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ABSTRACT

One of the main challenges of federated learning (FL) is handling non-
independent and identically distributed (non-IID) client data, which may occur
in practice due to unbalanced datasets and use of different data sources across
clients. Knowledge sharing and model personalization are key strategies for ad-
dressing this issue. Clustered federated learning is a class of FL methods that
groups clients that observe similarly distributed data into clusters, such that every
client is typically associated with one data distribution and participates in training
a model for that distribution along their cluster peers. In this paper, we present a
unified Bayesian framework for clustered FL which optimally associates clients
to clusters. Then we propose several practical algorithms to handle the, otherwise
growing, data associations in a way that trades off performance and computational
complexity. This work provides insights on client-cluster associations and enables
client knowledge sharing in new ways. For instance, the proposed framework cir-
cumvents the need for unique client-cluster associations, which is seen to increase
the performance of the resulting models in a variety of experiments.

1 INTRODUCTION

Federated learning (FL) is a distributed machine learning approach that enables model training on
decentralized data located on user devices like phones or tablets. FL allows collaborative model
training without data sharing across clients, thus preserving their privacy (McMahan et al., 2017).
FL has been applied to computer vision (Shenaj et al., 2023; Liu et al., 2020), smart cities (Zheng
et al., 2022; Khan et al., 2021; Park et al., 2022), or threat detection (Wu et al., 2023), among other
pervasive applications (Rieke et al., 2020). However, FL faces significant challenges in handling
non-independent and identically distributed (non-IID) data, where clients have unbalanced and sta-
tistically heterogeneous data distributions (Kairouz et al., 2021; Li et al., 2020; 2022). This violates
common IID assumptions made in machine learning and leads to poor model performance.

To overcome non-IID challenges, recent works explored personalizing models to each client while
still sharing knowledge between clients with similar distributions (Tan et al., 2022; Huang et al.,
2021; Wu et al., 2021). One such approach is clustered federated learning (CFL), which groups
clients by similarity and associates each client with a model, which is trained based on the data
of clients on the same cluster (Ma et al., 2022; Ghosh et al., 2020; Long et al., 2022). It usually
performs better in non-IID data, with clustered clients sharing similar data distribution. However,
fundamental questions remain open on how to optimize client-cluster associations and inter-client
knowledge sharing under non-IID data. This work aims at addressing two identified problems of
current CFL schemes. Problem 1: the clients are clustered into nonoverlapping clusters, such that
the knowledge of each participating client is exploited by only one cluster during each round, which
results in an inefficient utilization of the local information that could contributed to the training of
multiple clusters instead. Problem 2: there is a lack of a unified theory to describe the information
sharing among clients and their contribution to training multiple models.

In this work, we propose a new Bayesian framework that formalizes CFL as a Bayesian data asso-
ciation problem. The global model shared by the server is treated as a mixture distribution, where
each component corresponds to an association hypothesis. Instead of clustering clients and asso-
ciating their data to a given mode, the conceptual solution keeps track of all possible client-cluster
associations through probabilistic data association. This results in a principled theory to model both
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Figure 1: An example (left) association relation between clients and clusters; and details (right) of
the operations and communications at the server and client communicate for BCFL.

client-cluster and client-client relations in CFL offering theoretical insights into how to optimize
CFL under non-IID settings, as well as connections to existing CFL methods. However, the optimal
solution is generally intractable as the number of communication rounds increase due to the quickly
growing number of data associations. To address this challenge, the paper also provides three prac-
tical algorithms, each leveraging different approximations related to which association hypotheses
to keep at each Bayesian recursive update. A variety of experiments are discussed, including both
feature-skew and label-skew non-IID situations, showing the systematic superiority of the proposed
methods under the general Bayesian CFL (BCFL) framework introduced in this paper.

2 RELATED WORKS

Many approaches try to tackle the non-IID issue in FL. Personalized FL has attracted much attention,
it customizes models to each client’s local data distribution. There are several ways to conduct
customization. Local fine-tuning (Ben-David et al., 2010; Wang et al., 2019), meta-learning (Fallah
et al., 2020; Jiang et al., 2019), transfer learning (Li & Wang, 2019), model mixture methods (Deng
et al., 2020), and pair-wise collaboration method (Huang et al., 2021). However, these methods focus
on client-level that does not consider any cluster structure, such that clients with similar backgrounds
or distribution are very likely to make similar decisions. Therefore, CFL is proposed as an alternative
solution, which provides a middle ground by grouping similar clients and allowing each to associate
with a model trained on its cluster distribution (Mansour et al., 2020; Briggs et al., 2020; Sattler et al.,
2020b; Shlezinger et al., 2020). This balances personalization with knowledge transfer between
related clients. While promising, optimally associating clients to clusters and enabling inter-client
learning remains an open area, which this paper addresses. Some of the existing works group the
clients by model distance (Long et al., 2022; Ma et al., 2022) and gradient similarity (Sattler et al.,
2020a; Duan et al., 2020). Other works utilize the training loss to assign a client to the cluster with
the lowest loss (Ghosh et al., 2020; Mansour et al., 2020). However, these clustered FL methods do
not effectively exploit similarities between different clusters. Some other works tackle this problem
by relaxing the assumption that each client can only be associated with one data distribution, called
Soft Clustered FL (Ruan & Joe-Wong, 2022; Li et al., 2021). While those works made substantial
progress in different CFL directions, there is a lack of a unifying theory. This article provides a
Bayesian interpretation of CFL, where client-cluster assignments are modeled using data association
theory (Lee et al., 2014; de Waard et al., 2008). This principled approach enables the design of
practical solutions for CFL, some of which have interpretations in connection to the existing works.

Compared to FL, Bayesian FL enhances FL by leveraging the benefits of Bayesian inference. By
integrating prior knowledge and inferring parameter distributions, this approach effectively captures
the intrinsic statistical heterogeneity of FL models, which facilitates the quantification of uncertain-
ties and model dynamics. Consequently, it fosters the development of more robust and interpretable
federated models (Cao et al., 2023). While the majority of existing Bayesian FL research has con-
centrated on Bayesian training employing Variational Inference (Corinzia et al., 2019; Kassab &
Simeone, 2022), Laplace’s approximation (Liu et al., 2021), or Bayesian model aggregation (Wu
et al., 2022). However, papers combining Bayesian FL with data association mechanisms are no-
tably absent, especially in clustered FL. Addressing this gap is the primary contribution of our paper.
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3 OPTIMAL BAYESIAN SOLUTION FOR CLUSTERED FEDERATED LEARNING

We envisage (see Figure 1) a FL system with C clients, some of which observe data drawn from
similar distributions. The server aggregates local model updates in a way that generates multiple
models (each corresponding to different client clustering associations) which are then shared to the
clients for further local training. The proposed Bayesian CFL (BCFL) approach does not know the
client associations beforehand, instead these are learned leveraging probabilistic data association.
The remainder of the section presents the BCFL framework, featuring an optimal solution that ac-
counts for all possible associations; then we discuss a recursive update version where at each FL
communication round the model updates only require local updates from the current dataset; finally,
we show that such conceptual solution is generally intractable due to the growing number of asso-
ciations, which motivates the approximations and practical algorithms proposed in Section 4. For
convenience, we describe the notation conventions in Appendix A.

3.1 BAYESIAN CLUSTERED FEDERATED LEARNING (BCFL) FRAMEWORK

Following a Bayesian paradigm, our ultimate goal is to obtain the posterior distribution p(Ω|D) of
the set of parameters for the K clusters of the server model, Ω ≜ {ω1, . . . , ωK}, given the local
data, D ≜ {D1, . . . ,DC}, of all C clients. Furthermore, within the clustered FL philosophy, we
aim to associate clients with each of the K clusters (or models). Thus, let θ = {θ1, . . . , θK} ∈ Θ
be the set of K associations between clients and clusters, where θi is a random finite set (RFS)
containing the indexes of all clients associated to cluster i, and Θ be the set of all possible client-
cluster associations. Here, θi is a RFS since its cardinality |θi| and its index content are random
(Mahler, 2007; Daley et al., 2003). With these definitions, we can expand the posterior distribution
using Bayes rule and marginalization of the hypotheses as

p(Ω|D) ∝ p(D|Ω)p(Ω) =
∑
θ∈Θ

p(D, θ|Ω)p(Ω) (1)

where p(Ω) is the model shared by the server, which is to be updated to compute p(Ω|D) based on
all available data from the C clients.

Besides the complexity associated with the cardinality of Ω, we also aim at a posterior expression
that can be evaluated in a distributed manner by fusing local posterior updates from the clients.
Alternatively, and without further approximations, we aim to express equation 1 as a mixture distri-
bution where each mode in the mixture represents different client-cluster association hypotheses and
which can be (recursively) updated in a more manageable way. More precisely, we target a posterior
characterization of the form

p(Ω|D) =
∑
θ∈Θ

πθpθ(Ω) , (2)

where
πθ =

π̃θ∑
θ∈Θ π̃θ

where π̃θ =

∫
p(D, θ|Ω)p(Ω)dΩ (3)

pθ(Ω) = p(D, θ|Ω)p(Ω)/π̃θ . (4)

Notice that an equivalent representation of the posterior is p(Ω|D) =
∑

θ∈Θ p(Ω|D, θ)P[θ|D],
which provides an interpretation for the terms in equation 2 as 1) the weights πθ represent the prob-
ability of a data association θ given available data, πθ = P[θ|D]; and 2) the mixing distributions
correspond to the posterior updates given the θ association, pθ(Ω) = p(Ω|D, θ).

We shall see that, under the assumptions that the clusters are mutually independent (i.e., p(Ω) =∏
i p(ω

i)) and that the local datasets are conditionally independent (Di ⊥ Di′ , for i ̸= i′) given Ω
and θ, the mixing distributions in equation 4 can be expressed as

pθ(Ω) ∝ p(Dθ1

, . . . ,DθK

, θ|Ω)p(Ω) =
K∏
i=1

p(Dθi

|ωi)p(ωi)︸ ︷︷ ︸
∝pθi (ωi)

(5)

and the weights in equation 3 can be similarly manipulated as

πθ ∝
∫ K∏

i=1

p(Dθi

|ωi)p(ωi)dω1 · · · dωK =

K∏
i=1

π̃θi︷ ︸︸ ︷∫
p(Dθi

|ωi)p(ωi)dωi =

K∏
i=1

π̃θi

. (6)
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It can be observed from equation 5 and 6 that these quantities can be factorized, and thus computed,
for each cluster. As a result, the target posterior in equation 2 can be written as

p(Ω|D) =
∑
θ∈Θ

πθpθ(Ω) =
∑
θ∈Θ

K∏
i=1

πθi

pθ
i

(ωi) . (7)

where πθi

= π̃θi

/
∑

θ∈Θ

∏K
i=1 π̃

θi

. Note that the normalization required to compute πθi

must be
computed at the server. Finally, further manipulations to the terms in equation 7 can be performed
in order to show that both the mixing distribution and the weights, under an association hypothesis
θ, can be obtained from local posterior updates in a decentralized manner. First, following the
methodology in Wu et al. (2022) we obtain that

pθ
i

(ωi) ∝
∏
j∈θi

p(Dj |ωi)p(ωi) ∝
∏
j∈θi

p(ωi|Dj) , (8)

where the product is over all clients associated with the i-th cluster under the current association
hypothesis. Therefore, p(ωi|Dj) denotes the local posterior update of the parameters of the i-th
cluster given the data from the j-th client, which can indeed be computed locally. Secondly, we can
similarly see that under certain approximations, the weights πθ can be evaluated as product of lo-
cally computed weights πθi

for a specific data association hypothesis θ. Unfortunately, integral and
product in πθi

cannot be swapped in general, thus we propose a numerical integration approximation
that enables the desired factorization as

π̃θi

=

∫ ∏
j∈θi

p(Dj |ωi)p(ωi)dωi ≈
N∑
ℓ=1

αℓ

∏
j∈θi

π̃θi

ℓ,j︷ ︸︸ ︷
p(Dj |ωi

ℓ) =

N∑
ℓ=1

αℓ

∏
j∈θi

π̃θi

ℓ,j , (9)

where αℓ is the weight associated to ωi
ℓ, a sample from p(ωi) which can be drawn in different

ways. For instance, one could randomly generated those N samples using importance sampling,
or the samples could we deterministically generated as done when using sigma-point integration
such as Gauss-Hermite rules. An even simpler, yet effective approach is to consider N = 1 such
that the sample is directly the expected value of ωi, in which case ωi

1 = Ep(ωi){ωi} and we write
π̃θi

=
∏

j∈θi π̃θi

j with πθi

j = p(Dj |ωi
1) ∝ π̃θi

j . Notice that in all cases, weights can be com-
puted locally, under M samples of the distribution p(ωi). Additionally, we used the aforementioned
conditional independence assumptions and we defined πθi

j as the probability of associating client j
data to the i-th cluster, which again can be computed locally except for the normalization constant∑

θ∈Θ

∏K
i=1 π̃

θi

which requires all local π̃θi

and must be computed at the server.

3.2 BCFL COMMUNICATION ROUNDS AS RECURSIVE BAYESIAN UPDATES

FL typically involves multiple communication rounds, where the server shares its model parameters
to the clients such that local updates can be performed. This process is performed repeatedly such
that the model learning is improved over iterations, which we denote by index t. Similarly, BCFL
can be implemented over multiple communication rounds and this section formulates the recursive
update of the main equations described in Section 3.1, as well as the associated challenges.

Following a Bayesian framework, we focus in computing the posterior distribution p(Ω|D1:t) of
the set of parameters given all available data up to iteration t, that is D1:t ≜ {D1

1:t, . . . ,DC
1:t}

with Dj
1:t ≜ {Dj

1, . . . ,D
j
t} for the j ∈ {1, . . . , C} client. If a finite number of iterations T are

performed, then the iteration index is an integer t ∈ [0, T ] such that t = 0 denotes the initialization
step of BCFL. Notice that T can be arbitrarily large, or even infinite-horizon when T → ∞. This
definition of the datasets Dj

t encompasses different situations. For instance, Dj
t could be randomly

drawn from the same random local distribution or be the same dataset at every iteration.

To recursively compute the posterior at iteration t, the latest available posterior at the server
p(Ω|D1:t−1) becomes the a priori distribution p(Ω) for the Bayesian update in equation 1, that
is p(Ω|D1:t) ∝ p(Dt|Ω)p(Ω|D1:t−1). For the sake of simplicity, we define pt(Ω) ≜ p(Ω|D1:t) to
obtain more compact recursive expressions. We are interested in a mixture posterior representation
as in equation 2, which in the recursive case results in

pt(Ω) =
∑

θ1:t∈Θ1:t

πθ1:tpθ1:tt (Ω) , (10)
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where Θ1:t = Θ1 × · · · × Θt is the set of all client/cluster associations until iteration t such
that

∑
θ1:t∈Θ1:t

=
∑

θ1∈Θ1

∑
θ2∈Θ2

· · ·
∑

θt∈Θt
and analogously as in equation 2 we have that

πθ1:t = P[θ1:t|D1:t] and pθ1:tt (Ω) = p(Ω|D1:t, θ1:t) since equation 10 can be interpreted as
pt(Ω) =

∑
θ1:t∈Θ1:t

p(Ω|D1:t, θ1:t)P[θ1:t|D1:t]. For a more compact notation, let us use h ≜ θ1:t−1

and Ht−1 ≜ Θ1:t−1 to denote a particular choice of past associations and the set of all possible past
associations, respectively, such that Θ1:t = Ht−1 ×Θt.

The mixture posterior in equation 10 results from considering that the prior distribution at t is itself
a mixture distribution containing all possible associations up to t− 1, we can then write

pt(Ω) ∝ p(Dt|Ω)pt−1(Ω) =

( ∑
θt∈Θt

p(Dt, θt|Ω)

) ∑
h∈Ht−1

πhpht−1(Ω)


=

∑
h∈Ht−1

∑
θt∈Θt

πhp(Dt, θt|Ω)pht−1(Ω) (11)

and equation 10 appears considering the Bayes update pθ1:tt (Ω) = p(Dt, θt|Ω)pht−1(Ω)/π
θt|h under

association hypothesis θ1:t and corresponding unnormalized weight π̃θ1:t = πhπ̃θt|h, where the
normalizing constant is π̃θt|h =

∫
p(Dt, θt|Ω)pht−1(Ω)dΩ. The normalized weights are then πθ1:t =

π̃θ1:t/
∑

h∈Ht−1

∑
θt∈Θt

π̃θ1:t . Notice that, regardless of the cluttered notation due to the past and
present hypotheses, the posterior update at t can be computed as detailed in Section 3.1 where it was
shown that this can be achieved using only local computations, which are aggregated at the server.
Algorithm 1 presents the pseudo-code for the conceptual BCFL approach.

3.3 THE EXPLOSION OF ASSOCIATION HYPOTHESES

A major issue regarding the Bayesian framework presented above is the quick growth of association
hypothesis over communication rounds t. At a given iteration, the number of possible associations
for K clusters and C clients is given by N(K,C) =

∏K
i=1

∑C
c=0 C(C, c), where C(C, c) = C!

c!(C−c)!

represents the number of c element combinations out of C elements. Furthermore, the number of
hypotheses in the posterior distribution increases very rapidly due to the recursive training. That
is, at a given iteration t, the number of possible clusters corresponds to the modes of the shared
prior distribution, Nt(Kt−1, C) = |Ht−1| =

∏t
τ=1 Nτ (Kτ−1, C), causing N(Kt, C) to explode.

Therefore, due to this curse of dimensionality, we observe that evaluation of the exact posterior is
intractable and that approximations are necessary in order to design efficient algorithms that approx-
imate the conceptual solution provided by equation 10. The proposal of such algorithms, based on
three different approximations, is the purpose of Section 4. In general, we aim at finding a subset
of data associations Θ̂t ⊂ Θt, such that |Θ̂t| ≪ |Θt| while a cost is minimized to ensure relevant
associations are kept, thus formulating the choice of associations as an optimization problem.

4 APPROXIMATE BCFL: SIMPLIFIED DATA ASSOCIATION STRATEGIES

To address the intractability of the number of association hypotheses, this section presents three dif-
ferent strategies to select subsets of associations hypotheses, as well as their corresponding practical
algorithms. In particular, this section discusses the metric used to quantify the cost of associating a
client to a cluster, which is then used to make decisions on the desired association subsets Θ̂t.

A key assumption that is enforced to limit the number of associations is that at any iteration t a client
can only be associated with one cluster for a given hypothesis. Notice however that since multiple
association hypotheses are considered, every client has a chance to being associated with different
clusters. This assumption implies that there are no duplications in the different client partitions,
thus, dramatically reducing the number of possible associations. Additionally, we assume that every
selected client must be associated with a cluster such that all data is used.

4.1 THE COST OF DATA ASSOCIATION

Before diving into different association selection methods it is paramount to determine a metric, or
cost, for a particular association. In this paper, we adopt an assignment problem formulation (Alfaro
et al., 2022). Let L ∈ RC×K be a cost matrix whose entries Lj,i represent the cost of assigning the
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j-th client to the i-th cluster, and A be a binary assignment matrix with entries Aj,i ∈ {0, 1}. The
total cost of a given association A can be written as Tr(A⊤L). The assumption that a client’s data
can only be associated with one cluster can be imposed with the constraint

∑K
i=1 A

j,i = 1, ∀j over
the association matrix A. In general, we would like to select associations with the smallest possible
cost. Obtaining the best association according to the cost Tr(A⊤L) =

∑K
i=1

∑C
j=1 A

i,jLj,i can be
formalized as a constrained optimization problem of the form

A⋆ = argmin
A

K∑
i=1

C∑
j=1

Ai,jLj,i, s.t. Ai,j ∈ {0, 1}, and
K∑
i=1

Aj,i = 1, ∀j , (12)

for which efficient algorithms exist such as the Hungarian or the Auction algorithms (Fredman
& Tarjan, 1987), as well as the Jonker-Volgenant-Castanon algorithm (Jonker & Volgenant, 1988;
Drummond et al., 1990). Remarkably, a naive solution to the optimization has factorial complexity,
while those algorithms can solve the assignment problem in polynomial time. The optimization
of equation 12 results in the optimal association matrix A⋆, which is equivalent to the optimal
association variable π̃θ⋆

t |h such that
π̃θ⋆

t |h ≥ π̃θt|h ,∀θt ∈ Θt (13)

given past associations h. A related problem is to find the M best assigments to the problem in
equation 12, where notice that the previous case corresponds to M = 1. In that case, one could
leverage Murty’s algorithm (Miller et al., 1997) to rank the solutions

π̃θ⋆
t,(1)|h ≥ π̃θ⋆

t,(2)|h ≥ · · · ≥ π̃θ⋆
t |h ≥ π̃θt,(M)|h ,∀θ ∈ Θt\{θ⋆t,(m)}

M
m=1 (14)

Up to this point, the cost matrix L has not been specifically defined. To do so, we first express
the problem in equation 12 in terms of the association variable θ, such that a reasonable choice
for the cost function is to minimize the negative log-weights given h, which we denote by ℓθt|h =
− log(π̃θt|h). Recall that the weights are related to the association posterior given data and past
associations, and thus minimizing ℓθt|h corresponds to maximizing that posterior. In addition, we
note that optimizing

θ⋆t |h = argmin
θt∈Θt

ℓθt|h = argmin
θt∈Θt

K∑
i=1

∑
j∈θi

− log(π̃
θi
t|h

j ) (15)

is equivalent to the assignment problem in equation 12 where the elements of the cost matrix L are
given by ℓ

θi
t|h

j = − log(π̃
θi
t|h

j ) such that the assignments A correspond to a unique θt ∈ Θt. As
a consequence, we can use the aforementioned assigment algorithms to find sets of client-cluster
associations, which is leveraged in the practical BCFL methods proposed next.

4.2 GREEDY ASSOCIATION: BCFL-G

The most simplistic association is to follow a greedy approach where at each iteration t only the
best association is kept. Denoting as θ⋆ the association leading to the optimal assignment, see
equation 13, and denoting the sequence of optimal associations by θ⋆1:t ≜ {θ⋆1 , θ⋆2 |θ⋆1 , . . . , θ⋆t |θ⋆1:t−1},
the posterior in equation 10 can be approximated as

pG
t (Ω) = p

θ⋆
1:t

t (Ω) =

K∏
i=1

p
θ⋆,i
1:t

t (ωi) (16)

where we have πθ1:t = πθ⋆
1:t = 1, since only the best association is kept at each time t. The

posterior in equation 16 can be recursively obtained from the posterior of the previous time step,

that is, pθ
⋆,i
1:t

t (ωi) ∝ p(Dθ⋆
t ,i

t |ωi
t)p

θ⋆,i
1:t−1

t−1 (ωi) as discussed in Section 3.2. Note that unnormalized local
updates of the posterior can be computed locally at the clients while aggregation and normalization
need to be performed in the server. Algorithm 2 presents the pseudo-code for BCFL-G.

The greedy approach has several benefits, mostly related to its reduced complexity which makes it
computationally cheap and relatively simple to implement. The downside is that there is no guaran-
tee that the selected trajectory of hypotheses – which are the best for a given iteration conditional
on past associations – is optimal in a broader sense of π̃θ⋆

1:t ≥ π̃θ1:t ,∀θ1:t ∈ Θ1:t. Therefore, this
points out that keeping a specific association only might not be sufficient to represent the uncertainty
of the random variable θ1:t, which motivates the next two practical strategies.

The resulting BCFL-G, for greedy, association strategy is somewhat correlated with the method
proposed in Ghosh et al. (2020), despite their deterministic perspective, in which the best clusters
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are selected at every time step by maximizing the data-fit at each client. However, regardless the
existing similarities, we would like to highlight that the Bayesian framework proposed in this paper
is more general, which enables many other association strategies as will be discussed next.

4.3 CONSENSUS ASSOCIATION: BCFL-C

Alternatively to keeping the best instantaneous association, while still keeping the number of as-
sociations small, a further enhancement is to merge the M best associations and keep that single
association instead. We refer to this the consensus approach, or BCFL-C for short. This additional
aggregation of hypotheses improves the uncertainty characterization of θ1:t, which in turn results
in better performance results as is discussed in the results section. Noticeably, the computational
complexity of BCFL-C is comparable to that of BCFL-G, while it has the same lack of optimal-
ity guarantees in a broader sense due to the assumptions of keeping on hypothesis over iterations.
Following similar definitions as in Section 4.2, we denote the resulting posterior approximation as

pCt (Ω) =

K∏
i=1

MERGE

(
M∑

m=1

π
θ⋆,i
t,(m)

|h
p
θ⋆,i
t,(m)

|h
t|t−1 (ωi)

)
(17)

where p
θ⋆,i
t,(m)

|h
t|t−1 (ωi

t) is the posterior distribution of cluster i given the m-th best instantaneous hy-

pothesis θ⋆,it,(m) and past associations h. The MERGE(·) operator is a function that fuses the M into
a single density, which can be accomplished by moment matching or other techniques (Bishop &
Nasrabadi, 2006). For Gaussian densities, this can be easily obtained (Li et al., 2019; Luengo et al.,
2018), as shown in Appendix C. Algorithm 3 presents the pseudo-code for BCFL-C.

4.4 MULTIPLE ASSOCIATION HYPOTHESIS: BCFL-MH

A relaxation of the approximations performed by BCFL-G and BCFL-C, where a single hypothesis
is propagated over iterations, is to keep track of several trajectories of possible association hypothe-
ses. The general posterior in equation 10 then results in the multi-hypothesis approach BCFL-MH:

pMH
t (Ω) =

∑
θ1:t∈Θ̂1:t

πθ1:tpθ1:tt (Ω) , (18)

which in essence implies finding the subset Θ̂1:t ⊂ Θ1:t of Mmax = |Θ̂1:t| highly-promising hy-
potheses that the method would update. The identification of this subset and its recursive update can
be performed by pruning associations with small weights below a predefined threshold, then use the
Murty’s algorithm or similar to rank the best Mmax associations. BCFL-MH is arguably more com-
plex to implement due to the need for keeping track of multiple association hypotheses. However,
we will see that its performance is typically superior since for large Mmax values the uncertainty of
associations hypotheses can be accurately characterized. The BCFL-MH distribution in equation 18
is then parameterized by weights and densities for each of the Mmax trajectories selected at round t,
{πθ1:t , {pθ

i
1:t

t (ωi)}Ki=1}θ1:t∈Θ̂1:t
. For a given hypothesis, the weight and densities are computed as

described in Sections 3.1 and 3.2. Algorithm 3 presents the pseudo-code for BCFL-MH.

5 EXPERIMENTS

To validate the proposed BCFL methods under both feature- and label-skew situations, we gener-
ate four non-IID scenarios using four well-known datasets: Digits-Five, AmazonReview, Fashion-
MNIST and CIFAR-10 (see Appendix D.1). Digits-Five and AmazonReview datasets contain
data coming from different categories, making them suitable to test feature-skewed situations. To
generate the feature-skewed scenario we split data with different characteristics among multiple
clients. We create two scenarios using Digits-Five and AmazonReview datasets since data from
these datasets are already categorized into different groups. For the Digits-Five scenario, we split
the data among C = 10 clients, 2 per sub-dataset, leading to 5 disjoint client groups. For the
AmazonReview scenario, we split the data among C = 8 clients, 2 per merchandise category. As
for label-skewed data, we generate two scenarios using Fashion-MNIST and CIFAR-10, generating
label-skewed groups using a two-stage Dirichlet-based sampling approach (Ma et al., 2022), pro-
cess that is controlled by the concentration parameter α which is set to 0.1 in our experiments. More
details regarding this sampling process can be found in Appendix D.2.
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Baseline models and system settings. We selected two competing methods for benchmark pur-
poses. They are the well-known FedAvg (McMahan et al., 2017), which is a single-model-based
FL strategy, and WeCFL which is the state-of-the-art clustered FL method (Ma et al., 2022). In this
work, we consider the training of a neural network (NN) model using FL, in which case the local
posteriors in equation 8 are obtained using Laplace approximation as in Liu et al. (2021) and the
weights in equation 9 are related to the corresponding training loss. Details on the system settings
can be found in the Appendix D.2. Model warm-up. In the experiments we evaluate the impact
of model warm-up, whose purpose is to improve the initialization of the local models, potentially
improving the overall FL solution. In this work, warm-up is implemented in two steps: first using a
Euclidean-distance metric to cluster the parameters of local models and then aggregating them into a
merged model, which is then shared among those in the same cluster. Experiments reveal that, while
warm-up can be beneficial in terms of convergence time and accuracy, the BCFL schemes exhibit
competitive performances without thus making warm-up not strictly necessary. Evaluation met-
rics: We evaluate the performance using both micro accuracy (acc %) and macro F1-score (F1) on
the client-wise test datasets due to high non-IID degrees. Micro average is performed for accuracy
to balance the different number of samples in the different clients.

Table 1: Performance comparison on cluster-wise non-IID. For Digits-Five and AmazonReview
feature-skewed data scenarios, Feature (K,C/K) indicates K data groups with C/K clients per
group. For Fashion-MNIST and CIFAR-10 label-skewed data scenarios, Label (K,C/K,α) indi-
cates also the value of the Dirichlet concentration parameter α.

Datasets Digits-Five AmazonReview Fashion-MNIST CIFAR-10

non-IID setting Feature (5, 2) Feature (4, 2) Label (4, 10, 0.1) Label (4, 10, 0.1)

Methods Acc F1 Acc F1 Acc F1 Acc F1

FedAvg 93.18 92.95 87.71 87.70 85.00 53.14 39.89 21.19

WeCFL 93.81 93.58 85.57 85.51 96.74 92.0 72.91 51.69

BCFL-G 94.35 94.16 87.53 87.5 96.81 93.51 64.73 44.22
BCFL-G-W 94.48 94.29 87.58 87.57 96.69 92.21 72.95 52.01

BCFL-C-3 94.04 93.84 87.95 87.93 96.84 90.16 72.12 50.97
BCFL-C-3-W 94.35 94.17 88.22 88.20 96.88 90.06 73.18 52.61
BCFL-C-6 94.14 93.93 88.11 88.09 96.58 86.55 68.73 47.40
BCFL-C-6-W 94.42 94.24 87.96 87.95 96.71 87.31 72.22 50.02

BCFL-MH-3 95.39 95.22 88.74 88.74 97.13 93.70 74.35 56.24
BCFL-MH-3-W 95.83 95.70 88.38 88.38 97.40 93.42 76.19 58.42
BCFL-MH-6 96.02 95.88 88.16 88.15 97.27 92.56 75.26 53.45
BCFL-MH-6-W 96.22 96.08 88.43 88.43 97.33 90.62 77.56 59.18

5.1 EXPERIMENTAL RESULTS
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Figure 2: Accuracies for AmazonReview (left panel) and
Fashion-MNIST (right panel) datasets.

Comparison study. Table 1 provides
insights into the performance of differ-
ent methods on various datasets. We
refer to the BCFL methods by their
acronyms and append an ‘-W’ to denote
the use of warm-up. For BCFL-C and
BCFL-MH, a number is also included to
denote the number of associations con-
sidered, M and Mmax, respectively. We
can notice the superior performance of
the proposed BCFL variants. In fact, all the best results were obtained by the BCFL-MH class of
methods in all datasets. We highlight, however, that the BCFL-MH variants are inherently more
costly since they explore multiple association hypotheses throughout iterations. The less expen-
sive BCFL-G and BCFL-C present results that are close to the results obtained BCFL-MH in most
datasets and slightly superior to results obtained with WeCFL. FedAvg, which serves as a baseline,
is surpassed by WeCFL in terms of performance, except for AmazonReview dataset. This suggests
that AmazonReview dataset may not exhibit strong non-IID characteristics, given that a centralized
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model like FedAvg can outperform other methods, including BCFL-G. Methods that incorporate
warm-up tend to show slightly improved results compared to those without warm-up. Nevertheless,
this indication of improvement should be taken lightly as both exhibit comparable results.

Convergence analysis. Figure 2 shows the convergence curves of several clustered
FL methods including WeCFL, and multiple BCFL variants (G, C-3, C-6, MH-3,
and MH-6, all without warm-up) for the AmazonReview and Fashion-MNIST datasets.
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Figure 3: Warm-up comparison of accuracy fir Digits-
Five (left panel) and CIFAR-10 (right panel)

It indicates that BCFL-MH-6 exhibits
the fastest convergence rate among all
methods. Indeed, according to our prac-
tical experience, BCFL-MH converges
faster than the other methods in gen-
eral. We evaluate the effect of using a
warm-up stage for the BCFL methods.
The convergence curves depicted in Fig-
ure 3 indicate that warm-up can slightly
accelerate convergence. Similar figures
for the other datasets are provided in Appendix D.3.

Clustering analysis. To better understand the dynamics of information-sharing among clients, we
visualize the clients’ cluster graph across all rounds. Figure 4 focuses on the Digits-Five dataset,
similar analysis for the other experiments can be found in Appendix D. In the figure, the thickness
of the edges between clients represents the degree of information sharing between them during the
training process (i.e. their accumulated probability of associating to the same cluster). The graph
shows that while WeCFL indeed converges to groups, BCFL-G exhibits more client connections and
potential for information exchange. With even more client connections, BCFL-MH formed connec-
tions among almost all clients. Nevertheless, we can notice that stronger connections were formed
between client groups {0, 1}, {2, 3}, {4, 5} and {6, 7, 8, 9}, correctly clustering clients observing
similar features. There is a considerable connection between groups {2, 3} and {4, 5} as well, which
could be considered a cluster itself.
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Figure 4: Client clustering during training for Digits-Five dataset and selected CFL methods. K = 5
clusters are pairwise split into C = 10 clients, as denoted on the left labeling in (a).

6 CONCLUSION

This work presents a unifying framework for clustered Federated Learning (FL) that employs prob-
abilistic data association to infer the relation between clients and clusters. The framework shows the
conceptually optimal solution to the problem and highlights the need for approximations to make
its implementation feasible. It paves the way to new research solutions to address the long-standing
challenge of handling non-IID data in FL systems. In particular, three different approximations
to reduce the number of association hypotheses are proposed, with different complexity require-
ments, exhibiting competitive results that are superior to state-of-the-art methods. Additionally, the
probabilistic approach of the framework provides uncertainty measures that are seen to enable cross-
client/cluster pollination that enhanced its performance. Future work includes extending the BCFL
approach to estimate the number of clusters, which has the added challenge that the parameter space
has an unknown dimension.
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APPENDICES

A NOTATION

Table 2: Table of relevant notation conventions.

Notation Definition
K, i Number of clustered models in server and cluster model index.
C, j Number of local clients and client index.
ωi, Ω i− th cluster model parameters and combined parameters for the K clusters.
t FL communication round index
Dj , D j-th client local dataset and combined dataset for all clients.
θi, θ, Θ Client association indices for cluster i, combined association hypotheses for all

clusters, and set of all associations.
πθ, π̃θ Normalized and unnormalized posterior weights for association θ.
πθi

j , π̃θi

j Normalized and unnormalized local likelihood of client j given cluster i.
πθi

j,t, π̃
θi

j,t Normalized and unnormalized local likelihood of client j given cluster i in communication round t.
pθ(Ω), p(Ω) Posterior density given the association hypothesis θ, and full posterior.
pθ

i

(ωi), πθi

Posterior density of cluster i given the association hypothesis θ and its weight.
Dj

1:t, D1:t Client j dataset from iterations 1 to t, and combined dataset from all clients.
Θ1:t, θ1:t Set of all possible hypotheses from 1 : t and a particular association.
πθ1:t , pθ1:tt (Ω) Weights and posterior given association θ1:t.
Ht−1, h Set of past associations and a particular one.
πh Accumulated weights from past h associations.
N(K,C) Number of total associations given K clusters and C clients.
A, L Assignment and cost association matrices.
θ⋆t |h Optimal association at t given past associations h.
θ⋆t,(m) m-th best association at t given past associations h.
ℓθ Negative posterior log-weight given θ.
pt(Ω) Full posterior at t.
pCt (Ω) BCFL-C posterior approximation at t.
pGt (Ω) BCFL-G posterior approximation at t.
pMH
t (Ω) BCFL-MH posterior approximation at t.

B ALGORITHMS

In this appendix, we bring the pseudo-code for the conceptual BCFL algorithm 1, which retains all
possible associations at each iteration, and the approximations with pseudo-codes given in Algo-
rithm 2 for BCFL-G and Algorithm 3 for both BCFL-C and BCFL-MH.

Note that in the conceptual algorithm 1, there is no need for identifying specific subsets of asso-
ciations, instead, all associations are retained. This approach allows for the simultaneous update
of association weights and the local posterior. Conversely, the approximated algorithm requires a
pre-selection of associations to be preserved, necessitating a decision prior to local model train-
ing. Consequently, the process involves two communication rounds: the first to upload association
weights and confirm the decision, followed by a second where the decision is downloaded locally to
guide training, thereby reducing superfluous computational expenses.

For algorithm BCFL-G 2, Mmax = 1, the generated hypothesis will be singular, significantly sim-
plifying computations. Moreover, efficiency gains can be achieved by localizing decision-making,
which eliminates the need for one round of communication since the optimal association is selected
through a greedy approach known locally, removing the necessity to transmit data back to the server.
This process aligns with the IFCA method introduced by Ghosh et al. (2020), as detailed in Algo-
rithm 2.

Regarding the other two approximations BCFL-C and BCFL-MH, see Algorithm 3, the complexity
is mitigated by keeping only the most promising Mmax hypotheses under the assumption that, in each
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hypothesis, one client can only be associated to one cluster. If all updated hypotheses are merged
into a single one for the next iteration, we call it BCFL-C, whereas if we keep Mmax for the next
iteration, it is referred to as BCFL-MH, as described in Algorithm 3.

In the case of the BCFL-C, where Mmax is not equal to 1, the server’s role is to merge all Mmax
hypotheses. Detailed information on how this merging is executed can be found in the Appendix C.

As for the BCFL-MH algorithm, where Mmax are not equal to 1, pruning is performed maintaining
Mmax hypotheses with largest weights.

Algorithm 1 Conceptual BCFL algorithm

Input: K
Initialization: H0, {{πθi

0 , pθ
i

0 (ωi)}Ki=1}θ∈H0 ;
for t = 1, · · · , T do

Server do
Broadcast {{pθ

i|h
t−1 (ω

i)}Ki=1}θ∈Ht−1 to participating clients
end Server
for Client j ∈ {1, . . . , C} in parallel do

for every hypothesis h ∈ Ht−1 in parallel do
Compute association weight {π̃θi|h

j,t }Ki=1 as in equation 9

Compute posterior update {pθ
i|h

t (ωi|Dj)}Ki=1 for each cluster i

Transmit {π̃θi|h
j,t , p

θi|h
t (ωi|Dj)}Ki=1 to the server

end for
end for
Server do

Update hypothesis set Ht = Ht−1 ×Θt

Compute {pθ
i|h

t (ωi)}Ki=1 as in equation 8

Compute posterior pθ1:tt (Ω) ∝
∏K

i=1 p
θi|h
t (ωi), for all θt ∈ Θt and h ∈ Ht−1

Compute {πθi|h
t }Ki=1 as in equation 9 and obtain πθ1:t ∝ πhπ̃θt|h

Compute full posterior pt(Ω) as in equation 11
end Server

end for
return: pt(Ω)

Algorithm 2 BCFL-G algorithm

Input: K
Initialization: {pi0(ωi)}Ki=1;
for t = 1, · · · , T do

Server do
broadcast {pit−1(ω

i)}Ki=1} to selected clients
end Server
for Client j ∈ {1, . . . , C} in parallel do

Compute association weight pt(Dj |ωi
1)

Compare weights across clusters and get the best assignment
Compute the local posterior p∗t (ω

i|Dj) and transmits it to the server
end for
Server do

Compute the cluster posteriors {pθ
⋆,i
1:t

t (ωi)}Ki=1

Compute the posterior pG
t (Ω) as in equation 16

end Server
end for
Return: pG

t (Ω)
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Algorithm 3 Approximate BCFL-C and BCFL-MH algorithms

Input: K, Mmax

Initialization: H0, {{πθi

0 , pθ
i

0 (ωi)}Ki=1}θ∈H0 ;
for t = 1, · · · , T do

Server do
Broadcast {{pθ

i|h
t (ωi)}Ki=1}θ∈Ht−1

to participating clients
end Server
for Client j ∈ {1, . . . , C} in parallel do

for every hypothesis h ∈ Ht−1 in parallel do
Compute association weight {π̃θi|h

j,t }Ki=1 as in equation 9
Transmit weights to the server

end for
end for
Server do

Construct cost matrix L as in section 4.1
Compose Θt by keeping the Mmax best associations
Ht = Θt ×Ht−1,

end Server
for θ ∈ Ht in parallel do

for i in K do
Server do

Broadcast association decision θi to associated clients
end Server
for Client j ∈ θi in parallel do

Compute local posterior pθ
i|h

t (ωi|Dj) and transmit to the server
end for
Server do

Compute p
θi|h
t (ωi), πθi|h

t using equations 8 and 9
end Server

end for
end for
Server do

if BCFL-C then
Merging Mmax best hypothesis into one, |Ht| = 1

end if
if BCFL-MH then

Pruning Mmax best hypotheses with largest posterior weights, |Ht| = Mmax
end if

end Server
end for
Return: pCt (Ω) or pMH

t (Ω)

Communication cost. Federated Learning incurs notable communication costs due to the regular
transmission of model updates between numerous decentralized clients and a central server, with
costs influenced by factors such as the number of clients, model size, update frequency, data dis-
tribution, channel quality, and so on. In our communication analysis within this study, we focus
exclusively on quantifying the volume of parameters that must be transmitted during each com-
munication round. As previously addressed, the association weights are transmitted initially, with
the quantity of weights sent per round being KCMmax. In the case of BCFL-G, this transmission
round is omitted, whereas for BCFL-C, it entails KC. Regarding the transmission of model param-
eters, the requisite size is mKMmax, where m represents the size of an individual model. Notably,
BCFL-MH incurs a significantly higher computation cost, amounting to Mmax times that of other
methods.

Additionally, the BCFL-MH algorithm incurs a higher computational cost during local training com-
pared to alternative methods. Consequently, its practicality in distributed systems that prioritize effi-
ciency is limited. However, as demonstrated by the results, BCFL-MH is capable of outperforming

15



Under review as a conference paper at ICLR 2024

its counterparts. Therefore, distributed systems where computational cost is not a primary concern
could leverage BCFL-MH to enhance performance, which is a significant consideration. When ef-
ficiency is of greater importance, a greedy and consensus approach may be adopted to balance the
trade-off between performance and computational expense.

C MERGE(·) OPERATOR: FUSION OF GAUSSIAN DENSITIES

As the MERGE operator used in BCFL-C algorithm we considered the arithmetic averaging (AA)
aggregation approach discussed in Li et al. (2019). Thus, given a Gaussian mixture p(x) =∑M

j=1 ϕjN (x;mj , Sj), with weights ϕj , means mj and covariances Sj , the application of the

MERGE operator returns a single Gaussian N (x; m̃, S̃) whose parameters are given as:

m̃ =

M∑
j=1

ϕjmj , (19)

S̃ =

M∑
j=1

ϕj(Sj +mjm
⊤
j − m̃m̃⊤). (20)

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 DATASETS

To construct our experimental scenarios we leverage four popular datasets from which we construct
two feature- and two label-skewed experiments. The datasets are:

1. Digits-Five (Peng et al., 2019) consists of a collection of five popular digit datasets: MNIST
(mt) (55000 samples), MNIST-M (mm) (55000 samples), Synthetic Digits (syn) (25000
samples), SVHN (sv)(73257 samples), and USPS (up) (7438 samples). Each digit dataset
includes a different style of 0-9 digit images.

2. AmazonReview (Blitzer et al., 2007) AmazonReview is a dataset to tackle the task of
identifying whether the sentiment of a product review is positive or negative. This dataset
includes reviews from four different merchandise categories: Books (B) (2834 samples),
DVDs (D) (1199 samples), Electronics (E) (1883 samples), and Kitchen and housewares
(K) (1755 samples).

3. Fashion-MNIST (Xiao et al., 2017) consists of 70000 28 × 28 grayscale images in 10
classes, with 60000 training images and 10000 test images.

4. CIFAR-10 (Krizhevsky et al., 2009) provides 60000 32 × 32 color images in 10 classes,
with 6000 images per class.

D.2 DETAILS OF EXPERIMENTAL SETTINGS

Model related settings. The models trained with the different FL methods in the experiments are
neural networks. Particularly, we use small Convolutional Neural Networks (CNNs) with 3 convo-
lutional layers for the Digits-Five dataset; 3 layers fully-connected layers for the AmazonReview
dataset; and 2 convolutional layers for both Fashion-MNIST and CIFAR-10 datasets. More details
refer to Tables 3–6. The optimization of the CNN was done using SGD with a learning rate 0.005
and momentum 0.9, with a batch size of 32. For the training, we run 100 global communication
rounds, and the local steps in each communication are 10. The warm-up steps is set to 2.

FL settings To simulate label distribution skewness across clients, we use a method based on the
use of a Dirichlet distribution for sampling labels, method that has been used in many recent FL
studies (Li et al., 2021). Specifically, for a given client j, we define the probability of sampling
data from the k ∈ {1, . . . , l} label as the vector (pj,1, . . . , pj,l) ∼ Dir(α), where Dir(·) denotes the
Dirichlet distribution and α = (αj,1, . . . , αj,l) is the concentration vector parameter (αj,k > 0, ∀k).
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Table 3: Detailed information of CNN for Digits-Five.

Layers Details

Convolution

Conv2d(3, 64, kernel size = (5, 5), padding = 2)
BatchNorm2d(64)
ReLU()
MaxPool2d(3, 3)

Convolution

Conv2d(64, 64, kernel size = (5, 5), padding = 2)
BatchNorm2d(64)
ReLU()
MaxPool2d(3, 3)

Convolution
Conv2d(64, 128, kernel size = (5, 5), padding = 2)
BatchNorm2d(128)
ReLU()

Linear
Linear(6272, 3072)
BatchNorm1d(3072)
ReLU()

Linear
Linear(3072, 2048)
BatchNorm1d(2048)
ReLU()

Classifier Linear(2048, 10)
Loss CrossEntropy()

Table 4: Detailed information of CNN for AmazonReview.

Layers Details

Linear Linear(5000, 1000)
ReLU()

Linear Linear(1000, 500)
ReLU()

Linear Linear(500, 100)
Classifier Linear(100, 2)

Loss CrossEntropy()

Table 5: Detailed information of CNN for Fashion-MNIST.

Layers Details

Convolution

Conv2d(1, 16, kernel size = (5, 5), padding = 2)
BatchNorm2d(16)
ReLU()
MaxPool2d(2, 2)

Convolution

Conv2d(16, 32, kernel size = (5, 5), padding = 2)
BatchNorm2d(16)
ReLU()
MaxPool2d(2, 2)

Classifier Linear(7 · 7 · 32, 10)
Loss CrossEntropy()
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Table 6: Detailed information of CNN for CIFAR-10.

Layers Details

Convolution
Conv2d(3, 6, kernel size = (5, 5))
ReLU()
MaxPool2d(2, 2)

Convolution
Conv2d(6, 6, kernel size = (5, 5))
ReLU()
MaxPool2d(2, 2)

Linear Linear(400,120)
ReLU()

Linear Linear(120,84)
ReLU()

Classifier Linear(84, 10)
Loss CrossEntropy()

Table 7: Performance comparison.

Datasets Fashion-MNIST AmazonReview
Non-IID setting Label (0, 40, 0.1) Feature (4, 10)
Methods Accuracy F1 Accuracy F1
FedAvg 88.64 45.9 87.86 87.77
WeCFL 90.67 55.39 85.63 85.56
BCFL-G 92.79 69.13 88.01 87.95
BCFL-G-W 92.46 62.75 87.24 87.17
BCFL-C-3 91.24 61.27 88.36 88.3
BCFL-C-3-W 92.39 60.87 87.38 87.34
BCFL-C-6 92.17 60.76 88.24 88.18
BCFL-C-6-W 90.92 62.62 86.86 86.79
BCFL-MH-3 93.41 67.48 87.21 87.14
BCFL-MH-3-W 93.49 63.42 87.12 87.06
BCFL-MH-6 94.29 68.69 87.87 87.81
BCFL-MH-6-W 94.22 67.6 87.58 87.48

The advantage of this approach is that the imbalance level can be flexibly changed by adjusting the
concentration parameter αj,k. If it is set to a smaller value, the partition is more unbalanced.

In our work, to generate our label-skewed dataset, we follow a two-step process as in Ma et al.
(2022). First, we divide the dataset into four groups, with a common concentration parameter of
α = 0.1 for all the labels. This ensures that each group’s distribution is different from the others.
Then, we further divide the data into 10 clients per group, with a concentration parameter of α = 10,
to control that the clients from the same group have a similar distribution and thus could be clustered
together.

D.3 ADDITIONAL EXPERIMENTAL RESULTS.

We conducted additional experiments to those reported in the main body of the paper, the results of
which are shown in Table 7 for Fashion-MNIST and AmazonReview. These experiments consider
different label- and feature-skewed configurations to those in the experiments of the main body of
the paper. For Fashion-MNIST we considered the Label(0, 40, 0.1) configuration, indicating no
groups, C = 40 clients, and α = 0.1. For AmazonReview, we used a large number of clients (40)
to showcase the results in larger datasets. In both cases, BCFL variants outperformed WeCFL and
FedAvg.

We conducted additional experiments to study the sensitivity of the methods to misspecification of
the number of cluster K. In practice, selecting the correct number of clusters might not be possible
in certain applications, while in others we might have access to such information. The results of the
sensitivity analysis to K are shown in Tables 8 and 9, where the correct number of clusters is K = 4.
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Table 8: Fashion-MNIST comparison of different K with non-IID data setting Label(4, 10, 0.1)

K 2 3 4 5 6
Methods Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
FedAvg 85.00 53.14 85.00 53.14 85.00 53.14 85.00 53.14 85.00 53.14
WeCFL 91.79 75.99 96.74 88.92 96.74 92.00 96.65 92.21 96.73 91.98
BCFL-G 88.98 71.78 89.40 72.10 96.81 93.51 96.91 93.19 96.83 92.98

BCFL-C-3 91.84 72.05 95.82 83.15 96.84 90.16 96.83 93.5 96.76 92.44
BCFL-C-6 92.87 71.25 96.89 90.51 96.58 86.55 97.02 93.22 96.84 92.87

BCFL-MH-3 94.39 74.60 97.23 92.53 97.13 93.70 97.32 93.18 97.35 94.02
BCFL-MH-6 87.21 63.59 93.42 82.49 97.27 94.56 97.23 92.46 97.27 94.16

Table 9: AmazonReview comparison of different K with non-IID data setting Feature(4, 10)

K 2 3 4 5 6
Methods Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
FedAvg 87.71 87.70 87.71 87.70 87.71 87.70 87.71 87.70 87.71 87.70
WeCFL 88.35 79.86 88.53 79.42 88.31 78.75 88.02 78.43 88.34 78.43
BCFL-G 87.68 80.03 89.00 80.25 87.53 87.50 89.30 83.4 89.27 81.92

BCFL-C-3 88.55 80.19 89.31 80.98 89.19 82.11 89.07 82.44 89.26 80.61
BCFL-C-6 88.50 80.86 88.64 81.48 88.66 81.63 88.76 82.60 88.90 81.25

BCFL-MH-3 88.66 81.47 89.56 81.38 89.04 82.68 89.08 82.96 89.24 83.25
BCFL-MH-6 88.08 80.80 88.90 80.95 88.65 82.78 88.84 82.64 88.77 82.47

It can be seen that when the assumed K is smaller than 4, the results degrade to some degree for
all methods, while not dramatically. On the other hand, when the cluster number is bigger than 4,
the results are usually very similar to the results under the correct K specification. A large number
of assumed clusters is therefore desirable from a performance perspective, although it comes at a
higher computational cost. A small number of clusters usually means less computation cost, but
may reduce the personalized features of BCFL. In the open literature, related works refer to this
challenge. Some suggest choosing the number of clusters by running a small experiment with a few
rounds (Long et al., 2022), while others present methods found in most clustering algorithms such
as the information criterion approach (Goutte et al., 2001; Sugar & James, 2003), which are not seen
in FL clustering. This may raise great interest in how to apply them, as well as how to learn K also
from the perspective of data association theory that drives our work.

Table 10: Table 1 with standard deviation

Datasets Digits-Five AmazonReview Fashion-MNIST CIFAR-10

non-IID setting Feature (5, 2) Feature (4, 2) Label (4, 10, 0.1) Label (4, 10, 0.1)

Methods Acc F1 Acc F1 Acc F1 Acc F1

FedAvg 93.18 ± 0.02 92.95 ± 0.02 87.71 ± 0.18 87.70 ± 0.18 85.00 ± 0.24 53.14 ± 0.32 39.89 ± 0.18 21.19 ± 0.18

WeCFL 93.81 ± 0.20 93.58 ± 0.20 85.57 ± 0.33 85.51 ± 0.34 96.74 ± 0.10 92.0 ± 0.50 72.91 ± 0.25 51.69 ± 0.41

BCFL-G 94.35 ± 0.00 94.16 ± 0.00 87.53 ± 0.00 87.50 ± 0.00 96.81 ± 0.06 93.51 ± 0.92 64.73 ± 7.74 44.22 ± 7.00
BCFL-G-W 94.48 ± 0.00 94.29 ± 0.00 87.58 ± 0.00 87.57 ± 0.00 96.69 ± 0.05 92.21 ± 0.15 72.95 ± 0.29 52.01 ± 0.64

BCFL-C-3 94.04 ± 0.11 93.84 ± 0.10 87.95 ± 0.18 87.93 ± 0.18 96.84 ± 0.02 90.16 ± 1.30 72.12 ± 0.21 50.97 ± 0.51
BCFL-C-3-W 94.35 ± 0.05 94.17 ± 0.04 88.22 ± 0.26 88.20 ± 0.26 96.88 ± 0.07 90.06 ± 1.12 73.18 ± 0.29 52.61 ± 0.41
BCFL-C-6 94.14 ± 0.11 93.93 ± 0.12 88.11 ± 0.42 88.09 ± 0.43 96.58 ± 1.60 86.55 ± 1.24 68.73 ± 1.11 47.40 ± 1.29
BCFL-C-6-W 94.42 ± 0.02 94.24 ± 0.02 87.96 ± 0.42 87.95 ± 0.43 96.71 ± 0.04 87.31 ± 2.45 72.22 ± 0.14 50.02 ± 0.47

BCFL-MH-3 95.39 ± 0.32 95.22 ± 0.35 88.74 ± 0.19 88.74 ± 0.19 97.13 ± 0.33 93.70 ± 3.77 74.35 ± 0.98 56.24 ± 2.69
BCFL-MH-3-W 95.83 ± 0.08 95.70 ± 0.09 88.38 ± 0.26 88.38 ± 0.26 97.40 ± 0.14 93.42 ± 0.83 76.19 ± 0.33 58.42 ± 0.40
BCFL-MH-6 96.02 ± 0.00 95.88 ± 0.00 88.16 ± 0.23 88.15 ± 0.23 97.27 ± 0.00 92.56 ± 0.00 75.26 ± 1.75 53.45 ± 5.23
BCFL-MH-6-W 96.22 ± 0.00 96.08 ± 0.00 88.43 ± 0.18 88.43 ± 0.18 97.33 ± 0.07 90.62 ± 1.01 77.56 ± 0.22 59.18 ± 0.49

In addition to Table 7, we provide additional results in this appendix. Notice that the analysis of all
the results across the four experiments yield similar conclusions as discussed in Section 5.1 in terms
of the superiority of BCFL, the ranking of the approximate solutions, as well as the ability to handle
clustering hypotheses and associated uncertainty. This is a brief summary of those results:
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Figure 5: Digits-Five (a) Accuracy (b) F-1 score (c) Accuracy warm-up comparison (d) F-1 score
warm-up comparison.

• Figure 5 shows the Digits-Five accuracy and F1-score results. Comparing both
with/without warm-up initializations, we can see that the effect of incliding it is not dra-
matic.

• Figure 6 shows the Digits-Five clustering results. We can observe very consistent clustering
of clients observing similar data, as well as cross-pollination from other clients in BCFL
schemes which helps improve the model training.

• Figure 7 shows the AmazonReview accuracy and F1-score results.
• Figure 8 shows the AmazonReview clustering results. AmazonReview data is text data

containing user’s reviews from a variety of products. Since the data distribution across
clients is not extremely different, we can observe that even WeCFL connects more clients
and therefore shares more information in the training phase. In this case, the method cannot
easily cluster the data into four groups. In the case of BCFL, although it becomes more
challenging, we can observe certain patterns and stronger associations among clients that
should be clustered together.

• Figure 9 shows the Fashion-MNIST accuracy and F1-score results.
• Figure 10 shows the clustering results for Fashion-MNIST. Most of the time, the clients are

correctly grouped into 4 clusters, but they can also be grouped differently, especially with
the proposed BCFL methods. This flexibility allows them to share more information with
each other. Warm-up models are less shareable compared to models without warm-up, as a
good initialization can lead to faster local convergence.

• Figure 11 shows the CIFAR-10 accuracy and F1-score results.
• Figure 12 shows the CIFAR-10 clustering results, yielding similar conclusions as with the

Fashion-MNIST dataset.
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(a) WeCFL. (b) BCFL-G. (c) BCFL-G-W.

(d) BCFL-C-3. (e) BCFL-C-3-W. (f) BCFL-C-6.

(g) BCFL-C-6-W. (h) BCFL-MH-3. (i) BCFL-MH-3w.

(j) BCFL-MH-6. (k) BCFL-MH-6w.

Figure 6: Client clustering during training for Digits-Five dataset. The experiment is such that of
K = 5 data groups with C/K = 2 clients per group. It can be observed that the pairs of clients are
grouped together, sometimes associated with other pairs as well.
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Figure 7: AmazonReview (a) Accuracy (b) F-1 score (c) Accuracy warm-up comparison (d) F-1
score warm-up comparison
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(a) WeCFL. (b) BCFL-G. (c) BCFL-G-W.

(d) BCFL-C-3. (e) BCFL-C-3-W. (f) BCFL-C-6.

(g) BCFL-C-6-W. (h) BCFL-MH-3. (i) BCFL-MH-3w.

(j) BCFL-MH-6. (k) BCFL-MH-6w.

Figure 8: Client clustering during training for AmazonReview dataset. The experiment is such that
of K = 4 data groups with C/K = 2 clients per group. It can be observed that the pairs of clients
are grouped together, sometimes associated with other pairs as well.
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Figure 9: Fashion-MNIST (a) Accuracy (b) F-1 score (c) Accuracy warm-up comparison (d) F-1
score warm-up comparison
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(a) WeCFL. (b) BCFL-G. (c) BCFL-G-W.

(d) BCFL-C-3. (e) BCFL-C-3-W. (f) BCFL-C-6.

(g) BCFL-C-6-W. (h) BCFL-MH-3. (i) BCFL-MH-3w.

(j) BCFL-MH-6. (k) BCFL-MH-6w.

Figure 10: Client clustering during training for Fashion-MNIST dataset. Most of the time, clients
are clustered in 4 groups, which is consistent with the experiment setup of K = 4 data groups with
C/K = 10 clients per group.
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Figure 11: Fashion-MNIST (a) Accuracy (b) F-1 score (c) Accuracy warm-up comparison (d) F-1
score warm-up comparison
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(a) WeCFL. (b) BCFL-G. (c) BCFL-G-W.

(d) BCFL-C-3. (e) BCFL-C-3-W. (f) BCFL-C-6.

(g) BCFL-C-6-W. (h) BCFL-MH-3. (i) BCFL-MH-3w.

(j) BCFL-MH-6. (k) BCFL-MH-6w.

Figure 12: Client clustering during training for CIFAR-10 dataset. Most of the time, clients are
clustered in 4 groups, which is consistent with the experiment setup of K = 4 data groups with
C/K = 10 clients per group.
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