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ABSTRACT

Vector Quantization (VQ) is a widely used method for converting continuous rep-
resentations into discrete codes, which has become fundamental in unsupervised
representation learning and latent generative models. However, VQ models are of-
ten hindered by the problem of representation collapse in the latent space, which
leads to low codebook utilization and limits the scalability of the codebook for
large-scale training. Existing methods designed to mitigate representation col-
lapse typically reduce the dimensionality of latent space at the expense of model
capacity, which do not fully resolve the core issue. In this study, we conduct a the-
oretical analysis of representation collapse in VQ models and identify its primary
cause as the disjoint optimization of the codebook, where only a small subset of
code vectors are updated through gradient descent. To address this issue, we pro-
pose SimVQ, a novel method which reparameterizes the code vectors through a
linear transformation layer based on a learnable latent basis. This transformation
optimizes the entire linear space spanned by the codebook, rather than merely
updating the code vector selected by the nearest-neighbor search in vanilla VQ
models. Although it is commonly understood that the multiplication of two linear
matrices is equivalent to applying a single linear layer, our approach works sur-
prisingly well in resolving the collapse issue in VQ models with just one linear
layer. We validate the efficacy of SimVQ through extensive experiments across
various modalities, including image and audio data with different model architec-
tures. The results show that SimVQ not only effectively addresses the problem of
representation collapse but also proves highly adaptable and easy to implement,
suggesting its broad applicability in diverse machine learning contexts.

1 INTRODUCTION

In recent years, vector quantization (VQ) (van den Oord et al., 2017; Razavi et al., 2019) has emerged
as a foundational technique in unsupervised representation learning (Baevski et al., 2020; Bruce
et al., 2024) and latent generative models (Rombach et al., 2022; Yu et al., 2022a;b; Borsos et al.,
2023; Wang et al., 2023; Zhu et al., 2024b). By converting continuous representations into dis-
crete codes, VQ models can effectively identify the inherent structure of data and enable various
discrete modeling methods on continuous data, from high-quality image generation (Esser et al.,
2021) to audio synthesis (Défossez et al., 2023). The recent success of Large Language Models
(LLMs) (Achiam et al., 2023) has highlighted the effectiveness of next-token prediction as a pow-
erful and versatile training objective. Consequently, VQ models are taken as the direct method to
transform data from various modalities (Zhang et al., 2023a; Sun et al., 2024; Team, 2024) or scien-
tific domains (Gao et al., 2024) to discrete sequences for next token prediction training. However,
attempts to integrate VQ models as multimodal tokenizers to leverage the scaling laws of LLMs
face significant challenges because of the difficulty of expanding the codebook. For example, the
Chameleon model (Team, 2024) constrains its codebook size to 8k, which is significantly trailing
behind the vocabulary size of LLMs (e.g., LLaMA3’s vocabulary size is 128k (Dubey et al., 2024)).

There is a broad agreement that increasing vocabulary size can consistently improve the performance
of LLMs (Tao et al., 2024). However, recent studies (Zhu et al., 2024a) indicate that traditional VQ
models often fail to utilize the additional parameters introduced by codebook expansion, leaving
most codes inactive during training. The contradiction between codebook expansion and low code-
book utilization in VQ models is known as the representation collapse problem (Roy et al., 2018),
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Figure 1: Comparison of Vanilla VQ and SimVQ. (a): (left) Disjoint optimization in Vanilla VQ.
Only the nearest codes are updated, resulting in a high percentage of “dead” codes that are not
updated. (b): (right) Joint optimization in SimVQ. The entire codebook is updated with a latent
basis, ensuring all codes remain active.

where increasing the codebook size fails to improve the performance. To address these discrepan-
cies, we conduct a theoretical analysis of the optimization procedure of VQ models and identify that
the disjoint optimization of the codebook is the root cause of representation collapse. As illustrated
in Fig. 1(a), the core mechanism of VQ models involves a nearest-neighbor replacement strategy,
where the encoder’s output features are replaced by the nearest vector in the codebook to serve as
input to the decoder. The indices of the nearest vector are taken as the discrete representation of
the data. This nearest-selection operator results in only a subset of codes being updated through
gradient descent, while the remaining codes remain unchanged.

Recently, some approaches have been proposed to mitigate representation collapse. FSQ (Mentzer
et al., 2024), LFQ (Yu et al., 2024) and ViTVQGAN (Yu et al., 2022a) reduce the dimension of the
latent space to a very small scale (e.g., 8 vs. 128) to alleviate the curse of dimensionality, thereby im-
proving the overlap between the encoder’s features and the codebook. However, while these methods
enhance codebook utilization, they do so at the cost of model capacity, leading to worse performance
compared to vanilla VQ models when the codebook size is small and representation collapse is not
severe. Another approach, VQGAN-LC (Zhu et al., 2024a), initializes the codebook with features
extracted from the pre-trained CLIP model (Radford et al., 2021) to create a well-structured latent
space that better matches the distribution of the encoder output. Nevertheless, the latent space de-
fined by an external pre-trained model limits the model’s ability to generalize to diverse datasets and
reaches a performance plateau as the codebook size increases. These limitations highlight the need
for a more effective method to improve codebook utilization without compromising model capacity
or relying on external models.

We critically assess prevalent methodologies and reveal that optimizing the latent space rather than
individual code vectors is key to preventing representation collapse. Building on this insight, we
introduce a simple yet effective method, termed SimVQ, to directly update the latent space spanned
by the codebook by linear transforming the code vectors via a learnable latent basis. Specifically,
the vectors in the codebook are reparameterized as a linear combination of the basis in the learnable
linear layer W :

C ∈ RK×d ⇒ CW with W ∈ Rd×d, (1)

where K denotes the codebook size and d represents the dimension of latent space. This repa-
rameterization with linear transformation disentangles the optimization of the codebook into two
components: the coefficient matrix C and the basis of linear space W respectively. As illustrated
in Fig. 1(b), by optimizing the basis matrix W , the latent space spanned by CW is rotated and
stretched to match encoder’s output feature. The entire codebook is updated jointly to prevent the
representation collapse problem. The simplicity of the proposed method makes it highly portable
and easily adaptable for improving VQ-based models across a wide range of domains, requiring
only one linear layer.

In summary, our contributions to vector quantized models are as follows:
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• We theoretically analyze the representation collapse problem of VQ models and reveal that
optimizing the latent space spanned by the codebook, rather than focusing on the individual
code vectors, is crucial to addressing this issue.

• We propose a novel method, SimVQ, which reparameterizes the codebook vectors in VQ
models via a linear transformation with a learnable latent basis. This simple yet effective
approach is highly adaptable and easy to implement, making it broadly applicable across
various machine learning contexts.

• We conduct an extensive evaluation of SimVQ across diverse modalities, including image
and audio with different model architectures. The results show that SimVQ not only effec-
tively addresses the representation collapse problem by achieving near-complete codebook
utilization regardless of the codebook size, but also establishes new state-of-the-art per-
formance. Furthermore, when scaling up the codebook size, SimVQ consistently delivers
improved results.

2 RELATED WORK

VQ-VAE (van den Oord et al., 2017) is the pioneering work to encode data into discrete represen-
tations, which is further improved by VQ-VAE2 (Razavi et al., 2019) by employing a hierarchical
architecture to enable richer representations. Building on these developments, VQGAN (Esser et al.,
2021) combines VQ-VAE with adversarial networks to improve the perceptual quality of generated
samples and establish a fundamental quantization protocol in latent generative models (Rombach
et al., 2022; Yu et al., 2022b; Team, 2024). However, these methods suffer from a critical issue
of representation collapse, as they struggle to scale the codebook size beyond 10k entries, limit-
ing their scalability. In response to this challenge, several approaches have been proposed recently.
DALLE (Ramesh et al., 2021) employs the gumbel-softmax trick (Jang et al., 2017) and stochas-
tic sampling strategies to activate most codes during training. However, during inference, only a
small subset of codes is utilized for quantization (Zhang et al., 2023b). Huh et al. (2023) proposes
rescaling the vectors in the codebook during training to match the distributions in the latent space.
VQGAN-FC (Yu et al., 2022a) introduces a method to map latent vectors into a lower-dimensional
space followed by l2 normalization to alleviate representation collapse. FSQ (Mentzer et al., 2024)
extends this idea by projecting representations into a reduced-dimensional space, where they are
quantized into a small set of fixed values. LFQ (Yu et al., 2024), a variant of FSQ, uses binary val-
ues for quantized representations, thereby simplifying the encoding process. While these methods
improve the codebook utilization, they do so at the cost of model capacity by significantly reducing
the dimensionality of latent space (often to as low as 8), leading to worse performance compared
to vanilla VQ models when the codebook size is small and representation collapse is not severe.
Additionally, VQGAN-LC (Zhu et al., 2024a) proposes to initialize the codebook using features ex-
tracted from the pre-trained CLIP model to avoid representation collapse. However, the reliance on
the pre-trained model limits the VQ model’s ability to generalize to diverse datasets and results in
a performance plateau as the codebook size increases. In contrast, our method, SimVQ, effectively
addresses the representation collapse problem with a simple linear layer, without sacrificing model
capacity or relying on external pre-trained models.

3 REPRESENTATION COLLAPSE IN VQ MODELS

3.1 PRELIMINARIES

A vector quantized model is typically a reconstructive encoder-decoder architecture that includes a
vector quantization layer to convert continuous representations into discrete codes. For simplicity,
we represent an image with a single random variable x. Formally, the encoder fθ maps the input im-
age into a latent space, producing a continuous representation ze = fθ(x) ∈ Rd. This representation
is then quantized using a learnable codebook C = [q1, . . . , qK ] ∈ RK×d, where qi is a codebook
vector. We define δk ∈ {0, 1}1×K as a characteristic (one-hot) vector where only the k-th element
is 1, such that qk = δkC ∈ R1×d. The quantization layer selects the nearest codebook vector qk by
minimizing the Euclidean distance between ze and the codebook entries (van den Oord et al., 2017):

k = argmin
j

∥ze − qj∥22 = argmin
j

∥ze − δjC∥22. (2)
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The selected vector qk is then passed to the decoder gϕ to reconstruct the input image.

To enable gradient propagation through the non-differentiable characteristic vector δk, the straight-
through estimator (STE) (Bengio et al., 2013) is applied. During the backward pass, the gradient of
zq = δkC is copied to ze as follows,

zq = sg(δkC − ze) + ze, ⇒ ∂zq
∂ze

= 1 (3)

where sg is the stop gradient operator, ensuring the gradient for δkC is discarded during the back-
ward pass.

The learning objective is the combination of a reconstruction loss and commitment loss that ensures
that the encoder commits to an embedding and the encoder’s output does not drift:

L = log p(x|zq) + ∥sg(δkC)− ze∥22 + β∥δkC − sg(ze)∥22, (4)

where log p(x|zq) is typically the mean squared error (MSE) loss ∥x−gϕ(zq)∥22 for image and audio
data.

3.2 DISJOINT OPTIMIZATION OF CODEBOOK

In VQ models, only the nearest code is selected and updated via gradient descent. Ideally, all
codebook entries should be updated and utilized for decoding. However, experimental evidence
shows that only a small fraction of the codebook gets updated and utilized, leading to what is known
as the representation collapse problem (Roy et al., 2018). To investigate the root cause of this issue,
we provide a theoretical analysis of the optimization dynamics in VQ models.

Due to the use of the straight-through estimator (STE) for gradient propagation, the codebook C
can only be updated through the gradient of the commitment loss, which is defined as:

Lcommit(C) = ∥ze − δkC∥22. (5)

The codebook C is updated according to the following equation, where η is the learning rate:

C(t+1) = C(t) + ηEze
[
∂Lcommit(C(t))

∂C(t)

]
= C(t) − ηEze

[
δTk δkC

(t)
]
+ ηEze

[
δTk ze

]
(6)

where δTk δk is the Kronecker delta matrix, defined as:

(δTk δk)ij =

{
1 if i = j = k,

0 otherwise.
(7)

All vectors in C will be updated and utilized if and only if the expectation Eze
[
δTk δk

]
converges to

the identity matrix. Unlike variational autoencoders (VAEs) (Kingma & Welling, 2013), which en-
force a Gaussian distribution on the latent space via a KL-divergence penalty, VQ models optimize
ze towards the selected codebook vectors Eze

[
δTk δkC

]
. At the same time, the selected codebook

vectors are optimized towards the distribution of ze , resulting in the same selected subset of vectors
moving closer to ze, somewhat akin to a cocoon effect. However, this disjoint optimization of the
codebook leads to part of the codebook, specifically (I − Eze

[
δTk δk

]
)C, remaining unupdated and

underutilized once the optimization process begins. This phenomenon occurs because the optimiza-
tion focuses only on a subset of codebook vectors, leaving other vectors effectively stagnant.

This analysis reveals the fundamental cause of representation collapse in VQ models: the disjoint
optimization process that updates only a subset of codebook vectors. This insight forms the basis
for our proposed solution, SimVQ, which aims to address this issue by optimizing the entire latent
space spanned by the codebook, rather than individual code vectors.

4 ADDRESSING COLLAPSE WITH LATENT LINEAR TRANSFORMATION

4.1 REPARAMETERIZE CODES WITH LATENT BASIS

Let W = {w1, . . . ,wn} be a basis of a linear space. Any vector v in the space can be uniquely
expressed as a linear combination of the basis vectors with coefficients c1, . . . , cn ∈ R:

v = c1w1 + · · ·+ cnwn = cW . (8)
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Figure 2: (a): (left) The optimization trajectory of the objective ∥x − q∥22, which is the same as
vanilla VQ. Only a small fraction of points are updated while others remain inactive. (b): (right)
The optimization trajectory of the objective ∥x−qw∥22 with q frozen, which is the same as SimVQ.
All the points are updated towards targets x.

Given the equivalence between v and cW in the linear space, we can reparameterize each vector
in the codebook of VQ models with a new basis matrix W ∈ Rd×d. Specifically, the codebook
C = {c1, . . . , cK} can be reparameterized as:

{ĉ1W , . . . , ĉNW } = ĈW ∈ RK×d. (9)

This reparameterization introduces two components: the basis matrix W and the coefficient matrix
Ĉ. In the following, we will discuss the optimization of both the basis matrix W and the coefficient
matrix Ĉ. For simplicity, we slightly abuse C and Ĉ below.

Asymmetric Optimization Dynamics While it is commonly accepted that multiplying two linear
matrices is equivalent to a single linear layer, we argue that the disjoint optimization problem of the
codebook in VQ models can be addressed by the basis transformation. In vanilla VQ models, only
the codebook C is responsible for minimizing commitment loss, leading to the disjoint optimization
problem where only the selected codes will be updated.

In contrast, when the codebook is reparameterized as CW , both the basis W and the coefficient
matrix C contribute to minimizing the commitment loss. The gradients ∂L

∂W and ∂L
∂C can simultane-

ously reduce the loss. As a result, the optimization of the reparameterized codebook can be divided
into three scenarios:

• Updating C with W frozen: Only the selected codes adapt to the latent distribution of ze,
as depicted on Fig. 1(a). The vanilla VQ is a special case of this scenario with W = I .

• Updating W with C frozen: The entire codebook CW adjusts to the latent distribution
of ze. The basis matrix W rotates and stretches the codebook space as shown on Fig. 1(b).

• Updating both C and W : The selected subset of codes moves towards ze while the space
spanned by W undergoes simultaneous rotation and stretching.

4.2 TOY EXAMPLES

To highlight the difference in optimization between C and CW , we conduct a toy experiment in a
two-dimensional setting and visualize the optimization process in Fig. 2 and Fig. 3. We randomly
sample two target points x from Gaussian distribution as follows:

x1 ∼ N (

(
2
2

)
,

(
1 0
0 1

)
), x2 ∼ N (

(
−2
−2

)
,

(
1 0
0 1

)
). (10)

Then we initialize 10 learnable vectors q from a Gaussian distribution:

{qi}10i=1 ∼ N (

(
0
0

)
,

(
1 0
0 1

)
), (11)
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Figure 3: (a): (left) The optimization trajectory of the optimization objective: ∥x− qw∥22 with both
q and w unfrozen. (b): (right) The Frobenius norm of the projection matrix w and loss curves. The
loss quickly converges to 0 with w almost unchanged.

Algorithm 1 Training Procedure for SimVQ
Input: Encoder fθ, Decoder gϕ, Codebook C ∈ RK×d, Linear projector matrix Wψ , commit-
ment weight β.
Output: Model parameters θ, ϕ, ψ and Codebook C.
Initialize Codebook C with Gaussian distribution and freeze the parameter of Codebook;
repeat

Draw x ∼ pdata(x);
ze = fθ(x);
/* Replace qj in vanilla VQ with proposed qjWψ .
Nearest code search: k = argminj∥ze − qjWψ∥22, where qj ∈ C;
Straight Through Estimation: zq = sg(qkWψ − ze) + ze;
x̂ = gϕ(zq);
Minimize L(θ, ϕ, ψ)=MSE(x, x̂) + β∥ze − sg(qkWψ)∥22 + ∥sg(ze)− qkWψ∥22;

until converged

During training with gradient descent, we introduce perturbation noise N (0, 0.01) to the targets. In
Fig. 2(a), the optimization objective is similar to vanilla VQ: ∥x− q∥22. Only the nearest points q4
and q10 are updated. In contrast, in Fig. 2(b), the optimization objective ∥x − qw∥22 is similar to
SimVQ with the points reparameterized by a learnable latent basis w and q frozen, resulting in the
entire codebook {q}10i=1 being jointly updated.
Remark 4.1. The simultaneous optimization of the latent basis w and the coefficient matrix q may
lead to the collapse.

We provide an example in Fig. 3(a) where the optimization objective is ∥x−qw∥22 with q unfrozen
this time. In the training process, only the nearest point q1 and point q10 move towards the target
point, while other points remain almost unchanged. We also visualize the loss curve in Fig. 3(b).
The optimization objective with both q and w unfrozen converges quickly, where the norm of basis
w is much smaller than the objective with q frozen. This indicates that the disjoint optimization
of the codebook persists: q can directly commit to the loss and dominate the optimization process,
with w being largely ignored, leading to the collapse quickly.

4.3 JOINT OPTIMIZATION OF THE CODEBOOK

We propose SimVQ by simply using a learnable basis W ∈ Rd×d to reparameterize the codebook
such that the codebook is transformed into CW . The pseudo-code for this approach is provided
in Algorithm 1. During training, we optimize only the latent basis matrix W , while keeping the
coefficient matrix C frozen. The commitment loss for SimVQ is defined as:

Lcommit(ze, qk) = ∥ze − δkCW ∥22. (12)

6
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The vanilla VQ model is a special case of SimVQ, where the linear basis matrix W is fixed as the
identity matrix I . The update for W with learning rate η is:

W (t+1) = W (t)−η ∂Lcommit(ze, qk)
∂W (t)

= (I−ηEze
[
CT δTk δkC

]
)W (t)+ηEze

[
CT δTk ze

]
. (13)

The term E
[
CT δTk δkC

]
represents the expectation of the quadratic form, and simplifies to E[qTk qk].

Since the codes are randomly sampled from a Gaussian distribution, we have:

E
[
qTk qk

]
= I,where q ∼ N (0, 1), (14)

which ensures that all elements of W are updated. As training progresses, the latent basis W
converges to:

lim
t→∞

W (t) = Eze
[
qTk ze

]
(15)

Thus, in the limit:
lim
t→∞

qkW
(t) = E

[
qkq

T
k e

]
= E [e] (16)

At convergence, the product qkW equals the nearest feature.

4.4 EFFICIENCY ANALYSIS

SimVQ demonstrates greater efficiency than vanilla VQ due to its asymmetric training strategy,
wherein the codebook C remains static and only the linear projection W is optimized. This ap-
proach results in a significant reduction in memory usage during the gradient backpropagation pro-
cess. In vanilla VQ, the memory cost for the optimization of the codebook is O(Kd), where K is
the number of vectors in the codebook, and d is the dimension of each vector. In our experiments,
K = 65, 536 is much larger than d = 128. As the vocabulary size increases, the memory required
for backpropagation grows proportionally, significantly impacting resource consumption. In con-
trast, SimVQ’s memory cost for backpropagation is only O(d2) because the codebook C is fixed,
and only the linear layer W is updated. This results in a constant memory requirement in backprop-
agation, independent of the vocabulary size. The d×d scaling becomes particularly advantageous as
K increases in practical applications. This structural design minimizes the computational overhead
and improves training efficiency, especially when dealing with large vocabularies.

5 EXPERIMENTS

To assess the efficacy and versatility of the proposed SimVQ, we conduct experiments across both
image and audio modalities. Subsequently, we analyze the learned linear layer to investigate the
latent basis. The experimental configurations are listed in Appendix A.1.

5.1 VISION MODALITY

5.1.1 IMPLEMENTATION DETAILS

To rigorously evaluate the proposed SimVQ, we reproduce all the VQ models listed in Tab. 1 using
the same architecture of VQGAN (Esser et al., 2021) with the quantization layer different only.
Among the baselines, for VQGAN-FC (Yu et al., 2022a), we follow the original setting to reduce
the dimension of the latent space to 8 followed by l2 normalization to improve codebook utilization.
For FSQ (Mentzer et al., 2024), we adopt a codebook size of [8, 8, 8, 5, 5, 5, ] as recommended, to
approximately match the default codebook size. For VQGAN-LC (Zhu et al., 2024a), we follow
them and leverage an external pre-trained CLIP model to extract features of the training dataset
in advance for a well-defined latent space. All models are trained on the ImageNet (Deng et al.,
2009) dataset for 50 epochs with a batch size of 256. Input images are processed at a resolution
of 128 × 128 pixels and downsampled by a factor of 8, yielding a feature map of 16 × 16 × 128,
where 128 is the dimension of the latent space. We set the default codebook size to a large number
of 216 = 65536 rather than the traditional number 8192 to highlight the representation collapse
problem. Performance is evaluated using rFID, LPIPS, PSNR, and SSIM metrics on the ImageNet
validation set.
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Table 1: Reconstruction performance on ImageNet-1k with a resolution of 128 × 128. All models
are trained using images downsampled into 16 × 16 tokens. † Results are reproduced using the
codebook size of [8, 8, 8, 5, 5, 5] to approximately match 65, 536. + Following VQGAN-LC, we
extract CLIP features with the codebook frozen.

Method Latent dim Codebook size Util↑ rFID↓ LPIPS↓ PSNR↑ SSIM↑
VQGAN (Esser et al., 2021) 128 65,536 1.4% 3.74 0.17 22.20 70.6
VQGAN-EMA (Razavi et al., 2019) 128 65,536 4.5% 3.23 0.15 22.89 72.3

VQGAN-FC (Yu et al., 2022a) 128 65,536 1.4% 5.33 0.18 21.45 68.8
VQGAN-FC (Yu et al., 2022a) 8 65,536 100.0% 2.63 0.13 23.79 77.5
FSQ† (Mentzer et al., 2024) 16 64,000 100.0% 2.80 0.13 23.63 75.8
LFQ (Yu et al., 2024) 6 65,536 100.0% 2.88 0.13 23.60 77.2
VQGAN-LC-CLIP+ (Zhu et al., 2024a) 768 65,536 100.0% 2.40 0.13 23.98 77.3

SimVQ (ours) 128 65,536 100.0% 2.24 0.12 24.15 78.4
SimVQ (ours) 128 262,144 100.0% 1.99 0.11 24.68 80.3

5.1.2 MAIN RESULTS

Tab. 1 presents the reconstruction performance of various VQ models on image data. We make three
key observations: 1) Traditional VQGAN models utilize only a very small subset of the codebook,
with a utilization rate of just 1.4%. Although VQGAN-EMA is proposed to improve codebook
utilization, especially when the codebook size scales up to 65k, it still suffers from severe repre-
sentation collapse. 2) Recently proposed methods, such as LFQ, FSQ, and VQGAN-FC, effectively
improve codebook utilization to 100%. However, these methods require reducing the latent space
to a very low dimension. For example, applying VQGAN-FC to the standard latent dimension
of 128 results in severe representation collapse and degraded reconstruction performance. Addi-
tionally, these models face limitations in model capacity due to the low-dimensional latent space.
While they achieve full codebook utilization, their reconstruction quality on rFID score lags sig-
nificantly behind SimVQ. 3) VQGAN-LC-CLIP leverages an external pre-trained CLIP model to
provide a well-defined latent space. However, VQGAN-LC relies on CLIP features pre-trained on
much larger datasets than ImageNet, which introduces generalization issues and a lower perfor-
mance ceiling (degradation issue in Tab. 2). In contrast, SimVQ can be applied to a wide range of
data types and achieves superior performance (rFID 2.40 vs. 2.24) without the limitations imposed
by a pre-trained feature extraction model.

5.1.3 ABLATION STUDY

Codebook Size In Tab. 2, we explore the impact of different codebook sizes, ranging from 1k to
262k, which is the level of LLM’s vocabulary size. SimVQ consistently improves performance as
the codebook size increases. For instance, the rFID score decreases to 1.99, and SSIM surpasses
80.0. In contrast, VQGAN-LC-CLIP encounters performance degradation, with the rFID score
worsening from 2.62 to 2.66 when the codebook size is increased from 100, 000 to 200, 000.

Codebook Optimization Strategy We investigate codebook initialization and the training of the
linear layer in Tab. 3. Our findings are as follows: 1) The codebook is robust to different initializa-
tion strategies, yielding similar results with both Gaussian and uniform initialization. 2) When the
codebook is updated during training, SimVQ continues to address the representation collapse issue,
though with a slight degradation in performance.

5.2 AUDIO MODALITY

5.2.1 IMPLEMENTATION DETAILS

We use LibriTTS dataset (Zen et al., 2019) for audio-based VQ model training. The baselines such
as Encodec (Défossez et al., 2023), Vocos (Siuzdak, 2024), and SpeechTokenizer (Zhang et al.,
2024) are based on residual vector quantization. Our SimVQ model adopts the same architecture
as WavTokenizer (Ji et al., 2024) with the only modification being the replacement of their EMA
codebook with our one linear layer reparameterization method. We train SimVQ on LibriTTS-580h
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Table 2: Ablation study on the effect of various codebook sizes on ImageNet at a resolution of
128 × 128. † We directly copy the reported results of VQGAN-LC from the original paper on
ImageNet 256× 256 resolution.

Method Codebook Size Util↑ rFID↓ LPIPS↓ PSNR↑ SSIM↑
VQGAN-LC-CLIP† 50,000 99.9% 2.75 0.13 23.8 58.4
VQGAN-LC-CLIP† 100,000 99.9% 2.62 0.12 23.8 58.9
VQGAN-LC-CLIP† 200,000 99.8% 2.66 0.12 23.9 59.2

SimVQ 1,024 100.0% 3.67 0.16 22.34 70.8
SimVQ 8,192 100.0% 2.98 0.14 23.23 74.7
SimVQ 65,536 100.0% 2.24 0.12 24.15 78.4
SimVQ 262,144 100.0% 1.99 0.11 24.68 80.3

Table 3: Ablation study of codebook optimization.

Initialization Trainable Util↑ rFID↓ LPIPS↓ PSNR↑ SSIM↑
Gaussian Yes 100.0% 2.31 0.12 24.04 77.2
Uniform No 100.0% 2.31 0.12 24.15 78.4
Gaussian No 100.0% 2.24 0.12 24.15 78.4

for 50 epochs with a batch size of 64. Note that WavTokenizer is trained with a 3-second window
size for optimal performance, we train SimVQ using a 1-second window to accelerate training.
For objective evaluation of the reconstructed audio, we follow Vocos (Siuzdak, 2024) and employ
metrics such as UTMOS (Saeki et al., 2022), PESQ (Rix et al., 2001), STOI, and the F1 score for
voiced/unvoiced classification (V/UV F1). UTMOS is particularly valuable as it produces scores
highly correlated with human evaluations.

5.2.2 MAIN RESULTS

Tab. 4 presents the reconstruction performance of various VQ models on audio data. Baseline mod-
els using residual vector quantization perform significantly worse than SimVQ, even when utilizing
much larger bandwidths. Despite using the same architecture as WavTokenizer, our model, which
replaces the quantization layer with SimVQ, achieves superior performance with a 1-second win-
dow size and maintains nearly 100% codebook utilization when scaling up to a size of 262,144. The
consistent performance of the SimVQ model across both image and audio data demonstrates that
SimVQ is a general method for addressing the representation collapse problem in VQ models and
can be effectively applied across multiple modalities.

5.3 ANALYSIS

In Fig. 4(a), we plot the rank of the latent basis matrix over training epochs. Notably, SimVQ
demonstrates the ability to adaptively adjust the dimensionality of the latent space. Specifically,
when the codebook size is increased from 65, 536 to 262, 144, the rank of the latent basis matrix
decreases more rapidly and converges to a lower value. This observation suggests that a larger code-
book can effectively alleviate the pressure on the latent space dimensionality, allowing the model
to represent data more efficiently. Additionally, despite the rank decreasing to a lower-dimensional
space, SimVQ maintains 100% codebook utilization, highlighting its superiority over VQGAN-FC,
which struggles when increasing the latent dimension from 8 to 128. We also calculate the Frobe-
nius norm of the latent basis matrix, as shown in Fig. 4. The norm of a codebook size of 262, 144
is slightly large than for 65, 536, indicating that a larger codebook can span a broader area in the
linear space. For a comprehensive evaluation, we also provide the reconstruction loss curve on the
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Table 4: Reconstruction performance on LibriTTS test-clean/test-other dataset. ∗ WavTokenizer is
trained with a window size of 3 seconds.The bandwidth of 0.9kbps, 0.975kbps, 1.2kbps, 1.35kbps
means the codebook size of 4096, 8192, 65536, 262144 respectively.

Method Bandwidth Util↑ UTMOS↑ PESQ↑ STOI↑ V/UV F1↑
GT - - 4.06/3.48 - - -
EnCodec (Défossez et al., 2023) 3.0kbps - 2.31/2.09 2.05/2.05 0.90/0.88 0.92/0.89
Vocos (Siuzdak, 2024) 3.0kbps - 3.53/3.06 2.40/2.19 0.92/0.90 0.94/0.91
SpeechTokenizer (Zhang et al., 2024) 3.0kbps - 3.56/3.02 1.93/1.74 0.88/0.84 0.93/0.89

WavTokenizer (Ji et al., 2024) 0.9kbps 100/100% 3.74/3.43∗ 2.01/2.26∗ 0.89/0.89∗ 0.92/0.92∗
SimVQ (ours) 0.9kbps 100.0/100.0% 4.00/3.51 2.33/2.08 0.91/0.88 0.94/0.91

WavTokenizer (Ji et al., 2024) 0.975kbps 68/-% 4.02∗/- 2.39∗/- 0.92∗/- 0.94∗/-
WavTokenizer (Ji et al., 2024) 1.05kbps 27/-% 4.00∗/- 2.36∗/- 0.81∗/- 0.94∗/-
SimVQ (ours) 0.975kbps 99.4/99.4% 4.03/3.52 2.42/2.15 0.92/0.88 0.94/0.92
SimVQ (ours) 1.2kbps 99.4/99.0% 4.03/3.52 2.54/2.26 0.93/0.90 0.94/0.92
SimVQ (ours) 1.35kbps 95.6/94.7% 4.03/3.53 2.61/2.31 0.93/0.90 0.95/0.93
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Figure 4: (a):(left) The rank of latent basis matrix W over training epochs. (b):(right) The Frobenius
norm of latent basis matrix W over training epochs.

ImageNet validation dataset in Appendix A.2. The results consistently show that SimVQ achieves
improved performance, further validating the effectiveness of our approach.

5.4 QUALITATIVE EVALUATION

We qualitatively compare the reconstruction quality of both images and audio in Appendix A.3.
SimVQ achieves better reconstruction quality with an enlarged codebook size. For images, SimVQ
with a larger codebook effectively preserves fine details, such as ”eyes” and ”text,” which are chal-
lenging for vanilla VQ models. For audio, SimVQ retains more acoustic details in both spectrograms
and waveforms, as demonstrated in Fig. 7 and Fig. 8.

6 CONCLUSION

In this paper, we explore the representation collapse problem in VQ models. We conduct a theoret-
ical analysis of the optimization process in VQ models and propose a simple yet effective method,
SimVQ, to address this issue. Our method addresses the representation collapse by jointly opti-
mizing the latent space through linear transformation with one linear layer. Experimental results
demonstrate that SimVQ outperforms previous approaches on both image and audio datasets, high-
lighting its broad applicability across diverse machine learning tasks.
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A APPENDIX

A.1 EXPERIMENTAL CONFIGURATIONS

Table 5: Experimental configurations on image and audio.
Config Image Audio

inputs pixels window size
input size 128 × 128 × 3 24,000 × 1
batch size 256 64
training epochs 50 50
quantized sequence length 16 × 16 75
optimization
optimizer AdamW AdamW
learning rate 1e-4 1e-4
learning rate schedule constant constant
warmup epochs 0 0
commitment coefficient 1.0 1000.0
adversarial coefficient 0.1 1.0
data augmentations
random horizontal flip true false

A.2 LOSS CURVE
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Figure 5: The loss curve over epochs of different models on the validation dataset.
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A.3 QUALITATIVE CASES

Origin vanilla VQ 65,536 SimVQ 1,024 SimVQ 8,192 SimVQ 65,536 SimVQ 262,144

Figure 6: Image reconstruction samples with different codebook sizes.
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Figure 7: The spectrogram of audio reconstruction samples with different codebook sizes.

Figure 8: The waveform of audio reconstruction samples with different codebook sizes.
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