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Abstract

The primary challenge for practitioners with multiple post-hoc gradient-based in-
terpretability methods is to benchmark them and select the best. Using information
theory, we represent finding the optimal explainer as a rate-distortion optimization
problem. Therefore :

• We propose an information-theoretic test InfoExplain to resolve the bench-
marking ambiguity in a model agnostic manner without additional user data
(apart from the input features, model, and explanations).

• We show that InfoExplain is extendable to utilise human interpretable con-
cepts, deliver performance guarantees, and filter out erroneous explanations.

The adjoining experiments, code can be found at github.com/DebarghaG/
info-explain

1 Introduction

Multiple methods have been proposed to perform gradient-based feature attribution. Given a
particular model input instance, these attribution methods rank its features in order of importance
towards the model’s decision. These explanations allow humans to debug model behaviour [3]
and comprehend model biases - especially in sensitive environments such as healthcare and law
enforcement [26, 31].

Gradient-based Feature Attribution In a classification paradigm, with a model θ that outputs ŷ when
x is input, gradient-based attribution schemes compute the input gradient ∇xlogitθ(x, ŷ) and sort the
features inside x based on gradient magnitude. This concept or a variant of it underlies methods such
as Saliency maps [21], Integrated Gradients [27], Guided Backprop [25] and SmoothGrad [24].

Information theoretic modelling Information is a common language across domains, including
machine learning - since every communication must abide by its laws of encoding, decoding,
transmitting and manipulating signals. Our InfoExplain method describes machine and human
cognition as a system of compression and transmission of Information given constrained resources.

2 Related Work

Recent work in explainable AI has focused on designing and improving techniques to make machine
learning more robust and reliable.

Evaluating explanation fidelity Feature attributions by explainability methods are usually evaluated
via subjective visual estimation by humans.[11, 15, 24] Perturbation-based evaluation paradigms
[17, 6, 5] gauge fidelity by measuring the change in model performance after changing input features

Information-Theoretic Principles in Cognitive Systems Workshop at the 36th Conference on Neural Information
Processing Systems (NeurIPS 2022).

github.com/DebarghaG/info-explain
github.com/DebarghaG/info-explain


considered important by the model. However, distribution shifts induced by such perturbations mean
these results cannot be regarded as conclusive[2]. As a result, many recent analyses have relied on
custom image datasets to find false positive explanations[29], and "sanity checks" to demonstrate that
attributions can often inaccurately reflect model behaviour[23, 4, 30].

Information theoretic paradigms Jung et al. (2020) established the information-theoretic underpin-
nings of deep learning [12]. Ziv et al. (2017) [20] showed the loss of information as it gets propagated
through neural networks.

3 Our evaluation framework

In this section, we present our evaluation framework InfoExplain to estimate the amount of
information about the model’s decision process inside feature attributions.

Problem Setting Data points are considered to be of the format (x(i), y(i)), where x(i) ∈ Rd and label
y(i) ∈ Y , which is drawn from the distribution Do on Rd × Y . Let us consider the deep-feedforward
neural network θ, which is trained to perform this task. Deep learning strategy relies on learning
ϕ(x) where ypred = f(x;λ, µ) = ϕ(x, λ)Tµ, similar to how the kernel trick is used to extend linear
models to non-linear decision boundaries [10]. The parameters λ are used to learn ϕ from a broad
range of functions, and the parameters µ map ϕ(x) to the desired output space Y . This parameterised
representation, ϕ(x;λ), uses optimisation algorithms to learn the λ that leads to a good representation.
We can manually engineer ϕ to generate a good representation if we are not using deep learning.

An observer O wants to understand the decision process. Since neural networks learn ϕ, λ, and µ to
create an optimal compression [20], these parameters of θ are not human-interpretable - but exist in a
disentangled representation[7].

The feature attribution scheme A : Rd → {σ} maps this d-dimensional input x to the model, to
σ : an ordering that ranks features in decreasing order of their importance, based on a magnitude
md.Therefore inside the sequence σ, the respective [∇xlogitθ(x, ŷ)]σi

> [∇xlogitθ(x, ŷ)](σi+1).

Explainability as Lossy Compression Deep neural networks spend a majority of their training time
learning a compressed version (i.e. a good representation) of the input[20]. We assume explanations
to be compressed representations of the model and input. Rate distortion theory, using an information-
theoretic lens, addresses the problem of determining the minimal bits per symbol (R) that should
be communicated over a channel so that the input signal can be approximately reconstructed at the
receiver with a bounded maximum distortion D. In our setting, since R is fixed, we use the distortion
to discover how much of the original signal about the model’s decision process is transmitted through
Dx. Therefore, we are representing the problem of finding the optimal explainability method as a rate-
distortion optimisation, where we analytically quantify information preserved by the "compression"
performed by explainability methods.

The general mathematical model for a communication system contains a message W is to be
transmitted, after processing via an encoding function fenc, in blocks of length n. A channel, whether
noisy or noiseless - can be modelled as a conditional probability distribution p(y|x) = pY |X(y|x).
The channel output is passed through a decoding function fdec, which yields the estimate of the
transmitted message. In our setting, based on the Information provided by the explanations, we try to
reconstruct the model’s decision from the input data.

The encoder can be either assumed to be a gradient-based attribution method or an arbitrary hand-
engineered explanation representation. By using Shannon’s source coding theory, all information is
of the form E that is represented using the triplet (d,Ad,Pd) [13] - where d are the different features
inside E , Ad are the different ways in which d manifests i.e. md, and Pd is the probability of Ad. We
refer to this distribution as Dx

In our metric, we seek to learn a decoder θs, belonging to the family of interpretable models [22]
θS ∈ Gi to map between the distribution Dx and the deep neural network’s output, ypred. The
magnitudes in σ are vectorised to make (x(i)) while the model’s outputs are (y(i)). Therefore, the
optimal decoder can be learned by optimising for hamming distortion.

Decoder∗(x) = argmin
θs∈Gi

L (θs, θ) ;L → d(ypred, ŷpred) =

{
0 if ypred = ŷpred
1 if ypred ̸= ŷpred
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Figure 1: Problem construction as compression and constrained transmission of information. (1)
shows the inference of the model. Then, (2) demonstrates the setup for evaluating attribution methods.
Finally, (3) shows the setup to assess all generalised explainability methods.

The InfoExplain consistency metric, Ic = 1−L(θ, θs), essentially measures how accurately we can
predict the model’s decision, based on information present in explanations. When running over Ti
techniques, the score Ii

c allows the ranking for (A). Since the surrogate decoder, θs is interpretable,
such as a decision tree, we can parse it to find counterfactuals. In susceptible domains, a regulatory
body may verify the automated decision process by looking at the decision process. Furthermore, a
human can intervene appropriately when the verified surrogate model and the deep neural network
provide different decisions in production deployments.

Experimentally, we know that interpretable models are poor at fitting complex decision boundaries
compared to neural networks. Therefore, we define the reference InfoExplain ability metric, Ia =
1 − L(θ, θs∗), where θs∗ is the same model type as θs but is trained to map between x → y. This
measures how well an interpretable decoder can fit a very complex decision boundary of the original
neural network based on the training data.

4 Results

Benchmarking feature attributions For the sake of demonstrability, we choose to illustrate a simple
task. On the titanic dataset, a deep feedforward neural network θ was trained to predict survival y,
based on factors such as class, age etc (x). For the same decision, and the same model - we observed
very different feature attributions E from other explainer methods T . To benchmark, we generated
explanations for every decision, and tried to reconstruct the model’s output(ypred) based on these
attributions E . All metrics for θs were calculated on randomly chosen, unseen test data.

Explainer method T i.e.
Encoder A

Rule-Fit
[9]

Skope-
Rules[1]

Boosted
Rules[8]

C4.5
[16]

Greedy
Rule[22]

Decision
Tree[14]

Ia (Ability-score) 68.70 69.21 63.86 67.93 96.43 97.45
Saliency (Ic)[21] 67.17 61.06 69.21 59.28 76.08 78.62
IG (Ic) [28] 64.88 69.21 51.65 64.12 89.05 91.34
DeepLift [18, 4](Ic) 66.15 69.21 60.05 63.35 91.60 92.36
GuidedBackprop (Ic)[25] 65.64 68.95 38.67 58.77 77.60 80.66
InputXGradient[19] (Ic) 64.37 69.21 60.30 63.86 88.80 88.29

Table 1: Ability and consistency scores, benchmarking different explainability techniques and
decoders.

Using hand-engineered explanations For this example, we consider the Olivetti dataset a standard
benchmark for the facial recognition task that contains ten images of 40 people with varying lighting
conditions and expressions. We use the pre-trained Facenet model, with a downstream gradient-
boosting model as the black box neural network. The encoder can be hand-engineered to use
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human-understandable explanatory variables. We extract facial features, such as the nose, eyes,
jaw, etc. - as features of the explanation space. Each feature is classified without supervision, and
the yielded cluster labels are used in the encoded explanation. The decoder has to map between
explanation space to the ypred. Using InfoExplain, we obtain a Ic= 8.92% on the testing data, which
is just a little better than random guessing. However, on further analysis, the optimal decoder had an
accuracy of 98.2% on its training set. This indicates too much noise in E .

Figure 2: Using human-interpretable explanatory variables for Facial Recognition.

5 Discussion

The crux of our method relies on an encoder A mapping from the input space X to an explainer space
E , with a decoder θs that maps from explainer space E to model prediction space ypred. Explainer
methods can also be handcrafted so humans and machines can speak the same language. We should,
however note that the dimensionality of E is very important. If E is in a high enough dimension,
θs can always have enough capacity to fit the training set, but generalisation on the test set remains
very poor. Moreover, these explanations do not encode enough prior information. An AI system
must use the same way of thinking to make decisions, i.e. has fidelity. The interpretable nature of θs
provides performance guarantees and can trigger human intervention when the system cannot offer
the guarantee.

Is θs faithful to θ? A complete rule-based breakdown θs explaining the model θ cannot exist. If
these rules ultimately captured the behaviour of a black box neural network, then there would be no
need for the black box - as it could be discarded in favour of our interpretable model. It has been
argued that an explanation of a black box model is, by definition inaccurate. Our work aims to find
the best possible θs, based on the best E . Since θs is a surrogate model, it may make decisions in a
very different manner when compared to θ. We are looking for the θs that closely matches the overall
behaviour of θ.

Distortion scores The notion of distortion is a part of ongoing discussion. Our work defines distortion
mathematically as hamming distortion (squared error distortion could also be used). However, the data
processed by lossy compression algorithms (music encoders, explainers) are consumed by humans -
for whom this may not necessarily hold. Therefore, arguments are often made that distortion measures
should be modelled on human perception and aesthetics. In that case, distortion measures can be
redefined with perceptual distortion measures, such as those used in mp3 music. This paradigm,
however, does not fit inside our information-theoretic problem setup.

6 Conclusion

Different techniques may give different explanations for the same decision and model. To tackle
this issue, we propose a novel information theoretic test to quantify the amount of information
inside explanations. This provides us with a framework for making more trustable systems and that
allows artificial intelligence to emulate human-like cognition. We want to explore more nuanced and
complex methods of building human-aligned artificial intelligence in future work.
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