024. URL
 550 <https://arxiv.org/abs/2402.03286>.

551

552 Darian Tomašević, Fadi Boutros, Chenhao Lin, Naser Damer, Vitomir Štruc, and Peter
 553 Peer. Id-booth: Identity-consistent face generation with diffusion models. *arXiv preprint
 554 arXiv:2504.07392*, 2025. URL <https://arxiv.org/abs/2504.07392>.

555

556 Mengyu Wang, Henghui Ding, Jianing Peng, Yao Zhao, Yunpeng Chen, and Yunchao Wei. Char-
 557 consist: Fine-grained consistent character generation. *arXiv preprint arXiv:2507.11533*, 2025.
 558 URL <https://arxiv.org/abs/2507.11533>.

559

560 Qinghe Wang, Baolu Li, Xiaomin Li, Bing Cao, Liqian Ma, Huchuan Lu, and Xu Jia. Char-
 561 acterfactory: Sampling consistent characters with gans for diffusion models. *arXiv preprint
 562 arXiv:2404.15677*, 2024.

563

564 Jianzong Wu, Chao Tang, Jingbo Wang, Yanhong Zeng, Xiangtai Li, and Yunhai Tong. Diffsensei:
 565 Bridging multi-modal llms and diffusion models for customized manga generation. *arXiv preprint
 566 arXiv:2412.07589*, 2024. URL <https://arxiv.org/abs/2412.07589>.

567

568 Guangxuan Xiao, Tianwei Yin, William T. Freeman, Frédo Durand, and Song Han. Fastcom-
 569 poser: Tuning-free multi-subject image generation with localized attention. *arXiv preprint
 570 arXiv:2305.10431*, 2023. URL <https://arxiv.org/abs/2305.10431>.

571

572 Weifeng Xu, Xiang Zhu, and Xiaoyong Li. Rcdm: Enabling robustness for conditional diffusion
 573 model. *arXiv preprint arXiv:2408.02710*, 2024. URL <https://arxiv.org/abs/2408.02710>.

574

575 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image
 576 prompt adapter for text-to-image diffusion models. *arXiv preprint arXiv:2308.06721*, 2023. URL
 577 <https://arxiv.org/abs/2308.06721>.

578

579 Yupeng Zhou, Daquan Zhou, Ming-Ming Cheng, Jiashi Feng, and Qibin Hou. Storydiffu-
 580 sion: Consistent self-attention for long-range image and video generation. *arXiv preprint
 581 arXiv:2405.01434*, 2024a. URL <https://arxiv.org/abs/2405.01434>.

582

583 Zhengguang Zhou, Jing Li, Huaxia Li, Nemo Chen, and Xu Tang. Storymaker: Towards holistic
 584 consistent characters in text-to-image generation. *arXiv preprint arXiv:2409.12576*, 2024b. URL
 585 <https://arxiv.org/abs/2409.12576>.

586

587 Karl Åström and Tore Hägglund. *PID Controllers*, 2nd Edition E. 1995. URL https://www.ucg.ac.me/skladiste/blog_2146/objava_92847/fajlovi/Astrom.pdf.

588

589

590

591

592

593

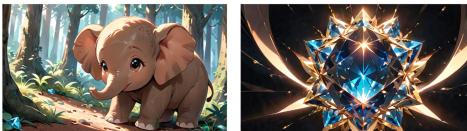
594 APPENDIX
595596 A ADDITIONAL QUALITATIVE RESULTS
597598 Further results in Figure 7 and Figure 8 confirms the exceptional performance of our framework
599 in generating complex, multi-character manga pages with a high degree of textual alignment and
600 aesthetic appeal. Our method demonstrates a remarkable capacity to preserve the intrinsic qualities
601 of the base model, a crucial attribute that quantitative metrics often fail to capture. These results
602 affirm our method’s state-of-the-art standing in producing coherent, high-quality, and practically
603 useful narrative visuals.604
605 B ADDITIONAL QUALITATIVE COMPARISON RESULTS
606607 Qualitative comparisons in Figure 6 and Figure 9 underscore the practical superiority of our method,
608 revealing the significant limitations of current state-of-the-art approaches. While the baseline SDXL
609 (Podell et al., 2023) offers no mechanism for character consistency, even specialized frameworks falter.
610 StoryDiffusion (Zhou et al., 2024a), for example, exhibits poor reference similarity and fails to
611 capture the dynamic storytelling nature of manga. Similarly, DiffSensei (Zhou et al., 2024a) strug-
612 gles with weak character similarity, producing low-quality, monochrome outputs. In stark contrast,
613 our framework excels, delivering an outstanding balance between robust reference similarity and
614 precise prompt alignment. This synergy results in aesthetically superior images that cohere into
615 compelling narratives, demonstrating a profound leap in storytelling capability. For the purposes
616 of a fair and direct qualitative comparison, ConsiStory (Tewel et al., 2024) and One-Prompt-One-
617 Story (Liu et al., 2025) have been omitted from this evaluation, as their architectures do not natively
618 support image-based conditioning.619
620 C IMPLEMENTAION DETAILS
621622 Our training-free framework’s multi-phase control process is dynamically configured based on the
623 panel’s complexity. For single-character generation, the Structural Resonance Injection (SRI) phase
624 is active for timesteps $t > 850$, with the Predictive Drift Controller (PDC) operating during $800 < t \leq 850$,
625 using gains of $K_p = 0.25$, $K_i = 0.3$, and $K_d = 0.25$. For the more demanding multi-
626 character generation pass, as detailed in Section 3.4, these parameters are intensified for robust
627 identity separation: SRI is active for $t > 675$, the PDC for $575 < t \leq 675$, and controller gains are
628 elevated to $K_p = 0.55$, $K_i = 0.5$, and $K_d = 0.55$.629
630 D USER STUDY DETAILS
631632 We conducted a comprehensive user study involving 20 participants. As illustrated in Figure 10,
633 for each task, participants were presented with a complete one-page manga narrative, including the
634 high-level story summary, reference characters, and detailed per-panel prompts. They were then
635 shown several full-page manga generations from our method and competing baselines, and were
636 asked to select the single best entry based on a holistic evaluation of four distinct criteria: Reference
637 Similarity, Textual Consistency, Image Quality, and Storytelling Ability. This robust evaluation
638 protocol was designed to capture the nuanced, multifaceted qualities of a compelling visual narrative
639 that are often missed by quantitative analysis.640
641 E USE OF LARGE LANGUAGE MODELS
642643 Large Language Models(LLMs) were only used to polish writing sporadically in the paper.
644
645
646
647

Figure 7: **More Additional Qualitative Results.** Additional results from our method.

702
703
704
705
706
707
708
709
710
711
712
713
714

715 a cute rhino, a cute bear, and a cute
716 brown elephant baby discovered a
717 gem in a forest

718 A black wolf and a black panther
719 saves a mink from drowning



741 **Figure 8: Additional Qualitative Results On Three Consistent Characters.** Additional results
742 showing our method capable of generating more than two consistent characters within the same
743 manga panel.

744
745
746
747
748
749
750
751
752
753
754
755

Figure 9: **More Additional Qualitative Comparison.** Additional results showcasing the difference between our method with SDXL, StoryDiffusion, and DiffSensei.

810

811

812

813

814

Manga Generation User Study

815

816

817

Guidance Before You Start - IMPORTANT

818

1. Goal: Select the Top Manga

819

You will be presented with a series of one-page manga sets. Your task is to evaluate each one and choose the single best entry based on these areas:

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

OK

837

838

839

840

841

842

843

844

845

1. Enter the best set based on the four criteria

Story Summary

A girl and a boy meeting at a playground in the morning

Reference Prompts

[Billy] a boy, wearing a hoodie.

[Hola] a girl, long hair, wearing a hoodie.

- (1) an empty school playground, morning, sun shining, swings, slide, wide angle.
- (2) a girl, long hair, wearing a hoodie, walking, waving, upper body [Hola], school playground background.
- (3) a girl, long hair, wearing a hoodie, smiling, "Hey! You're here early.", chest up, eyes right looking sideways [Hola], school playground background.
- (4) a boy, wearing a hoodie, smiling back, "Couldn't sleep.", chest up, eyes left looking sideways [Billy], school playground background.
- (5) a boy, wearing a hoodie, the grey hoodie looks perfect on him, chatting [Billy], a girl, long hair, wearing a hoodie, high angle, eyes down, "Greater weather.. Isn't it?" [Hola], school playground background.

SDXL(Baseline)

StoryDiffusion

DiffSensei

Ours

856

857

858

859

860

861

862

863

Figure 10: **User Study Details.** Participants were given clear instructions and criteria for selection.