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ABSTRACT

Robot learning increasingly relies on simulation to advance complex ability such
as dexterous manipulations and precise interactions, necessitating high-quality
digital assets to bridge the sim-to-real gap. However, existing open-source
articulated-object datasets for simulation are limited by insufficient visual realism
and low physical fidelity, which hinder their utility for training models mastering
robotic tasks in real world. To address these challenges, we introduce ArtVIP,
a comprehensive open-source dataset comprising high-quality digital-twin artic-
ulated objects, accompanied by indoor-scene assets. Crafted by professional 3D
modelers adhering to unified standards, ArtVIP ensures visual realism through
precise geometric meshes and high-resolution textures, while physical fidelity is
achieved via fine-tuned dynamic parameters. Meanwhile, the dataset pioneers
embedded modular interaction behaviors within assets and pixel-level affordance
annotations. Feature-map visualization and optical motion capture are employed
to quantitatively demonstrate ArtVIP’s visual and physical fidelity, with its ap-
plicability validated across imitation learning and reinforcement learning exper-
iments. Provided in USD format with detailed production guidelines, ArtVIP is
fully open-source, benefiting the research community and advancing robot learn-
ing research.

Figure 1: ArtVIP (Articulated Digital Assets of Visual Realism, Modular Interaction, and Physical
Fidelity for Robot Learning). The collection spans 9 categories, 37 subcategories, and 992 digital-
twin articulated objects. (a) Representative assets across categories and articulation types. (b)
High-fidelity physics enables realistic interactions; for example, when pushing an ergonomic
chair, its casters rotate accordingly. (c) Six sim-ready scenes in which all objects support real-
world–consistent interactions. (d) Pixel-level annotations and sim2real evaluations.
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1 INTRODUCTION

Embodied AI is catalyzing the transformation of robotic systems from constrained laboratory set-
tings (Billard & Kragic, 2019; Spong et al., 2020) to complex, unstructured real-world environ-
ments (Brohan et al., 2023b; Zhao et al., 2023; Brohan et al., 2023a). The emergence of large-scale
pretrained models (Zhang & Yan, 2023; Kim et al., 2024; Wang et al., 2024b) and novel learning
paradigms (Team, 2025; Intelligence, 2025) has ushered in a data-centric era. In this new era, the
availability of high-quality data is a critical bottleneck for developing scalable and generalizable
embodied intelligence.

While collecting data and deploy robots in real-world is resource-intensive and challenging to scale,
simulation provides an efficient alternative to enhance robot learning. Simulation supports imita-
tion learning by collecting unlimited and low-cost training data (Wu et al., 2024) and reinforcement
learning by providing virtual environments (Makoviychuk et al., 2021; Torne et al., 2024). Mean-
while, simulations enable rapid deployment and standardized test (Ramasubramanian et al., 2022;
Do et al., 2025) of algorithms without concerns about hardware damage or safety issues. Overall,
simulation facilitates the exploration of innovative strategies for robot learning.

High-quality digital assets are vital to simulation for robot learning. Simulation platforms (Koenig
& Howard, 2004; Todorov et al., 2012; Kolve et al., 2017; Makoviychuk et al., 2021; Puig et al.,
2023) depend on digital assets to accurately represent the real world digitally and to simulate its
physical characteristics (Choi et al., 2021). High-quality digital assets can effectively reduce the
sim-to-real gap, thereby enhancing the performance of robot learning algorithms. For instance,
digital-twin assets, which are virtual replicas created via reverse-modeling techniques, can benefit
pre-deployment validation and optimization of robotic systems (Straub et al., 2019; Ramakrishnan
et al., 2021). Moreover, high-quality digital assets can serve as training data or seed models for
synthetic-asset methods such as 3D reconstruction (Liu et al., 2023a; Li et al., 2020; Sun et al.,
2023; Liu et al., 2023b) and domain-randomization (Dai et al., 2024; Ge et al., 2024; Torne et al.,
2024) techniques, enhancing the data distribution and providing limitless diversity of objects and
environments. Conversely, utilizing poor-quality data for synthetic-data generation exacerbates the
sim-to-real gap and impair robot learning models (Schraml & Notni, 2024; Osvaldová et al., 2024;
Kim et al., 2022).

As robot learning turn form mastering simple tasks such as pick and grasp to dexterous manipula-
tion and interaction tasks, high quality articulated-object assets is of great demand. Current open-
source articulated-object datasets fail to meet the needs of robot learning. For instance, PartNet-
Mobility (Xiang et al., 2020) suffers from limited visual realism and insufficient physical fidelity
of dynamic joints. BEHAVIOR-1K (Li et al., 2024a) offers better visual fidelity, but it is locked
into the OmniGibson simulator (Li et al., 2024a) and its physical parameters have not been fine-
tuned. Moreover, both datasets are largely sourced from internet-searchable 3D model reposito-
ries (Inc., 2024a;b) without adhering to consistent modeling standards, leading to inconsistency in
quality. Apart from using existing datasets, people attempts to obtain simulation assets in other
ways, facing further challenges. Retrieval-based methods (Liu et al., 2024b;a) and reconstruction
techniques (Chen et al., 2024; Eppner et al., 2024) often inherit stylistic biases from their train-
ing data and have limited geometric generalization. More recent pipelines (Qiu et al., 2025; Mandi
et al., 2024; Le et al., 2025) introduce promising directions, yet face challenges such as mesh quality
variance, segmentation noise, and lack of robust joint parameter tuning.

The main bottleneck for articulated object datasets lies in asset quality rather than quantity; to this
end, we identify four key aspects that require careful consideration.

• Visual Realism. Assets should be constructed with precise geometric meshes and high-resolution
textures to ensure a photorealistic appearance. The amount of triangular faces should be optimized
to guarantee real-time simulation performance.

• Modular Interaction. Assets should support interactivity (e.g., toggling a switch to turn on a
light). These interactions should be modular to enable reuse across scenarios.

• Physical Fidelity. Accurate collision geometry and joint dynamics (stiffness, damping, friction)
of articulated assets are essential for simulated motion to faithfully reproduce real-world kinemat-
ics and dynamics.
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• Simulation Friendliness. Information expanding simulation usages such as pixel-level affor-
dance annotations and accompanied scenes are encouraged. Meanwhile, open-source assets com-
patible to various simulation platforms and replicable asset creation process should be provided.

To meet the mentioned requirements, we introduce ArtVIP, a high-quality and readily deployable
suite of Articulated-object digital assets with Visual realism, modular Interaction, and Physical
fidelity, designed to facilitate the learning and evaluation of diverse manipulation skills such as ro-
tating, clicking, pulling, and pressing. As illustrated in Fig. 1, ArtVIP encompasses both articulated
object models and complementary indoor-scene assets, all meticulously authored by professional 3D
modelers under a unified asset specification to ensure consistent visual quality and realism. Physi-
cal properties are precisely tuned to reproduce real-world dynamics, thereby enhancing the physical
fidelity. Furthermore, ArtVIP provides pixel-level affordance annotations and uniquely embeds in-
teraction semantics directly into the assets, enabling modular reuse and scalable behavior modeling.

In conclusion, ArtVIP offers the following contributions:

• We release a collection comprising 9 categories, 37 subcategories, and 992 high-quality digital-
twin articulated objects. All assets exhibit both visual realism and physical fidelity, supported by
quantitative evaluations.

• We provide digital-twin scene assets and configured scenarios integrating articulated objects
within scene for immediate use. Extensive experiments on imitation learning, reinforcement
learning, and 3D construction algorithms demonstrate the broader applicability of the assets.

• All assets are provided in the modern USD format and remain compatible with established
robotics workflows via conversion to legacy formats such as URDF or MJCF. The detailed pro-
duction process offer comprehensive guidance to facilitate community adoption and replication.

2 RELATED WORKS

Simulation Platforms. A typical simulation planform integrates a physics engine (Smith et al.,
2005; Todorov et al., 2012; Coumans & Bai, 2016; Corporation, 2025; Tasora et al., 2016) and a
rendering engine (Matl, 2019; Chociej et al., 2019; Rojtberg, Pavel and Rogers, David and Streeting,
Steve and others, 2001 – 2024). Game engines (Technologies, 2025.05.14; Games, 2025) offer simi-
lar features but do not natively support ROS (Quigley et al., 2009; Macenski et al., 2022) for robotics.
MuJoCo (Todorov et al., 2012) and Webots (Webots, 2018) excel in simulating rigid body and multi-
joint dynamics but prioritize computational efficiency over high-fidelity rendering. Gazebo (Koenig
& Howard, 2004), despite its large community and robust integration with ROS, provides out-
dated rendering performance and exhibits lower accuracy in physical simulation. Frameworks like
AI2THOR (Kolve et al., 2017), Habitat (Savva et al., 2019; Szot et al., 2021; Puig et al., 2023) and
ALFRED (Shridhar et al., 2020) are designed for mobile manipulation and instruction-following,
fail to deliver precise physical interactions. In contrast, Isaac Sim (Nvidia, 2025.05.14) offers the
highest-fidelity visual rendering and leverages powerful GPU-parallel physics computation, making
it well-suited for robot learning. Other platforms, such as RoboCasa (Nasiriany et al., 2024) (built
upon MuJoCo) and OmniGibson (Li et al., 2024a) (built upon Isaac Sim), have become challeng-
ing to maintain. Consequently, we developed ArtVIP specifically for Isaac Sim to capitalize on its
superior rendering and physics capabilities.

Datasets for Robot Simulation. Many datasets provide digital assets suitable for robot simula-
tion. Indoor-scene assets (Straub et al., 2019; Shen et al., 2021; Ramakrishnan et al., 2021; Li
et al., 2022) contribute significantly to robot navigation tasks but lacking support for graphical
user interface (GUI)-based editing. Object digital assets includes ShapeNet (Chang et al., 2015),
Objaverse (Deitke et al., 2023) and other digital-twin datasets (Kuang et al., 2023; Dong et al.,
2025). However, these assets can only function as rigid bodies in simulations, preventing robots
from performing articulated manipulation tasks with them. Limited studies addressed articulated
object assets. PartNet-Mobility (Xiang et al., 2020) provides 2,346 articulated-object assets across
46 categories, with many assets suffering from unsmoothed geometric surfaces, low rendering qual-
ity, and imprecise dynamic joint. RoboCasa (Nasiriany et al., 2024) offers 2,508 digital assets, but
only 24 are articulated objects. BEHAVIOR-1K (Li et al., 2024a) includes 543 articulated-object
assets with improved visual fidelity, yet all assets are encrypted and accessible only through Om-
niGibson. These limitations underscore the need for a high-quality, open-source articulated-object
dataset.
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Figure 2: An asset in ArtVIP. Left: Top-down assembly principle. Middle: Assembly process.
Right: Comparison between the real object (a) with its digital-twin (b), and annotations (c).

Articulated Objects Construction and Generation Methods. Construction methods (Liu et al.,
2024a; Chen et al., 2024; Su et al., 2024; Xue et al., 2021; Wang et al., 2024a) can generate articu-
lated objects from images and reduce the labor cost. However, these methods perform reliably only
on objects with simple joints, such as cabinets and desks, and produce assets with compromised
visual realism. Generative methods (Yang et al., 2022; Liu et al., 2023c; Long et al., 2023; Xu et al.,
2023; Koo et al., 2024), are currently limited to static rigid-body objects. These assets often exhibit
distorted and unreasonable meshes, coupled with poor rendering quality. The absence of support for
articulated objects in generative methods further limits their applicability to robot learning tasks.

3 ARTVIP COLLECTION AND METHODOLOGY

Existing datasets are largely sourced from pre-made models from public repositories. This leads
to inconsistent modeling quality, disorganized part hierarchies, and non-standardized coordinate
systems, all of which typically require manual preprocessing for simulation use. While current gen-
erative and reconstruction methods can easily scale up, they are still not mature enough to ensure
quality. Given these constraints, we opted to prioritize fidelity over scale at this stage. ArtVIP em-
phasizes both visual realism and physical fidelity across a comprehensive collection of articulated
objects. It covers 9 categories and 37 subcategories, encompassing 992 articulated assets (see Ap-
pendix Sec. A). Complementary sim-ready scenes (see Appendix Sec. B) and pixel-level annotations
(see Appendix Sec. C) are also provided.

3.1 VISUAL REALISM

To ensure visual realism, professional 3D modelers follow unified modeling and assembly guidelines
when manually crafting articulated objects. As shown in Fig. 2, we adopt a top-down mechanical
modeling approach that decomposes each articulated object into three hierarchical levels: assembly,
module, and mesh. An assembly constitutes the complete functional unit, encompassing multiple
modules and meshes. Modelers first establish the assembly’s base coordinate frame at the geomet-
ric center of the object’s bottom surface. Guided by the assembly’s affordances, functionality, and
joint locations, they partition it into rigid-body modules of the Xform type, which expose dynamic
information such as transforms, velocities, and world coordinates. Each rigid-body module contains
mesh parts that provide geometric detail, visual appearance, and static physical properties, including
collision shapes and mass. Modelers follow strict rules regarding meshes, textures, and materials
(see Appendix Sec. D) to ensure visual realism. After modeling individual meshes, they assemble
them bottom-up—mesh, module, assembly—and integrate dynamic motion by connecting modules
with joints (middle panel of Fig. 2), ensuring the asset preserves intended affordances and appear-
ance. Finally, for the finished asset (right panel of Fig. 2), each module is annotated with pixel-level
labels to enable precise identification of interaction affordances.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 PHYSICAL FIDELITY

In addition to visual realism, physical fidelity plays a critical role in reducing the sim-to-real gap.
Optimized collision modeling ensures accurate rigid-body contact, improving precision in tasks
such as grasping handles and other force-mediated contact scenarios. Similarly, joint optimization
yields precise joint dynamics, improving the fidelity of articulated components’ motion trajectories
during fine-grained operations (e.g., opening cabinet doors or pressing switches). ArtVIP adopts the
following processes.

Collision. To strike a balance between physical fidelity, interaction consistency, and computational
efficiency, ArtVIP represents each mesh’s collision shape using a mix of convex hulls, convex de-
composition, and fine-tuned collision meshes. For relatively regular or simple geometry, ArtVIP
relies on Isaac Sim’s default convex hull generation. When a complex mesh can be decomposed
without sacrificing its affordance, 3D modelers split its collision volume into multiple primitive
meshes (e.g., cubes, cylinders). If neither a convex hull nor fine-tuned collision suffices, ArtVIP
employs Isaac Sim’s built-in convex decomposition tool, which leverages mesh normals and related
methods to produce accurate collision geometry.

Joints. To achieve physical fidelity of dynamic joints and simulate variable joint motions in the real
world, we enhance the joint drive equation (NVIDIA, 2025) originally provided by Isaac Sim:

τ = K(q) · (q − qtarget(q)) +D · (q̇ − q̇target(q)) (1)

where τ denotes the generalized force or torque applied to drive the joint; q and q̇ are the joint
position and velocity, respectively; D denotes damping; and K denotes stiffness. While this equa-
tion models basic joint motions, it does not fully capture complex joint dynamics observed in the
real world. For complex joints such as door closers and light switches, τ may vary with q and q̇.
To accommodate these cases, we parameterize K and the target terms as functions of q, and allow
dependence on q̇ when needed. The details are described in the Appendix Sec. E.

3.3 MODULAR INTERACTION

A key innovation of this work is embedding customizable behaviors directly within each asset to
enable interactive functionality without writing additional code.

Reproducing complex interactions. We abstract five canonical behavior primitives (Fig. 3) for
articulated objects and instantiate them across ArtVIP, covering 394 assets and more than 900 joints.

• Latching/magnetic closure: Simulates automatic self-closing when the articulation enters a cap-
ture angle range, driven by magnetic attraction or mechanical spring/closer assemblies; once cap-
tured, a closing torque is applied until fully latched. Examples include refrigerator doors (self-
closing hinge with magnetic gasket) and doors equipped with overhead closers.

• Damping: Simulates sliding components and rotational hinges whose effective damping peaks
near the closed position and varies smoothly along the motion, enabling gentle starts and stops.
Examples include nightstand drawers, dishwashers, and cabinets.

Figure 3: Green arrows denote applied force, yellow dashed lines indicate object motion, and blue
arrows show damping. From left to right: (i) latching/magnetic closure — the door automatically
closes when near shut; (ii) damping — the damping magnitude increases as the drawer is pushed in;
(iii) cross-asset effects — triggering the switch opens the door; (iv) within-asset effects — pressing
the microwave button opens the door and turns on the interior light; (v) hover/hold position — the
oven door can hold at any angle.
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• Cross-asset effects: Simulates trigger-based coupling between distinct objects, allowing one ob-
ject’s state or event to drive another’s behavior. Examples include button-triggered door opening
and light switching.

• Within-asset effects: Simulates instantaneous, mechanism-internal triggers. For example, press-
ing a microwave button pops the door open; similar behaviors occur in foot-pedal trash bins and
height-adjustable desks.

• Hover/hold position: Simulates static-friction-mediated holding in sliding or rotational joints so
that, once external forces are removed, the mechanism can remain at any intermediate pose. Ex-
amples include oven doors and drawers.

Improving asset reusability. Enhancing simulation development efficiency hinges on modulariz-
ing digital assets and maximizing their reusability. Our approach binds behaviors to assets at design
time: researchers and artists can simply import the USD file and instantly obtain interaction af-
fordances. This modular, reusable design reduces development overhead and accelerates algorithm
iteration, allowing researchers to focus on advancing embodied AI rather than asset programming.

4 EVALUATION

We evaluate ArtVIP along two axes: visual realism and physical fidelity, using quantitative compar-
isons in simulation and the real world.

4.1 VISUAL REALISM EVALUATIONS

A comparative analysis is conducted among ArtVIP, BEHAVIOR-1K, and PartNet-
Mobility(detailed chart in the Appendix Sec. F). As shown on the right of Fig. 4, both BEHAVIOR-
1K and PartNet-Mobility exhibit distorted geometry and implausible appearance. In addition, we
quantify geometric detail via triangle count, evaluate reconstruction performance, and visualize
feature distributions to assess visual realism.

Geometric Detail. Meshes built from densely triangular faces preserve the core geometric detail.
A high count of triangular faces improves surface smoothness and minimizes faceting. The left
of Fig. 4 illustrates the comparison results on object categories that appear in all three datasets,
demonstrating the rich geometric detail in ArtVIP. More analysis and relative profiling are in the
Appendix Sec. G.

Reconstruction Performance Evaluation. To assess differences in reconstruction quality across
data assets, we conducted experiments using VGGT (Wang et al., 2025), a widely adopted method
that has demonstrated strong generalization in real-world reconstruction tasks. Using identical
multi-view sampling strategies on the OmniGibson and ArtVIP assets, we generated reconstruc-
tion inputs, with results shown on the left portion of Fig. 5. Reconstructions from ArtVIP assets
exhibit higher structural fidelity and finer detail preservation compared to those from OmniGibson.
This suggests that ArtVIP’s more realistic geometry and material representation enhance the quality
and compatibility of sampled images for reconstruction tasks. The results underscore the role of
high-fidelity assets in supporting viewpoint diversity and accurate structure recovery.

ArtVIPPartNet-Mobility

Visual Realism

Behavior-1k

Low High

Figure 4: Left: Comparison of triangle count. Right: Rendering comparison.
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Figure 5: Left: Reconstruction of a microwave. OmniGibson yields poor results due to weak visual
appearance, while ArtVIP enables better reconstruction via more realistic details. Right: CLIP-
based (Radford et al., 2021) feature distribution. Each color denotes a data source and ArtVIP
features align more closely with real-world data.

virtual marker
上

Figure 6: Left: Digital-twin asset examples in real-world and simulation. Right: Analysis of the
drawer’s displacement driven by different forces.

Feature Distribution Visualization Analysis. To verify the visual realism of ArtVIP assets, we
randomly sampled 100 3D models and selected corresponding or semantically similar objects from
OmniGibson and the real world for comparison. Real-world images were captured using three
devices (an Android phone, an iPhone, and an Intel RealSense D435) under multi-view settings.
In Isaac Sim, we rendered samples of the ArtVIP and OmniGibson assets using matched camera
viewpoints to ensure consistency across domains. We applied t-SNE (Van der Maaten & Hinton,
2008) to visualize the extracted CLIP (Radford et al., 2021) features. As shown on the right portion
of Fig. 5, ArtVIP features align more closely with real-world data, indicating higher consistency in
visual semantics, texture, and material. This fidelity enhances the value of ArtVIP for simulation-
to-reality transfer in downstream tasks.

4.2 PHYSICAL FIDELITY AND INTERACTION EVALUATIONS

To demonstrate the physical fidelity of joint motion within articulated objects, we employed an
optical tracking system (0.1 mm spatial resolution and 90 Hz sampling rate) to record motion tra-
jectories of joints on real-world objects. These recordings were compared with the joint motions
of their corresponding digital-twin articulated objects in simulation to evaluate the discrepancy be-
tween simulated and real-world joint behavior. We test in a common scenario where joint motion
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Figure 7: Experimental Setup. We conducted 4 real-world tasks for imitation learning.

triggered by external force. More setting descriptions and evaluation results are described in the
Appendix Sec. H.

As shown in Fig. 6, in the real-world experiment, horizontal pulling forces of 1 N, 1.5 N, 2 N,
and 2.5 N were applied to the drawer by suspending calibrated weights from the end of the fixed
pulley system, ensuring consistent force direction. The drawer’s displacement in the XY plane was
recorded in real time. In the simulation environment, two configurations were evaluated: one with
default joint parameters and the other with optimized parameters. Both were subjected to the same
force configuration as the real-world setup, and the spatial trajectories of the drawer’s keypoints
were tracked. The close agreement between the displacement obtained from simulation and real-
world experiments, as shown in the right of Fig. 6, demonstrates the physical fidelity of the joints in
ArtVIP.

5 APPLICATIONS

To further verify the capability of ArtVIP in supporting downstream robotic learning tasks, we
conducted extensive experiments in both the real-world and simulated environments following two
primary paradigms in robotic learning: Imitation Learning and Reinforcement Learning.

5.1 IMITATION LEARNING IN REAL WORLD ENVIRONMENTS

Experimental Setup. As illustrated in Fig. 7, we used a Franka robotic arm equipped with a Robotiq
2F-85 gripper and four RealSense cameras to create the real-world experimental environment. These
cameras include three external RealSense D457 cameras (placed on the left, right, and top of the
table) and one hand-eye RealSense D435i camera mounted at the wrist of the robotic arm. For
simulation, we used Isaac Sim and replicated this real-world setup, including the Franka robotic
arm, the operating table, camera settings, and the manipulated objects from ArtVIP. We constructed
the simulated scene to match the real-world experiment environment as closely as possible.

Task Design and Data Collection. As shown in Fig. 7, we design four challenging articulated-
object manipulation tasks: (1) PullDrawer, (2) OpenCabinet, (3) SlideShelf, and (4) CloseOven.
These tasks demand precise and flexible motions, including rotation, angled pushing, and horizontal
translation (see Appendix Sec. I). Data was collected via teleoperation in both real and simulated
environments, where articulated objects were randomly placed within a predefined workspace and
human operators completed each task. For each task, we gathered 100 successful trajectories in
the real world and 100 in simulation. Each trajectory includes RGB streams from four camera
viewpoints and full proprioceptive robot states (e.g., joint positions) throughout execution.

Imitation Learning Algorithm. We used two canonical imitation learning baselines, Action
Chunking Transformer (ACT) (Zhao et al., 2023) and Diffusion Policy (DP) (Chi et al., 2023),
to train the robotic policies for the articulated object manipulation task (more details in Appendix
Sec. I).

Experimental Results on Imitation Learning. For each of the four articulated-object manipu-
lation tasks, we trained ACT and DP under the following dataset settings: (1) Real-Only (RO):
100 real-world trajectories; (2) Sim-Only (SO): 100 simulated trajectories; (3) Real–Sim–Mixed
(RSM100+10/20/50/100): 100 real-world + 10, 20, 50, 100 simulated trajectories. For each experi-
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Table 1: Success rates of ACT and DP across dataset settings: RO (real-only), SO (sim-only), and
RSM variants for all tasks.

Method Dataset PullDrawer OpenCabinet SlideShelf CloseOven

ACT (Zhao et al., 2023)

RO 64% 34% 27% 58%
SO 39% 12% 13% 23%

RSM100+10 64% 36% 26% 59%
RSM100+20 68% 38% 27% 60%
RSM100+50 78% 44% 32% 66%
RSM100+100 81% 46% 36% 68%

DP (Chi et al., 2023)

RO 66% 49% 44% 66%
SO 20% 10% 18% 28%

RSM100+10 65% 53% 47% 67%
RSM100+20 69% 58% 53% 70%
RSM100+50 73% 62% 56% 73%
RSM100+100 79% 66% 59% 78%

ment, we trained ACT and DP for 50k gradient descent iterations with three different random seeds,
and evaluated the final checkpoint from each run with 60 rollouts to compute per-task success rates.

Tab. 1 summarizes success rates for ACT and DP under three dataset settings (RO, SO, RSM). We
highlight three findings: (1) Simulation-trained models achieve zero-shot success in the real
world (e.g., ACT 39% on PullDrawer), reflecting ArtVIP’s high-fidelity visuals and physics that
reduce the sim-to-real gap. (2) With equal data volume, real-world training outperforms simula-
tion (e.g., DP 49% vs. 10% on OpenCabinet), underscoring persistent sim-to-real challenges. (3)
Mixing real and simulated data boosts performance (e.g., SlideShelf: DP from 44% to 59%),
indicating that articulated assets in ArtVIP align well with real-world data distributions.

Figure 8: We collect data on five microwaves each from ArtVIP and PartNet-Mobility.

5.2 COMPARISON WITH OTHER ASSETS VIA IMITATION LEARNING.

To validate the quality of assets in ArtVIP with other datasets, we conduct a digital-cousin compari-
son against PartNet-Mobility. We select five microwave ovens from PartNet-Mobility and five from
ArtVIP. We select microwaves with pull-to-open doors and deliberately exclude button-triggered
opening, as it is operationally trivial. We collect data via teleoperation following the same proce-
dure as in the digital-twin experiments mentioned before, obtaining 100 simulated trajectories per
microwave (500 in total). For the real-world task, we purchase an unseen microwave oven for which
neither PartNet-Mobility nor ArtVIP provides a corresponding digital-twin model. We train ACT
and DP under the following dataset settings: (1) Real-Only (RO): 100 real-world trajectories; (2)
Sim-Only (SO): 500 simulated trajectories; (3) Real–Sim–Mixed (RSM100+500): 100 real-world
+ 500 simulated trajectories. All runs use the same training hyperparameters.

Tab. 2 summarizes success rates across three dataset settings. We highlight: higher-quality ArtVIP
assets yield stronger zero-shot sim-to-real transfer under SO and higher success under RSM,
supporting the conclusion that higher-quality assets reduce the sim-to-real gap and lead to higher
success rates.
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Table 2: Success rates of ACT and DP across dataset settings: RO (real-only), SO (sim-only), and
RSM100+500, comparing ArtVIP and PartNet-Mobility on the microwave door-pull task.

Method Dataset ArtVIP PartNet-Mobility

ACT
RO 56%
SO 41% 32%
RSM100+500 79% 68%

DP
RO 62%
SO 45% 35%
RSM100+500 83% 70%

5.3 REINFORCEMENT LEARNING IN HIGH-FIDELITY SIMULATORS

Reinforcement learning (RL) requires training environments that mirror real-world physical and
perceptual complexity. To validate the quality of articulated assets in ArtVIP, we designed a Clos-
eTrashcan task with a Franka robotic arm and trained a two-stage agent with the state-of-the-art
visual RL framework EAGLE (Zhao et al., 2025) in Isaac Sim (see Appendix Sec. J).

Table 3: Sim vs. real performance across training checkpoints (k iterations).

Checkpoint (k) 500 450 400 350 300
Sim 0.98 0.91 0.85 0.81 0.73
Real 0.93 0.86 0.80 0.70 0.60

EAGLE enables efficient training of visuomotor policies. In Stage 1, we train a PPO expert (Schul-
man et al., 2017) with low-level state inputs. In Stage 2, we distill this expert into a visuomotor
policy, applying EAGLE’s self-supervised attention masks and control-aware augmentation. Ran-
domConv (Lee et al., 2019) is used to diversify control-irrelevant backgrounds. To bridge the back-
ground visual gap between simulation and the real world, we adopt the Visual Matching technique
introduced in (Li et al., 2024b).

We train the RL policy in simulation and then deploy it in the real world on the same task, ensuring
sim-to-real visual consistency. Tab. 3 reports success rates at five checkpoints between 300k and
500k training iterations, each evaluated with 100 simulation trials and 30 real-world trials under di-
verse initial object poses. The RL policy trained in ArtVIP exhibits an absolute sim-to-real success
rate gap of 0.05, indicating that ArtVIP provides high physical fidelity and visual realism. Follow-
ing (Li et al., 2024b), we compute the Pearson correlation coefficient from the success rates in Tab. 3
as

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
,

where xi and yi denote the corresponding success rates in simulation and the real world at the i-th
checkpoint. A high Pearson correlation indicates a strong linear relationship between simulated and
real-world performance. The value r = 0.9886 using data from Tab. 3 shows that ArtVIP provides
a reliable simulated training and evaluation pipeline for RL.

6 LIMITATION AND CONCLUSION

We introduced ArtVIP, a high-quality dataset of articulated objects for robotic manipulation, featur-
ing visual realism, accurate physical properties, and modular interaction capabilities. We validated
its quality via diverse evaluations and demonstrated effectiveness in both imitation learning and
reinforcement learning. Scaling remains bottlenecked by intensive human labor for asset model-
ing; future work will explore generative methods to automate synthesis, reduce manual effort, and
broaden object diversity.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Aude Billard and Danica Kragic. Trends and challenges in robot manipulation. Science, 364:
eaat8414, 2019.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choroman-
ski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control, 2023a.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale, 2023b.

Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An information-rich 3d
model repository. arXiv preprint arXiv:1512.03012, 2015.

Zoey Chen, Aaron Walsman, Marius Memmel, Kaichun Mo, Alex Fang, Karthikeya Vemuri, Alan
Wu, Dieter Fox, and Abhishek Gupta. Urdformer: A pipeline for constructing articulated simula-
tion environments from real-world images. arXiv preprint arXiv:2405.11656, 2024.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The
International Journal of Robotics Research, pp. 02783649241273668, 2023.

Maciek Chociej, Peter Welinder, and Lilian Weng. Orrb – openai remote rendering backend, 2019.
URL https://arxiv.org/abs/1906.11633.

HeeSun Choi, Cindy Crump, Christian Duriez, Asher Elmquist, Gregory Hager, David Han, Frank
Hearl, Jessica Hodgins, Abhinandan Jain, Frederick Leve, et al. On the use of simulation in
robotics: Opportunities, challenges, and suggestions for moving forward. Proceedings of the
National Academy of Sciences, 118:e1907856118, 2021.

NVIDIA Corporation. Nvidia physx sdk, 2025. URL https://developer.nvidia.com/
physx-sdk.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning, 2016.

Tianyuan Dai, Josiah Wong, Yunfan Jiang, Chen Wang, Cem Gokmen, Ruohan Zhang, Jiajun Wu,
and Li Fei-Fei. Automated creation of digital cousins for robust policy learning. In 8th Annual
Conference on Robot Learning, 2024.

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of anno-
tated 3d objects. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 13142–13153, 2023.

Tan-Dzung Do, Nandiraju Gireesh, Jilong Wang, and He Wang. Watch less, feel more: Sim-to-real
rl for generalizable articulated object manipulation via motion adaptation and impedance control.
arXiv preprint arXiv:2502.14457, 2025.

Zhao Dong, Ka Chen, Zhaoyang Lv, Hong-Xing Yu, Yunzhi Zhang, et al. Digital twin catalog: A
large-scale photorealistic 3d object digital twin dataset, 2025.

Jonathan Embley-Riches, Jianwei Liu, Simon Julier, and Dimitrios Kanoulas. Unreal robotics lab:
A high-fidelity robotics simulator with advanced physics and rendering, 2025.

Clemens Eppner, Adithyavairavan Murali, Caelan Garrett, Rowland O’Flaherty, Tucker Hermans,
Wei Yang, and Dieter Fox. scene synthesizer: A python library for procedural scene generation
in robot manipulation. Journal of Open Source Software, 2024.

Epic Games. Unreal engine, 2025. URL https://www.unrealengine.com.

11

https://arxiv.org/abs/1906.11633
https://developer.nvidia.com/physx-sdk
https://developer.nvidia.com/physx-sdk
https://www.unrealengine.com


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yunhao Ge, Yihe Tang, Jiashu Xu, Cem Gokmen, Chengshu Li, Wensi Ai, Benjamin Jose Martinez,
Arman Aydin, Mona Anvari, Ayush K Chakravarthy, et al. Behavior vision suite: Customizable
dataset generation via simulation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 22401–22412, 2024.

Xiaoshen Han, Minghuan Liu, Yilun Chen, Junqiu Yu, Xiaoyang Lyu, Yang Tian, Bolun Wang,
Weinan Zhang, and Jiangmiao Pang. Re3sim: Generating high-fidelity simulation data via 3d-
photorealistic real-to-sim for robotic manipulation, 2025.

Trimble Inc. 3d warehouse, 2024a. URL https://3dwarehouse.sketchup.com/. Online
3D model repository for SketchUp.

TurboSquid Inc. Turbosquid, 2024b. URL https://www.turbosquid.com/. Professional
3D model marketplace.

Physical Intelligence. π0.5: a vision-language-action model with open-world generalization, 2025.

Alexander Kim, Kyuhyup Lee, Seojoon Lee, Jinwoo Song, Soonwook Kwon, and Suwan Chung.
Synthetic data and computer-vision-based automated quality inspection system for reused scaf-
folding. Applied Sciences, 12(19), 2022. ISSN 2076-3417. doi: 10.3390/app121910097. URL
https://www.mdpi.com/2076-3417/12/19/10097.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, et al. Openvla:
An open-source vision-language-action model, 2024.

Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo, an open-source multi-
robot simulator. In IEEE/RSJ International Conference on Intelligent Robots and Systems, vol-
ume 3, pp. 2149–2154, 2004.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Daniel
Gordon, Yuke Zhu, Abhinav Gupta, and Ali Farhadi. AI2-THOR: An Interactive 3D Environment
for Visual AI. arXiv, 2017.

Juil Koo, Seungwoo Yoo, Minh Hieu Nguyen, and Minhyuk Sung. Salad: Part-level latent diffusion
for 3d shape generation and manipulation, 2024. URL https://arxiv.org/abs/2303.
12236.

Zhengfei Kuang, Yunzhi Zhang, Hong-Xing Yu, Samir Agarwala, Elliott Wu, Jiajun Wu, et al.
Stanford-orb: a real-world 3d object inverse rendering benchmark. Advances in Neural
Information Processing Systems, 36:46938–46957, 2023.

Long Le, Jason Xie, William Liang, Hung-Ju Wang, Yue Yang, Yecheng Jason Ma, Kyle Vedder,
Arjun Krishna, Dinesh Jayaraman, and Eric Eaton. Articulate-anything: Automatic modeling
of articulated objects via a vision-language foundation model, 2025. URL https://arxiv.
org/abs/2410.13882.

Kimin Lee, Kibok Lee, Jinwoo Shin, and Honglak Lee. Network randomization: A simple tech-
nique for generalization in deep reinforcement learning. International Conference on Learning
Representations, 2019.

Chengshu Li, Fei Xia, Roberto Martı́n-Martı́n, Michael Lingelbach, Sanjana Srivastava, Bokui Shen,
Kent Elliott Vainio, Cem Gokmen, Gokul Dharan, Tanish Jain, et al. igibson 2.0: Object-centric
simulation for robot learning of everyday household tasks. In 5th Annual Conference on Robot
Learning, 2022.

Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gokmen, Sanjana Srivastava, Roberto Martı́n-
Martı́n, Chen Wang, Gabrael Levine, Michael Lingelbach, Jiankai Sun, et al. Behavior-1k: A
human-centered, embodied ai benchmark with 1,000 everyday activities and realistic simulation,
2024a. URL https://arxiv.org/abs/2403.09227.

Xiaolong Li, He Wang, Li Yi, Leonidas Guibas, A. Lynn Abbott, and Shuran Song. Category-level
articulated object pose estimation, 2020. URL https://arxiv.org/abs/1912.11913.

12

https://3dwarehouse.sketchup.com/
https://www.turbosquid.com/
https://www.mdpi.com/2076-3417/12/19/10097
https://arxiv.org/abs/2303.12236
https://arxiv.org/abs/2303.12236
https://arxiv.org/abs/2410.13882
https://arxiv.org/abs/2410.13882
https://arxiv.org/abs/2403.09227
https://arxiv.org/abs/1912.11913


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich Walke, Chuyuan Fu,
Ishikaa Lunawat, Isabel Sieh, Sean Kirmani, Sergey Levine, Jiajun Wu, Chelsea Finn, Hao Su,
Quan Vuong, and Ted Xiao. Evaluating real-world robot manipulation policies in simulation,
2024b. URL https://arxiv.org/abs/2405.05941.

Shengjie Lin, Jiading Fang, Muhammad Zubair Irshad, Vitor Campagnolo Guizilini, Rares Andrei
Ambrus, Greg Shakhnarovich, and Matthew R Walter. Splart: Articulation estimation and part-
level reconstruction with 3d gaussian splatting. arXiv preprint arXiv:2506.03594, 2025.

Jiayi Liu, Denys Iliash, Angel X Chang, Manolis Savva, and Ali Mahdavi-Amiri. Singapo: Single
image controlled generation of articulated parts in objects. arXiv preprint arXiv:2410.16499,
2024a.

Jiayi Liu, Hou In Ivan Tam, Ali Mahdavi-Amiri, and Manolis Savva. Cage: Controllable articulation
generation, 2024b. URL https://arxiv.org/abs/2312.09570.

Xueyi Liu, Bin Wang, He Wang, and Li Yi. Few-shot physically-aware articulated mesh generation
via hierarchical deformation, 2023a.

Xueyi Liu, Ji Zhang, Ruizhen Hu, Haibin Huang, He Wang, and Li Yi. Self-supervised category-
level articulated object pose estimation with part-level se(3) equivariance, 2023b. URL https:
//arxiv.org/abs/2302.14268.

Zhen Liu, Yao Feng, Michael J Black, Derek Nowrouzezahrai, Liam Paull, and Weiyang Liu.
Meshdiffusion: Score-based generative 3d mesh modeling. arXiv preprint arXiv:2303.08133,
2023c.

Xiaoxiao Long, Yuan-Chen Guo, Cheng Lin, Yuan Liu, Zhiyang Dou, Lingjie Liu, Yuexin Ma,
Song-Hai Zhang, Marc Habermann, Christian Theobalt, et al. Wonder3d: Single image to 3d
using cross-domain diffusion. arXiv preprint arXiv:2310.15008, 2023.

Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William Woodall. Robot op-
erating system 2: Design, architecture, and uses in the wild. Science Robotics, 7:eabm6074,
2022.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
gpu-based physics simulation for robot learning. arXiv preprint arXiv:2108.10470, 2021.

Zhao Mandi, Yijia Weng, Dominik Bauer, and Shuran Song. Real2code: Reconstruct articulated
objects via code generation, 2024. URL https://arxiv.org/abs/2406.08474.

Matthew Matl. Pyrender. https://github.com/mmatl/pyrender, 2019.

Soroush Nasiriany, Abhiram Maddukuri, Lance Zhang, Adeet Parikh, Aaron Lo, Abhishek Joshi,
Ajay Mandlekar, and Yuke Zhu. Robocasa: Large-scale simulation of everyday tasks for gener-
alist robots. In Robotics: Science and Systems, 2024.

Federico Nesti, Gianluca D’Amico, Mauro Marinoni, and Giorgio Buttazzo. Simprive: a simulation
framework for physical robot interaction with virtual environments, 2025.

NVIDIA. Joint tuning — Isaac Sim documentation, 2025. URL https://docs.
isaacsim.omniverse.nvidia.com/latest/robot_setup/joint_tuning.
html#gain-tuning.

Nvidia. Understanding physically-based rendering, 2025a. URL https://docs.
omniverse.nvidia.com/simready/latest/simready-asset-creation/
material-best-practices.html.

Nvidia. Omniverse rtx renderer, 2025b. URL https://docs.omniverse.nvidia.com/
materials-and-rendering/latest/rtx-renderer.html.

Nvidia. Nvidia isaac sim, 2025.05.14. URL https://developer.nvidia.com/isaac/
sim. Isaac Sim.

13

https://arxiv.org/abs/2405.05941
https://arxiv.org/abs/2312.09570
https://arxiv.org/abs/2302.14268
https://arxiv.org/abs/2302.14268
https://arxiv.org/abs/2406.08474
https://github.com/mmatl/pyrender
https://docs.isaacsim.omniverse.nvidia.com/latest/robot_setup/joint_tuning.html#gain-tuning
https://docs.isaacsim.omniverse.nvidia.com/latest/robot_setup/joint_tuning.html#gain-tuning
https://docs.isaacsim.omniverse.nvidia.com/latest/robot_setup/joint_tuning.html#gain-tuning
https://docs.omniverse.nvidia.com/simready/latest/simready-asset-creation/material-best-practices.html
https://docs.omniverse.nvidia.com/simready/latest/simready-asset-creation/material-best-practices.html
https://docs.omniverse.nvidia.com/simready/latest/simready-asset-creation/material-best-practices.html
https://docs.omniverse.nvidia.com/materials-and-rendering/latest/rtx-renderer.html
https://docs.omniverse.nvidia.com/materials-and-rendering/latest/rtx-renderer.html
https://developer.nvidia.com/isaac/sim
https://developer.nvidia.com/isaac/sim


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026
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International Conference, HPCSE 2015, Soláň, Czech Republic, May 25-28, 2015, Revised
Selected Papers 2, pp. 19–49, 2016.

Gemini Robotics Team. Gemini robotics: Bringing ai into the physical world, 2025.

Unity Technologies. Unity, 2025.05.14. URL https://unity.com/. Game development
platform.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033, 2012.

Marcel Torne, Anthony Simeonov, Zechu Li, April Chan, Tao Chen, Abhishek Gupta, and Pulkit
Agrawal. Reconciling reality through simulation: A real-to-sim-to-real approach for robust ma-
nipulation. Arxiv, 2024.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Haowen Wang, Zhen Zhao, Zhao Jin, Zhengping Che, Liang Qiao, Yakun Huang, Zhipeng Fan,
Xiuquan Qiao, and Jian Tang. Sm 3: Self-supervised multi-task modeling with multi-view 2d
images for articulated objects. In International Conference on Robotics and Automation, pp.
12492–12498, 2024a.

Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
Novotny. Vggt: Visual geometry grounded transformer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2025.

Lirui Wang, Xinlei Chen, Jialiang Zhao, and Kaiming He. Scaling proprioceptive-visual learning
with heterogeneous pre-trained transformers, 2024b.

Webots. http://www.cyberbotics.com, 2018. URL http://www.cyberbotics.com. Open-
source Mobile Robot Simulation Software.

Kun Wu, Chengkai Hou, Jiaming Liu, Zhengping Che, Xiaozhu Ju, Zhuqin Yang, Meng Li, Yinuo
Zhao, Zhiyuan Xu, Guang Yang, et al. Robomind: Benchmark on multi-embodiment intelligence
normative data for robot manipulation. arXiv preprint arXiv:2412.13877, 2024.

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao Zhu, Fangchen Liu, Minghua Liu, Hanxiao
Jiang, Yifu Yuan, He Wang, Li Yi, Angel X. Chang, Leonidas J. Guibas, and Hao Su. SAPIEN:
A simulated part-based interactive environment. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 11097–11107, 2020.

Yinghao Xu, Hao Tan, Fujun Luan, Sai Bi, Peng Wang, Jiahao Li, Zifan Shi, Kalyan Sunkavalli,
Gordon Wetzstein, Zexiang Xu, and Kai Zhang. Dmv3d: Denoising multi-view diffusion using
3d large reconstruction model, 2023. URL https://arxiv.org/abs/2311.09217.

Han Xue, Liu Liu, Wenqiang Xu, Haoyuan Fu, and Cewu Lu. Omad: Object model with articulated
deformations for pose estimation and retrieval, 2021.

15

https://arxiv.org/abs/2303.14087
https://unity.com/
http://www.cyberbotics.com
https://arxiv.org/abs/2311.09217


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Jie Yang, Kaichun Mo, Yu-Kun Lai, Leonidas J. Guibas, and Lin Gao. Dsg-net: Learning disen-
tangled structure and geometry for 3d shape generation, 2022. URL https://arxiv.org/
abs/2008.05440.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
for multivariate time series forecasting. In International Conference on Learning Representations,
2023.

Tony Z. Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost hardware, 2023.

Yinuo Zhao, Kun Wu, Tianjiao Yi, Zhiyuan Xu, Zhengping Che, Chi Harold Liu, and Jian
Tang. Efficient training of generalizable visuomotor policies via control-aware augmentation.
In Proceedings of the 24th International Conference on Autonomous Agents and Multiagent
Systems, 2025.

16

https://arxiv.org/abs/2008.05440
https://arxiv.org/abs/2008.05440


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) Kitchen (b) Small livingroom

Figure 9: Scenes: all articulated joints in the open state.

A ARTICULATED OBJECTS

ArtVIP comprises 992 articulated objects, encompassing 9 categories and 37 subcategories, with a
total of 2156 prismatic joints and 1809 revolute joints. The detailed breakdown, including approxi-
mate human labor time, is presented in Tab. 4.

B SCENES

We provide sim-ready complex, dynamic environments—six in total: childrenroom, diningroom,
kitchen, kitchen with parlor, large livingroom, and small livingroom (see Fig. 9 for two example
scenes). Every object in these environments, including fixed furniture, supports physical interaction.
This includes switches, small appliances, plush toys, laptops, books, spice jars, and more. For
example, the kitchen environment contains a total of 65 joints, and all objects can be used just like
their real-world counterparts. Robots can operate the light switch on the wall, open the refrigerator
door, place items on shelves, or challenge their motion capabilities by crouching to open drawers
beneath the stove top. Additionally, users can freely place the 992 articulated objects provided in
ArtVIP into any of these environments via the Isaac Sim GUI, enabling the creation of rich robot
interaction scenarios such as grasping, pulling, pressing, and placing. Users can also utilize open-
source tools like mjcf2usd and urdf2usd to convert assets from other datasets into the USD format,
allowing seamless integration with ArtVIP assets. This kind of sim-ready, complex environment
is currently unique to ArtVIP. Moreover, the ability to edit and save assets directly through a GUI
reflects an open-source spirit that is not yet common in other datasets.

C ANNOTATIONS

Annotations in ArtVIP provide objective descriptions of object parts, thereby supporting robots’
ability to infer task-appropriate interaction behaviors. We further argue that annotations are most
meaningful when aligned with consistent modeling standards. For example, for a desk, modelers
often merge the legs and tabletop into a single mesh, which limits part-level annotation based on
distinct interaction functions. To address this, we highlight functional components in Tab. 5 that
frequently participate in interactions yet are commonly overlooked during mesh segmentation. An
example segmentation is shown in Fig. 10.

D MODELING STANDARDS

In simulation systems, the use of high-quality meshes, textures, and materials confers several advan-
tages. High-fidelity visuals reduce the disparity between simulation and reality (Nesti et al., 2025),
thereby narrowing the sim-to-real gap and enabling robotic policies to be deployed in real-world
environments with minimal or even zero-shot adaptation (Han et al., 2025; Embley-Riches et al.,
2025). Photorealistic simulation data can be employed to train and validate visual perception algo-
rithms, such as object detection, semantic segmentation, and SLAM. Moreover, realistic models not
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Table 4: Detailed breakdown of object categories, modeling time (each), physics tuning time (each),
and count.

category subcategories modeling time physics tuning time count

furniture

chair 2h 0.3h 23

table 1.5h 0.2h 131

cabinet 3.1h 0.4h 183

cupboard 15h 2h 11

bed 3h 0.3h 28

home decor 2.5h 0.3h 30

kitchenware cookware 1.9h 0.3h 81

kitchen appliances

coffee machine 3h 0.3h 14

built-in oven 5h 0.3h 14

microwave 3h 0.3h 8

oven 4h 0.3h 11

dishwasher 5h 0.4h 19

water dispenser 3h 0.3h 6

rice cooker 3h 0.3h 14

fridge 6h 0.5h 22

juicer 4h 0.3h 6

fixtures
faucet 2h 0.2h 14

toilet 4h 0.4h 14

door 2h 0.3h 10

appliances

computer 2.5h 0.3h 13

fan 1.8h 0.3h 34

air conditioner 4h 0.3h 3

washing machine 5.7h 0.5h 30

speaker 1.5h 0.3h 14

floor lamp 1h 0.3h 28

cleaning tools
mop 2h 0.3h 8

pump bottle 2h 0.3h 14

trash can 2h 0.3h 18

stationery

scissors 1h 0.2h 28

stapler 1.5h 0.2h 11

utility knife 1h 0.2h 19

folder 0.5h 0.2h 8

storage
storage box 2h 0.3h 25

toolbox 2.5h 0.3h 22

cardboard box 1.5h 0.2h 28

Mechanical equipment electrical equipment 3h 0.3h 17

non-electrical equipment 3h 0.3h 33
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Figure 10: Segmentation result of the kitchen scene.

only enhance visual fidelity but also improve interaction effects within simulations. When robots
perform actions such as grasping, collision, or force-based interactions, accurate geometry ensures
stable and reliable feedback. To achieve photorealistic appearance and minimize the sim-to-real
visual gap, we addressed the following standards:

Mesh. Manifold meshes form the core geometric foundation of each asset, defining the object’s
overall contour and spatial occupancy. These meshes are critical for generating collision bodies
that maintain accuracy in physical interactions. ArtVIP ensures that mesh details produce smooth
surfaces and lifelike contours, avoiding jagged or blocky appearances. Additionally, through normal
vector optimization algorithms, redundant vertices are merged, reducing geometric data volume and
thereby alleviating computational burdens in simulation.

Texture. Textures are mapped onto mesh surfaces via UV coordinates to provide visual details.
ArtVIP employs high-resolution textures to capture fine surface characteristics, such as the metallic
sheen of a refrigerator or the subtle grain of wood on a chair. Furthermore, textures are meticulously
aligned with the UV map to prevent stretching, distortion, or visible seams.

Material. A material is a collection of rendering parameters, including references to textures, that
defines how an object’s surface responds to light. ArtVIP leverages RTX Renderer (Nvidia, 2025b)
in Isaac Sim and adopts Physically Based Rendering (PBR) (Nvidia, 2025a) to accurately simulate
diffuse and specular reflections, enabling rendering effects such as roughness and emissive proper-
ties. This approach allows for the realistic representation of diverse materials, achieving true-to-life
visual fidelity.

E PHYSICAL FIDELITY OF JOINTS

To achieve physical fidelity of dynamic joint and simulate variable joints motions in the real world,
we enhance the joint drive equation originally provided by Isaac Sim:

τ = K(q) · (q − qtarget(q)) +D · (q̇ − q̇target(q)) (2)

where τ represents the force(F ) and torque(T ) applied to drive the joint, q and q̇ are the joint po-
sition and velocity, respectively, D donates damping, and K donates stiffness. While this equation
can model basic joint motions, it fails to fully replicate complex dynamic joint motions in the real
world. For complex joints such as door closers and light switches, τ may vary with q and q̇. To
accommodate the above situations, we design functions of q and q̇.

Impact from q̇. Friction must be accounted for in simulation and cannot be modeled as a constant. It
imposes resistance to the force generated by the joint drive τ , and we propose the following equation
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Table 5: Annotation labels and descriptions in ArtVIP.

Label Description

armrest Chair armrest
backrest Chair backrest
ball handle Handle for lifting the main body, such as the handle of a toolbox
blade Blade of a utility knife, scissors, or fan blades
body Parts that need labeling excluding base and lid
button Applies to all push-button switch components of models
door Door of cabinets, refrigerators, ovens, etc.
drawer Drawer of cabinets, refrigerators, toolboxes, etc.
front cover Cover of a folder
fun guard Fan protective cover
handle Any handles
headrest Chair headrest
jaw Head of pliers, the part that contacts the gripped item
keyboard Computer keyboard
knob Applies to all rotary switch components of models
lid Such as cardboard box lid, electric steamer lid, trash can lid
light All types of lights
mop head Mop head
pedal Foot pedal, such as on a step-on trash can
pipe Water pipe part of faucet
plate All types of plates
pole Rod-shaped component
portafilter A handle holds the coffee grounds
pot Inner pot of rice cookers, steamers, etc.
rack Rack in an oven, refrigerator door shelf
roller Washing machine drum
screen Electronic product screen
seat Chair seat
shelf Shelf part of cabinets, refrigerators, etc.
spout Spout of a pump bottle, water dispenser, etc.
stapler magazine Staple compartment of a stapler
tabletop Top surface of a table
toilet seat Toilet seat
touch pad Computer touchpad
wheel Chair wheels

with three different conditions:

Ffriction(q̇) =


−Fext q̇ = 0 and |Fext| ≤ µs · (|F |+ |T |)

−µs · (|F |+ |T |) · sign(Fext) q̇ = 0 and |Fext| > µs · (|F |+ |T |)
−D · q̇ · sign(q̇) q̇ ̸= 0

(3a)
(3b)
(3c)

We illustrate the friction from static friction, to maximum static friction, and finally to dynamic
friction, corresponding to conditions from Eqn. equation 3a through Eqn. equation 3c. Fext denotes
the static friction. The coefficient us denotes the static friction coefficient, which can be configured
in Isaac Sim via the Joint Friction parameter. The sign function ensures that the frictional
force is applied in the correct direction.

Impact from q. The latch release mechanism exemplifies the position-dependent joint drive, we
analyze a button-actuated trash bin lid mechanism. When the button is depressed, it triggers a
linkage to retract the spring-loaded latch, enabling the lid to freely rotate under torsional spring
torque to qupper bound.

qtarget(q) =

{
qupper bound if q > qthreshold and Sopen = 1

qlower bound if q < qthreshold and Sopen = 0

(4a)
(4b)
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We further investigate joint motion with abrupt stiffness variations, exemplified by refrigerator door
closers and magnetic latching mechanisms. To maintain static equilibrium in the stationary state,
a high stiffness value khigh is employed. When Sopen = 1 (door opening phase), the stiffness pro-
gressively decreases with increasing q. Upon exceeding the critical position qthreshold, the stiffness
reaches its minimum klow, and the joint target position switches to qupper bound. During door closure,
as q approaches qthreshold from above, the target position abruptly transitions to qlower bound, accom-
panied by an exponential stiffness surge to rapidly complete closure, emulating commercial door
closer dynamics. This behavior is formalized as:

K(q) =


khigh, q = qlower bound

khigh − αq, if qlower bound < q ≤ qthreshold and Sopen = 1

klow + kmaxe
−λq, if qlower bound < q ≤ qthreshold and Sopen = 0

klow, qthreshold < q < qupper bound

(5a)

(5b)

(5c)
(5d)

F CHART COMPARISON WITH EXISTING DATASETS

We present a detailed comparison of ArtVIP with existing articulated-object datasets in Tab. 6

Table 6: Detailed comparison with existing articulated-object datasets.

ArticulatedAssets Prismatic joints Revolute joints Visual realism Physical fidelity Modular interaction

ArtVIP 992 2156 1809 high high 394
BEHAVIOR-1K 545 318 819 medium low None
PartNet-Mobility 2347 7659 4312 low low None

G VISUAL REALISM COMPARISON

We present further comparative analysis in Fig. 11. PartNet-Mobility employs the URDF format,
with meshes stored in OBJ format and material information defined in MTL files. Although the
OBJ files are manually crafted, they frequently exhibit distorted meshes, significantly compromising
visual quality. The MTL material format inherently lacks the capability to model physically accurate
light reflection, resulting in a lack of environmental realism across all PartNet-Mobility assets. Our
analysis reveals that many materials in PartNet-Mobility rely solely on base color for rendering, and
the absence of textures substantially degrades the overall rendering quality. Although BEHAVIOR-
1K adopts the USD format, which supports physically based rendering (PBR), it still suffers from
issues related to distorted meshes and poor texture quality.

To mitigate issues such as distorted meshes and angular surfaces, we employed a high number of
triangular faces to ensure smooth surfaces and enhanced geometric detail. For categories such as
toilets and refrigerators, ArtVIP significantly surpasses BEHAVIOR-1K and PartNet-Mobility in
the number of triangular faces utilized. However, this approach entails a trade-off, as it reduces the
simulation frame rate. To address this, we conducted profiling analysis to optimize the simulation
frame rate for each object. In our experiments, we selected the kitchen, which contains the highest
number of articulated objects, and the living room, which features the most extensive texture render-
ing, as testing environments. Each asset from ArtVIP was individually placed within these scenes,
ensuring that the overall rendering frame rate consistently exceeds 60 Hz (i7-13700, Nvidia 4090,
64 GB).

To study the effect of triangle count, we report comprehensive statistics in Tab. 7 for ArtVIP, PartNet-
Mobility, and BEHAVIOR-1K: the average triangle count, the average number of active joints, the
average FPS with a single asset, and the average FPS in the kitchen scene. The kitchen scene is
the most complex environment, containing 65 actuated joints. ArtVIP and PartNet-Mobility are
evaluated in Isaac Sim 5.1. BEHAVIOR-1K assets are encrypted and accessible only through Om-
niGibson (Isaac Sim 4.5). We attribute the large FPS fluctuations observed for BEHAVIOR-1K to
overhead introduced by the derivative framework. Based on the FPS results for ArtVIP and PartNet-
Mobility, we conclude: 1) For a single object, under Isaac Sim’s iterative optimizations, triangle
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Table 7: Category-wise averages for triangle count, active joints, and FPS across datasets.

Item Category Avg triangle count Avg active joints Avg FPS (single item) Avg FPS (in kitchen)

ArtVIP PartNet-Mobility BEHAVIOR-1K ArtVIP PartNet-Mobility BEHAVIOR-1K ArtVIP PartNet-Mobility BEHAVIOR-1K ArtVIP PartNet-Mobility BEHAVIOR-1K

Coffee Machine 80484.8 27104.7 42256 2.2 5.759 5.5 91.97 91.95 114.77 72.01 73.83 48.33
Microwave 34494.6 8620.5 5521 4 4.313 1.857 91.93 91.88 87.51 69.38 72.95 50.04
Oven 99048 41206.2 25638 4.5 6.133 1 91.98 91.95 109.97 72.66 74.64 49.4
Dishwasher 54427.1 8932.6 25162.2 1.429 1.333 2.5 91.94 91.95 115.2 65.75 69.95 49.73
Rice Cooker 101573.3 26068.7 40245.3 3.333 1.12 1 91.96 91.96 115.58 70.97 74.91 48.29
Laptop 46053.6 37378.7 18546.3 1 1 1 91.97 91.93 112 74.59 74.89 46.99
Washing Machine 151705.4 26269.8 27380.8 2.57 7.471 1.538 91.95 91.94 107.17 70.97 70.74 48.27
Toilet 164271.6 22276.49 15011.11 3.6 2.319 2.611 91.95 91.95 120.58 74.94 74.93 47.18
Refrigerator 100903.8 6517 24273.4 6.25 1.682 1.538 91.94 91.96 99.55 60.78 73.89 49.82
Table 20184.7 22607.6 14210.6 5.28 3.158 2.633 91.96 91.96 116.37 68.13 71.68 47.92
Folding Chair 21567.5 6519.3 7064.6 2 1.231 2 91.95 91.97 125.93 74.5 74.92 51.41
Scissors 43953 14601 4972 2 1.963 1 91.96 91.96 129.71 72.5 74.92 52.45
Trash Can 30139.6 6468.33 8370.17 1.77 1.971 1 91.94 91.93 121.28 71.66 74.93 52.24

counts up to approximately 100k and up to 20 active joints have negligible impact on FPS. 2) In
complex scenes, both triangle count and the number of active joints reduce FPS.

H PHYSICAL FIDELITY AND INTERACTION EVALUATIONS

Motion Triggered by Latch Release. To validate the modular interaction within assets, we com-
pared the triggered joint in both real-world and virtual microwave. We conducted button-press
experiments in each environment to initiate the door-opening action and recorded the resulting door
motion trajectories. In the real-world tests we tracked a marker on the door using the optical track-
ing system to capture its spatial motion after the button pressed. In the simulation we set a virtual
marker at the same position as the real-world marker on the door, and we triggered the door open-
ing via pressing the button as well (for which the activation configured in modular interaction) and
logged the virtual marker’s trajectories. We performed ten trials in each environment and computed
the average spatial trajectory as Fig. 12 shown.

Motion Triggered by Joint Position Threshold. Appliances equipped with door closers typically
exhibit a dynamic change in motion once the door reaches a certain angle during closing. After
arriving at a certain angle, the door closer causes the door to accelerate and snap shut against the
appliance body. To evaluate how well the simulation captures this physical transition, we focus on
analyzing the door’s linear and angular velocities during the transition from the threshold state to
full closure. In both the simulation and real-world experiments, a force of no more than 1.0 N is
applied when the door is within the threshold range to trigger the door closer mechanism. We then
record the kinematic behavior following the activation of the door closer. In the real-world setup,
the optical motion capture system is used to track the spatial displacement of markers on the door.
Both the simulation and real-world experiments are repeated ten times, and we compute the average
spatial trajectories and changes in velocity along the X-axis for quantitative comparison (Fig. 13).

I IMITATION LEARNING APPLICATION

Task Summary. As shown in Fig. 14, we design four challenging articulated-object manipulation
tasks: (1) PullDrawer, (2) OpenCabinet, (3) SlideShelf, and (4) CloseOven. These tasks demand
precise and flexible motions, including rotation, angled pushing, and horizontal translation. We
define these tasks as follows:

• PullDrawer. his task requires the robot to insert the gripper into the handle of the drawer, securely
press the handle, and gradually pull the drawer out along a linear trajectory using a smooth and
consistent motion.

• OpenCabinet. For this task, the robotic arm needs to precisely locate the thin vertical handle
of the cabinet door. The gripper has to align vertically, firmly grip the handle, and pull the door
outward along a curved path while maintaining a stable trajectory.

• SlideShelf. This task involves horizontal manipulation of the shelf. First, the gripper needs to
rotate around 90 degrees to align parallel to the shelf’s direction. It then grips the base of the
shelf and moves horizontally, pulling the shelf out along its guide rails in a stable and controlled
manner.

• CloseOven. To complete this task, the robotic arm needs to close its gripper to push against the
bottom edge of the oven door. The arm then rotates and lifts under the door, applying a curved
upward force to close the door.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

ArtVIPPartNet-Mobility Behavior-1k

Visual RealismLow High

inconsistent surface normals

low-poly

low-poly

low-poly

bad topology

unrealistic material

unrealistic material

low-poly

inconsistent surface normals

low-poly

bad topology

low-poly

lacking mesh details

low-poly

low-poly

low-poly

low resolution texture

inconsistent surface normals

low-poly

unrealistic material

bad topology

inconsistent surface normals

low resolution texture

unrealistic material

low-poly

unrealistic material

low-poly

unrealistic material

low-poly

low-poly

unrealistic material

bad topology

low-poly

low-poly

unrealistic material

bad topology

low-poly

low resolution texture

lacking mesh details

lacking mesh details

lacking mesh details

④

那

一

劝

、

狗

1 ㉑

那

㉗

的

一

羽

.
卵

甲

甲

肋

一

⇌
羽

一

妆

纱

㉗

1
妯

☆

一

那

1
狗

一

冰

冰
甫

一

劝

一

Λ

协

甴
曲

狗

少

一

一

冰 “
一

:

那

一

纱
一

刪

1
劝

1
加

甲

那

Figure 11: Comparisons of ArtVIP, BEHAVIOR-1K, and PartNet-Mobility.
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The Microwave in Real-world The Microwave in Isaac Sim

virtual marker

肋

一

Figure 12: Left and Middle: Digital-twin asset examples in real-world and simulation. Right:
Analysis of the Microwave’s displacement.

The Oven in Real-world

The Oven in Isaac Sim

virtual marker

羽

一

Figure 13: Left: Digital-twin asset examples in real-world and simulation. Right: Analysis of the
oven’s displacement.
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Figure 14: The four articulated-object manipulation tasks conducted for imitation learning.

Training

Hyperparameter Value

Network
Architectures

Hyperparameter Value

Batch size 48 Encoder layer 4
Learning rate 1e-4 Decoder layer 7
Optimizer AdamW Forward dim 3200
KL weight 10 Heads num 8
Action sequence 50 Transformer hidden dim 512
Training step 50k Backbone ResNet50

Table 8: Implementation details of Action Chunking Transformer (ACT).

Imitation Learning Algorithm. The input to the imitation learning models consists of RGB image
data from multiple camera views and the robot’s proprioceptive states. The output is the robot control
signals, such as joint positions, enabling end-to-end task execution. We used two state-of-the-art
imitation learning methods, Action Chunking Transformer (ACT) (Zhao et al., 2023) and Diffusion
Policy (DP) (Chi et al., 2023), to train the robotic policies for the articulated object manipulation
task. Hyperparameters of both methods are demonstrated in Tab. 8 and Tab. 9.

• Action Chunking Transformer (ACT) (Zhao et al., 2023): ACT is built on the transformer
network architecture and leverages temporal ensemble techniques to produce fluid and precise
action sequences.

• Diffusion Policy (DP) (Chi et al., 2023): DP employs a diffusion-based generative model that
captures multi-modal action distributions, offering robustness and high success rates for complex
robotic tasks.

Detailed Experiment Results. The Full experiment results are presented in Tab. 10.
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Training

Hyperparameter Value

Network
Architectures

Hyperparameter Value

Batch size 48 Diffuion Network Unet1D
Learning rate 1e-4 Pooling SpatialSoftmax
Optimizer AdamW Noise scheduler DDIM
EMA power 0.75 EMA model True
Action sequence 16 Noise schedule SquaredcosCap
Training step 50k Backbone ResNet50

Table 9: Implementation details of Diffusion Policy (DP).

(a) Training task. (b) Training curve over five random seeds.

Figure 15: RL-based training of visuomotor policy with ArtVIP.

J REINFORCEMENT LEARNING APPLICATION

Training Details. We extend the visual RL framework EAGLE (Zhao et al., 2025) to articulated-
object tasks in ArtVIP. Fig. 15a shows the CloseTrashcan task, where the robot arm is required to
close the trashcan within a given time limit. EAGLE is a two-stage visual RL framework designed
for efficiency and generalization. In Stage 1, the teacher policy receives low-level states, including
the robot arm’s proprioceptive input, the lid’s joint value, and the 3D relative position between the
trashbin and the gripper. In Stage 2, the student policy is provided only with the wrist camera image
and the robot’s proprioceptive state—no object-related states are available. Fig. 15b presents the
training curves in Stage 2.

For implementation details, in Stage 1, we replace EAGLE’s original RL agent with PPO; In Stage
2, a privileged-state teacher is distilled into a visuomotor student while a self-supervised attention
mask learned as follows:

Latt = Lrec + Lae + βLctl + λLsps, (6)
where Lrec and Lae are reconstruction losses, Lctl predicts dynamics, and Lsps enforces mask
sparsity. Hyper-parameters β and λ weight auxiliary losses.

The student policy is trained with the distillation loss:

L̂(πθ) = E(o,s)∼D
[
∥πθ(oaug)− πe(s)∥22

]
, (7)

where s contains privileged states and oaug are images augmented by the learned mask with
Eqn. equation 6. Hyper-parameters used in EAGLE are listed in Tab. 11.

Reward Functions. The CloseTrashcan task is a long-horizon challenge requiring the robot to first
approach the trashcan lid and then close it smoothly. To facilitate efficient RL training, we design a
multi-objective reward function as follows:

rt(st,at) = λ1rdst(st) + λ2rdir(st) + λ3rcls(st) + λ4rsmth(at), (8)
where rdst rewards proximity between the gripper and the lid, rdir encourages alignment toward the
lid, rcls measures lid closure progress, and rsmth promotes smooth actions. The reward weights are
set as: λ1 = 0.5, λ2 = 0.125, λ3 = 10, λ4 = −0.01.
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Table 10: Performance results (scheme A): per-seed scores and mean ± 90% CI

Task Method Strategy seed1 seed2 seed3 Mean ± CI90

PullDrawer

ACT

RO 0.567 0.767 0.600 0.644 ± 0.059
SO 0.433 0.433 0.300 0.389 ± 0.060
RSM100+10 0.500 0.667 0.767 0.640 ± 0.059
RSM100+20 0.667 0.600 0.767 0.678 ± 0.057
RSM100+50 0.833 0.767 0.733 0.778 ± 0.051
RSM100+100 0.767 0.867 0.800 0.811 ± 0.048

DP

RO 0.600 0.733 0.633 0.656 ± 0.058
SO 0.133 0.233 0.233 0.200 ± 0.049
RSM100+10 0.600 0.650 0.700 0.650 ± 0.057
RSM100+20 0.650 0.700 0.733 0.694 ± 0.056
RSM100+50 0.700 0.733 0.750 0.728 ± 0.055
RSM100+100 0.733 0.767 0.867 0.789 ± 0.050

OpenCabinet

ACT

RO 0.300 0.400 0.333 0.344 ± 0.058
SO 0.167 0.100 0.100 0.122 ± 0.040
RSM100+10 0.333 0.367 0.367 0.356 ± 0.059
RSM100+20 0.367 0.400 0.367 0.378 ± 0.059
RSM100+50 0.433 0.500 0.400 0.444 ± 0.061
RSM100+100 0.567 0.367 0.433 0.456 ± 0.061

DP

RO 0.467 0.500 0.500 0.489 ± 0.061
SO 0.133 0.033 0.133 0.100 ± 0.037
RSM100+10 0.500 0.533 0.567 0.533 ± 0.058
RSM100+20 0.550 0.583 0.600 0.578 ± 0.057
RSM100+50 0.600 0.617 0.633 0.617 ± 0.057
RSM100+100 0.667 0.700 0.600 0.656 ± 0.058

SlideShelf

ACT

RO 0.233 0.233 0.333 0.267 ± 0.054
SO 0.100 0.167 0.133 0.133 ± 0.042
RSM100+10 0.200 0.267 0.300 0.256 ± 0.053
RSM100+20 0.233 0.300 0.267 0.267 ± 0.054
RSM100+50 0.300 0.367 0.300 0.322 ± 0.057
RSM100+100 0.333 0.333 0.400 0.356 ± 0.059

DP

RO 0.467 0.433 0.433 0.444 ± 0.061
SO 0.167 0.167 0.200 0.178 ± 0.047
RSM100+10 0.433 0.467 0.500 0.467 ± 0.058
RSM100+20 0.500 0.533 0.550 0.528 ± 0.057
RSM100+50 0.533 0.567 0.583 0.561 ± 0.056
RSM100+100 0.567 0.600 0.600 0.589 ± 0.060

CloseOven

ACT

RO 0.500 0.633 0.600 0.578 ± 0.061
SO 0.267 0.267 0.167 0.233 ± 0.052
RSM100+10 0.500 0.600 0.667 0.589 ± 0.060
RSM100+20 0.533 0.633 0.633 0.600 ± 0.060
RSM100+50 0.733 0.533 0.700 0.656 ± 0.058
RSM100+100 0.667 0.800 0.567 0.678 ± 0.057

DP

RO 0.600 0.700 0.667 0.656 ± 0.058
SO 0.267 0.233 0.333 0.278 ± 0.055
RSM100+10 0.633 0.667 0.700 0.667 ± 0.057
RSM100+20 0.667 0.700 0.733 0.700 ± 0.056
RSM100+50 0.700 0.733 0.750 0.728 ± 0.055
RSM100+100 0.767 0.733 0.833 0.778 ± 0.051

Baseline Comparison. To put EAGLE’s performance in context, we compare it with a vision-based
PPO method. As shown in Tab. 12, due to the high computation complexity and low data diversity,
the baseline performs poorly on the CloseTrashcan task, while EAGLE achieves a 98% success rate
after 500k training iterations.
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Hyperparameter Value

Teacher
(Stage 1)

Learning rate for all net 5e-4
Optimizer Adam
Batch size 12 × 4096
Discount factor 0.99
Clip ratio 0.2
Rollout size 96 × 4096

Student
(Stage 2)

Observation 128 × 128
Learning rate for all net 1e-4
Optimizer Adam
Batch size 256
Frame stack 1
Replay buffer size 100k
λ 0.01
β 0.5
α in random overlay linear schedule from 0.4 to 0.9

Table 11: Hyperparamters for EAGLE.

Table 12: EAGLE vs. vision-based PPO: success rate across training checkpoints (k).

Checkpoint (k) 100 200 300 400 500
EAGLE 0.23 0.28 0.73 0.85 0.98
Vision-based PPO 0.16 0.19 0.21 0.22 0.24

K GENERATIVE PIPELINES CAN’T BE INTEGRATED INTO SIMULATION
WORKFLOWS

To evaluate the quality of generated assets, we reproduced SplArt (Lin et al., 2025), a state-of-the-art
generative articulated-object method, and generated assets for a two-drawer cabinet and a side-by-
side refrigerator. As shown in Fig. 16, the outputs are low quality compared with our digital-twin
assets. The generated assets exhibit the following issues:

• Self-collisions between parts
• Severe mesh distortions and breakage
• Incorrect joint limits, positions, and axes
• Materials and colors deviating markedly from reality
• Severe lack of interior details

These issues trigger runtime errors in Isaac Sim. Consequently, current generative baselines fail to
produce simulation-ready articulated assets for robotics.

L THE USE OF LARGE LANGUAGE MODELS.

A large language model (LLM) was used strictly as a writing aid for language polishing (gram-
mar, clarity, and style). All ideas, methodological designs, datasets, code, analyses, and results are
original and solely produced by the authors.
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Figure 16: Comparison of real-world objects, generated outputs, and digital-twin assets.

29


	Introduction
	Related Works
	ArtVIP Collection and Methodology
	Visual Realism
	Physical Fidelity
	Modular Interaction

	Evaluation
	Visual Realism Evaluations
	Physical Fidelity and Interaction Evaluations

	Applications
	Imitation Learning in Real World Environments
	Comparison with Other Assets via Imitation Learning.
	Reinforcement Learning in High-Fidelity Simulators

	Limitation and Conclusion
	Articulated Objects
	Scenes
	Annotations
	Modeling Standards
	Physical Fidelity of Joints
	Chart Comparison with Existing Datasets
	Visual Realism Comparison
	Physical Fidelity and Interaction Evaluations
	Imitation Learning Application
	Reinforcement Learning Application
	Generative pipelines can't be integrated into simulation workflows
	The Use of Large Language Models.

