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Abstract

Randomized trials are considered the gold stan-
dard for making informed decisions in medicine,
yet they often lack generalizability to the patient
populations in clinical practice. Observational
studies, on the other hand, cover a broader patient
population but are prone to various biases. Thus,
before using an observational study for decision-
making, it is crucial to benchmark its treatment
effect estimates against those derived from a ran-
domized trial. We propose a novel strategy to
benchmark observational studies beyond the aver-
age treatment effect. First, we design a statistical
test for the null hypothesis that the treatment ef-
fects estimated from the two studies, conditioned
on a set of relevant features, differ up to some tol-
erance. We then estimate an asymptotically valid
lower bound on the maximum bias strength for
any subgroup in the observational study. Finally,
we validate our benchmarking strategy in a real-
world setting and show that it leads to conclusions
that align with established medical knowledge.

1. Introduction
Randomized trials have traditionally been the gold stan-
dard for informed decision-making in medicine, as they
allow for unbiased estimation of treatment effects under
mild assumptions. However, there is often a significant
discrepancy between the patients observed in clinical prac-
tice and those enrolled in randomized trials, limiting the
generalizability of the trial results (Rothwell, 2005; Duma
et al., 2018). To address this issue, the U.S. Food and Drug
Administration advocates for using observational data, as it
is usually more representative of the patient population in
clinical practice (Platt et al., 2018; Klonoff, 2020). Yet, a
major caveat to this recommendation is that several sources
of bias, including hidden confounding, can compromise the
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causal conclusions drawn from observational data.

In light of the inherent limitations of randomized and obser-
vational data, it has become a popular strategy to benchmark
observational studies against existing randomized trials to
assess their quality (Dahabreh et al., 2020; Forbes & Da-
habreh, 2020). The main idea behind this approach is first
to emulate the procedures adopted in the randomized trial
within the observational study; see e.g. (Hernán & Robins,
2016) for a detailed explanation. Then, the treatment effect
estimates from the observational data are compared with
those from the randomized data. If the estimates are similar,
we may be willing to trust the observational study for patient
populations where the randomized data is insufficient.

To support the benchmarking framework, several works
propose statistical tests that compare treatment effect esti-
mates between randomized and observational data (Viele
et al., 2014; Hussain et al., 2023; De Bartolomeis et al.,
2024; Yang et al., 2023; Demirel et al., 2024). In partic-
ular, two properties have been identified as essential for
effective benchmarking of observational studies: tolerance
and granularity. Tolerance allows the acceptance of studies
with negligible bias that does not impact decision-making,
thereby significantly reducing false rejections in real-world
settings where some bias is expected. Granularity, on the
other hand, allows the detection of bias on small subgroups
or individuals that would otherwise go unnoticed.

In this work, we design a statistical test for the null hypoth-
esis that treatment effects differ up to some tolerance value
when conditioned on a relevant subset of features. Our test
is the first, to our knowledge, to satisfy granularity and toler-
ance. Further, we use our test to estimate an asymptotically
valid lower bound on the maximum bias strength for any
individual. Finally, we show that our lower bound leads to
conclusions that align with established medical knowledge.

2. Problem setting
We have access to two datasets: Drct of size nrct from
a randomized trial (rct) and Dos of size nos from an ob-
servational study (os), containing tuples Z := (X,Y, T ) of
covariatesX ∈ Rd, bounded observed outcome Y ∈ R, and
treatment assignment variable T ∈ {0, 1}. We assume that
the data is drawn i.i.d from the distributions Prct and Pos
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Figure 1. High-level illustration of our approach. We want to test if the bias in the observational study, i.e. µos − τos, is contained within
a tolerance range. However, the true treatment effect µos is not identifiable, and instead, we test the bias between the treatment effects
estimated from the two studies, i.e. τos − τ rct.

that are marginal distributions of the respective full distribu-
tion P⋄

full over (X,U, Y (0), Y (1), Y, T ) for ⋄ ∈ {rct, os}.
In particular, the full distribution also includes randomness
over a vector of unobserved covariates U ∈ Rk and poten-
tial outcomes (Y (0), Y (1)) ∈ R2. We further assume that
the support of the randomized trial is included in the support
of the observational study, i.e. supp(Prct

X ) ⊆ supp(Pos
X).

Treatment effect estimation A crucial quantity to esti-
mate for decision-making in many domains is the condi-
tional average treatment effect (CATE):

µ⋄(x) := EP⋄
full

[Y (1)− Y (0) | X = x] ,

for ⋄ ∈ {rct, os} and X ⊆ supp (Prct
X ). Unfortunately,

we cannot estimate the CATE from the observed data as
we never observe the potential outcomes. Instead, we can
estimate the regression function defined by

τ⋄(x) = EP⋄ [Y | T = 1, X = x]− EP⋄ [Y | T = 0, X = x] ,

for ⋄ ∈ {rct, os}. For the treatment effect in the randomized
trial, we observe that τ rct(x) = µrct(x) holds for all x ∈ X ,
under the assumption of internal validity outlined below.

Assumption 2.1 (Internal validity). The data-generating
process of the randomized trial satisfies

(i) Y = Y (T ) Prct
full − almost surely.

(ii) T ⊥⊥ (Y (1), Y (0)).

(iii) Prct
full(T = 1 | X,U) = π ∈ (0, 1).

In particular, Assumption 2.1 is expected to hold in a com-
pletely randomized experiment, and thus, µrct can be esti-
mated from the observed data under mild assumptions (Ru-
bin, 1978). On the other hand, we cannot estimate µos

from the observed data due to hidden confounding or other
sources of bias in the observational study, i.e. we cannot
rule out the existence of x ∈ X such that τos(x) ̸= µos(x).
Therefore, it is crucial to benchmark the observational study
before using the estimate of τos for any downstream task.

2.1. Null hypothesis

Our goal is to test if the bias in the observational study,
defined as δ⋆(x) := τos(x)− µos(x) for all x ∈ X , is con-
tained within a tolerance range. However, the bias δ⋆ is
not estimable from the data. Instead, we can test the bias
δ̃(x) := τos(x)− τ rct(x), which is equivalent to δ⋆ under
internal validity and transportability, i.e. µos(x) = µrct(x)
for all x ∈ X (see Figure 1). We would like to test if the
bias δ̃ between the two studies is contained within a toler-
ance range (requires tolerance) across all patient subgroups
(requires granularity). Hence, we will now introduce a null
hypothesis that allows for both tolerance and granularity.

To do so, we define two bounded tolerance functions
τos± : X → R that capture how much the estimated
treatment effects can differ between studies and satisfy
τos− (x) ≤ τos(x) ≤ τos+ (x) for all x ∈ X . Further, we
define the patient subgroups via a subset of featuresXJ , cor-
responding to the covariates with indices J ⊆ {1, · · · , d}.
We can then introduce our null hypothesis, given by

H0 : EPrct

[
τ rct(X) | XJ ] ∈ (1)

[
EPrct [τos− (X) | XJ ],EPrct [τos+ (X) | XJ ]

]
, Prct

XJ − a.s.

Discussion of our null hypothesis We provide several
remarks on the null hypothesis in Equation (1). First, we
satisfy tolerance by testing if τ rct(x) is contained (in proba-
bility) in an interval around τos(x), for all x ∈ X . Second,
we can satisfy granularity by choosing an appropriate sub-
set J : When |J | = d, we detect bias at the individual
level, thereby satisfying the strictest definition of granular-
ity. On the other hand, when |J | = 0, we test if the average
treatment effects are equal, thus potentially ignoring bias
in small subgroups and individuals. Third, we test if the
treatment effects are equal (up to tolerance) on the support
of the randomized trial since we cannot extrapolate outside
the support of Prct

X without further assumptions.

Example: User-specified tolerance A natural choice for
the tolerance functions is to add (respectively subtract) a
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user-specified function δ(x) ≥ 0, that is

τos± (x) = τos(x)± δ(x), for all x ∈ X .

The function δ can incorporate all sources of bias in the
observational study, such as unobserved confounding and
non-adherence to treatment assignments. For instance, we
can test whether ∥δ̃∥L∞(Prct

X ) is larger than a critical value
δCT ∈ R by choosing τos± (x) = τos(x)± δCT.

3. Methodology
In this section, we rewrite the null hypothesis from Equa-
tion (1) in terms of a signal function that captures the bias be-
tween τos and τ rct. Then, we propose an oracle test statistic
assuming that the tolerance functions τos± are known. Finally,
we provide asymptotic guarantees for the finite-sample test
statistic where the tolerance functions are estimated.

3.1. Null hypothesis using signal function

We first observe that, for some tolerance functions τos± , Equa-
tion (1) is equivalent to stating that there exists a function
g : R|J | → [0, 1] such that τosg (X) := g

(
XJ ) τos+ (X) +(

1− g
(
XJ )) τos− (X) satisfies

EPrct

[
τ rct(X) | XJ ] = EPrct [τosg (X) | XJ ], Prct

XJ −a.s.

We test a slightly more restrictive hypothesis by assuming
that g lies in a sufficiently rich function class G:

HG
0 : EPrct

[
τ rct(X) | XJ ] = EPrct

[
τosg⋆(X) | XJ ] ,

for some g⋆ ∈ G, Prct
XJ − a.s.

In practice, one can either restrict G to a particular func-
tion class if domain knowledge is available or use neural
networks as general function approximations.

We can then rewrite the null hypothesis above using a
signal function that captures the bias between the esti-
mates from observational and randomized data. Recall that
Z = (X,Y, T ) is the vector of observed variables, we define

ψg(Z) = Y

(
T

π
− 1− T

1− π

)
− τosg (X)

and finally arrive at the null hypothesis

HG
0 : EPrct

[
ψg⋆(Z) | XJ ] = 0, (2)

for some g⋆ ∈ G, Prct
XJ − a.s.

At first glance, testing the null hypothesis in Equation (2)
may seem equivalent to testing equality of conditional
means (Delgado, 1993; Neumeyer & Dette, 2003; Racine
et al., 2006; Luedtke et al., 2019; Muandet et al., 2020);
however, we remark that this equivalence holds only if the
function g⋆ is known, and to our knowledge, the scenario
where g⋆ is unknown has not been previously explored.

3.2. Oracle test statistic

We now derive a kernelized test statistic for the null hypothe-
sis in Equation (2). First, we observe that the hypothesisHG

0

implies an infinite set of unconditional moment constraints,
i.e. for any g ∈ G, it holds that

EPrct

[
ψg(Z) | XJ ] = 0, Prct

XJ − a.s. =⇒
EPrct

[
ψg(Z)f(X

J )
]
= 0, for all measurable f.

Therefore, the validity of testing the RHS would carry over
to the validity of testing HG

0 . However, testing the RHS
of the implication above for all measurable functions is
infeasible. Instead, we can restrict f to be in a reproducing
kernel Hilbert space (RKHS). The problem then becomes
more tractable since it holds that

H2(ψg) :=

(
sup

∥f∥F≤1

EPrct

[
ψg(Z)f(X

J )
]
)2

(3)

=
∥∥EPrct

[
ψg(Z)k(X

J , ·)
]∥∥2

F

=EPrct

[
ψg(Z)k(X

J , X̃J )ψg(Z̃)
]
,

where k is a uniformly bounded reproducing kernel corre-
sponding to an RKHS F , and Z̃ is an independent copy of
Z following the same distribution. In particular, the null
hypothesis HG

0 implies that H2(ψg) = 0 for g = g⋆, and
thus we can construct a valid test based on H2(ψg⋆).

A valid test statistic Given i.i.d. samples Zi from Prct,
an unbiased empirical estimate of H2(ψg) is the cross U-
statistic (Kim & Ramdas, 2024), defined as

Ĥ2(ψg) :=
2

nrct

nrct/2∑

i=1

h(Zi;ψg), with

h(Zi;ψg) :=
2

nrct

nrct∑

j=nrct/2+1

ψg(Zi)k(X
J
i , X

J
j )ψg(Zj),

for all g ∈ G. The main advantage of the cross U-statistic
is that, for g = g⋆, it is asymptotically normal under the
null hypothesis HG

0 and weak regularity assumptions (see
Theorem 3.1), i.e. as nrct → ∞ it holds that

√
nrct
2

Ĥ2(ψg⋆)

σ̂
(
Ĥ2(ψg⋆)

) → N (0, 1) ,

where σ̂
(
Ĥ2(ψg⋆)

)
is the finite sample estimate of the

variance term defined as

σ2
(
Ĥ2(ψg)

)
:= EPrct

[
(h(Z;ψg)− EPrct [h(Z;ψg)])

2
]
,
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for all g ∈ G. Observe that under the assumption that
g⋆ ∈ G, we have

H2
OPT := min

g∈G

∣∣∣∣∣∣

√
nrct
2

Ĥ2(ψg)

σ̂
(
Ĥ2(ψg)

)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣

√
nrct
2

Ĥ2(ψg⋆)

σ̂
(
Ĥ2(ψg⋆)

)

∣∣∣∣∣∣
.

(4)
Therefore, we can achieve validity by comparing H2

OPT with
the quantiles of the half-normal distribution.

3.3. Theoretical guarantees

Since, in practice, we do not have access to the signal func-
tion ψg , we define the finite-sample analogous as

ψ̂g(Z) = Y

(
T

π
− 1− T

1− π

)
− τ̂osg (X), where

τ̂osg (X) := g(XJ )τ̂os+ (X) +
(
1− g

(
XJ )) τ̂os− (X),

and τ̂os± is a consistent estimate of τos± that uses only the ob-
servational data Dos. We can then define our finite-sample
test statistic as

Ĥ2
OPT := min

g∈G

∣∣∣∣∣∣

√
nrct
2

Ĥ2(ψ̂g)

σ̂
(
Ĥ2(ψ̂g)

)

∣∣∣∣∣∣
,

and the testing function ϕ̂(α) := I
{
Ĥ2
OPT ≥ z1−α

}
,

where zα is the α-quantile of the half-normal distribution.
Below, we provide sufficient conditions for ϕ̂ to be an
asymptotically valid test.
Theorem 3.1 (Validity of the test). We make the following
assumptions:

(i) The variance term is non-zero, i.e.
EPrct

[
ψ2
g⋆(Z) k2(XJ , X̃J ) ψ2

g⋆(Z̃)
]
> 0.

(ii) τ̂os± satisfy ∥τos± − τ̂os± ∥L2(Prct) = OPos

(
1√
nos

)
, and it

holds that lim
nrct,nos→∞

nrct/nos = 0.

Then, we have that
√
nrct
2

Ĥ2(ψ̂g⋆)

σ̂
(
Ĥ2(ψ̂g⋆)

) → N (0, 1), as nrct, nos → ∞.

Hence, ϕ̂(α) is a valid asymptotic test at level α for the null
hypothesis HG

0 from Equation (2).

Power of the test While Theorem 3.1 only shows asymp-
totic validity, we further present guarantees for the asymp-
totic power of the test in Appendix A.2. In particular, in
Theorem A.1, we show that under the alternative hypothesis

HG
A : inf

g∈G
sup

∥f∥F≤1

EPrct

[
ψg(Z)f(X

J )
]
> 0,

the test statistic Ĥ2
OPT in Equation (4) grows at the typical

rate of order
√
nrct for a fixed function class G.

3.4. Benchmarking the observational study

Given the theoretical results in this section, we can now
introduce our strategy to benchmark observational stud-
ies. More concretely, we choose as tolerance functions
τos± (X) = τos(X)± δ, for some constant δ ∈ R+, and we
define a data-dependent lower bound on the bias as

δ̂LB := inf
δ
{δ : ϕ̂(α) = 0}, (5)

where ϕ̂ depends implicitly on δ via the tolerance functions
and we fix J = {1, . . . , d}. Then, under the assumptions
in Theorem 3.1, it holds that

P
(
δ̃ ≥ δ̂LB

)
≥ 1− α+ oP(1).

Crucially, to benchmark the observational study, we propose
to compare the lower bound on the bias against a critical
value, e.g. the minimum bias strength that would explain
away the estimated treatment effect in a subgroup of inter-
est. If the lower bound is greater than the critical value, we
discard the conclusions drawn from the observational study.
In Section 5, we demonstrate that our strategy yields con-
clusions consistent with epidemiological knowledge using
real-world data from the Women’s Health Initiative.

4. Semi-synthetic experiments
4.1. Experimental setting

Dataset We evaluate our testing procedure on a semi-
synthetic dataset derived from a real-world randomized trial:
Hillstrom’s MineThatData Email dataset (Hillstrom, 2008).
By default, we use 80% of the full dataset as the os and the
remaining 20% as the rct.

Bias model We consider three different models for the
bias between studies, given by δ⋆(x) = µos(x) − τos(x),
for all x ∈ X . In Scenario 1, we consider a single subgroup
with a constant bias of δ⋆ = 60, while the rest of os remains
unbiased. In Scenario 2 (Figure 5a), we add biases of vary-
ing magnitudes across 12 subgroups where the largest bias
is δ⋆ = 60, and it affects only 12% of the observational
dataset. Finally, in Scenario 3 (Figure 5b), we model the
bias as a quadratic polynomial.

User-defined tolerance and baselines We refer to the
testing function proposed in this paper as ϕ̂CATE, and we
instantiate it using constant upper and lower bounds for
the tolerance function: τos± (X) = τos(X) ± δ for some
constant δ ∈ R+. We compare our test against ϕ̂ATE, which
is a slight modification1 of the test with tolerance proposed
in (De Bartolomeis et al., 2024).

1ϕ̂ATE is a t-test for the null hypothesis that average treatment
effects between the studies differ at most δ.
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Table 1: The significance level is set at ↵ = 0.05. �̂CT is the amount of bias that would explain away the
positive e↵ect of HT in young women close to menopause. �̂LB is the maximum amount of bias detected in
the observational study. �̂ATE�=0 and �̂CATE�=0 denote the respective tests without tolerance, i.e. when the tolerance
function is set at � = 0.

Statistical tests �̂CATE �̂ATE �̂CATE�=0 �̂ATE�=0

�̂CT 0.32 0.32 0.32 0.32

�̂LB 0.25 0.11 7 7

Reject the study 0 0 1 1

5.2 Experimental results

Linking back to our question of interest, we demonstrate how our method can provide a correct answer,
i.e. one that aligns with the epidemiology literature. A natural way to do so is to first estimate from the
available data the amount of bias that would explain away the treatment e↵ect on the group of interest,
defined as

�̂CT :=
���EPos [⌧os(X) | X 2 G]

���.

In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.
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that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.
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Figure 2: For all the plots: the significance level is set at ↵ = 0.05, �? denotes the oracle test, which rejects
for � < �⇤. (a-b) Simplified setting of Scenario 1 with a single subgroup having constant bias �⇤ = 60: we

plot the bias lower bound �̂LB as a function of (a) the biased subgroup percentage w.r.t. total sample size
and (b) the randomized trial sample size. (c-d) Probability of rejection for di↵erent function classes G as a
function of the user-specified tolerance � for (c) scenario 1 (Figure 1a) based on 12 subgroups with di↵erent
biases and (d) scenario 2 (Figure 1b) based on a quadratic polynomial bias. We report mean and standard
error over 5 runs. The coe�cients for the polynomial bias are fixed across runs.

E↵ect of biased subgroup and rct sample sizes Figure 2a shows that our test yields an average
lower bound �̂LB close to the true maximum bias �⇤. This implies that the test remains valid and exhibits
significant power, even when the biased subgroup represents roughly 14% of the observational dataset. In
contrast, �̂ATE experiences a significant drop in power as the proportion of biased data points decreases. Such
behavior is expected since �̂ATE only tests for the di↵erence of averages, and it cannot detect bias in small
subgroups, i.e. it is not granular. In Figure 2b, we add a constant bias of 60 to 44% of the observational
data points and study the e↵ect of the randomized trial sample size. While our test su↵ers more than �̂ATE

from a decrease in the sample size due to the use of kernels, it always yields higher power, including in the
very small sample size regime with only 70 data points. These results show the importance of granularity:
even in simple settings, �̂ATE can fail to flag significantly biased datasets, in contrast to our method.

Validity and power in complex scenarios Figure 2c and Figure 2d show the validity and power of
our testing procedure for Scenario 1 (illustrated in Figure 1a) and Scenario 2 (illustrated in Figure 1b),
respectively. In both scenarios, if we use a neural network to approximate the bias function, our test remains
valid and shows very high power since it rejects the null hypothesis at values of � close to the true bias �?.

E↵ect of misspecified function class Notably, when g is modeled with a linear function, our test loses
its validity, rejecting values of � that are larger than the true bias. Such behavior is expected as the chosen
function class G lacks the complexity necessary to capture the true bias model. Nevertheless, we observe
that the small network with one hidden layer is already su�cient. Further, significantly increasing the
complexity – the large network has approximately 45 times more parameters than the small one – still
yields high power. Therefore, we recommend practitioners to be conservative in their choice of function
class to ensure validity, even if it might come at the potential cost of some power and a more complex
optimization problem. Moreover, although we cannot guarantee convergence to a global optimum, given the
non-convexity of the problem for complex function classes, we show that the optimization procedure is stable
and consistently reaches the same solution in Appendix C.3.
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Table 1: The significance level is set at ↵ = 0.05. �̂CT is the amount of bias that would explain away the
positive e↵ect of HT in young women close to menopause. �̂LB is the maximum amount of bias detected in
the observational study. �̂ATE�=0 and �̂CATE�=0 denote the respective tests without tolerance, i.e. when the tolerance
function is set at � = 0.

Statistical tests �̂CATE �̂ATE �̂CATE�=0 �̂ATE�=0

�̂CT 0.32 0.32 0.32 0.32

�̂LB 0.25 0.11 7 7

Reject the study 0 0 1 1

5.2 Experimental results

Linking back to our question of interest, we demonstrate how our method can provide a correct answer,
i.e. one that aligns with the epidemiology literature. A natural way to do so is to first estimate from the
available data the amount of bias that would explain away the treatment e↵ect on the group of interest,
defined as

�̂CT :=
���EPos [⌧os(X) | X 2 G]

���.

In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.
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Figure 2: For all the plots: the significance level is set at ↵ = 0.05, �? denotes the oracle test, which rejects
for � < �⇤. (a-b) Simplified setting of Scenario 1 with a single subgroup having constant bias �⇤ = 60: we

plot the bias lower bound �̂LB as a function of (a) the biased subgroup percentage w.r.t. total sample size
and (b) the randomized trial sample size. (c-d) Probability of rejection for di↵erent function classes G as a
function of the user-specified tolerance � for (c) scenario 1 (Figure 1a) based on 12 subgroups with di↵erent
biases and (d) scenario 2 (Figure 1b) based on a quadratic polynomial bias. We report mean and standard
error over 5 runs. The coe�cients for the polynomial bias are fixed across runs.

E↵ect of biased subgroup and rct sample sizes Figure 2a shows that our test yields an average
lower bound �̂LB close to the true maximum bias �⇤. This implies that the test remains valid and exhibits
significant power, even when the biased subgroup represents roughly 14% of the observational dataset. In
contrast, �̂ATE experiences a significant drop in power as the proportion of biased data points decreases. Such
behavior is expected since �̂ATE only tests for the di↵erence of averages, and it cannot detect bias in small
subgroups, i.e. it is not granular. In Figure 2b, we add a constant bias of 60 to 44% of the observational
data points and study the e↵ect of the randomized trial sample size. While our test su↵ers more than �̂ATE

from a decrease in the sample size due to the use of kernels, it always yields higher power, including in the
very small sample size regime with only 70 data points. These results show the importance of granularity:
even in simple settings, �̂ATE can fail to flag significantly biased datasets, in contrast to our method.

Validity and power in complex scenarios Figure 2c and Figure 2d show the validity and power of
our testing procedure for Scenario 1 (illustrated in Figure 1a) and Scenario 2 (illustrated in Figure 1b),
respectively. In both scenarios, if we use a neural network to approximate the bias function, our test remains
valid and shows very high power since it rejects the null hypothesis at values of � close to the true bias �?.

E↵ect of misspecified function class Notably, when g is modeled with a linear function, our test loses
its validity, rejecting values of � that are larger than the true bias. Such behavior is expected as the chosen
function class G lacks the complexity necessary to capture the true bias model. Nevertheless, we observe
that the small network with one hidden layer is already su�cient. Further, significantly increasing the
complexity – the large network has approximately 45 times more parameters than the small one – still
yields high power. Therefore, we recommend practitioners to be conservative in their choice of function
class to ensure validity, even if it might come at the potential cost of some power and a more complex
optimization problem. Moreover, although we cannot guarantee convergence to a global optimum, given the
non-convexity of the problem for complex function classes, we show that the optimization procedure is stable
and consistently reaches the same solution in Appendix C.3.
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Linking back to our question of interest, we demonstrate how our method can provide a correct answer,
i.e. one that aligns with the epidemiology literature. A natural way to do so is to first estimate from the
available data the amount of bias that would explain away the treatment e↵ect on the group of interest,
defined as

�̂CT :=
���EPos [⌧os(X) | X 2 G]
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In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.
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error over 5 runs. The coe�cients for the polynomial bias are fixed across runs.
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lower bound �̂LB close to the true maximum bias �⇤. This implies that the test remains valid and exhibits
significant power, even when the biased subgroup represents roughly 14% of the observational dataset. In
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data points and study the e↵ect of the randomized trial sample size. While our test su↵ers more than �̂ATE

from a decrease in the sample size due to the use of kernels, it always yields higher power, including in the
very small sample size regime with only 70 data points. These results show the importance of granularity:
even in simple settings, �̂ATE can fail to flag significantly biased datasets, in contrast to our method.

Validity and power in complex scenarios Figure 2c and Figure 2d show the validity and power of
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respectively. In both scenarios, if we use a neural network to approximate the bias function, our test remains
valid and shows very high power since it rejects the null hypothesis at values of � close to the true bias �?.

E↵ect of misspecified function class Notably, when g is modeled with a linear function, our test loses
its validity, rejecting values of � that are larger than the true bias. Such behavior is expected as the chosen
function class G lacks the complexity necessary to capture the true bias model. Nevertheless, we observe
that the small network with one hidden layer is already su�cient. Further, significantly increasing the
complexity – the large network has approximately 45 times more parameters than the small one – still
yields high power. Therefore, we recommend practitioners to be conservative in their choice of function
class to ensure validity, even if it might come at the potential cost of some power and a more complex
optimization problem. Moreover, although we cannot guarantee convergence to a global optimum, given the
non-convexity of the problem for complex function classes, we show that the optimization procedure is stable
and consistently reaches the same solution in Appendix C.3.
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5.2 Experimental results

Linking back to our question of interest, we demonstrate how our method can provide a correct answer,
i.e. one that aligns with the epidemiology literature. A natural way to do so is to first estimate from the
available data the amount of bias that would explain away the treatment e↵ect on the group of interest,
defined as

�̂CT :=
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In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.
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Table 1: The significance level is set at ↵ = 0.05. �̂CT is the amount of bias that would explain away the
positive e↵ect of HT in young women close to menopause. �̂LB is the maximum amount of bias detected in
the observational study. �̂ATE�=0 and �̂CATE�=0 denote the respective tests without tolerance, i.e. when the tolerance
function is set at � = 0.

Statistical tests �̂CATE �̂ATE �̂CATE�=0 �̂ATE�=0

�̂CT 0.32 0.32 0.32 0.32
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5.2 Experimental results

Linking back to our question of interest, we demonstrate how our method can provide a correct answer,
i.e. one that aligns with the epidemiology literature. A natural way to do so is to first estimate from the
available data the amount of bias that would explain away the treatment e↵ect on the group of interest,
defined as

�̂CT :=
���EPos [⌧os(X) | X 2 G]

���.

In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.

12

Table 1: The significance level is set at ↵ = 0.05. �̂CT is the amount of bias that would explain away the
positive e↵ect of HT in young women close to menopause. �̂LB is the maximum amount of bias detected in
the observational study. �̂ATE�=0 and �̂CATE�=0 denote the respective tests without tolerance, i.e. when the tolerance
function is set at � = 0.

Statistical tests �̂CATE �̂ATE �̂CATE�=0 �̂ATE�=0

�̂CT 0.32 0.32 0.32 0.32

�̂LB 0.25 0.11 7 7

Reject the study 0 0 1 1

5.2 Experimental results

Linking back to our question of interest, we demonstrate how our method can provide a correct answer,
i.e. one that aligns with the epidemiology literature. A natural way to do so is to first estimate from the
available data the amount of bias that would explain away the treatment e↵ect on the group of interest,
defined as

�̂CT :=
���EPos [⌧os(X) | X 2 G]

���.

In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.

12

(a) Increasing subgroup bias (b) Increasing nrct (c) Scenario 1 (d) Scenario 2

Figure 2: For all the plots: the significance level is set at ↵ = 0.05, �? denotes the oracle test, which rejects
for � < �⇤. (a-b) Simplified setting of Scenario 1 with a single subgroup having constant bias �⇤ = 60: we

plot the bias lower bound �̂LB as a function of (a) the biased subgroup percentage w.r.t. total sample size
and (b) the randomized trial sample size. (c-d) Probability of rejection for di↵erent function classes G as a
function of the user-specified tolerance � for (c) scenario 1 (Figure 1a) based on 12 subgroups with di↵erent
biases and (d) scenario 2 (Figure 1b) based on a quadratic polynomial bias. We report mean and standard
error over 5 runs. The coe�cients for the polynomial bias are fixed across runs.

E↵ect of biased subgroup and rct sample sizes Figure 2a shows that our test yields an average
lower bound �̂LB close to the true maximum bias �⇤. This implies that the test remains valid and exhibits
significant power, even when the biased subgroup represents roughly 14% of the observational dataset. In
contrast, �̂ATE experiences a significant drop in power as the proportion of biased data points decreases. Such
behavior is expected since �̂ATE only tests for the di↵erence of averages, and it cannot detect bias in small
subgroups, i.e. it is not granular. In Figure 2b, we add a constant bias of 60 to 44% of the observational
data points and study the e↵ect of the randomized trial sample size. While our test su↵ers more than �̂ATE

from a decrease in the sample size due to the use of kernels, it always yields higher power, including in the
very small sample size regime with only 70 data points. These results show the importance of granularity:
even in simple settings, �̂ATE can fail to flag significantly biased datasets, in contrast to our method.

Validity and power in complex scenarios Figure 2c and Figure 2d show the validity and power of
our testing procedure for Scenario 1 (illustrated in Figure 1a) and Scenario 2 (illustrated in Figure 1b),
respectively. In both scenarios, if we use a neural network to approximate the bias function, our test remains
valid and shows very high power since it rejects the null hypothesis at values of � close to the true bias �?.

E↵ect of misspecified function class Notably, when g is modeled with a linear function, our test loses
its validity, rejecting values of � that are larger than the true bias. Such behavior is expected as the chosen
function class G lacks the complexity necessary to capture the true bias model. Nevertheless, we observe
that the small network with one hidden layer is already su�cient. Further, significantly increasing the
complexity – the large network has approximately 45 times more parameters than the small one – still
yields high power. Therefore, we recommend practitioners to be conservative in their choice of function
class to ensure validity, even if it might come at the potential cost of some power and a more complex
optimization problem. Moreover, although we cannot guarantee convergence to a global optimum, given the
non-convexity of the problem for complex function classes, we show that the optimization procedure is stable
and consistently reaches the same solution in Appendix C.3.
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Table 1: The significance level is set at ↵ = 0.05. �̂CT is the amount of bias that would explain away the
positive e↵ect of HT in young women close to menopause. �̂LB is the maximum amount of bias detected in
the observational study. �̂ATE�=0 and �̂CATE�=0 denote the respective tests without tolerance, i.e. when the tolerance
function is set at � = 0.

Statistical tests �̂CATE �̂ATE �̂CATE�=0 �̂ATE�=0
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5.2 Experimental results

Linking back to our question of interest, we demonstrate how our method can provide a correct answer,
i.e. one that aligns with the epidemiology literature. A natural way to do so is to first estimate from the
available data the amount of bias that would explain away the treatment e↵ect on the group of interest,
defined as

�̂CT :=
���EPos [⌧os(X) | X 2 G]

���.

In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.
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Figure 2: For all the plots: the significance level is set at ↵ = 0.05, �? denotes the oracle test, which rejects
for � < �⇤. (a-b) Simplified setting of Scenario 1 with a single subgroup having constant bias �⇤ = 60: we

plot the bias lower bound �̂LB as a function of (a) the biased subgroup percentage w.r.t. total sample size
and (b) the randomized trial sample size. (c-d) Probability of rejection for di↵erent function classes G as a
function of the user-specified tolerance � for (c) scenario 1 (Figure 1a) based on 12 subgroups with di↵erent
biases and (d) scenario 2 (Figure 1b) based on a quadratic polynomial bias. We report mean and standard
error over 5 runs. The coe�cients for the polynomial bias are fixed across runs.

E↵ect of biased subgroup and rct sample sizes Figure 2a shows that our test yields an average
lower bound �̂LB close to the true maximum bias �⇤. This implies that the test remains valid and exhibits
significant power, even when the biased subgroup represents roughly 14% of the observational dataset. In
contrast, �̂ATE experiences a significant drop in power as the proportion of biased data points decreases. Such
behavior is expected since �̂ATE only tests for the di↵erence of averages, and it cannot detect bias in small
subgroups, i.e. it is not granular. In Figure 2b, we add a constant bias of 60 to 44% of the observational
data points and study the e↵ect of the randomized trial sample size. While our test su↵ers more than �̂ATE

from a decrease in the sample size due to the use of kernels, it always yields higher power, including in the
very small sample size regime with only 70 data points. These results show the importance of granularity:
even in simple settings, �̂ATE can fail to flag significantly biased datasets, in contrast to our method.

Validity and power in complex scenarios Figure 2c and Figure 2d show the validity and power of
our testing procedure for Scenario 1 (illustrated in Figure 1a) and Scenario 2 (illustrated in Figure 1b),
respectively. In both scenarios, if we use a neural network to approximate the bias function, our test remains
valid and shows very high power since it rejects the null hypothesis at values of � close to the true bias �?.

E↵ect of misspecified function class Notably, when g is modeled with a linear function, our test loses
its validity, rejecting values of � that are larger than the true bias. Such behavior is expected as the chosen
function class G lacks the complexity necessary to capture the true bias model. Nevertheless, we observe
that the small network with one hidden layer is already su�cient. Further, significantly increasing the
complexity – the large network has approximately 45 times more parameters than the small one – still
yields high power. Therefore, we recommend practitioners to be conservative in their choice of function
class to ensure validity, even if it might come at the potential cost of some power and a more complex
optimization problem. Moreover, although we cannot guarantee convergence to a global optimum, given the
non-convexity of the problem for complex function classes, we show that the optimization procedure is stable
and consistently reaches the same solution in Appendix C.3.
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positive e↵ect of HT in young women close to menopause. �̂LB is the maximum amount of bias detected in
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5.2 Experimental results

Linking back to our question of interest, we demonstrate how our method can provide a correct answer,
i.e. one that aligns with the epidemiology literature. A natural way to do so is to first estimate from the
available data the amount of bias that would explain away the treatment e↵ect on the group of interest,
defined as

�̂CT :=
���EPos [⌧os(X) | X 2 G]

���.

In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.
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available data the amount of bias that would explain away the treatment e↵ect on the group of interest,
defined as

�̂CT :=
���EPos [⌧os(X) | X 2 G]

���.

In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.
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Figure 2: For all the plots: the significance level is set at ↵ = 0.05, �? denotes the oracle test, which rejects
for � < �⇤. (a-b) Simplified setting of Scenario 1 with a single subgroup having constant bias �⇤ = 60: we

plot the bias lower bound �̂LB as a function of (a) the biased subgroup percentage w.r.t. total sample size
and (b) the randomized trial sample size. (c-d) Probability of rejection for di↵erent function classes G as a
function of the user-specified tolerance � for (c) scenario 1 (Figure 1a) based on 12 subgroups with di↵erent
biases and (d) scenario 2 (Figure 1b) based on a quadratic polynomial bias. We report mean and standard
error over 5 runs. The coe�cients for the polynomial bias are fixed across runs.

E↵ect of biased subgroup and rct sample sizes Figure 2a shows that our test yields an average
lower bound �̂LB close to the true maximum bias �⇤. This implies that the test remains valid and exhibits
significant power, even when the biased subgroup represents roughly 14% of the observational dataset. In
contrast, �̂ATE experiences a significant drop in power as the proportion of biased data points decreases. Such
behavior is expected since �̂ATE only tests for the di↵erence of averages, and it cannot detect bias in small
subgroups, i.e. it is not granular. In Figure 2b, we add a constant bias of 60 to 44% of the observational
data points and study the e↵ect of the randomized trial sample size. While our test su↵ers more than �̂ATE

from a decrease in the sample size due to the use of kernels, it always yields higher power, including in the
very small sample size regime with only 70 data points. These results show the importance of granularity:
even in simple settings, �̂ATE can fail to flag significantly biased datasets, in contrast to our method.

Validity and power in complex scenarios Figure 2c and Figure 2d show the validity and power of
our testing procedure for Scenario 1 (illustrated in Figure 1a) and Scenario 2 (illustrated in Figure 1b),
respectively. In both scenarios, if we use a neural network to approximate the bias function, our test remains
valid and shows very high power since it rejects the null hypothesis at values of � close to the true bias �?.

E↵ect of misspecified function class Notably, when g is modeled with a linear function, our test loses
its validity, rejecting values of � that are larger than the true bias. Such behavior is expected as the chosen
function class G lacks the complexity necessary to capture the true bias model. Nevertheless, we observe
that the small network with one hidden layer is already su�cient. Further, significantly increasing the
complexity – the large network has approximately 45 times more parameters than the small one – still
yields high power. Therefore, we recommend practitioners to be conservative in their choice of function
class to ensure validity, even if it might come at the potential cost of some power and a more complex
optimization problem. Moreover, although we cannot guarantee convergence to a global optimum, given the
non-convexity of the problem for complex function classes, we show that the optimization procedure is stable
and consistently reaches the same solution in Appendix C.3.
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Table 1: The significance level is set at ↵ = 0.05. �̂CT is the amount of bias that would explain away the
positive e↵ect of HT in young women close to menopause. �̂LB is the maximum amount of bias detected in
the observational study. �̂ATE�=0 and �̂CATE�=0 denote the respective tests without tolerance, i.e. when the tolerance
function is set at � = 0.

Statistical tests �̂CATE �̂ATE �̂CATE�=0 �̂ATE�=0
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5.2 Experimental results

Linking back to our question of interest, we demonstrate how our method can provide a correct answer,
i.e. one that aligns with the epidemiology literature. A natural way to do so is to first estimate from the
available data the amount of bias that would explain away the treatment e↵ect on the group of interest,
defined as

�̂CT :=
���EPos [⌧os(X) | X 2 G]

���.

In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.
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Figure 2: For all the plots: the significance level is set at ↵ = 0.05, �? denotes the oracle test, which rejects
for � < �⇤. (a-b) Simplified setting of Scenario 1 with a single subgroup having constant bias �⇤ = 60: we

plot the bias lower bound �̂LB as a function of (a) the biased subgroup percentage w.r.t. total sample size
and (b) the randomized trial sample size. (c-d) Probability of rejection for di↵erent function classes G as a
function of the user-specified tolerance � for (c) scenario 1 (Figure 1a) based on 12 subgroups with di↵erent
biases and (d) scenario 2 (Figure 1b) based on a quadratic polynomial bias. We report mean and standard
error over 5 runs. The coe�cients for the polynomial bias are fixed across runs.

E↵ect of biased subgroup and rct sample sizes Figure 2a shows that our test yields an average
lower bound �̂LB close to the true maximum bias �⇤. This implies that the test remains valid and exhibits
significant power, even when the biased subgroup represents roughly 14% of the observational dataset. In
contrast, �̂ATE experiences a significant drop in power as the proportion of biased data points decreases. Such
behavior is expected since �̂ATE only tests for the di↵erence of averages, and it cannot detect bias in small
subgroups, i.e. it is not granular. In Figure 2b, we add a constant bias of 60 to 44% of the observational
data points and study the e↵ect of the randomized trial sample size. While our test su↵ers more than �̂ATE

from a decrease in the sample size due to the use of kernels, it always yields higher power, including in the
very small sample size regime with only 70 data points. These results show the importance of granularity:
even in simple settings, �̂ATE can fail to flag significantly biased datasets, in contrast to our method.

Validity and power in complex scenarios Figure 2c and Figure 2d show the validity and power of
our testing procedure for Scenario 1 (illustrated in Figure 1a) and Scenario 2 (illustrated in Figure 1b),
respectively. In both scenarios, if we use a neural network to approximate the bias function, our test remains
valid and shows very high power since it rejects the null hypothesis at values of � close to the true bias �?.

E↵ect of misspecified function class Notably, when g is modeled with a linear function, our test loses
its validity, rejecting values of � that are larger than the true bias. Such behavior is expected as the chosen
function class G lacks the complexity necessary to capture the true bias model. Nevertheless, we observe
that the small network with one hidden layer is already su�cient. Further, significantly increasing the
complexity – the large network has approximately 45 times more parameters than the small one – still
yields high power. Therefore, we recommend practitioners to be conservative in their choice of function
class to ensure validity, even if it might come at the potential cost of some power and a more complex
optimization problem. Moreover, although we cannot guarantee convergence to a global optimum, given the
non-convexity of the problem for complex function classes, we show that the optimization procedure is stable
and consistently reaches the same solution in Appendix C.3.
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Table 1: The significance level is set at ↵ = 0.05. �̂CT is the amount of bias that would explain away the
positive e↵ect of HT in young women close to menopause. �̂LB is the maximum amount of bias detected in
the observational study. �̂ATE�=0 and �̂CATE�=0 denote the respective tests without tolerance, i.e. when the tolerance
function is set at � = 0.

Statistical tests �̂CATE �̂ATE �̂CATE�=0 �̂ATE�=0

�̂CT 0.32 0.32 0.32 0.32

�̂LB 0.25 0.11 7 7
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5.2 Experimental results

Linking back to our question of interest, we demonstrate how our method can provide a correct answer,
i.e. one that aligns with the epidemiology literature. A natural way to do so is to first estimate from the
available data the amount of bias that would explain away the treatment e↵ect on the group of interest,
defined as

�̂CT :=
���EPos [⌧os(X) | X 2 G]

���.

In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.
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Table 1: The significance level is set at ↵ = 0.05. �̂CT is the amount of bias that would explain away the
positive e↵ect of HT in young women close to menopause. �̂LB is the maximum amount of bias detected in
the observational study. �̂ATE�=0 and �̂CATE�=0 denote the respective tests without tolerance, i.e. when the tolerance
function is set at � = 0.

Statistical tests �̂CATE �̂ATE �̂CATE�=0 �̂ATE�=0

�̂CT 0.32 0.32 0.32 0.32

�̂LB 0.25 0.11 7 7

Reject the study 0 0 1 1

5.2 Experimental results

Linking back to our question of interest, we demonstrate how our method can provide a correct answer,
i.e. one that aligns with the epidemiology literature. A natural way to do so is to first estimate from the
available data the amount of bias that would explain away the treatment e↵ect on the group of interest,
defined as

�̂CT :=
���EPos [⌧os(X) | X 2 G]

���.

In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.
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(a) Increasing subgroup bias (b) Increasing nrct (c) Scenario 1 (d) Scenario 2

Figure 2: For all the plots: the significance level is set at ↵ = 0.05, �? denotes the oracle test, which rejects
for � < �⇤. (a-b) Simplified setting of Scenario 1 with a single subgroup having constant bias �⇤ = 60: we

plot the bias lower bound �̂LB as a function of (a) the biased subgroup percentage w.r.t. total sample size
and (b) the randomized trial sample size. (c-d) Probability of rejection for di↵erent function classes G as a
function of the user-specified tolerance � for (c) scenario 1 (Figure 1a) based on 12 subgroups with di↵erent
biases and (d) scenario 2 (Figure 1b) based on a quadratic polynomial bias. We report mean and standard
error over 5 runs. The coe�cients for the polynomial bias are fixed across runs.

E↵ect of biased subgroup and rct sample sizes Figure 2a shows that our test yields an average
lower bound �̂LB close to the true maximum bias �⇤. This implies that the test remains valid and exhibits
significant power, even when the biased subgroup represents roughly 14% of the observational dataset. In
contrast, �̂ATE experiences a significant drop in power as the proportion of biased data points decreases. Such
behavior is expected since �̂ATE only tests for the di↵erence of averages, and it cannot detect bias in small
subgroups, i.e. it is not granular. In Figure 2b, we add a constant bias of 60 to 44% of the observational
data points and study the e↵ect of the randomized trial sample size. While our test su↵ers more than �̂ATE

from a decrease in the sample size due to the use of kernels, it always yields higher power, including in the
very small sample size regime with only 70 data points. These results show the importance of granularity:
even in simple settings, �̂ATE can fail to flag significantly biased datasets, in contrast to our method.

Validity and power in complex scenarios Figure 2c and Figure 2d show the validity and power of
our testing procedure for Scenario 1 (illustrated in Figure 1a) and Scenario 2 (illustrated in Figure 1b),
respectively. In both scenarios, if we use a neural network to approximate the bias function, our test remains
valid and shows very high power since it rejects the null hypothesis at values of � close to the true bias �?.

E↵ect of misspecified function class Notably, when g is modeled with a linear function, our test loses
its validity, rejecting values of � that are larger than the true bias. Such behavior is expected as the chosen
function class G lacks the complexity necessary to capture the true bias model. Nevertheless, we observe
that the small network with one hidden layer is already su�cient. Further, significantly increasing the
complexity – the large network has approximately 45 times more parameters than the small one – still
yields high power. Therefore, we recommend practitioners to be conservative in their choice of function
class to ensure validity, even if it might come at the potential cost of some power and a more complex
optimization problem. Moreover, although we cannot guarantee convergence to a global optimum, given the
non-convexity of the problem for complex function classes, we show that the optimization procedure is stable
and consistently reaches the same solution in Appendix C.3.
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i.e. one that aligns with the epidemiology literature. A natural way to do so is to first estimate from the
available data the amount of bias that would explain away the treatment e↵ect on the group of interest,
defined as

�̂CT :=
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In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.
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Figure 2: For all the plots: the significance level is set at ↵ = 0.05, �? denotes the oracle test, which rejects
for � < �⇤. (a-b) Simplified setting of Scenario 1 with a single subgroup having constant bias �⇤ = 60: we

plot the bias lower bound �̂LB as a function of (a) the biased subgroup percentage w.r.t. total sample size
and (b) the randomized trial sample size. (c-d) Probability of rejection for di↵erent function classes G as a
function of the user-specified tolerance � for (c) scenario 1 (Figure 1a) based on 12 subgroups with di↵erent
biases and (d) scenario 2 (Figure 1b) based on a quadratic polynomial bias. We report mean and standard
error over 5 runs. The coe�cients for the polynomial bias are fixed across runs.

E↵ect of biased subgroup and rct sample sizes Figure 2a shows that our test yields an average
lower bound �̂LB close to the true maximum bias �⇤. This implies that the test remains valid and exhibits
significant power, even when the biased subgroup represents roughly 14% of the observational dataset. In
contrast, �̂ATE experiences a significant drop in power as the proportion of biased data points decreases. Such
behavior is expected since �̂ATE only tests for the di↵erence of averages, and it cannot detect bias in small
subgroups, i.e. it is not granular. In Figure 2b, we add a constant bias of 60 to 44% of the observational
data points and study the e↵ect of the randomized trial sample size. While our test su↵ers more than �̂ATE

from a decrease in the sample size due to the use of kernels, it always yields higher power, including in the
very small sample size regime with only 70 data points. These results show the importance of granularity:
even in simple settings, �̂ATE can fail to flag significantly biased datasets, in contrast to our method.

Validity and power in complex scenarios Figure 2c and Figure 2d show the validity and power of
our testing procedure for Scenario 1 (illustrated in Figure 1a) and Scenario 2 (illustrated in Figure 1b),
respectively. In both scenarios, if we use a neural network to approximate the bias function, our test remains
valid and shows very high power since it rejects the null hypothesis at values of � close to the true bias �?.

E↵ect of misspecified function class Notably, when g is modeled with a linear function, our test loses
its validity, rejecting values of � that are larger than the true bias. Such behavior is expected as the chosen
function class G lacks the complexity necessary to capture the true bias model. Nevertheless, we observe
that the small network with one hidden layer is already su�cient. Further, significantly increasing the
complexity – the large network has approximately 45 times more parameters than the small one – still
yields high power. Therefore, we recommend practitioners to be conservative in their choice of function
class to ensure validity, even if it might come at the potential cost of some power and a more complex
optimization problem. Moreover, although we cannot guarantee convergence to a global optimum, given the
non-convexity of the problem for complex function classes, we show that the optimization procedure is stable
and consistently reaches the same solution in Appendix C.3.
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5.2 Experimental results

Linking back to our question of interest, we demonstrate how our method can provide a correct answer,
i.e. one that aligns with the epidemiology literature. A natural way to do so is to first estimate from the
available data the amount of bias that would explain away the treatment e↵ect on the group of interest,
defined as

�̂CT :=
���EPos [⌧os(X) | X 2 G]

���.

In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.
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Figure 2: For all the plots: the significance level is set at ↵ = 0.05, �? denotes the oracle test, which rejects
for � < �⇤. (a-b) Simplified setting of Scenario 1 with a single subgroup having constant bias �⇤ = 60: we

plot the bias lower bound �̂LB as a function of (a) the biased subgroup percentage w.r.t. total sample size
and (b) the randomized trial sample size. (c-d) Probability of rejection for di↵erent function classes G as a
function of the user-specified tolerance � for (c) scenario 1 (Figure 1a) based on 12 subgroups with di↵erent
biases and (d) scenario 2 (Figure 1b) based on a quadratic polynomial bias. We report mean and standard
error over 5 runs. The coe�cients for the polynomial bias are fixed across runs.

E↵ect of biased subgroup and rct sample sizes Figure 2a shows that our test yields an average
lower bound �̂LB close to the true maximum bias �⇤. This implies that the test remains valid and exhibits
significant power, even when the biased subgroup represents roughly 14% of the observational dataset. In
contrast, �̂ATE experiences a significant drop in power as the proportion of biased data points decreases. Such
behavior is expected since �̂ATE only tests for the di↵erence of averages, and it cannot detect bias in small
subgroups, i.e. it is not granular. In Figure 2b, we add a constant bias of 60 to 44% of the observational
data points and study the e↵ect of the randomized trial sample size. While our test su↵ers more than �̂ATE

from a decrease in the sample size due to the use of kernels, it always yields higher power, including in the
very small sample size regime with only 70 data points. These results show the importance of granularity:
even in simple settings, �̂ATE can fail to flag significantly biased datasets, in contrast to our method.

Validity and power in complex scenarios Figure 2c and Figure 2d show the validity and power of
our testing procedure for Scenario 1 (illustrated in Figure 1a) and Scenario 2 (illustrated in Figure 1b),
respectively. In both scenarios, if we use a neural network to approximate the bias function, our test remains
valid and shows very high power since it rejects the null hypothesis at values of � close to the true bias �?.

E↵ect of misspecified function class Notably, when g is modeled with a linear function, our test loses
its validity, rejecting values of � that are larger than the true bias. Such behavior is expected as the chosen
function class G lacks the complexity necessary to capture the true bias model. Nevertheless, we observe
that the small network with one hidden layer is already su�cient. Further, significantly increasing the
complexity – the large network has approximately 45 times more parameters than the small one – still
yields high power. Therefore, we recommend practitioners to be conservative in their choice of function
class to ensure validity, even if it might come at the potential cost of some power and a more complex
optimization problem. Moreover, although we cannot guarantee convergence to a global optimum, given the
non-convexity of the problem for complex function classes, we show that the optimization procedure is stable
and consistently reaches the same solution in Appendix C.3.
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that the small network with one hidden layer is already su�cient. Further, significantly increasing the
complexity – the large network has approximately 45 times more parameters than the small one – still
yields high power. Therefore, we recommend practitioners to be conservative in their choice of function
class to ensure validity, even if it might come at the potential cost of some power and a more complex
optimization problem. Moreover, although we cannot guarantee convergence to a global optimum, given the
non-convexity of the problem for complex function classes, we show that the optimization procedure is stable
and consistently reaches the same solution in Appendix C.3.
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Table 1: The significance level is set at ↵ = 0.05. �̂CT is the amount of bias that would explain away the
positive e↵ect of HT in young women close to menopause. �̂LB is the maximum amount of bias detected in
the observational study. �̂ATE�=0 and �̂CATE�=0 denote the respective tests without tolerance, i.e. when the tolerance
function is set at � = 0.

Statistical tests �̂CATE �̂ATE �̂CATE�=0 �̂ATE�=0

�̂CT 0.32 0.32 0.32 0.32

�̂LB 0.25 0.11 7 7

Reject the study 0 0 1 1

5.2 Experimental results

Linking back to our question of interest, we demonstrate how our method can provide a correct answer,
i.e. one that aligns with the epidemiology literature. A natural way to do so is to first estimate from the
available data the amount of bias that would explain away the treatment e↵ect on the group of interest,
defined as

�̂CT :=
���EPos [⌧os(X) | X 2 G]

���.

In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.
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Table 1: The significance level is set at ↵ = 0.05. �̂CT is the amount of bias that would explain away the
positive e↵ect of HT in young women close to menopause. �̂LB is the maximum amount of bias detected in
the observational study. �̂ATE�=0 and �̂CATE�=0 denote the respective tests without tolerance, i.e. when the tolerance
function is set at � = 0.

Statistical tests �̂CATE �̂ATE �̂CATE�=0 �̂ATE�=0

�̂CT 0.32 0.32 0.32 0.32

�̂LB 0.25 0.11 7 7

Reject the study 0 0 1 1

5.2 Experimental results

Linking back to our question of interest, we demonstrate how our method can provide a correct answer,
i.e. one that aligns with the epidemiology literature. A natural way to do so is to first estimate from the
available data the amount of bias that would explain away the treatment e↵ect on the group of interest,
defined as

�̂CT :=
���EPos [⌧os(X) | X 2 G]

���.

In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.
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(a) Increasing subgroup bias (b) Increasing nrct (c) Scenario 1 (d) Scenario 2

Figure 2: For all the plots: the significance level is set at ↵ = 0.05, �? denotes the oracle test, which rejects
for � < �⇤. (a-b) Simplified setting of Scenario 1 with a single subgroup having constant bias �⇤ = 60: we

plot the bias lower bound �̂LB as a function of (a) the biased subgroup percentage w.r.t. total sample size
and (b) the randomized trial sample size. (c-d) Probability of rejection for di↵erent function classes G as a
function of the user-specified tolerance � for (c) scenario 1 (Figure 1a) based on 12 subgroups with di↵erent
biases and (d) scenario 2 (Figure 1b) based on a quadratic polynomial bias. We report mean and standard
error over 5 runs. The coe�cients for the polynomial bias are fixed across runs.

E↵ect of biased subgroup and rct sample sizes Figure 2a shows that our test yields an average
lower bound �̂LB close to the true maximum bias �⇤. This implies that the test remains valid and exhibits
significant power, even when the biased subgroup represents roughly 14% of the observational dataset. In
contrast, �̂ATE experiences a significant drop in power as the proportion of biased data points decreases. Such
behavior is expected since �̂ATE only tests for the di↵erence of averages, and it cannot detect bias in small
subgroups, i.e. it is not granular. In Figure 2b, we add a constant bias of 60 to 44% of the observational
data points and study the e↵ect of the randomized trial sample size. While our test su↵ers more than �̂ATE

from a decrease in the sample size due to the use of kernels, it always yields higher power, including in the
very small sample size regime with only 70 data points. These results show the importance of granularity:
even in simple settings, �̂ATE can fail to flag significantly biased datasets, in contrast to our method.

Validity and power in complex scenarios Figure 2c and Figure 2d show the validity and power of
our testing procedure for Scenario 1 (illustrated in Figure 1a) and Scenario 2 (illustrated in Figure 1b),
respectively. In both scenarios, if we use a neural network to approximate the bias function, our test remains
valid and shows very high power since it rejects the null hypothesis at values of � close to the true bias �?.

E↵ect of misspecified function class Notably, when g is modeled with a linear function, our test loses
its validity, rejecting values of � that are larger than the true bias. Such behavior is expected as the chosen
function class G lacks the complexity necessary to capture the true bias model. Nevertheless, we observe
that the small network with one hidden layer is already su�cient. Further, significantly increasing the
complexity – the large network has approximately 45 times more parameters than the small one – still
yields high power. Therefore, we recommend practitioners to be conservative in their choice of function
class to ensure validity, even if it might come at the potential cost of some power and a more complex
optimization problem. Moreover, although we cannot guarantee convergence to a global optimum, given the
non-convexity of the problem for complex function classes, we show that the optimization procedure is stable
and consistently reaches the same solution in Appendix C.3.
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Table 1: The significance level is set at ↵ = 0.05. �̂CT is the amount of bias that would explain away the
positive e↵ect of HT in young women close to menopause. �̂LB is the maximum amount of bias detected in
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5.2 Experimental results

Linking back to our question of interest, we demonstrate how our method can provide a correct answer,
i.e. one that aligns with the epidemiology literature. A natural way to do so is to first estimate from the
available data the amount of bias that would explain away the treatment e↵ect on the group of interest,
defined as

�̂CT :=
���EPos [⌧os(X) | X 2 G]

���.

In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.
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Figure 2: For all the plots: the significance level is set at ↵ = 0.05, �? denotes the oracle test, which rejects
for � < �⇤. (a-b) Simplified setting of Scenario 1 with a single subgroup having constant bias �⇤ = 60: we

plot the bias lower bound �̂LB as a function of (a) the biased subgroup percentage w.r.t. total sample size
and (b) the randomized trial sample size. (c-d) Probability of rejection for di↵erent function classes G as a
function of the user-specified tolerance � for (c) scenario 1 (Figure 1a) based on 12 subgroups with di↵erent
biases and (d) scenario 2 (Figure 1b) based on a quadratic polynomial bias. We report mean and standard
error over 5 runs. The coe�cients for the polynomial bias are fixed across runs.

E↵ect of biased subgroup and rct sample sizes Figure 2a shows that our test yields an average
lower bound �̂LB close to the true maximum bias �⇤. This implies that the test remains valid and exhibits
significant power, even when the biased subgroup represents roughly 14% of the observational dataset. In
contrast, �̂ATE experiences a significant drop in power as the proportion of biased data points decreases. Such
behavior is expected since �̂ATE only tests for the di↵erence of averages, and it cannot detect bias in small
subgroups, i.e. it is not granular. In Figure 2b, we add a constant bias of 60 to 44% of the observational
data points and study the e↵ect of the randomized trial sample size. While our test su↵ers more than �̂ATE

from a decrease in the sample size due to the use of kernels, it always yields higher power, including in the
very small sample size regime with only 70 data points. These results show the importance of granularity:
even in simple settings, �̂ATE can fail to flag significantly biased datasets, in contrast to our method.

Validity and power in complex scenarios Figure 2c and Figure 2d show the validity and power of
our testing procedure for Scenario 1 (illustrated in Figure 1a) and Scenario 2 (illustrated in Figure 1b),
respectively. In both scenarios, if we use a neural network to approximate the bias function, our test remains
valid and shows very high power since it rejects the null hypothesis at values of � close to the true bias �?.

E↵ect of misspecified function class Notably, when g is modeled with a linear function, our test loses
its validity, rejecting values of � that are larger than the true bias. Such behavior is expected as the chosen
function class G lacks the complexity necessary to capture the true bias model. Nevertheless, we observe
that the small network with one hidden layer is already su�cient. Further, significantly increasing the
complexity – the large network has approximately 45 times more parameters than the small one – still
yields high power. Therefore, we recommend practitioners to be conservative in their choice of function
class to ensure validity, even if it might come at the potential cost of some power and a more complex
optimization problem. Moreover, although we cannot guarantee convergence to a global optimum, given the
non-convexity of the problem for complex function classes, we show that the optimization procedure is stable
and consistently reaches the same solution in Appendix C.3.

10

Table 1: The significance level is set at ↵ = 0.05. �̂CT is the amount of bias that would explain away the
positive e↵ect of HT in young women close to menopause. �̂LB is the maximum amount of bias detected in
the observational study. �̂ATE�=0 and �̂CATE�=0 denote the respective tests without tolerance, i.e. when the tolerance
function is set at � = 0.

Statistical tests �̂CATE �̂ATE �̂CATE�=0 �̂ATE�=0

�̂CT 0.32 0.32 0.32 0.32

�̂LB 0.25 0.11 7 7

Reject the study 0 0 1 1

5.2 Experimental results

Linking back to our question of interest, we demonstrate how our method can provide a correct answer,
i.e. one that aligns with the epidemiology literature. A natural way to do so is to first estimate from the
available data the amount of bias that would explain away the treatment e↵ect on the group of interest,
defined as

�̂CT :=
���EPos [⌧os(X) | X 2 G]

���.

In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.
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Figure 2: For all the plots: the significance level is set at ↵ = 0.05, �? denotes the oracle test, which rejects
for � < �⇤. (a-b) Simplified setting of Scenario 1 with a single subgroup having constant bias �⇤ = 60: we

plot the bias lower bound �̂LB as a function of (a) the biased subgroup percentage w.r.t. total sample size
and (b) the randomized trial sample size. (c-d) Probability of rejection for di↵erent function classes G as a
function of the user-specified tolerance � for (c) scenario 1 (Figure 1a) based on 12 subgroups with di↵erent
biases and (d) scenario 2 (Figure 1b) based on a quadratic polynomial bias. We report mean and standard
error over 5 runs. The coe�cients for the polynomial bias are fixed across runs.

E↵ect of biased subgroup and rct sample sizes Figure 2a shows that our test yields an average
lower bound �̂LB close to the true maximum bias �⇤. This implies that the test remains valid and exhibits
significant power, even when the biased subgroup represents roughly 14% of the observational dataset. In
contrast, �̂ATE experiences a significant drop in power as the proportion of biased data points decreases. Such
behavior is expected since �̂ATE only tests for the di↵erence of averages, and it cannot detect bias in small
subgroups, i.e. it is not granular. In Figure 2b, we add a constant bias of 60 to 44% of the observational
data points and study the e↵ect of the randomized trial sample size. While our test su↵ers more than �̂ATE

from a decrease in the sample size due to the use of kernels, it always yields higher power, including in the
very small sample size regime with only 70 data points. These results show the importance of granularity:
even in simple settings, �̂ATE can fail to flag significantly biased datasets, in contrast to our method.

Validity and power in complex scenarios Figure 2c and Figure 2d show the validity and power of
our testing procedure for Scenario 1 (illustrated in Figure 1a) and Scenario 2 (illustrated in Figure 1b),
respectively. In both scenarios, if we use a neural network to approximate the bias function, our test remains
valid and shows very high power since it rejects the null hypothesis at values of � close to the true bias �?.

E↵ect of misspecified function class Notably, when g is modeled with a linear function, our test loses
its validity, rejecting values of � that are larger than the true bias. Such behavior is expected as the chosen
function class G lacks the complexity necessary to capture the true bias model. Nevertheless, we observe
that the small network with one hidden layer is already su�cient. Further, significantly increasing the
complexity – the large network has approximately 45 times more parameters than the small one – still
yields high power. Therefore, we recommend practitioners to be conservative in their choice of function
class to ensure validity, even if it might come at the potential cost of some power and a more complex
optimization problem. Moreover, although we cannot guarantee convergence to a global optimum, given the
non-convexity of the problem for complex function classes, we show that the optimization procedure is stable
and consistently reaches the same solution in Appendix C.3.
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5.2 Experimental results

Linking back to our question of interest, we demonstrate how our method can provide a correct answer,
i.e. one that aligns with the epidemiology literature. A natural way to do so is to first estimate from the
available data the amount of bias that would explain away the treatment e↵ect on the group of interest,
defined as

�̂CT :=
���EPos [⌧os(X) | X 2 G]

���.

In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.
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In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.
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Table 1: The significance level is set at ↵ = 0.05. �̂CT is the amount of bias that would explain away the
positive e↵ect of HT in young women close to menopause. �̂LB is the maximum amount of bias detected in
the observational study. �̂ATE�=0 and �̂CATE�=0 denote the respective tests without tolerance, i.e. when the tolerance
function is set at � = 0.

Statistical tests �̂CATE �̂ATE �̂CATE�=0 �̂ATE�=0

�̂CT 0.32 0.32 0.32 0.32

�̂LB 0.25 0.11 7 7

Reject the study 0 0 1 1

5.2 Experimental results

Linking back to our question of interest, we demonstrate how our method can provide a correct answer,
i.e. one that aligns with the epidemiology literature. A natural way to do so is to first estimate from the
available data the amount of bias that would explain away the treatment e↵ect on the group of interest,
defined as

�̂CT :=
���EPos [⌧os(X) | X 2 G]

���.

In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.
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Table 1: The significance level is set at ↵ = 0.05. �̂CT is the amount of bias that would explain away the
positive e↵ect of HT in young women close to menopause. �̂LB is the maximum amount of bias detected in
the observational study. �̂ATE�=0 and �̂CATE�=0 denote the respective tests without tolerance, i.e. when the tolerance
function is set at � = 0.

Statistical tests �̂CATE �̂ATE �̂CATE�=0 �̂ATE�=0

�̂CT 0.32 0.32 0.32 0.32

�̂LB 0.25 0.11 7 7

Reject the study 0 0 1 1
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available data the amount of bias that would explain away the treatment e↵ect on the group of interest,
defined as

�̂CT :=
���EPos [⌧os(X) | X 2 G]
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In essence, the critical value quantifies the minimum strength of bias for which positive and negative values
of treatment e↵ect are reasonable, thereby invalidating the observational study results4. In our example, the
group G is defined as young women (age  60) who are close to menopause ( 10 years).

Similarly to the semi-synthetic experiments, we instantiate the tolerance functions using constant upper and
lower bounds, i.e. ⌧os

± (X) = ⌧os(X) ± � for some constant � 2 R+. We compute the lower bound �̂LB on the
maximum amount of treatment e↵ect bias in the observational study, as defined in Equation (14). We remark
that this quantity can be computed only for tests that allow some tolerance. Then, our decision-making
procedure will flag the observational study as invalid if �̂LB � �̂CT.

Experimental details We consider a binary-valued outcome: the presence of coronary heart disease
within the follow-up period. We choose as covariates X the basic adjustment variables used in many existing
analyses, and we further limit patients to those who were not current users of HT at the time of enrolment,
as the duration of HT use has been found to have a substantial impact on treatment e↵ects [41, 52]. We
refer to Appendix B.2 for complete experimental details.

We now present evidence that our procedure can yield the conclusions established in the epidemiological
literature. In doing so, it avoids issuing false alarms when the bias is negligible (tolerance). Further, it detects
a larger amount of bias, as it is more powerful than tests based on average treatment e↵ect (granularity).

Results In Table 1, we show the result for all the statistical tests on the WHI study. First, we observe that
both tests that allow for tolerance correctly do not flag the study, while �̂CATE�=0 and �̂ATE�=0 do. This di↵erence
shows the importance of tolerance for distinguishing between small and large amounts of bias. Second, we
observe that the lower bound on the bias is larger for the test with granularity �̂CATE. Such behavior is
expected and shows the importance of granularity to detect bias that would otherwise go unnoticed using
the test without any granularity �̂ATE.

4Note that other choices for the critical value are possible, and practitioners should determine the most appropriate one
given the specific context.
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(a) Increasing subgroup bias (b) Increasing nrct (c) Scenario 1 (d) Scenario 2

Figure 2: For all the plots: the significance level is set at ↵ = 0.05, �? denotes the oracle test, which rejects
for � < �⇤. (a-b) Simplified setting of Scenario 1 with a single subgroup having constant bias �⇤ = 60: we

plot the bias lower bound �̂LB as a function of (a) the biased subgroup percentage w.r.t. total sample size
and (b) the randomized trial sample size. (c-d) Probability of rejection for di↵erent function classes G as a
function of the user-specified tolerance � for (c) scenario 1 (Figure 1a) based on 12 subgroups with di↵erent
biases and (d) scenario 2 (Figure 1b) based on a quadratic polynomial bias. We report mean and standard
error over 5 runs. The coe�cients for the polynomial bias are fixed across runs.

E↵ect of biased subgroup and rct sample sizes Figure 2a shows that our test yields an average
lower bound �̂LB close to the true maximum bias �⇤. This implies that the test remains valid and exhibits
significant power, even when the biased subgroup represents roughly 14% of the observational dataset. In
contrast, �̂ATE experiences a significant drop in power as the proportion of biased data points decreases. Such
behavior is expected since �̂ATE only tests for the di↵erence of averages, and it cannot detect bias in small
subgroups, i.e. it is not granular. In Figure 2b, we add a constant bias of 60 to 44% of the observational
data points and study the e↵ect of the randomized trial sample size. While our test su↵ers more than �̂ATE

from a decrease in the sample size due to the use of kernels, it always yields higher power, including in the
very small sample size regime with only 70 data points. These results show the importance of granularity:
even in simple settings, �̂ATE can fail to flag significantly biased datasets, in contrast to our method.

Validity and power in complex scenarios Figure 2c and Figure 2d show the validity and power of
our testing procedure for Scenario 1 (illustrated in Figure 1a) and Scenario 2 (illustrated in Figure 1b),
respectively. In both scenarios, if we use a neural network to approximate the bias function, our test remains
valid and shows very high power since it rejects the null hypothesis at values of � close to the true bias �?.

E↵ect of misspecified function class Notably, when g is modeled with a linear function, our test loses
its validity, rejecting values of � that are larger than the true bias. Such behavior is expected as the chosen
function class G lacks the complexity necessary to capture the true bias model. Nevertheless, we observe
that the small network with one hidden layer is already su�cient. Further, significantly increasing the
complexity – the large network has approximately 45 times more parameters than the small one – still
yields high power. Therefore, we recommend practitioners to be conservative in their choice of function
class to ensure validity, even if it might come at the potential cost of some power and a more complex
optimization problem. Moreover, although we cannot guarantee convergence to a global optimum, given the
non-convexity of the problem for complex function classes, we show that the optimization procedure is stable
and consistently reaches the same solution in Appendix C.3.
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(d) Scenario 3

Figure 2. For all the plots: the significance level is set at α = 0.05, ϕ⋆ denotes the oracle test, which rejects for δ < δ⋆. (a-b) Scenario 1,
comprising a single subgroup with a constant bias δ⋆ = 60: we plot the bias lower bound δ̂LB as a function of (a) the biased subgroup
percentage w.r.t. total sample size and (b) the randomized trial sample size. (c-d) Probability of rejection for different function classes G
as a function of the user-specified tolerance δ for (c) Scenario 2 (Figure 5a) based on 12 subgroups with different biases and (d) Scenario
3 (Figure 5b) based on a quadratic polynomial bias. We report mean and standard error over 5 runs.

4.2. Experimental results

We first study the effect of the biased subgroup size (Fig-
ure 2a) and the randomized trial sample size (Figure 2b) on
the lower bounds δ̂LB obtained from our test ϕ̂CATE and the
baseline ϕ̂ATE. Next, we assess the validity and power of
our test ϕ̂CATE in two more complex settings: Scenario 2
(Figure 2c) and Scenario 3 (Figure 2d).

Effect of biased subgroup and rct sample sizes Fig-
ure 2a shows that our test yields an average lower bound δ̂LB
smaller and close to the true maximum bias δ⋆. This implies
that the test remains valid and exhibits significant power,
even when the biased subgroup represents roughly 14% of
the observational dataset. In contrast, ϕ̂ATE experiences a
significant drop in power as the proportion of biased data
points decreases. Such behavior is expected since ϕ̂ATE only
tests for the difference of averages, and it cannot detect bias
in small subgroups, i.e. it is not granular. In Figure 2b, we
add a constant bias of 60 to 44% of the observational data
points and study the effect of the randomized trial sample
size. While our test suffers more than ϕ̂ATE from a decrease
in the sample size due to the use of kernels, it always yields
higher power, even in the very small sample size regime
with 70 data points.

Validity and power in complex scenarios Figure 2c and
Figure 2d show the validity and power of our testing proce-
dure for Scenario 2 (Figure 5a) and Scenario 3 (Figure 5b),
respectively. In both scenarios, if we use a neural network
to approximate the bias function, our test remains valid and
shows very high power since it rejects the null hypothesis at
values of δ close to the true bias δ⋆.

Effect of misspecified function class Notably, when g is
modeled with a linear function, our test loses its validity,
rejecting values of δ that are larger than the true bias. Such
behavior is expected as the chosen function class G lacks the

complexity necessary to capture the true bias model. Never-
theless, we observe that the small network with one hidden
layer is already sufficient. Further, significantly increasing
the complexity – the large network has approximately 45
times more parameters than the small one – still yields high
power. Therefore, we recommend practitioners to be con-
servative in their choice of function class to ensure validity,
even if it might come at the potential cost of some power.
Although we cannot guarantee convergence to a global opti-
mum, given the non-convexity of the problem for complex
function classes, we show that the optimization procedure
is stable and reaches the same solution in Appendix B.2.

5. Real-world experiments
In this section, we provide a concrete application of the
benchmarking framework using the Women’s Health Initia-
tive (WHI) study. We show how tolerance and granularity
are necessary for effective benchmarking.

5.1. The WHI controversy

The WHI study included a randomized trial and an obser-
vational study that investigated the use of hormone ther-
apy (HT) for preventing common sources of mortality
among postmenopausal women, including cardiovascular
disease, cancer, and fractures (Anderson et al., 2003).

To HT, or not to HT The initial results of the WHI study
in 2002 led to fear and confusion regarding the use of hor-
mone therapy (HT) after menopause, resulting in a dramatic
reduction in prescriptions for HT around the world. Al-
though in 2002, it was stated that HT increases the risk
of coronary heart disease (CHD) for all women, subse-
quent studies clearly showed that younger women close
to menopause can benefit from HT. Further, subsequent
randomized trials have continued demonstrating the ben-
efits of HT when started early in young women close to
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Table 1. The significance level is set at α = 0.05. δ̂CT is the
amount of bias that would explain away the positive effect of HT
in young women close to menopause. δ̂LB is the maximum bias
detected in the observational study. ϕ̂ATEδ=0 and ϕ̂CATEδ=0 denote the
respective tests without tolerance, i.e. when the tolerance function
is set at δ = 0.

Statistical tests ϕ̂CATE ϕ̂ATE ϕ̂CATEδ=0 ϕ̂ATEδ=0

δ̂CT 0.32 0.32 0.32 0.32

δ̂LB 0.25 0.11 ✗ ✗

Reject the study 0 0 1 1

menopause (Hodis et al., 2016; Taylor et al., 2017). To
date, the consensus among epidemiologists is that hormone
therapy reduces the risk of CHD in women aged less than
60 years and within 10 years of menopause; see e.g. the
current guidelines for hormone therapy (Lee et al., 2020).

Limitations of the WHI randomized trial The main
issue with the randomized trial is that younger women’s
cardiac events are relatively rare. Indeed, not only would it
have been prohibitively expensive to conduct a randomized
trial exclusively in younger women, but it would have also
taken many years to accumulate enough events to reach sta-
tistical significance. Hence, the trial lacked enough events
to reach statistical significance on the subgroup of interest.
On the other hand, the average treatment effect over all
the patients suggested an increase in CHD risk because the
majority of cardiac events came from older women, and
epidemiologists concluded that HT is harmful to all women.

Benchmarking can help! The natural question is, thus, if
benchmarking the observational study could have prevented
such a turn of events. Indeed, this is the perfect setting to
test our methodology, as we would like to ask the question:

Is the bias in the observational study enough to explain away

the benefits of HT in young women close to menopause?

In what follows, we show that answering such a question
requires a statistical test that offers tolerance. Further, even
though we cannot demonstrate that granularity is neces-
sary in this concrete example2, we stress that it is equally
important in practice.

5.2. Experimental results

Linking back to our question of interest, we demonstrate
how our method can provide a correct answer, i.e. one that

2To do so, we would need to know a small biased subgroup in
the observational study and show that only the tests with granularity
detect the bias. Unfortunately, we are unaware of subgroups that
were found to be biased in the WHI study.

aligns with the epidemiology literature. A natural way to
do so is to first estimate from the available data the amount
of bias that would explain away the treatment effect on the
group of interest, defined as

δ̂CT :=
∣∣∣EPos [τos(X) | X ∈ G]

∣∣∣.

In essence, the critical value quantifies the minimum
strength of bias for which positive and negative values of
treatment effect are reasonable, thereby invalidating the ob-
servational study results3. In our example, the group G
is defined as young women (age ≤ 60) who are close to
menopause (≤ 10 years).

Similarly to the semi-synthetic experiments, we instanti-
ate the tolerance functions using constant upper and lower
bounds, i.e. τos± (X) = τos(X) ± δ for some constant
δ ∈ R+. We compute the lower bound δ̂LB on the maximum
amount of treatment effect bias in the observational study,
as defined in Equation (5). We remark that this quantity can
be computed only for tests that allow some tolerance. Then,
our decision-making procedure will flag the observational
study as invalid if δ̂LB ≥ δ̂CT.

Experimental details We consider a binary-valued out-
come: the presence of coronary heart disease within the
follow-up period. We choose as covariates X the basic ad-
justment variables used in many existing analyses, and we
further limit patients to those who were not current users
of HT at the time of enrolment, as the duration of HT use
has been found to have a substantial impact on treatment
effects (Prentice et al., 2005; Vandenbroucke, 2009). We
refer to Appendix C.2 for complete experimental details.

We present evidence that our procedure can yield the conclu-
sions established in the epidemiological literature. It avoids
issuing false alarms when the bias is negligible (tolerance)
and detects a larger amount of bias, as it is more powerful
than tests based on average treatment effect (granularity).

Results In Table 1, we show the result for all the statis-
tical tests on the WHI study. First, we observe that both
tests that allow for tolerance correctly do not flag the study,
while ϕ̂CATEδ=0 and ϕ̂ATEδ=0 do. This difference shows the impor-
tance of tolerance for distinguishing between small and large
amounts of bias. Second, we observe that the lower bound
on the bias is larger for the test with granularity ϕ̂CATE. Such
behavior is expected and shows the importance of granular-
ity to detect bias that would otherwise go unnoticed using
the test without any granularity ϕ̂ATE.

3Note that other choices for the critical value are possible, and
practitioners should determine the most appropriate one given the
specific context.
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Appendices
The following appendices provide deferred proofs, experiment details, and ablation studies.

A. Methodology
For the sake of clarity, we write n := nrct/2, P := Prct and E [·] := EPrct [·] throughout this section.

A.1. Proof of Theorem 3.1

We begin with the simple observation that

min
g∈G

∣∣∣∣∣∣

√
nĤ2(ψ̂g)

σ̂
(
Ĥ2(ψ̂g)

)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣

√
nĤ2(ψ̂g⋆)

σ̂
(
Ĥ2(ψ̂g⋆)

)

∣∣∣∣∣∣
,

which holds under the assumption that g⋆ ∈ G. Thus, asymptotic validity of ϕ̂ follows when showing that the RHS converges
in distribution to an absolute normal distribution.

The key ingredient to prove this statement is to show that the following convergence in probability holds for all fixed n:

Ĥ2(ψ̂g⋆) → Ĥ2(ψg⋆) and σ̂2
(
Ĥ2(ψ̂g⋆)

)
→ σ̂2

(
Ĥ2(ψg⋆)

)
, as nos → ∞. (6)

Then, under Assumption (i), we can apply Theorem 4.2 from Kim & Ramdas (2024) to show that
√
nĤ2(ψg⋆)

σ̂
(
Ĥ2(ψg⋆)

) → N (0, 1), as n→ ∞.

Moreover, as a consequence of Equation (12) and (57) in the proof of Theorem 4.2 from Kim & Ramdas (2024), we have
that

1

nσ̂2
(
Ĥ2(ψg⋆)

) = OP(1).

Thus, when applying Slutsky’s Theorem we have that
√
nĤ2(ψ̂g⋆)

σ̂
(
Ĥ2(ψ̂g⋆)

) → N (0, 1), as n→ ∞ and nos → ∞,

and the statement in Theorem 3.1 follows. It now remains to prove Equation 6.

PROOF OF STATEMENT IN EQUATION 6

We begin by defining the error term

△ := ψ̂g⋆(Z)− ψg⋆(Z) = g⋆(XJ )
(
τ̂os+ (X)− τos+ (X)

)
+ (1− g⋆(XJ ))

(
τ̂os− (X)− τos− (X)

)
,

and we denote with △i the i.i.d. samples from P. We restate the definition of the mean and variance terms here. Formally,
we split the dataset Drct equally into two folds, I1 and I2, of size n and obtain

nĤ2(ψ̂g⋆) =
1√
n

∑

i∈I1

ψ̂i
1√
n

∑

j∈I2

k(XJ
i , X

J
j )ψ̂j , (7)

nσ̂2
(
Ĥ2(ψ̂g⋆)

)
=

1

n

∑

i∈I1

ψ̂2
i


 1√

n

∑

j∈I2

k(XJ
i , X

J
j )ψ̂j




2

−
(√

nĤ2(ψ̂g⋆)
)2
, (8)

where we use the shorthand ψ̂i := ψ̂g⋆(Zi) and ψi := ψg⋆(Zi).
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Preliminary step: bounds for the error term △i By Assumption (ii) in Theorem 3.1, we have that

E
[
△2
]
=: ∥△∥2L2(P) ≤ 2∥τ̂os+ − τos+ ∥2L2(P) + 2∥τ̂os− − τos− ∥2L2(P) = oPos

(
1

n

)
, (9)

where the probability Pos is over the dataset Dos used to train τ̂os± . We further define

τ2(X
J ) :=

1√
n

∑

j∈I2

k(XJ
i , X

J
j )△j and τ1(X

J ) :=
1√
n

∑

i∈I1

k(XJ
i , X

J
j )△i.

We will repeatedly make use of the following bound, which holds analogously for τ1:

sup
XJ

∣∣E
[
τ2(X

J )|XJ ]∣∣ = sup
XJ

∣∣∣
√
n E

[
k(XJ , X̃J )△̃|XJ

]∣∣∣ ≲
√
n
√

E [△2],

where X̃J and △̃ are i.i.d. copies of XJ and △, and in the last inequality, we used Cauchy-Schwartz together with the fact
that the kernel is uniformly bounded. We will further use that

sup
XJ

[
E
[(
τ2(X

J )
)2 |XJ

]]
= sup

XJ


E



1

n

∑

j∈I2

k(XJ , XJ
j )2△2

j +
1

n

∑

j,j′∈I2

j ̸=j′

k(XJ , XJ
j )k(XJ , XJ

j′ )△j△j′

∣∣∣∣∣X
J







≲ E
[
△2
]
+ sup

XJ

[
n(n− 1)

n

(
E
[
k(XJ , X̃J )△̃|XJ

])2]

≤ E
[
△2
]
+ (n− 1) sup

XJ

[
E
[
k2(XJ , X̃J )|XJ

]
E
[
△2
]]

= oPos(1),

where we used Cauchy-Schwartz again. We are now ready to show the convergences in Equation (6).

Term 1: controlling Ĥ2(ψ̂g⋆) We first control the mean term Ĥ2(ψ̂g⋆). Since n is held fixed, it is equivalent to show that
∣∣∣nĤ2(ψ̂g⋆)− nĤ2(ψg⋆)

∣∣∣ = oPos(1). (10)

We decompose the difference into the following three terms:

nĤ2(ψ̂g⋆)− nĤ2(ψg⋆) =
1√
n

∑

i∈I1

ψiτ2(X
J
i )

︸ ︷︷ ︸
=:T1

+
1√
n

∑

j∈I2

ψjτ1(X
J
j )

︸ ︷︷ ︸
=:T2

+
1√
n

∑

i∈I1

△iτ2(X
J
i )

︸ ︷︷ ︸
=:T3

. (11)

To control the first two terms, we note that under the null hypothesis in Equation (2), it holds that E
[
ψg⋆ | XJ = x

]
= 0,

for all x ∈ supp
(
Prct
XJ

)
. Thus, it suffices to show that the variance goes to zero:

Var

[
1√
n

∑

i∈I1

ψiτ2(X
J
i )

]
= E



(

1√
n

∑

i∈I1

ψiτ2(X
J
i )

)2

 = E

[
E
[
ψ2|XJ ] (τ2(XJ )

)2]

≲ E
[(
τ2(X

J )
)2]

= oPos(1),

where we used that the conditional second moment E
[
ψ2
g⋆ |XJ ] is uniformly bounded, since the outcome Y and the

tolerance function τos± are both bounded. Further, the same argument also applies when swapping I1 with I2, we thus can
conclude from Chebyshev’s inequality that

|T1| = oPos(1) and |T2| = oPos(1).
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Next, we bound the last term T3. We first consider the mean of T3:

E [T3] =
√
n E

[
△τ2(XJ )

]
=

√
n E

[
△ E

[
τ2(X

J )|XJ ]] ≤ sup
XJ

[∣∣E
[
τ2(X

J )|XJ ]∣∣] E
[√
n |△|

]

≤ sup
XJ

[∣∣E
[
τ2(X

J )|XJ ]∣∣]√n
√
E [△2]

= oPos(1).

Then, we consider the variance of T3:

E
[
T 2
3

]
= E

[
△2
(
τ2(X

J )
)2]

= E
[
△2 E

[(
τ2(X

J )
)2 |XJ

]]
≤ sup

XJ

[
E
[(
τ2(X

J )
)2 |XJ

]]
E
[
△2
]
= oPos(1).

Thus, we can conclude that |T3| = oP(1), and the equality in Equation (10) follows.

Term 2: controlling σ̂2
(
Ĥ2(ψ̂g⋆)

)
As a second step, we control the variance term σ̂2

(
Ĥ2(ψ̂g⋆)

)
. Our goal is again to

show that

∣∣∣nσ̂2
(
Ĥ2(ψ̂g⋆)

)
− nσ̂2

(
Ĥ2(ψg⋆)

)∣∣∣ = oPos(1).

Given the results from the previous paragraph in Equation (10), we note that it suffices to show that

∣∣∣∣∣∣∣
1

n

∑

i∈I1

ψ̂2
i


 1√

n

∑

j∈I2

k(XJ
i , X

J
j )ψ̂j




2

− 1

n

∑

i∈I1

ψ2
i


 1√

n

∑

j∈I2

k(XJ
i , X

J
j )ψj




2
∣∣∣∣∣∣∣
= oPos(1). (12)

We begin again by decomposing the difference of the two terms on the LHS into the following six terms:

=
1

n

∑

i∈I1

△2
i


 1√

n

∑

j∈I2

k(XJ
i , X

J
j )(ψj +△j)




2

︸ ︷︷ ︸
=:T1

+
1

n

∑

i∈I1

(ψi +△i)
2
(
τ2(X

J
i )
)2

︸ ︷︷ ︸
=:T2

− 1

n

∑

i∈I1

△2
i

(
τ2(X

J
i )
)2

︸ ︷︷ ︸
=:T3

+
2

n

∑

i∈I1

ψ2
i


 1√

n

∑

j∈I2

k(XJ
i , X

J
j )ψj


 τ2(X

J
i )

︸ ︷︷ ︸
=:T4

+
4

n

∑

i∈I1

ψi△i


 1√

n

∑

j∈I2

k(XJ
i , X

J
j )ψj


 τ2(X

J
i )

︸ ︷︷ ︸
=:T5

+
2

n

∑

i∈I1

ψi△i


 1√

n

∑

j∈I2

k(XJ
i , X

J
j )ψj




2

.

︸ ︷︷ ︸
=:T6

We now show that ∀i ∈ [1, · · · , 6] , |Ti| = oPos(1).

Controlling T1: Since the term is non-negative, it suffices to show that the expectation E [T1] = oPos(1) and then apply
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Markov’s inequality. More formally, we have

E [T1] = E


△2


 1√

n

∑

j∈I2

k(XJ , XJ
j )(ψj +△j)




2



= E


△2


 1

n

∑

j∈I2

k2(XJ , XJ
j )ψ2

j +


 1√

n

∑

j∈I2

k(XJ , XJ
j )△j




2

+
1

n

∑

j∈I2

k2(XJ , XJ
j )ψj△j







= E
[
△2k(XJ , X̃J )2[ψ̃2 + ψ̃△̃]

]
+ E

[
△2
(
τ2(X

J )
)2]

≲ E
[
△2
] [

E
[
ψ2
]
+
√
E [ψ2]E [△2] + sup

XJ
E
[(
τ2(X

J )
)2 |XJ

]]

= oPos(1),

where in the second equality we use again E
[
ψg⋆ |XJ = x

]
= 0, for all x ∈ supp

(
Prct
XJ

)
.

Controlling T2 and T3: We can again upper-bound the expectation and apply Markov’s inequality. We have

E [T2] ≤ E
[(
2ψ2 + 2△2

)
E
[(
τ2(X

J )
)2 |XJ

]]
= sup

XJ

[
E
[(
τ2(X

J )
)2 |XJ

]] (
2E
[
ψ2
]
+ 2E

[
△2
])

= oPos(1),

and thus it also follows that E [T3] = oPos(1).

Controlling T4, T5 and T6: We note that the expectations E [T4] = 0, E [T5] = 0 and E [T6] = 0 are all zero. Thus, we can
bound the terms in probability by showing that the respective variances converge to zero and then applying Chebyshev’s
inequality. We first upper-bound the variance of T4:

Var [T4] = Var


 2

n

∑

i∈I1

ψ2
i


 1√

n

∑

j∈I2

k(XJ
i , X

J
j )ψj


 τ2(X

J
i )




=
4

n
E


ψ4


 1√

n

∑

j∈I2

k(XJ , XJ
j )ψj




2

(
τ2(X

J )
)2



= 4E


ψ4


 1

n

∑

j∈I2

k(XJ , XJ
j )ψj




2

(
τ2(X

J )
)2



≲ sup
XJ

E
[(
τ2(X

J )
)2 |XJ

]

= oPos(1),

where we use the fact that both the kernel k and the fourth conditional moment of ψg⋆ | XJ are almost surely upper
bounded by a constant. Next, we bound the variance of T5:

Var [T5] = Var


 2

n

∑

i∈I1

ψi△i


 1√

n

∑

j∈I2

k(XJ
i , X

J
j )ψj


 τ2(X

J
i )




= 4E


ψ2△2


 1

n

∑

j∈I2

k(XJ , XJ
j )ψj




2

(
τ2(X

J )
)2



= oPos(1).
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Finally, we upper-bound the variance of the term T6:

Var [T6] = Var


 2

n

∑

i∈I1

ψi△i


 1√

n

∑

j∈I2

k(XJ
i , X

J
j )ψj




2



=
4

n
E


 ψ2△2


 1

n2

∑

j∈I2

k(XJ , XJ
j )4ψ4

j +
6

n2

∑

j,j′∈I2;j ̸=j′

k(XJ , XJ
j )2k(XJ , XJ

j′ )
2ψ2

jψ
2
j′






= oPos(1).

As a result, we conclude that |T4| = oPos(1), |T5| = oPos(1), and |T6| = oPos(1).

Discussion of assumptions Assumption (i) is mild and applies to very general settings, e.g. it is satisfied when Y is a
non-deterministic random variable. Assumption (ii) is stronger and generally only expected to hold when nos ≫ nrct and the
support of the randomized control trial is contained in the support of the observational study, i.e. supp(Prct

X ) ⊆ supp(Pos
X).

These two conditions are realistic in our setting, as they align with the standard design of observational studies (Franklin
et al., 2019; Schurman, 2019; He et al., 2020). Further, we remark that previous works either assume oracle access to the
functions τos± (Hussain et al., 2023; Demirel et al., 2024) or impose similar assumptions on the rates (De Bartolomeis et al.,
2024).

Why not a classic U-statistic? We remark that it is not clear how to test the null hypothesis HG
0 using the classic

U-statistic (Serfling, 1980), as done in previous works (see e.g. (Hussain et al., 2023; Demirel et al., 2024)). The main
challenge is that under the null hypothesis H2(ψg⋆) = 0, the U-statistic converges in distribution to a weighted χ2-statistic.
However, estimating the quantiles (needed for a valid test) of this asymptotic distribution via bootstrapping requires knowing
the function g⋆ (Huskova & Janssen, 1993). In contrast, our test statistic H2

OPT is bounded by a valid asymptotic pivot, i.e. a
function of the data and the unknown function g⋆ whose asymptotic distribution does not depend on g⋆. Hence, we can
compute the quantiles of the RHS in Equation (4) and construct an asymptotically valid test.

A.2. Power of the test

We first discuss a simple result on the power of the test from Equation (4) in rejecting an alternative hypothesis. While
Hussain et al. (2023); Muandet et al. (2020) show asymptotic normality for the kernel conditional moment test statistics M2

under the alternative hypothesis that M2 ̸= 0, the same result does not directly apply to our test statistic. However, as we
show in the following theorem, our test statistic grows at a rate

√
n. For the sake of clarity, we only prove the result for the

oracle test statistic H2
OPT computed from ψg . Nevertheless, we remark that our result can be easily extended to the empirical

test statistics via the same argument used in the proof of Theorem 3.1.

Theorem A.1. Assume that for every ϵ > 0, the function class G has a finite ℓ∞−norm covering number. Then, we can
lower-bound the test statistic, in probability as n→ ∞, by

H2
OPT = min

g∈G

∣∣∣∣∣∣

√
n Ĥ2(ψg)

σ̂
(
Ĥ2(ψg)

)

∣∣∣∣∣∣
≳

√
n

(
inf
g∈G

sup
∥f∥F≤1

E
[
ψg(Z)f(X

J )
]
)2

,

where we use ≳ to hide universal constants not depending on n.

Thus, under the alternative hypothesis

HG
A : inf

g∈G
sup

∥f∥F≤1

EPrct

[
ψg(Z)f(X

J )
]
> 0,

the RHS grows at a rate
√
n, which implies that our test has an asymptotic power of one (note that the same rate is achieved

by existing conditional moment tests (Hussain et al., 2023; Muandet et al., 2020)).

Proof of Theorem A.1 Let us define
T := inf

g∈G
sup

∥f∥F≤1

E [ψg(Z)f(V )] ,
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and note that if T = 0 the result follows trivially. Thus, we may assume that T > 0 is some constant independent of n.
Additionally, observe that ψg is uniformly bounded since the outcome Y is a bounded random variable. Therefore, the

variance term σ̂
(
Ĥ2(ψg)

)
is also uniformly bounded, and it suffices to show that Ĥ2(ψg) = ΩP(1) is lower bounded in

probability.

Controlling Ĥ2(ψg) First, recall that our test statistic is given by

Ĥ2(ψg) =
1

n2

n∑

i=1

2n∑

j=n+1

ψg(Zi)k(X
J
i , X

J
j )ψg(Zj). (13)

Further, for all g ∈ G, it holds that

E
[
Ĥ2(ψg)

]
= E

[
ψg(Z)k(X

J , X̃J )ψg(Z̃)
]
≥ inf

g∈G
E
[
ψg(Z)k(X

J , X̃J )ψg(Z̃)
]
= T 2,

where Z̃ is an independent copy of Z following the same distribution, and the last equality follows from Equation (3). Thus,
it suffices to show that the following inequality holds with probability one as n→ ∞

sup
g∈G

∣∣∣Ĥ2(ψg)− E
[
Ĥ2(ψg)

]∣∣∣ ≤ T 2

2
.

We use a simple ϵ-net argument to show this result. Let Gϵ be the epsilon net in ℓ∞ distance of balls with radii ϵ. Then, since
ψg is uniformly bounded, it holds that for all Z and g ∈ G,

inf
g̃∈Gϵ

|ψg(Z)− ψg̃(Z)| ≲ ϵ.

Thus, from the definition of Ĥ2(ψg) in Equation (13) it follows that we can choose a constant ϵ > 0, such that the following
inequality holds almost surely,

sup
g∈G

inf
g̃∈Gϵ

∣∣∣Ĥ2(ψg)− Ĥ2(ψg̃)
∣∣∣ ≤ T 2

4
. (14)

Then, for any constant c > 0, it holds that

P
(

sup
g∈G

∣∣∣Ĥ2(ψg)− E
[
Ĥ2(ψg)

]∣∣∣ ≤ T 2

2

)

= P
(

sup
g∈G

inf
g̃∈Gϵ

∣∣∣Ĥ2(ψg)− Ĥ2(ψg̃) + Ĥ2(ψg̃)− E[Ĥ2(ψg̃)] + E[Ĥ2(ψg̃)]− E[Ĥ2(ψg)]
∣∣∣
)

(i)

≥ P
(

sup
g̃∈Gϵ

∣∣∣Ĥ2(ψg̃)− E
[
Ĥ2(ψg̃)

]∣∣∣ ≤ 2c

)

(ii)

≥ 1−
∑

g̃∈Gϵ

P
(∣∣∣Ĥ2(ψg̃)− E

[
Ĥ2(ψg̃)

]∣∣∣ ≥ 2c
)

︸ ︷︷ ︸
n→∞→ 0 (L.L.N.)

,

where (i) follows from applying the inequality in Equation (14) and (ii) follows since, by assumption, for every fixed ϵ > 0
the cover |Gϵ| <∞ is constant as a function of n.
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B Additional experiments

B.1 Ablations for the selected subset of features

Figure 3a shows the e↵ect of the selected feature set XJ on the average lower bound �̂LB found by our testing
procedure for the bias model from scenario 1 (see Figure 1a). In scenario 1, we introduced constant bias in
the subgroups resulting from di↵erent combinations of the features “newbie”, “mens” and “channel”, with
a maximum true bias �⇤ = 60. When |XJ | = 3, we precisely select all features responsible for heterogeneity
between rct and os datasets, achieving the highest power. Intuitively, the bias function cannot be accurately
learned with smaller feature sets, and the test loses power. On the other hand, when increasing the feature
set, the test also progressively loses power due to the curse of dimensionality, being particularly severe with
smaller sample sizes. We note that we do not consider one-hot-encoded features in the visualization, i.e.
when we choose all features |XJ | = 6, we represent each data point with a 13-dimensional vector. After the
sixth feature, we simply add redundant features sampled from a normal N (0, 1) distribution.

B.2 Optimization convergence

We assess the reliability of our testing procedure by studying the behavior of the optimization process for
scenario 1, specifically during the training of the small neural network. Recall that, given the non-convex
nature of the optimization problem, we cannot guarantee convergence to the true global minimum g⇤.
We plot in Figure 3b the test statistic with respect to the training epochs under di↵erent random network
initializations, setting �̂ = 58. We observe that the test statistic consistently reaches the same local minimum
and that the optimization stabilizes after 10,000 epochs.

(a) Ablation over subset of features (b) Optimization convergence

Figure 3: (a): E↵ect of varying the feature set XJ on the average lower bound �̂LB in scenario 1, illustrating
the trade-o↵ between feature set size and the power of the test. The highest power is achieved when the
feature set size |XJ | = 3, encompassing only the relevant features. The significance level is set at ↵ = 0.05,
and �? represents the oracle test, which rejects for � < �?. We average runs over 5 seeds and report the
standard error. (b): Evolution of the test statistic with respect to the training epochs for scenario 1 using

the small neural network. We set �̂ = 58 (recall that �⇤ = 60) and the significance level at ↵ = 0.05. The
test statistic corresponding to the fixed significance level ↵ is also plotted. The rest of the hyperparameters
are the same as in the experimental evaluation.
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(b) Optimization convergence

Figure 3. For all the plots: the significance level is set at α = 0.05, and the bias model is from Scenario 2. (a) Effect of varying the feature
set XJ on the average lower bound δ̂LB, illustrating the trade-off between feature set size and the power of the test. ϕ⋆ represents the
oracle test, which rejects for δ < δ⋆. The highest power is achieved when the feature set size |XJ | = 3, including only the relevant
features to model the bias. We average runs over 5 seeds and report the standard error. (b) Evolution of the test statistic with respect to the
training epochs using the small neural network. We set the user tolerance to δ = 58, close to the maximum true bias δ⋆ = 60. The dashed
red line represents the α-quantile of the absolute normal distribution.

B. Additional experiments
B.1. Ablation study of the feature subset XJ

In Scenario 2 from Figure 5a, we introduced constant bias in the subgroups resulting from different combinations of the
features newbie, mens and channel, with a maximum true bias δ⋆ = 60. Figure 3a shows the effect of the selected
feature set XJ on the average lower bound δ̂LB for the bias model from Scenario 2. When |XJ | = 3, we select the features
that capture the bias between rct and os datasets (newbie, mens, channel), and hence we achieve the highest power.
Intuitively, if the feature set is smaller, some of the bias averages out, and the test loses power. On the other hand, when
increasing the feature set, the test loses power due to the curse of dimensionality, being particularly severe with smaller
sample sizes. After |XJ | = 6 (i.e. XJ = X), we add redundant features sampled from a standard normal distribution
N (0, 1).

B.2. Convergence of the optimization procedure

We provide evidence that our testing procedure is reliable, meaning that the optimizer consistently reaches the same solution
for the bias model from Scenario 2 and the small neural network model. Recall that, given the non-convex nature of the
optimization problem, we cannot guarantee convergence to the true global minimum g⋆. Figure 3b shows the test statistic as
a function of the training epoch under different random network initializations. We observe that the test statistic consistently
reaches the same minimum and that the optimization stabilizes after 10000 epochs.

B.3. Interpretability of the testing procedure

Similar to the test proposed by Hussain et al. (2023), our testing procedure outputs a “witness function” that enables
practitioners to identify the most biased subgroups within the observational dataset. Additionally, our witness function
provides insights into the bias strength and direction for each subgroup. This is achieved by minimizing the objective in
Equation (4), where we learn the bias function ĝ. If the function class G is sufficiently rich to model the bias structure, and
the optimizer converges to the global minima, we expect ĝ to be a good approximation of g⋆.

To interpret this bias function, we observe that ĝ(X) ∈ [0, 1] interpolates between the tolerance bounds τos− (X) and τos+ (X);
therefore, values close to zero indicate a negative bias of magnitude close to user-tolerance δ, while values close to one
indicate the same for positive bias. Hence, we can estimate the subgroup bias as

bias(G) = δ̂LB

(
2

|G|
∑

Xi∈G

ĝ (Xi)− 1

)
, (15)

where G represents the subgroup of interest. In Figure 4, we illustrate how practitioners could use the witness function for
Scenario 2, where the categorical nature of the features defines subgroups. We compare the estimated bias with the ground
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truth and observe that our estimates closely align with the true bias model. In scenarios where subgroups are not predefined,
a practitioner can select the bottom or top 10% of witness function values, as suggested by Hussain et al. (2023).

However, it is important to note that, unlike the approach by Hussain et al. (2023), we do not have guarantees for the
correctness of the witness function, i.e. we cannot guarantee that ĝ → g⋆. Therefore, any claims based on it should be
approached cautiously and contrasted with domain expertise.
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(b) True bias model

Figure 4. Comparison between the estimated and true bias models for Scenario 2. Our estimates of the bias from Equation (15) closely
align with the true bias. We run the test with a random seed, using the same hyperparameters as in our experimental evaluation, and set
the user tolerance to δ = 57.
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C. Experimental details
C.1. Hillstrom’s MineThatData

Hillstrom’s MineThatData Email dataset (Hillstrom, 2008) is a large-scale, real-world randomized trial that contains records
of 64,000 customers who made purchases online within the last twelve months. They were part of an email campaign
designed to assess the effectiveness of different campaign strategies. Two treatment groups, “Men’s” and “Women’s” email
campaigns, and a control group were established, with treatments randomly assigned. Our analysis primarily focuses on
a combined treatment group, which constitutes approximately 66% of the dataset. Although the original dataset presents
various outcomes, including binary indicators of customers visiting or purchasing in the days after the campaign, we
focus on the dollars spent in the two weeks post-campaign. The dataset provides data on annual spending (history),
merchandise type (mens and womens), geographical location (zip code), newcomer status (newbie), and purchasing
avenues (channel). We, therefore, discard features describing the history segment (history segment) and recency
of the last purchase (recency). Since the average treatment effect is close to zero, we add a constant shift of 30 to all
treated individuals, allowing us more flexibility to introduce bias. We normalize continuous features and one-hot-encode
categorical features, resulting in a 13-dimensional dataset. By default, we use 80% of the full dataset as the observational
study (os), and the remaining 20% as the randomized controlled trial (rct).

We fit the propensity score using logistic regression with default hyperparameters from scikit-learn. We
train a Random Forest Classifier for the selection score (rct or os), also with default hyperparameters from
scikit-learn. Finally, we estimate the CATE functions using the doubly-robust learner from Kennedy (2023), instanti-
ating Random Forest Regressors for the potential outcome functions and the pseudo-outcome regression, fixing
hyperparameters to 300 tree estimators with a maximum depth of 6.

Bias models We illustrate the bias model for Scenario 2 and Scenario 3 in Figure 5. For scenario 3, we sample the
coefficient for the polynomial bias model in Figure 5a from a normal distribution N (0, 0.012).

0 1 2
Channel

00
01

10
11

Ne
wb

ie
-M

en
s

2% 10% 10%

3% 12% 12%

3% 10% 9%

5% 12% 12% 40

20

0

20

40

60

Bi
as

 V
al

ue

(a) Scenario 2

25% 50% 75%
History (quantiles)

0
1

Ne
wb

ie

50

0

50

Bi
as

 V
al

ue

(b) Scenario 3

Figure 5. Heatmap visualizations of the bias for (a) Scenario 2 based on 12 subgroups with different biases (the numbers in the cells
represent the percentage w.r.t. the full observational dataset), and (b) Scenario 3 based on a quadratic polynomial bias.

Implementation We use the Laplacian kernel with a scale of 1.0 to compute our test statistic ϕ̂CATE. We perform gradient
descent for 6000 epochs using the Adam optimizer from the JAX-based library optax with its default hyperparameters and
record the smallest test statistic. As function class G, we consider linear functions and two multilayer perceptrons (MLPs),
one small and one large, with hidden layer widths of 10 and 100-50-10-5 neurons, respectively. For the linear function
and the small MLP, we set the learning rate to 0.1, and for the large MLP, we set it to 0.01. For the test ϕ̂ATE, we use 500
bootstrap samples to estimate the variance of the test statistic.

C.2. Women’s Health Initiative

The Women’s Health Initiative (WHI) is a long-term national health study that has focused on strategies for preventing the
major causes of death, disability, and frailty in older women, specifically heart disease, cancer, and osteoporotic fractures.
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This multi-million dollar, 20+ year project, sponsored by the National Institutes of Health (NIH) and the National Heart,
Lung, and Blood Institute (NHLBI), initially enrolled 161,808 women aged 50-79 between 1993 and 1998. The WHI was
one of the most definitive, far-reaching clinical trials of post-menopausal women’s health ever undertaken in the US.

The WHI had two major parts: a randomized trial and an observational study. The randomized trial enrolled 68,132
women in trials testing three prevention strategies. Eligible women could choose to enroll in one, two, or three of the trial
components.

• A Hormone Therapy Trial (HT) that examined the effects of combined hormones or estrogen alone on the prevention of
heart disease and osteoporotic fractures and associated risk for breast cancer.

• A Dietary Modification Trial (DM) that evaluated the effect of a low-fat and high-fruit, vegetable, and grain diet on
preventing breast and colorectal cancers and heart disease.

• A Calcium and Vitamin D Trial (CaD) that evaluated the effect of calcium and vitamin D supplementation on preventing
osteoporotic fractures and colorectal cancer.

The Observational Study (OS) examines the relationship between lifestyle, health risk factors, and disease outcomes. This
component involves tracking the medical events and health habits of 93,676 women. Recruitment for the observational
study was completed in 1998, and participants have been followed since.

We use observational study and randomized trial data from the Women’s Health Initiative (WHI) to assess our method
in a real-world scenario. We use the Hormone Therapy (HT) trial as the RCT in our analysis (nrct = 16, 608), run on
postmenopausal women aged 50-79 years with an intact uterus. The trial investigated the effect of hormone therapy on
several types of cancers, cardiovascular events, and fractures, measuring the “time-to-event” for each outcome. In the WHI
setup, the observational study component was run in parallel, and outcomes were tracked similarly to those of the RCT.

Data preprocessing We binarize a composite outcome, where Y = 1 if coronary heart disease was observed
in the first seven years of follow-up, and Y = 0 otherwise. To establish treatment and control groups in the
observational study, we use questionnaire data in which participants confirm or deny usage of combination hor-
mones (i.e. both estrogen and progesterone) in the first three years. Using this procedure, we end up with a to-
tal of nos = 33, 511 patients. Finally, we restrict the set of covariates used to those that are measured in both
the RCT and the observational study. In particular, we use as covariates only those measured in both the RCT
and observational study, and we further restrict them to those identified as significant in epidemiological literature,
such as in (Prentice et al., 2005). Specifically, the covariates in our analysis are: AGE, ETHNIC White, BMI,
SMOKING Past Smoker, SMOKING Current Smoker, EDUC x College graduate or Baccalaureate
Degree, EDUC x Some post-graduate or professional, MENO, PHYSFUN. The data used is available on
BIOLINCC.

Experimental details We use a gaussian kernel with bandiwidth = 1.0. The set of features for the granularity of the
test is chosen to be J = {AGE,MENO}. We use a logistic regression model for both the outcome model and propensity
score (default hyperparameters in scikit-learn were used). We train a neural (1 hidden layer and 10 neurons) network
with Adam, with a learning rate of 0.01 for 500 epochs. We repeat the optimization for 10 seeds with different
initializations to ensure that we converge.

(https://biolincc.nhlbi.nih.gov/studies/whi_ctos)

