
PromptGS: Visual Prompting for Tiny Object
Reconstruction in 3DGS Optimization

1st Xun Wang
Beihang University

Beijing, China
xun@buaa.edu.cn

2nd Xutao Xue
Beihang University

Beijing, China
xuexutao@buaa.edu.cn

3rd Siyuan Li
Hangzhou International Innovation Institute,

Beihang University, China
lsy316@buaa.edu.cn

4th Shayer Shabab Utsho
Beihang University

Beijing, China
s.ssutsho.ch@gmail.com

5th Kun Li
Tianjin University
Tianjin, China
lik@tju.edu.cn

6th Mengqi JiB
Beihang University

China
jimengqi@buaa.edu.cn

Abstract—Reconstructing tiny floating objects in large-scale 3D
scene remains a fundamental challenge for 3D Gaussian Splatting
(3DGS). These objects often receive insufficient point density and
gradient supervision during training due to limited visibility and
low image-space saliency, making them difficult to recover even
after prolonged optimization. We present PromptGS, a visual
prompting framework that incorporates lightweight human in-
put to guide the 3DGS optimization process. PromptGS fuses
projected 2D error maps with user-specified spatial prompts
to form a 3D attention field, which acts as an optimization
prior to guide Gaussian densification, adaptive resampling, and
multiview selection. This mechanism directs training efforts
toward regions with high semantic relevance but low point
density, improving reconstruction in areas that are frequently
overlooked. Furthermore, we design a Gaussian scoring function
that ranks candidates based on their improvement potential, en-
suring efficient resource allocation. Moreover, PromptGS achieves
multiview consistent rendering of small objects, indicating that
their geometry and appearance are faithfully reconstructed in 3D
space rather than approximated through view-dependent texture
projection. Experiments on public benchmarks and challenging
synthetic scenes demonstrate that PromptGS consistently outper-
forms existing methods in both visual fidelity and efficiency.

Index Terms—visual prompt 3D reconstruction, tiny object
reconstruction, multiview consistency, Gaussian Splatting

I. INTRODUCTION

In large-scale 3D scenes, accurately reconstructing small-
scale and sparsely distributed objects remains a critical yet
under-addressed challenge. Objects such as drones or debris
often occupy only a few pixels in multiview images and
be observed from limited views. Despite their small size,
these objects may carry essential semantic or functional in-
formation. In safety-critical applications such as autonomous
driving, robotics, or disaster response, failing to reconstruct
such tiny objects can lead to incorrect scene understanding,
missed detections, or unsafe behavior. Therefore, improving
the reconstruction quality of small and low-saliency structures
is vital for the reliability and robustness of 3D perception
systems.
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However, current neural rendering pipelines, including re-
cent advances such as 3D Gaussian Splatting (3DGS) [1],
are not well-equipped to handle this challenge. 3DGS and its
variants [2]–[4] generally rely on traditional structure-from-
motion (SfM) and multiview stereo (MVS) algorithms, such
as COLMAP [5], to initialize sparse point clouds. Yet, these
classical methods often fail to reconstruct small-scale objects
due to their low pixel coverage and lack of visual saliency,
resulting in missing geometry from the very beginning of
the pipeline. Although some methods introduce densification
heuristics or multiview-aware training, they lack a principled
mechanism to identify and prioritize semantically important
but structurally underrepresented regions. Furthermore, exist-
ing pipelines lack mechanisms to incorporate human-defined
spatial priors, which could help focus training on semantically
important regions.

To address this gap, we propose PromptGS, a visual
prompting framework that introduces lightweight human guid-
ance into the 3DGS optimization loop. PromptGS allows users
to mark spatial regions of interest, which are fused with
projected 2D error maps to construct a unified 3D attention
field. This attention field serves as an optimization prior,
dynamically guiding Gaussian densification, adaptive resam-
pling, and multiview selection toward regions that require
focused reconstruction.

In addition, we introduce a Gaussian scoring function that
evaluates each point’s potential contribution to reconstruction
quality, enabling efficient prioritization of training resources.
PromptGS also supports prompt-guided resampling in sparse
regions, increasing point cloud density where it is most
needed. These mechanisms jointly enable the system to recon-
struct small-scale objects with higher fidelity and consistency
across views.

We validate PromptGS on public benchmarks and challeng-
ing synthetic scenes containing small, difficult-to-capture ob-
jects. Experimental results show that our method outperforms
existing 3DGS variants in both visual fidelity and reconstruc-
tion completeness. Notably, PromptGS achieves multiview
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Fig. 1. Overview of our method. The core idea of our method revolves around interactive human guidance, using a ”circling and highlighting” method to
focus on regions that require densification. In this region, we implement focus train by matching the most similar input views and prioritize the densification
of Gaussians in the region according to their performance improvement scores. Resampling is applied to sparse small floating objects to enhance the accuracy
of reconstruction.

consistent modeling of small objects, faithfully capturing their
geometry and appearance in 3D space, rather than relying on
view-dependent texture approximation.

This work contributes a general and interpretable human-
guided optimization framework for 3D scene reconstruction,
enabling 3DGS to recover semantically important tiny struc-
tures that are often overlooked by existing methods.

II. LITERATURE REVIEW

A. Traditional 3D Reconstruction Methods

Traditional 3D reconstruction methods, such as multiview
stereo (MVS) and structure-from-motion (SFM) algorithms,
are widely used in 3D reconstruction. MVS reconstructs 3D
scenes by matching and estimating depth from multiple-view
images. SFM recovers camera motion trajectories and scene
structure from multiple images to achieve 3D reconstruction.
These methods, which rely on meshes and point clouds [6]–
[9], or implicit representations [10] often face challenges in
accuracy and efficiency when dealing with complex scenes.
Some studies [11] [12], introduce a deep learning algorithm
to improve the accuracy and robustness of 3D model recon-
struction through the end-to-end learning framework and the
volume view selection method.

B. The Emergence of Neural Radiance Fields

Neural Radiance Fields (NeRF) [13] represent a significant
advancement in neural scene representation, enabling high-
fidelity novel view synthesis from multiview images. While
NeRF achieves high-quality rendering, its reliance on dense
volumetric sampling and per-ray MLP inference leads to
high computational cost, limiting its applicability in real-time
scenarios. To address this, researchers have explored various

optimization methods to improve its computational efficiency
and practicality. Examples of such algorithms include Mip-
NeRF [14], InstantNGP [15], Mip-nerf [16], and Plenoxels
[17], all of which aim to enhance NeRF’s computational
efficiency.

C. 3D Gaussian Splatting

Gaussian Splatting [1] is a novel 3D reconstruction method
that achieves real-time rendering by representing scenes with
spatially continuous Gaussians, enabling fast and photoreal-
istic novel view synthesis. However, existing 3DGS methods
still face key challenges when handling complex scenes, in-
cluding over-reconstruction, redundant Gaussian function gen-
eration, and resource inefficiency. To address these issues, by
introducing a new codirectional view space position gradient
as a densification criterion, AbsGS [2] effectively identifies
and splits large Gaussian distributions in over-reconstructed
regions, thereby recovering fine details. ResGS [18] proposes a
residual segmentation densification method that progressively
refines the details by adaptively adding smaller Gaussians
to complement geometric details. Scaffold-GS [19] reduces
redundant Gaussian functions by using a neural Gaussian
anchor distribution and improves scene coverage through
anchor growth and pruning strategies. MVGS [4] introduces a
multiview training strategy that optimizes multiview attributes
jointly, effectively overcoming the issue of overfitting to
single views and significantly enhancing 3DGS reconstruction
quality.

Although these methods improve certain aspects of 3DGS,
none of them addresses the challenge of identifying and opti-
mizing small-scale objects that are missing from initialization
or receive weak supervision during training. In contrast, our



method introduces an externally guided optimization mecha-
nism, allowing users to inject spatial priors that guide den-
sification and view sampling toward critical regions, thereby
enabling targeted reconstruction of small and underrepresented
objects.

III. METHOD

Our goal is to improve the reconstruction of small-scale,
sparsely distributed objects in large-scale 3D scenes using
3D Gaussian Splatting (3DGS). To this end, we propose
PromptGS, a framework that introduces lightweight human
guidance into the 3DGS optimization process through spatial
prompts. PromptGS consists of three key components: (1)
Error-Aware View Selection localizes high-loss regions via
projected error maps and refines them through similarity-based
multiview selection; (2) Prompt-Driven Gaussian Prioritiza-
tion ranks Gaussians by their reconstruction contribution and
prioritizes densification in attention-weighted critical areas;
and (3) Attention-Guided Resampling augments point density
in low-coverage zones to recover tiny object structure.

A. Preliminaries: 3D Gaussian Splatting

3D Gaussian Splatting (3DGS) represents 3D scenes as
a set of spatially continuous Gaussians, enabling efficient
and photorealistic rendering in real time. Unlike NeRF-based
methods that rely on volumetric sampling and MLP inference,
3DGS directly optimizes Gaussian parameters, significantly
reducing redundancy and enabling real-time rendering. Each
Gaussian is parameterized by a center µ ∈ R3, a covariance
matrix Σ ∈ R3×3 encoding shape and orientation, and an
opacity scalar o ∈ R. The theoretical contribution of a single
3D Gaussian to a point x in space is formulated as follows:

G(x) = oe−
1
2 (x−µ)TΣ−1(x−µ), Σ = RSSTRT (1)

where R denotes the rotation matrix and S is the scaling
matrix. The anisotropic covariance of each Gaussian enables
it to adaptively model both sharp edges and smooth regions,
improving geometric fidelity. View-dependent appearance is
modeled using third-order Spherical Harmonics, which pro-
vide a compact and differentiable representation of reflectance
and lighting effects. For a particular viewpoint, the visible
set of 3D Gaussians is rendered in a tile-based, differentiable
rasterizer to obtain a 2D image by α-blending their projections.
During training, the parameters of all Gaussians, including
position, orientation, scale, opacity, and SH coefficients, are
jointly optimized by minimizing a composite loss that com-
bines pixel-wise L1 error and SSIM between rendered and
ground truth images.

B. Error-Aware View Selection

The standard single-view random sampling strategy in
3DGS often fails to capture high-error regions, especially
when these areas are occluded or only visible in a few views.
As a result, such regions may be optimized only sporadically,
leading to inefficient and non-continuous convergence. Con-
sequently, error-prone regions in complex scenes may remain

underoptimized even after prolonged training, resulting in
slow densification and inefficient allocation of computational
resources. To identify high-error regions, we compute the
2D per-pixel loss L2D(x, y) between rendered and ground
truth images, and back-project it into 3D space using known
camera intrinsics and poses. The accumulated 3D loss L3D(X)
highlights regions with persistent reconstruction errors. For
each such region, we retrieve K camera views with the
highest image space similarity to the projected region, enabling
targeted multiview optimization.

The practical aspects of the representation are highly de-
pendent on the initial distribution of point clouds [20]. To
address this challenge more effectively, we employ a progres-
sive training strategy. Specifically, we start by downsampling
the input images and conducting training on low-resolution
data, which helps generate a reasonably distributed initial
point cloud. We then gradually increase the resolution of the
input images during subsequent training stages, continuously
refining the model to produce more detailed and accurate point
cloud reconstructions.

Given the per-pixel loss maps and calibrated camera poses,
we back-project high-loss pixels into 3D space to form a
volumetric error field. Regions with high accumulated er-
rors are selected as reconstruction-critical targets for further
optimization. By retrieving camera views with high similar-
ity to the identified high-error regions, we enable targeted
multiview optimization that concentrates resources on the
most error-prone areas, leading to improved reconstruction
accuracy. To balance memory usage and training diversity, we
alternate between random multiview sampling and similarity-
based view selection. When GPU memory is constrained, we
dynamically adjust the number of active views by sampling
subsets, ensuring full camera coverage over time without
exceeding memory limits. This strategy enables targeted mul-
tiview training, directing computational resources to high-
loss areas, and improving the overall accuracy of the model.
Cameras with higher similarity are prioritized for computation.
By visualizing 3D loss distributions, the system allows users
to specify spatial prompts in regions with persistent errors,
enhancing optimization in areas where automatic methods
under-perform.

C. Prompt-Driven Gaussian Prioritization

The original 3DGS pipeline often fails to reconstruct small-
scale, sparsely distributed objects due to weak optimization
signals and insufficient Gaussian density in these regions.
Throughout the training process, the algorithm has self-
diagnostic capabilities, which automatically detect and mark
high-loss regions and key points that need optimization. To
address this, we introduce lightweight human guidance in
the form of spatial masks, allowing users to specify regions
of interest that are underrepresented in the training signal.
Meanwhile, a new score function is introduced to prioritize
densifying Gaussians that yield higher performance improve-
ment, avoiding wasted time on unnecessary densification and
excessive resource consumption.



Fig. 2. The distribution of Gaussian scores. Compared with 3DGS, after pri-
oritizing the densification of higher score Gaussians, the number of Gaussians
with abnormally high scores decreases, the overall quantity increases, and the
average score in the lower range shows a reasonable improvement.

Certain regions receive insufficient supervision during train-
ing, leading to poor convergence. Human-provided spatial
priors help to identify and refine these regions more effectively.
Users can interactively select high-error regions based on
visualized 3D loss maps and provide spatial masks to guide
focused optimization in these areas. For marked regions, we
use images with high viewpoint relevance for focused training.

We define Sg as the Gaussian score for each Gaussian g.
N is the total number of views, ∇g represents the Gaussian
positional gradient, and dig is the depth attribute in the i-th
view of Gaussian g. The opacity, scale, and radius of Gaussian
g are represented by og , sg , rg , respectively. To evaluate the
Gaussian component, we introduce a scoring function F that
combines these terms.

The combined loss P i for the i-th view is a combination
of the L1 loss Li

1, the loss of the Structural Similarity Index
(D-SSIM) Li

D−SSIM , and the edge loss Li
edge. The Gaussian

score Sg is then given by the equation:

Sg =

N∑
i=1

P i · F
(
∇g + dig + og + sg + rg

)
(2)

where P i is the combined loss for the i-th view, given by:

P i = λ1L
i
1 + λ2L

i
D−SSIM + λ3L

i
edge (3)

In addition to the L1 and SSIM loss used in the original
3DGS, we incorporate depth and edge-aware losses to better
capture geometric and structural details in sparse regions. The
rationale for excluding semantic loss from the computation is
to prevent introducing extra attributes to Gaussian primitives,
which might decelerate the algorithm. Instead, depth and edge
loss play analogous roles. As shown in Fig. 2, the data
distribution first follows a long-tail distribution. Compared
to 3DGS, after prioritizing the densification of higher-scoring
Gaussians, the number of Gaussians increases, and the average
value of the low-score part increases, while the number of
Gaussians with abnormally high scores gradually decreases.

This suggests that the scoring function effectively prioritizes
Gaussians in underrepresented regions, leading to more bal-
anced point distributions and improved reconstruction quality.

w/o Human Interaction Input Views with Human Interaction

Fig. 3. Render results with mask (right) and without mask (left) are presented.
With human-interaction method, the reconstruction shows fewer holes.

By calculating and ranking the scores of Gaussians within
the region, we ensure that the highest-scoring parts, which con-
tribute the most to overall model performance, are prioritized
for densification. By scoring Gaussians with a combination
of photometric and geometric losses, the algorithm prioritizes
meaningful regions and suppresses unnecessary densification,
thereby reducing redundant computation in over-saturated
areas. By focusing on key regions and not computing loss
for low-relevance views, we can significantly reduce resource
wastage. According to the prompts of high-loss areas, human
experts can mark and provide regions of interest and camera
indices, guiding the algorithm densification. As shown in
Figure 3, the input views on the right side indicate that due to
perspective occlusion and the small proportion of the marked
region in the scene, the original 3DGS rendering results are
filled with voids. The addition of human-guided prompts leads
to more complete surface coverage and finer geometric details
in previously underrepresented regions.

D. Attention-Guided Resampling

To enhance the reconstruction of small-scale, sparsely dis-
tributed objects, we perform Gaussian resampling in user-
specified regions of interest, increasing point density where
the original representation is insufficient. Since reconstruc-
tion quality is closely correlated with point density [20],
we perform targeted resampling to increase Gaussian density
in underrepresented regions, thereby improving coverage of
low-saliency objects. By concentrating training on resam-
pled regions and their relevant camera views, the method
improves both reconstruction quality and computational ef-
ficiency, avoiding unnecessary updates in low-impact areas.

IV. EXPERIMENTS

A. Setup

Datasets. Following 3DGS, we select scenes with highly
diverse capture styles, ranging from enclosed indoor environ-
ments to expansive outdoor settings without clear boundaries.
Specifically, we use all 9 unbounded indoor and outdoor scenes
presented in Mip-NeRF360, two scenes from and two scenes
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Fig. 4. Qualitative Comparisons of Different Methods on Scenes from Mountain Datasets. Our method clearly reconstructs the majority of the drones and
provides better details on the slopes. In contrast, AbGS only reconstructs a few drones and incorrectly places many of the white drone patches on the slopes.
Compared to 3DGS, our method not only avoids large areas of blurring but also reconstructs the flames more accurately.

provided by Tanks and temples dataset and Deep blending
dataset, totaling 13 distinct environments. To ensure a fair
comparison, all numerical data for these methods presented in
the tables are directly sourced from the original publication.
To handle complex scenes and tiny moving objects, we used
simulation software to generate mountainous terrain and add
flames and tiny floating drones. From the camera’s perspective,
the drones occupy no more than 10 pixels in 1080p images,
thereby ensuring that they appear as tiny and hard-to-detect
moving objects.

Implementation Details. Our experiments are conducted on
a single NVIDIA 4090 GPU with 24GB of memory. Following
common practice, we stop the Gaussian densification after
15,000 iterations and stop training at 30,000 iterations. Each
downsampling factor (8×, 4×, 2×) is used for 7000 training
epochs respectively during the progressive training strategy
with low-resolution images. The multiview training strategy
combines random multiview, related multiview, and random
singleview in a ratio of 2:2:6. To avoid out-of-memory issues,
we maximize the distance between the random multiview and
specified related multiview, using single views to separate
them, resulting in a final ratio distribution of 2:3:2:3. For the
selection of masks in Table II, we used a centered mask to
delineate the regions where x, y, and z are 1, and a mask of
size 1*1*1 to delineate the regions. All Gaussians within the
mask are densified, the default selection being the center. If
the center is within the object and not on the surface, a small

adjustment is made. We did not choose a random mask because
the corresponding camera indices found would be fewer, so
the center was selected. The size of the specified mask for
delineation is the same as above, with the main region selected
on the surface.

B. Performance Evaluation

In standard datasets shown in Table I, our method achieves
high PSNR scores for reconstruction. Although a centered
mask generally performs well, a user-defined mask often
yields better results across most metrics. In the simulated
mountain dataset, the advantages of our method are partic-
ularly evident. As shown in Table II, adding masks on the
hillside or multiple masks significantly improves the results.
The visual comparison shows that applying user-defined masks
leads to improved object visibility and sharper boundaries
in the rendered results. This comparison isolates the effect
of spatial prompting by evaluating reconstructions with and
without user-defined masks. For the tiny floating drones in
the air, we have a general idea of their location, but not
their exact positions. We therefore delineate the approximate
area where the drones are located. The displayed images
show that our algorithm can effectively reconstruct the drones,
which account for only approximately 1/200 of the input
image pixels. This result verifies that the algorithm ensures
the successful reconstruction of such tiny objects.



TABLE I
QUANTITATIVE EVALUATION OF OUR METHOD COMPARED TO PREVIOUS WORK. EVALUATED OUR METHOD ON THREE DATASETS AND COMPARED IT
WITH PREVIOUS WORK.RESULTS FROM OTHER ALGORITHMS ARE DIRECTLY ADOPTED FROM THEIR ORIGINAL PAPERS, AND OUR RESULTS ARE FROM

OUR OWN EXPERIMENTS. THE BEST RESULTS ARE HIGHLIGHTED IN RED, THE SECOND-BEST IN YELLOW, AND THE THIRD-BEST IN LIGHT BLUE. OURS*
REFERS TO SELECTING ONLY ONE FOCUS TRAIN REGION, WHICH IS POSITIONED AT THE CENTER OF THE COORDINATE SYSTEM. OURS REFERS TO

SELECTING A FOCUS TRAIN REGION TOO, BUT THE REGION IS CHOSEN THROUGH HUMAN INTERACTION.

Dataset
Method | Metric

Mip-NeRF360 Tanks&Temples Deep Blending
SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓ SSIM↑ PSNR↑ LPIPS↓

Plenoxels 0.626 23.08 0.463 0.719 21.08 0.379 0.795 23.06 0.510
INGP-Base 0.671 25.30 0.371 0.723 21.72 0.330 0.797 23.62 0.423
INGP-Big 0.699 25.59 0.331 0.745 21.92 0.305 0.817 24.96 0.390
3DGS 0.815 27.21 0.214 0.841 23.14 0.183 0.903 29.41 0.243
AbsGS 0.820 27.49 0.191 0.853 23.73 0.162 0.902 29.67 0.236
taming 3dgs 0.851 24.04 0.170 0.822 27.79 0.205 0.907 30.14 0.235
Ours* 0.818 27.95 0.201 0.870 25.02 0.145 0.904 29.98 0.235
Ours 0.825 28.12 0.186 0.891 26.12 0.144 0.908 30.21 0.233

TABLE II
QUANTITATIVE EVALUATION OF OUR METHOD COMPARED TO ABSGS

AND 3DGS ON THE MOUNTAIN DATASET.

PSNR↑ SSIM↑ LPIPS↓
3DGS 21.595 0.563 0.463
AbsGS 27.599 0.808 0.242
Ours(1 mask) 30.165 0.815 0.271
Ours(2 masks) 31.018 0.819 0.235

V. CONCLUSION

3DGS faces significant challenges in handling tiny floating
objects in complex large-scale scenes, leading to blurred
detailed features due to insufficient point cloud density in
critical regions. To address these issues, we propose a train-
ing strategy that first identifies high-error regions via 2D-
to-3D loss projection and then refines them using targeted
multiview optimization. We also incorporate user-provided
spatial prompts to focus optimization on areas of importance
to semantics but underrepresented. The sparse regions of tiny
objects undergo adaptive resampling to enhance local detail.
Our method achieves higher accuracy and completeness in
reconstructing small-scale objects, as demonstrated on both
real-world and synthetic large-scale datasets.
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