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Abstract

Reinforcement Learning (RL) applied in healthcare can lead to unsafe medical1

decisions and treatment, such as excessive dosages or abrupt changes, often due2

to agents overlooking common-sense constraints. Consequently, Constrained3

Reinforcement Learning (CRL) is a natural choice for safe decisions. However,4

specifying the exact cost function is inherently difficult in healthcare. Recent5

Inverse Constrained Reinforcement Learning (ICRL) is a promising approach that6

infers constraints from expert demonstrations. ICRL algorithms model Markovian7

decisions in an interactive environment. These settings do not align with the8

practical requirement of a decision-making system in healthcare, where decisions9

rely on historical treatment recorded in an offline dataset. To tackle these issues, we10

propose the Constraint Transformer (CT). Specifically, 1) utilize causal attention11

mechanism to incorporate historical decisions and observations into the constraint12

modeling and employ a non-Markovian layer for weighted constraints to capture13

critical states, 2) generative world model to perform exploratory data augmentation,14

thereby enabling offline RL methods to generate unsafe decision sequences. In15

multiple medical scenarios, empirical results demonstrate that CT can capture16

unsafe states and achieve strategies that approximate lower mortality rates, reducing17

the occurrence probability of unsafe behaviors.18

1 Introduction19

In recent years, the doctor-to-patient ratio imbalance has drawn attention, with the U.S. having20

only 223.1 physicians per 100,000 people [1]. AI-assisted therapy emerges as a promising solution,21

offering timely diagnosis, personalized care, and reducing dependence on experienced physicians.22

Therefore, the development of an effective AI healthcare assistant is crucial.23

Table 1: The proportion of unsafe behav-
iors occurrences in vaso suggested by
physician and DDPG. The typical range
for vaso is 0.1 ∼ 0.2µg/(kg·min), with
doses exceeding 0.5 considered high [2].
A cutoff value of 0.75 is identified as
a critical threshold associated with in-
creased mortality [3].
Drug dosage (µg/(kg · min)) Physician DDPG

vaso > 0.75 2.27% 7.44% ↑
vaso > 0.9 1.71% 7.40% ↑

∆ vaso > 0.75 2.45% 21.00% ↑
∆ vaso > 0.9 1.88% 20.62% ↑

∆ vaso: The change in vaso between two-time points.

Reinforcement learning (RL) offers a promising approach24

to develop AI assistants by addressing sequential decision-25

making tasks. However, this method can still lead to26

unsafe behaviors, such as administering excessive drug27

dosages, inappropriate adjustments of medical parameters,28

or abrupt changes in medication dosages. These behaviors,29

such as “too high” or “sudden change” can significantly30

endanger patients, potentially resulting in acute hypoten-31

sion, hypertension, arrhythmias, and organ damage, with32

fatal consequences [4, 5, 6]. For example, in sepsis treat-33

ment, patients receiving vasopressors (vaso) at dosages34

exceeding 1µg/(kg ·min) have a mortality rate of 90%35

[7]. Moreover, the “sudden change” in vaso can rapidly36

affect blood vessels, causing acute fluctuations in blood37

pressure and posing life-threatening risks to patients [8]. Our experiments demonstrate that the work38
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[9] applying the Deep Deterministic Policy Gradient (DDPG) algorithm in sepsis indeed exhibits39

“too high” and “sudden change” 1 unsafe behaviors in vaso recommendations, as shown in Table 1.40

This paper aims to achieve safe healthcare policy learning to mitigate unsafe behaviors. The most41

common method for learning safe policies is Constrained Reinforcement Learning (CRL) [10, 11],42

with the key to its success lying in the constraints representation. However, in healthcare, we can43

only design the cost function based on prior knowledge, which limits its application due to a lack of44

personalization, universality, and reliance on prior knowledge. For more details about issues, please45

refer to Appendix A. Therefore, Inverse Constrained Reinforcement Learning (ICRL) [12] emerges as46

a promising approach, as it can infer the constraints adhered to by experts from their demonstrations.47

However, directly applying ICRL in healthcare presents several challenges:48
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Figure 1: The distribution of vaso for pa-
tients with the same state. The physician
makes different decisions due to refer-
encing historical information, while the
agent based on Markov decision-making
can only make the same decision.

1) The Markov decision is not compatible with medi-49

cal decisions. ICRL algorithms model Markov decisions,50

where the next state depends only on the current state and51

not on the history [13, 14]. However, in healthcare, the52

historical states of patients are crucial for medical decision-53

making [15], as demonstrated in the experiments shown54

in Figure 1. Therefore, ICRL algorithms based on Markov55

assumption can not capture patient history, and ignore in-56

dividual patient differences, thereby limiting effectiveness.57

2) Interactive environment is not available for health-58

care or medical decisions. ICRL algorithms [12, 16]59

follow an online learning paradigm, allowing agents to60

explore and learn from interactive environments. How-61

ever, unrestricted exploration in healthcare often entails62

unsafe behaviors that could breach constraints and result63

in substantial losses. Therefore, it is necessary to infer constraints using only offline datasets.64

In this paper, we introduce offline Constraint Transformer (CT), a novel ICRL framework that65

incorporates patients’ historical information into constraint modeling and learns from offline data to66

infer constraints in healthcare. Specifically,67

1) Inspired by the recent success of transformers in sequence modeling [17, 18, 19], we incorporate68

historical decisions and observations into constraint modeling using a causal attention mechanism. To69

capture key events in trajectories, we introduce a non-Markovian transformer to generate constraints70

and importance weights, and then define constraints using weighted sums. CT takes trajectories as71

input, allowing for the observation of patients’ historical information and evaluation of key states.72

2) To learn from an offline dataset, we introduce a model-based offline RL method that simultaneously73

learns a policy model and a generative world model via auto-regressive imitation of the actions and74

observations in medical decisions. The policy model employs a stochastic policy with entropy75

regularization to prevent it from overfitting and improve its robustness. Utilizing expert datasets,76

the generative world model uses an auto-regressive exploration generation paradigm to effectively77

discover a set of violating trajectories. Then, CT can infer constraints in healthcare through these78

unsafe trajectories and expert trajectories.79

In the medical scenarios of sepsis and mechanical ventilation, we conduct experimental evaluations of80

offline CT. Experimental evaluations demonstrate that offline CT can capture patients’ unsafe states81

and assign higher penalties, thereby providing more interpretable constraints compared to previous82

works [9, 20, 21]. Compared to unconstrained and custom constraints, CT achieves strategies that83

closely approximate lower mortality rates with a higher probability (improving by 8.85% compared to84

DDPG). To investigate the avoidance of unsafe behaviors with offline CT, we evaluate the probabilities85

of “too high” and “sudden changes” occurring in the sepsis. The experimental results show that CRL86

with CT can reduce the probability of unsafe behaviors to zero.87

2 Related Works88

Reinforcement Learning in Healthcare. RL has made great progress in the realm of healthcare, such89

as sepsis treatment [9, 20, 21, 22], mechanical ventilation [23, 24, 25], sedation [26] and anesthesia90

1In sepsis, “too high” indicates that the dosage of the vaso medication exceeds the threshold. And “sudden
change” indicates that the change in vaso medication dosage between two time points exceeds the threshold.
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[27, 28]. However, these works mentioned above have not addressed potential safety issues such as91

sudden changes or too high doses of medication. Therefore, the development of policies that are both92

safe and applicable across various healthcare domains is crucial.93

Inverse Constrained Reinforcement Learning. Previous works inferred constraint functions by94

determining the feasibility of actions under current states. In discrete state-action spaces, Chou et al.95

[29] and Park et al. [30] learned constraint sets to differentiate constrained state-action pairs. Scobee96

& Sastry [31] proposed inferring constraint sets based on the principle of maximum entropy, while97

some studies [32, 33] extended this approach to stochastic environments using maximum causal98

entropy [34]. In continuous domains, Malik et al. [12], Gaurav et al. [16], and Qiao et al. [35] used99

neural networks to approximate constraints. Some works [11, 29] applied Bayesian Monte Carlo and100

variational inference to infer the posterior distribution of constraints in high-dimensional state spaces.101

Xu et al. [36] modeled uncertainty perception constraints for arbitrary and epistemic uncertainties.102

However, these methods can only be applied online and lack historical dependency.103

Transformers for Reinforcement Learning. Transformer has produced exciting progress on RL104

sequential decision problems [17, 18, 37, 38]. These works no longer explicitly learn Q-functions105

or policy gradients, but focus on action sequence prediction models driven by target rewards. Chen106

et al. [18] and Janner et al. [37] perform auto-regressive modeling of trajectories to achieve policy107

learning in an offline environment. Furthermore, Zheng et al. [17] unify offline pretraining and108

online fine-tuning within the Transformer framework. Liu et al. [38] and Kim et al. [19] integrate the109

transformer architecture into constraint learning and preference learning. The transformer architecture,110

with its sequence modeling capability and independence from the Markov assumption, can capture111

temporal dependencies in medical decision-making. Thus, it is well-suited for trajectory learning and112

personalized learning in medical settings.113

3 Problem Formulation114

We model the medical environment with a Constrained Markov Decision Process (CMDP)Mc [39],115

which can be defined by a tuple (S,A,P,R, C, γ, κ, ρ0). Similar to studies [23, 40], we extract data116

within 72 hours of patient admission, with each 4-hour interval constituting a window or time step.117

The state indicators of the patient at each time step are denoted as s ∈ S. The administered drug118

doses or instrument parameters of interest are considered as actions a ∈ A, while reward function119

R is used to describe the quality of the patient’s condition and provided by experts based on prior120

work [9, 23]. At each time step t, an agent performs an action at at a patient’s state st. This process121

generates the reward rt ∼ R(st, at), the cost ct ∼ C and the next state st+1 ∼ P (· | st, at), where122

P defines the transition probabilities. γ denotes the discount factor. κ ∈ R+ denotes the bound of123

cumulative costs. ρ0 defines the initial state distribution. The goal of the CRL policy π is to maximize124

the reward return while limiting the cost in a threshold κ:125

argmax
π

Eπ,ρ0
[
∑T

t=1γ
trt], s.t. Eπ,ρ0

[
∑T

t=1γ
tct] ≤ κ. (1)

where T is the length of the trajectory τ . CRL commonly assumes that constraint signals are directly126

observable. However, in healthcare, such signals are not easily obtainable. Therefore, Our objective127

is to infer reasonable constraints for CRL to achieve safe policy learning in healthcare.128

Safe-Critical Decision Making with Constraint Inference in Healthcare. Our general goal is for129

our policy to approximate the optimal policy, which refers to the strategy under which the patient’s130

mortality rate is minimized (achieving a zero mortality rate is often difficult since there are patients131

who can not recover, regardless of all potential future treatment sequences [41]). Decision-making132

with constraints can formulate safer strategies by discovering and avoiding unsafe states, thereby133

approaching the optimal policy.134

However, most offline RL algorithms rely on online evaluation, where the agent is evaluated in135

an interactive environment, whereas in medical scenarios, only offline evaluation can be utilized.136

In previous works [5, 9, 40, 42], they qualitatively analyzed by comparing the differences (DIFF)137

between the drug dosage recommended by our policy π and the dosage administered by clinical138

physicians π̂, and its relationship with mortality rates, through graphical analysis. In the graph139

depicting the relationship between the DIFF and mortality rate, at the point when DIFF is zero, the140

lower the mortality rate of patients, the better the performance of the policy [40]. To provide a more141

accurate quantitative evaluation, we introduce the concept of the probability of approaching the142

optimal policy, defined as ω:143

ω =
Number of survivors among the top N patients

N
(2)
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We randomly collect 2N patients (with an equal number of known survivors and non-survivors under144

doctor’s policy π̂) from the offline dataset. We then calculate the DIFF and sort it in ascending order.145

The optimality of the policy can be evaluated through the following two points: 1) The higher the146

survival probability (i.e., ω) of the top N patients, the lower the mortality rate can be achieved by147

executing π; 2) The smaller the DIFF among the surviving patients in the top N , the greater the148

probability that π is optimal.149

4 Method150

To infer constraints and achieve safe decision-making in healthcare, we introduce the Offline Con-151

straint Transformer (Figure 2), a novel ICRL framework.152

Inverse Constrained Reinforcement Learning. ICRL aims to recover the cost function C∗ by153

leveraging a set of trajectories De = {τ (i)e }Ni sampled from an expert policy πe, where N denotes154

the number of the trajectories. ICRL is commonly based on the Maximum Entropy framework [31],155

and the likelihood function is articulated as [12]:156

p(De | C) =
1

(ZMC )
N

N∏
i=1

exp
[
R(τ (i))

]
IM

C
(τ (i)) (3)

Here, ZM =
∫
exp(βr(τ))IM(τ)dτ is the normalizing term. The indicator IMC

(τ (i)) signifies the157

extent to which the trajectory τ (i) satisfies the constraints. It can be approximated using a neural158

network ζθ(τ
(i)) parameterized with θ, defined as ζθ(τ

(i)) =
∏T

t=0 ζθ(s
i
t, a

i
t). Consequently, the159

cost function can be formulated as Cθ = 1− ζθ. Substituting the neural network for the indicator, we160

can update θ through the gradient of the log-likelihood function:161

∇θL (θ) = Eτ(i)∼πe

[
∇θ log[ζθ(τ

(i))]
]
− Eτ̂∼π

Mζ̂θ

[
∇θ log[ζθ(τ̂

(i))]
]

(4)

whereMζ̂θ denotes the MDP obtained after augmentingM with the cost function Cθ, using the162

executing policy πMζ̂θ
. And τ̂ are sampled from the policy. In practice, ICRL can be conceptualized163

as a bi-level optimization task [11]. We can 1) update this policy based on Equation 1, and 2) employ164

Equation 4 for constraint learning. Intuitively, the objective of Equation 4 is to distinguish between165

trajectories generated by expert policies and imitation policies that may violate the constraints.166

Specifically, task 1) involves updating the policy using advanced CRL methods. Significant progress167

has been made in some works such as BCQ-Lagrangian (BCQ-Lag), COpiDICE [43], VOCE [44],168

and CDT [38]. Meanwhile, task 2) focuses on learning the constraint function, as shown in Figure169

2. Our research primarily improves the latter process due to two main challenges facing ICRL170

in healthcare: Challenge 1) pertains to the limitations of the Markov property, and Challenge 2)171

involves the issue of inferring constraints only from offline datasets. To address these challenges, we172

propose the offline CT as our solution.173

CRL: Maximizing rewards under constraints.

Constraints: Offline Constraint Transformer.2Safe Agent

Casual Transformer

Attention Layer

Constraint Transformer (Section 4.1)

Input:

Violating DataExpert Data

Expert Data

Medical Expert Data

Traditional CRL Method (e.g., BCQ-Lag, 

COpiDICE, VOCE and CDT)

Safe Policy

States → Best action

Model-based Offline RL (Section 4.2)

Input:

Expert Data

Violating Data

Offline Transformer-based Constraints

Safe-Critical Decision Making with Constraints (Section 4.3)

Casual Transformer

1

Figure 2: The overview of the safe healthcare policy learning with offline CT.
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Offline Constraint Transformer. To address the first challenge, we delve into the inherent issues of174

applying the Markov property to healthcare and draw inspiration from the successes of Transformer175

in decision-making, redefining the representation of the constraints. To realize the offline training, we176

consider the essence of ICRL updates, proposing a model-based RL to generate unsafe behaviors177

used to train CT. We outline three parts: establishing the constraint representation model (Section178

4.1), creating an offline RL for violating data (Section 4.2), and learning safe policies (Section 4.3).179

4.1 Constraint Transformer180

Casual Transformer

Non-Markovian  Layer

Linear

MatMul

Scale

SoftMax

MatMul

Figure 3: The structure of the Constraint Transformer.

ICRL methods relying on the Markov prop-181

erty overlook patients’ historical informa-182

tion, focusing only on the current state.183

However, both current and historical states,184

along with vital sign changes are crucial185

for a human doctor’s decision-making pro-186

cess [15]. To emulate the observational187

approach of humans, we draw inspiration188

from the Decision Transformer (DT) [18]189

to incorporate historical information into190

constraints for a more comprehensive ob-191

servation and judgment. We propose a192

constraint modeling approach based on a193

causal attention mechanism, as shown in Figure 3. The structure comprises a causal Transformer for194

sequential modeling and a non-Markovian layer for weighted constraints learning.195

Sequential Modeling for Constraints Inference. For a trajectory segment of length T , 2T input196

embeddings are generated, with each position containing state s and action a embeddings. Addi-197

tionally, these embeddings undergo linear and normalization layers before being fed into the causal198

Transformer, which produces output embeddings {dt}Tt=1 determined by preceding input embeddings199

from (s1, a1, ..., sT , aT ). Here, dt depends only on the previous t states and actions.200

Modeling Non-Markovian for Weighted Constraints Learning. Although dt represents the cost201

function ct derived from observations over long trajectories, it doesn’t pinpoint which previous key202

actions or states led to its increase. In healthcare, identifying key actions or states is vital for analyzing203

risky behaviors and status, and enhancing model interpretability. To address this, we draw inspiration204

from the design of the preference attention layer in [19] and introduce an additional attention layer.205

This layer is employed to define the cost weight for non-Markovians. It takes the output embeddings206

from the causality transformer as input and generates the corresponding cost and importance weights.207

The output of the attention layer is computed by weighting the values through the normalized dot208

product between the query and other keys:209

T∑
t=1

softmax
(
{⟨qt, kt′⟩}Tt′=1

)
t
· ct =

T∑
t=1

wt · ct (5)

Here, the key kt ∈ Rm, query qt ∈ Rm, and value ct ∈ Rm are derived from the t-th input dt210

through linear transformations, where m denotes the embedding dimension. Furthermore, for each211

time step t, since dt depends only on the previous state-action pairs {(si, ai)}ti=1 and serves as the212

input embedding for the attention layer, ct is also associated solely with the preceding t time steps.213

The representation of the cost function as a weighted sum is defined as C (τ) =
∑T

t=1 wt · ct. Then,214

we can also determine the constraint function values for each preceding subsequence. Introducing the215

newly defined cost function, we redefine Equation 4 for CT as:216

∇ϕL (ϕ) = Eτ̂∼Dv
[∇ϕ log[Cϕ(τ̂)]]− Eτ∼De

[∇ϕ log[ Cϕ(τ)]] (6)

where ϕ is the parameter of CT, De and Dv represent the expert data and the violating data. This217

formulation implies that the constraint should be minimized on the expert policy and maximized on218

the violating policy. We construct an expert and a violating dataset to evaluate Equation 6 in offline.219

The expert data can be acquired from existing medical datasets or hospitals. Regarding the violating220

dataset, we introduce a generative model to establish it, as detailed in Section 4.2.221

4.2 Model-based Offline RL222
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Casual Transformer

Figure 4: The structure of the model-based offline RL.

To train CT offline, we introduce a model-223

based offline RL method (Figure 4) to gen-224

erate violating data that refers to unsafe225

behavioral data and can be represented as226

τv = (s1, a1, r1, s2, ...) ∈ Dv. The model227

simultaneously learns a policy model and a228

generative world model via auto-regressive imitation of the actions and observations in healthcare.229

The model processes a trajectory, τe ∈ De, as a sequence of tokens encompassing the return-to-go,230

states, and actions, defined as (R̂1, s1, a1, ..., R̂T , sT , aT ). Notably, the return-to-go R̂t at timestep231

t is the sum of future rewards, calculated as R̂t =
∑T

t′=t rt′ . At each timestep t, it employs232

the tokens from the preceding K timesteps as its input, where K represents the context length.233

Thus, the input tokens for it at timestep t are denoted as ht = {R̂−K:t, s−K:t, a−K:t−1}, where234

R̂−K:t = {R̂K , ..., R̂t}, s−K:t = {sK , ..., st} and a−K:t−1 = {aK , ..., at−1}.235

Policy Model. The input tokens are encoded through a linear layer for each modality. Subsequently,236

the encoded tokens pass through a casual transformer to predict future action tokens. We use237

a stochastic policy [38] to achieve policy learning. Additionally, we utilize a Shannon entropy238

regularizer H [πϑ(· | h)] to prevent policy overfitting and enhance robustness. The optimization239

objective is to minimize the negative log-likelihood loss while maximizing the entropy with weight λ:240

241
min
ϑ

Eht∼De
[− log πϑ(· | ht)− λH [πϑ(· | ht)]] (7)

where the policy πϑ (· | ht) = N (µϑ (ht) ,Σϑ (ht)) adopts the stochastic Gaussian policy represen-242

tation and ϑ is the parameter.243

Generative World Model. To predict states and rewards, we use xt = {ht ∪ at} as input encoded244

by linear layers. The encoded tokens pass through the casual transformer to predict hidden tokens.245

Then we utilize two linear layers to fit the rewards and states. The optimization objective for the two246

linear layers ℓ with the parameters φ and µ can be defined as:247

min
φ,µ

Est,rt−1∈xt∼De
[(st − ℓφ(xt))

2 + (rt−1 − ℓµ(xt))
2] (8)

Generating Violating Data. In RL, excessively high rewards, surpassing those provided by domain248

experts, may incentivize agents to violate the constraints in order to maximize the total reward [11].249

Therefore, we set a high initial target reward R̂1 to obtain violation data. We feed R̂1 and initial state250

s
(i)
1 into the model-based offline RL to generate τ

(i)
v in an auto-regressive manner, as depicted in251

model-based offline RL of Figure 2, where ã, r̃ and s̃ are predicted by the model. The target reward252

R̂ decreases incrementally and can be represented as R̂t+1 = R̂t − r̃t. Considering the average error253

in trajectory prediction, we generate trajectories with the length K = 10, as detailed in Appendix254

B.3. Repeating N initial states, we can get violating data Dv = {τ (i)v }Ni=1.255

Note that certain other generative models, such as Variational Auto-Encoder (VAE) [45], Generative256

Adversarial Networks (GAN) [46, 47], and Denoising Diffusion Probabilistic Models (DDPM)257

[48, 49], may be better at generating data. We introduce the model-based offline RL primarily258

because it has been shown to generate violating data with exploration [38] and possess the ability to259

process time-series features efficiently.260

4.3 Safe-Critical Decision Making with Constraints.261

To train offline CT, we gather the medical expert dataset De from the environment. Then, we employ262

gradient descent to train the model-based offline RL, guided by Equation 7 and Equation 8, continuing263

until the model converges. Using this RL model, we automatically generate violating data denoted264

as Dv. Subsequently, CT is optimized based on Equation 6 to get the cost function C, leveraging265

samples from both De and Dv . To learn a safe policy, we train the policy π using C until it converges266

based on Equation 1. The detailed training procedure is presented in Algorithm 1.267

5 Experiment268

In this section, we first provide a brief overview of the task, as well as data extraction and prepro-269

cessing. Subsequently, in Section 5.1, we demonstrate that CT can describe constraints in healthcare270

and capture critical patient states. We emphasize its applicability to various CRL methods and its271

ability to approach the optimal policy for reducing mortality rates in Section 5.2. Finally, Section 5.3272

discusses the realization of the objective of safe medical policies.273
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Algorithm 1 Safe Policy Learning with Offline CT

Input: Expert trajectories De, context length K, target reward R̂1, samples N , episode length T
1: Train model-based offline RLM: Update ϑ, φ and µ using the Equation (7) and Equation (8)
2: for t = 1,...,T do
3: Sample initial states S1 from De

4: Generate the violating dataset: Dv ←M.generate_data(S1, R̂1,K)
5: Sample set of trajectories {τ (i)e }Ni=1 and {τ (i)v }Ni=1 from De and Dv

6: Train offline CT: Use {τ (i)e }Ni=1 and {τ (i)v }Ni=1 to update ϕ based on Equation (6)
7: Safe policy learning: Update π using the cost function Cϕ(τ) based on Equation (1)
8: end for

Output: π and C(τ)

Tasks. We primarily use the sepsis task that is commonly used in previous works [9, 20, 42, 22], and274

supplement some experiments on the mechanical ventilator task [23, 50]. The detailed definition of275

the two tasks mentioned above can be found in Appendix B.1 and B.2.276

Data Extraction and Pre-processing. Our medical dataset is derived from the Medical Information277

Mart for Intensive Care III (MIMIC-III) database [51]. For each patient, we gather relevant physio-278

logical parameters, including demographics, lab values, vital signs, and intake/output events. Data is279

grouped into 4-hour windows, with each window representing a time step. In cases of multiple data280

points within a step, we record either the average or the sum. We eliminate variables with significant281

missing values and use the k-nearest neighbors method to fill in the rest. Notably, the training dataset282

consists of data from surviving patients, while the validation set includes survivors and non-survivors.283

Model-based Offline RL Evaluation. To ensure the rigor of the experiments, we evaluate the validity284

of the model-based offline RL, as detailed in Appendix B.3.285

5.1 Can Offline CT Learn Effective Constraints?286
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Figure 5: The relationship be-
tween cost and mortality.

In this section, we primarily assess the efficacy of the cost function287

learned by offline CT in sepsis, focusing particularly on its capa-288

bility to evaluate patient mortality rates and capture critical events.289

First, we employ the cost function to compute cost values for the290

validation dataset. Subsequently, we statistically analyze the rela-291

tionship between these cost values and mortality rates. As shown in292

Figure 5, there is an increase in patient mortality rates with rising293

cost values. It’s noteworthy that such increases in mortality rates are294

often attributed to suboptimal medical decisions. Therefore, these295

experimental findings affirm that the cost values effectively reflect296

the quality of medical decision-making. To observe the impact of the attention layer (non-Markovian297

layer), we conduct experiments by removing the attention layer from CT. The results reveal that the298

penalty values do not correlate proportionally with mortality rates. This indicates that the attention299

layer plays a crucial role in assessing constraints.300

unsafe unsafe

Safe Safe

Figure 6: The relationship between physiological indicators and cost values. As SOFA and lactate
levels become increasingly unsafe, the cost increases. Mean BP and HR at lower values within the
safe range incur a lower cost, but as they move into unsafe ranges, the cost increases, penalizing
previous state-action pairs. The cost can differentiate between relatively safe and unsafe regions.
To assess the capability of the cost function to capture key events, we analyze the relationship301

between physiological indicators and cost values. We focus on four key indicators in sepsis treatment:302

Sequential Organ Failure Assessment (SOFA) score [52], lactate levels [53], Mean Arterial Pressure303
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(MeanBP) [54], and Heart Rate (HR) [55]. The SOFA score and lactate levels are critical indicators304

for assessing sepsis severity, with higher values indicating greater patient risk. MeanBP and HR305

are essential physiological metrics, typically ranging from 70 to 100 mmHg and 60 to 100 beats,306

respectively. Deviations from these ranges can signify patient risk. As depicted in Figure 6, the cost307

values effectively distinguish between high-risk and safe conditions, reflecting changes in patient308

status. Additional details on other parameters’ relationship with cost are in Appendix B.4.309

5.2 Can Offline CT Improve the Performance of CRL?310

Baselines. We adopt the DDPG method as the baseline in sepsis research [9], and the Double Deep311

Q-Learning (DDQN) and Conservative Q-Learning (CQL) methods as baselines in ventilator research312

[23]. Since there are no other offline inverse reinforcement learning works available for reference,313

we have included two additional settings: no cost and custom cost. In the case of no cost, the cost is314

set to zero, while the design of custom constraints is outlined in Appendix A. These settings help315

evaluate whether CT can infer effective constraints.316

Metrics. To assess effectiveness, we use ω to indicate the probability that the policy is optimal and317

analyze the relationship between DIFF and mortality rate through a graph. Recently, Kondrup et318

al. [23] use the Fitted Q Evaluation (FQE) [56] to evaluate the policy in healthcare. However, the319

value estimates of FQE depend solely on the dataset D and the actions chosen by the policy π used to320

train FQE. This reliance can lead to inaccurate estimates when evaluating unseen state-action pairs.321

Therefore, we do not adopt this method as an evaluation metric.322

Table 2: Performance of sepsis strategies under var-
ious offline CRL models and different constraints.

ω% COST IV DIFF ↑ VASO DIFF ↑ ACTION DIFF ↑

DDPG - 50.95±1.34 51.45±0.75 51.15±1.15

No cost 47.45±0.52 46.35±1.82 51.00±0.86
Custom cost 46.45±0.46 52.00±0.98 49.40±1.04VOCE

CT 53.33±0.94 59.04±1.13 56.15±1.08

No cost 48.30±0.91 60.10±0.6 51.25±0.70
Custom cost 53.05±1.35 55.20±0.24 53.90±1.04CopiDICE

CT 51.95±0.41 60.85±1.08 54.60±0.60

No cost 47.50±1.32 51.05±0.61 49.35±1.08
Custom cost 51.54±0.16 56.23±1.43 53.69±1.62BCQ-Lag

CT 52.45±1.01 55.34±1.20 54.39±0.86

No cost 56.50±0.81 62.45±1.20 58.90±1.34
Custom cost 54.70±1.12 59.85±1.51 57.80±1.00CDT

CT 57.15±1.67 65.20±1.22 60.00±1.49

CDT Without CT 56.50±0.81 62.45±1.20 58.90±1.34
CDT No attention layer 55.25±1.46 64.00±1.54 57.90±0.78

Generative
Model - 55.49±2.55 56.60±1.33 57.00±2.06

Blue: Safe policy is closer to the optimal policy. ↑: higher is better.

Results. We combine our method CT with com-323

mon CRL algorithms (e.g., VOCE, COpiDICE,324

BCQ-Lag, and CDT), and compare them with325

both no-cost and custom cost settings. Each326

CRL model is trained using no cost, custom cost,327

and CT separately, with other parameters set the328

same during training. For evaluation metrics,329

we use IV difference (IV DIFF), vaso differ-330

ence (VASO DIFF), and combined [IV, VASO]331

difference (ACTION DIFF) as the metrics to332

be ranked. We measure the mean and variance333

of ω% in 10 sets of random seeds, and the re-334

sults are shown in Table 2. From the results,335

we can conclude: (1) In different CRL meth-336

ods, CT consistently makes the strategy closer337

to the one with lower mortality rates, with a338

probability 8.85% higher than DDPG. (2) We339

find that CDT+CT achieves better results on all340

three metrics. CDT is also a transformer-based341

method, which indicates that transformer-based342

architecture indeed exhibits more outstanding343

performance in healthcare.344
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Figure 7: The relationship between DIFF and the
mortality rate in sepsis. The x-axis represents the
DIFF. The y-axis indicates the mortality rate of pa-
tients at a given DIFF. The solid line represents the
mean, while the shaded area indicates the Standard
Error of the Mean (SEM).

Figure 7 illustrates the relationship between IV345

and VASO DIFF with mortality rates under the346

DDPG and CDT+CT methods in sepsis. In347

VASO DIFF, when the gap is zero, the mor-348

tality rate under CDT+CT is lower than that349

under DDPG, indicating that following the for-350

mer strategy could lead to a lower mortality351

rate. Similarly, in IV DIFF, the same trend is ob-352

served. Notably, for the IV strategy, the lowest353

mortality rate for DDPG does not occur at the354

point where the difference is zero, indicating a355

significant estimation bias.356

In addition, corresponding experiments are conducted on the mechanical ventilator, as shown in357

Figure 8. Compared to previous methods DDQN and CQL, under the CDT+CT approach, a noticeable358

trend is observed where the proportion of mortality rates increases with increasing differences. When359
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there is a significant difference in DIFF, the results may be unreliable, possibly due to the limited360

data distribution in the tail.
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Figure 8: The relationship between the DIFF of actions and mortality in mechanical ventilator. The
actions mainly consist of Positive End Expiratory Pressure (PEEP) and Fraction of Inspired Oxygen
(FiO2), which are crucial parameters in ventilator settings.361

5.3 Can CRL with Offline CT Learn Safe Policies?362

Table 3: The proportion of “too high” and “sudden change” oc-
currences in drug dosage recommended by RL methods.

Drug dosage
(µg/(kg · min))

Physician DDPG CDT
No cost Custom cost CT

vaso > 0.75 2.27% 7.44% 0.13%
vaso > 0.9 1.71% 7.40% 0.09%

0% ↓
(max = 0.00)

0% ↓
(max = 0.11)

∆ vaso > 0.75 2.45% 21.00% 0.64%
∆ vaso > 0.9 1.88% 20.62% 0.48%

0% ↓
(max ∆ = 0.00)

0% ↓
(max ∆ = 0.10)

We have confirmed the existence363

of two unsafe strategy issues,364

namely “too high” and “sudden365

change” in the treatment of sep-366

sis, particularly in vaso in Sec-367

tion 1. To validate whether368

the CRL+CT approach could ad-369

dress these concerns, we employ370

the same statistical methods to371

evaluate our methodology, shown in Table 3. To elucidate the efficacy of CT, we compare it with372

CDT+No-cost and CDT+Custom-cost approaches. We find that only the custom cost and CT methods373

successfully mitigated the risks associated with “too high” and “sudden change” behaviors. However,374

the custom cost approach opts to avoid administering drugs to mitigate these risks. Without these375

drugs, the patient’s condition may not be alleviated, potentially leading to patient mortality. The376

CDT+CT approach can give a more appropriate drug dosage.377

Ablation Study. To investigate the impact of each component on the model’s performance, we378

conducted experiments by sequentially removing each component from the CDT+CT model. The379

results are presented in the lower half of Table 2. Both CT and its non-Markovian layer (attention380

layer) are indispensable and crucial components; removing either one results in a decrease in perfor-381

mance. Additionally, we observed that even a pure generative model outperforms DDPG in terms382

of performance. This is primarily because it inherently operates as a sequence-based reinforcement383

learning model, possessing exploration and consideration for long-term history. Therefore, this384

further underscores the effectiveness of sequence-based approaches in healthcare applications.385

6 Conclusion386

In this paper, we propose offline CT, a novel ICRL algorithm designed to address safety issues387

in healthcare. This method utilizes a causal attention mechanism to observe patients’ historical388

information, similar to the approach taken by actual doctors and employs non-Markovian importance389

weights to effectively capture critical states. To achieve offline learning, we introduce a model-based390

offline RL for exploratory data augmentation to discover unsafe decisions and train CT. Experiments391

in sepsis and mechanical ventilation demonstrate that our method avoids risky behaviors while392

achieving strategies that closely approximate the lowest mortality rates.393

Limitations. There are also several limitations of offline CT: (1) Lack of rigorous theoretical analysis:394

We did not precisely define the types of constraint sets, thereby conducting rigorous theoretical395

analysis on constraint sets remains challenging; (2) Need for more computational resources: Due396

to the Transformer architecture, more computational resources are required; (3) Fewer evaluation397

metrics: There is a lack of more medical-specific evaluation metrics in the experimental evaluation398

section; (4) Unrealistic assumptions of expert demonstrations: we assume that expert demonstrations399

are optimal in both constraint satisfaction and reward maximization. However, in reality, this400

assumption may not always hold. Therefore, researching a more effective approach to address the401

aforementioned issues holds promise for the field of secure medical reinforcement learning.402
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A Design and Analysis of the Custom Constraint Function572

We base our design on prior knowledge that intravenous (IV) intake exceeding 2000mL/4h or573

vasopressor (Vaso) dosage surpassing 1g/(kg ·min) is generally considered unsafe in sepsis treatment574

[6]. To design a reasonable constraint function, we refer to the constraint function designed by Liu et575

al. in the Bullet safety gym environments[38]. We define the cost function as shown in Equation 9.576

Thus, during the treatment of sepsis, if the agent exceeds the maximum dosage thresholds of the two577

medications, it incurs a cost due to constraint violation.578

c (s, a) = 1 (aIV > aIV max) + 1 (aV aso > aV aso max) (9)

where, s and a represent the patient’s state and action, respectively. aIV max = 2000 indicates that579

the maximum fluid intake through IV is 2000mL, and aV aso max = 1 signifies that the maximum580

Vaso dosage is 1µg/(kg ·min).581

We applied our custom constraint function in the CDT [38] method, and the results are shown in582

Figure 9. Compared to the Vaso dosage recommended by doctors, our strategy exhibits excessive583

suppression of the Vaso. The maximum dosage of Vaso is 0.0011µg/(kg ·min), which is minimal584

and insufficient to provide the patient with effective therapeutic effects.585

Therefore, Equation 9 is not suitable. The primary issues may include uniform constraint strength586

for excessive drug dosages, for instance, the cost for IV exceeding 2000 mL and IV exceeding587

3000 mL is the same at 1; lack of generalization, where the constraint cost does not vary with the588

patient’s tolerance. If a patient has an intolerance to VASO, the maximum value for VASO maybe 0,589

which cannot be captured by the self-imposed constraint function. Moreover, it lacks generalization,590

requiring redesign of the constraint function when addressing other unsafe medical issues; and it’s591

essential to ensure the correctness of the underlying medical knowledge premises.

Background—Policy 2

• Use a constraint function to express general unsafe behaviors.

Fig 1. Strategy distribution under self-made constraint function. 

There is over-restriction and no action is taken !

Figure 9: Drug dosage distribution under custom constraint functions in sepsis.

592

B Experiment Supplement593

B.1 Sepsis Problem Define594

Our definition is similar to [40]. We extract data from adult patients meeting the criteria for sepsis-3595

criteria [57] and collect their data within the first 72 hours of admission.596

State Space. We use a 4-hour window and select 48 patient indicators as the state for a one-time unit597

of the patient. The state indicators include Demographics/Static, Lab Values, Vital Signs, and Intake598

and Output Events, detailed as follows [40]:599

• Demographics/Static: Shock Index, Elixhauser, SIRS, Gender, Re-admission, GCS - Glas-600

gow Coma Scale, SOFA - Sequential Organ Failure Assessment, Age601
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• Lab Values Albumin: Arterial pH, Calcium, Glucose, Hemoglobin, Magnesium, PTT -602

Partial Thromboplastin Time, Potassium, SGPT - Serum Glutamic-Pyruvic Transaminase,603

Arterial Blood Gas, BUN Blood Urea Nitrogen, Chloride, Bicarbonate, INR - International604

Normalized Ratio, Sodium, Arterial Lactate, CO2, Creatinine, Ionised Calcium, PT - Pro-605

thrombin Time, Platelets Count, SGOT Serum Glutamic-Oxaloacetic Transaminase, Total606

bilirubin, White Blood Cell Count607

• Vital Signs: Diastolic Blood Pressure, Systolic Blood Pressure, Mean Blood Pressure,608

PaCO2, PaO2, FiO2, PaO/FiO2 ratio, Respiratory Rate, Temperature (Celsius), Weight (kg),609

Heart Rate, SpO2610

• Intake and Output Events: Fluid Output - 4 hourly period, Total Fluid Output, Mechanical611

Ventilation612

Action Space. Regarding the treatment of sepsis, there are two main types of medications: in-613

travenous fluids and vasopressors. We select the total amount of intravenous fluids for each time614

unit and the maximum dose of vasopressors as the two dimensions of the action space, defined as615

(sum(IV),max (Vaso)). Each dimension is a continuous value greater than 0.616

Reward Function. We refer to the reward function used in [9], as shown in the following equation:617

r (st, st+1) = λ1 tanh
(
sSOFA
t − 6

)
+ λ2

(
sSOFA
t+1 − sSOFA

t

))
(10)

Where λ0 and λ1 are hyperparameters set to −0.25 and −0.2, respectively. This reward function is618

designed based on the SOFA score, as it is a key indicator of the health status for sepsis patients and619

widely used in clinical settings. The formula describes a penalty when the SOFA score increases and620

a reward when the SOFA score decreases. We set 6 as the cutoff value because the mortality rate621

sharply increases when the SOFA score exceeds 6 [58].622

B.2 Mechanical Ventilation Treatment Problem Define623

The RL problem definition for Mechanical Ventilation Treatment is referenced from [23].624

State Space.625

• Demographics/Static: Elixhauser, SIRS, Gender, Re-admission, GCS, SOFA, Age626

• Lab Values Albumin: Arterial pH, Glucose, Hemoglobin, Magnesium, PTT, BUN Blood627

Urea Nitrogen, Chloride, Bicarbonate, INR, Sodium, Arterial Lactate, CO2, Creatinine,628

Ionised Calcium, PT, Platelets Count, White Blood Cell Count, Hb629

• Vital Signs: Diastolic Blood Pressure, Systolic Blood Pressure, Mean Blood Pressure,630

Temperature, Weight (kg), Heart Rate, SpO2631

• Intake and Output Events: Urine output, vasopressors, intravenous fluids, cumulative fluid632

balance633

Action Space. The action space mainly consists of Positive End Expiratory Pressure (PEEP) and634

Fraction of Inspired Oxygen (FiO2), which are crucial parameters in ventilator settings. Here, we635

consider a discrete space configuration, with each parameter divided into 7 intervals. Therefore, our636

action space is 7× 7, depicted as 4.

Table 4: The action space of the mechanical ventilator.
Action 0 1 2 3 4 5 6

PEEP(cmH20) 0-5 5-7 7-9 9-11 11-13 13-15 >15
FiO2(Percentage(%)) 25-30 30-35 35-40 40-45 45-50 50-55 >55

637

Reward Function. The primary objective of setting respiratory parameters is to ensure the patient’s638

survival. We adopt the same reward function design as the work [23], defined as Equation 11. This639

reward function first considers the terminal reward: if the patient dies, the reward r is set to −1;640

otherwise, it is +1 in the terminal state. Additionally, to provide more frequent rewards, intermediate641

rewards are considered. Intermediate rewards mainly focus on the Apache II score, which evaluates642
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various parameters to describe the patient’s health status. This reward function utilizes the increase or643

decrease in this score to reward the agent.644

r (st, at, st+1) =


+1 if t = T and mt = 1
−1 if t = T and mt = 0
(At+1−At)

maxA −minA
otherwise

(11)

In Equation 11, T represents the length of the patient’s trajectory, m indicates whether the patient645

ultimately dies, A denotes the Apache II score, and maxA and minA respectively denote the maximum646

and minimum values.647

B.3 The Evaluation of Model-based Offline RL648

Generating data within a reasonable range. To validate model-based offline RL, we first check649

whether the values it produces fall within the legal range. The results are depicted in Figure 10. After650

analyzing the generated data, we find that the majority of state values have a probability of over 99%651

of being within the legal range. A few values related to gender and re-admission range between 60%652

and 70%. This could be due to these two indicators having limited correlation with other metrics,653

making them more challenging for the model to assess.
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Figure 10: The accuracy of predicting different
state values within the legal range.
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654

Generating violating data. In addition, we evaluate the violating actions generated by the model, as655

shown in Figure 12. When compared with expert strategies and penalty distributions, we find that the656

actions generated by the model mostly fall within the legal range. However, it occasionally produces657

behaviors that are inappropriate for the current state, constituting violating data. This indicates that658

our generative model can produce legally violating data.

Figure 12: The distribution and penalty values of violating data and expert data.
659

The length of a trajectory. Regarding the selection of trajectory length, we consider the relationship660

between the average prediction error, the error of the last point in the trajectory, and the trajectory661
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length. We use the model-based offline RL to generate trajectories and compare them with expert662

data using the Euclidean distance to measure their differences. We evaluate the average error and663

the error of the last point in the trajectory, as shown in Figure 11. We observe that with an increase664

in trajectory length, the average prediction error at each time step decreases, while the state error665

stabilizes. Taking into account the observation length and prediction accuracy, we ultimately choose666

to generate trajectories with lengths ranging from 10 to 15.667

B.4 The Evaluation of Cost function in Sepsis668

To validate that the CT method captures key states, we conduct statistical analysis on the relationship669

between state values and penalty values. We collect penalty values under different state values670

for all patients, and the complete information is shown in Figure 13. We find that the CT method671

successfully captures unsafe states and imposes higher penalties accordingly. The safe range of state672

values is shown in Table 5.673

To validate the role of the attention layer in capturing states in CT, we conducted tests, and the674

experimental results are presented in Figure 14 and 13. We found that the attention layer plays a675

crucial role in state capture. For instance, in the case of an increase in the SOFA score, without the676

attention layer, this increase cannot be captured, while with the attention layer, it clearly captures the677

change. Thus, this indicates that SOFA, as a key diagnostic indicator of sepsis, with the help of the678

attention layer, CT can accurately capture its changes.

Table 5: State indicators and their normal ranges.
Indicator Safe Range Indicator Safe Range Indicator Safe Range

Albumin 3.5∼5.1 HCO3 25∼40 SGOT 0∼40
Arterial_BE -3∼+3 Glucose 70∼140 SGPT 0∼40

Arterial_lactate 0.5∼1.7 HR 60∼100 SIRS ↓
Arterial_PH 7.35∼7.45 Hb 12∼16 SOFA ↓

BUN 7∼22 INR 0.8∼1.5 Shock_Index ↓
CO2_mEqL 20∼34 MeanBP 70∼100 Sodium 135∼145

Calcium 8.6∼10.6 PT 11∼13 SpO2 95∼99
Chloride 96∼106 PTT 23∼37 SysBP 90∼139

Creatinine 0.5∼1.5 PaO2_FiO2 400∼500 Temp_C 36.0∼37.0
DiaBP 60∼89 Platelets_count 125∼350 WBC_count 4∼10
FiO2 0.5∼0.6 Potassium 4.1∼5.6 PaCO2 35∼45
GCS ↑ RR 12∼20 PaO2 80∼100

↑ indicates higher values are more normal, while ↓ indicates lower values are more normal.
The maximum value for GCS is 15. The minimum value for SIRS, SOFA, and Shock_Index is 0.

679

B.5 Experimental Settings680

To train the CRL+CT model, we use a total of 3 NVIDIA GeForce RTX 3090 GPUs, each with681

24GB of memory. Training a CRL+CT model typically takes 5-6 hours. We employ 5 random seeds682

for validation. We use the Adam optimization algorithm to optimize all our networks, updating the683

learning rate using a decay factor parameterization at each iteration. The main hyperparameters are684

summarized in Table 6 and 7.685
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Figure 13: The relationship between all states and cost values
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Figure 14: The performance contrast between CT with and without an attention layer. The blue line
represents the absence of an attention layer, while the green line indicates the presence of an attention
layer.

Table 6: List of the utilized hyperparameters in CT.
Offline CT Parameters values

Genetivate Model
Embedding_dim 128
Layer 3
Head 8
Learning rate 1e-4
Pre-train steps 5000
Batch size 256

CT
Embedding_dim 64
Layer 3
Head 1
Learning rate 1e-6
Update steps 30000
Batch size 512

CDT
Learning rate 1e-4
Embedding_dim 128
Layers 3
Heads 8
Update steps 60000
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Table 7: List of the utilized hyperparameters in CRL.
Parameters Sepsis Parameters Mechanical Ventilation

General General
Expert data patient number 14313 Expert data patient number 13846

Validation data patient number 6275 Validation data patient number 5954
Max Length 10 Max Length 10
Action_dim 2 Action_dim 2
State_dim 48 State_dim 36
Gamma 0.99 Gamma 0.99

DDPG DDQN
Learning rate 1e-3 Learning rate 1e-4

Policy Network 256,256 Policy Network 64,64
Replay memory size 20000 Update steps 500000

Update steps 20000

VOCE CQL
Learning rate 1e-3 Learning rate 1e-4

Policy Network 256,256 Policy Network 64,64
Alpha scale 10 Update steps 500000

KL constraint 0.01 Alphas 0.05,0.1,0.5,1,2
Dual constraint 0.1
Update steps 4000

CopiDICE
Learning rate 1e-4

Policy Network 256,256
Alpha 0.5

Cost limit 10
Update steps 100000

BCQ-Lag
Learning rate 1e-3

Policy Network 256,256
Cost limit 10
Lambda 0.75

Beta 0.5
Update steps 100000
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NeurIPS Paper Checklist686

1. Claims687

Question: Do the main claims made in the abstract and introduction accurately reflect the688

paper’s contributions and scope?689

Answer: [Yes]690

Justification: In the abstract and introduction, we delineate the main motivations and691

contributions of this paper and its application in the field of safe reinforcement learning in692

healthcare.693

Guidelines:694

• The answer NA means that the abstract and introduction do not include the claims695

made in the paper.696

• The abstract and/or introduction should clearly state the claims made, including the697

contributions made in the paper and important assumptions and limitations. A No or698

NA answer to this question will not be perceived well by the reviewers.699

• The claims made should match theoretical and experimental results, and reflect how700

much the results can be expected to generalize to other settings.701

• It is fine to include aspirational goals as motivation as long as it is clear that these goals702

are not attained by the paper.703

2. Limitations704

Question: Does the paper discuss the limitations of the work performed by the authors?705

Answer: [Yes]706

Justification: In the final section, this paper discusses the limitations of the method.707

Guidelines:708

• The answer NA means that the paper has no limitation while the answer No means that709

the paper has limitations, but those are not discussed in the paper.710

• The authors are encouraged to create a separate "Limitations" section in their paper.711

• The paper should point out any strong assumptions and how robust the results are to712

violations of these assumptions (e.g., independence assumptions, noiseless settings,713

model well-specification, asymptotic approximations only holding locally). The authors714

should reflect on how these assumptions might be violated in practice and what the715

implications would be.716

• The authors should reflect on the scope of the claims made, e.g., if the approach was717

only tested on a few datasets or with a few runs. In general, empirical results often718

depend on implicit assumptions, which should be articulated.719

• The authors should reflect on the factors that influence the performance of the approach.720

For example, a facial recognition algorithm may perform poorly when image resolution721

is low or images are taken in low lighting. Or a speech-to-text system might not be722

used reliably to provide closed captions for online lectures because it fails to handle723

technical jargon.724

• The authors should discuss the computational efficiency of the proposed algorithms725

and how they scale with dataset size.726

• If applicable, the authors should discuss possible limitations of their approach to727

address problems of privacy and fairness.728

• While the authors might fear that complete honesty about limitations might be used by729

reviewers as grounds for rejection, a worse outcome might be that reviewers discover730

limitations that aren’t acknowledged in the paper. The authors should use their best731

judgment and recognize that individual actions in favor of transparency play an impor-732

tant role in developing norms that preserve the integrity of the community. Reviewers733

will be specifically instructed to not penalize honesty concerning limitations.734

3. Theory Assumptions and Proofs735

Question: For each theoretical result, does the paper provide the full set of assumptions and736

a complete (and correct) proof?737
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Answer: [Yes]738

Justification: We have documented the relevant theories and assumptions in the paper or739

supplementary materials.740

Guidelines:741

• The answer NA means that the paper does not include theoretical results.742

• All the theorems, formulas, and proofs in the paper should be numbered and cross-743

referenced.744

• All assumptions should be clearly stated or referenced in the statement of any theorems.745

• The proofs can either appear in the main paper or the supplemental material, but if746

they appear in the supplemental material, the authors are encouraged to provide a short747

proof sketch to provide intuition.748

• Inversely, any informal proof provided in the core of the paper should be complemented749

by formal proofs provided in appendix or supplemental material.750

• Theorems and Lemmas that the proof relies upon should be properly referenced.751

4. Experimental Result Reproducibility752

Question: Does the paper fully disclose all the information needed to reproduce the main ex-753

perimental results of the paper to the extent that it affects the main claims and/or conclusions754

of the paper (regardless of whether the code and data are provided or not)?755

Answer: [Yes]756

Justification: Our approach is reproducible, and our code can be made publicly available757

after the paper is published, including the relevant data processing procedures.758

Guidelines:759

• The answer NA means that the paper does not include experiments.760

• If the paper includes experiments, a No answer to this question will not be perceived761

well by the reviewers: Making the paper reproducible is important, regardless of762

whether the code and data are provided or not.763

• If the contribution is a dataset and/or model, the authors should describe the steps taken764

to make their results reproducible or verifiable.765

• Depending on the contribution, reproducibility can be accomplished in various ways.766

For example, if the contribution is a novel architecture, describing the architecture fully767

might suffice, or if the contribution is a specific model and empirical evaluation, it may768

be necessary to either make it possible for others to replicate the model with the same769

dataset, or provide access to the model. In general. releasing code and data is often770

one good way to accomplish this, but reproducibility can also be provided via detailed771

instructions for how to replicate the results, access to a hosted model (e.g., in the case772

of a large language model), releasing of a model checkpoint, or other means that are773

appropriate to the research performed.774

• While NeurIPS does not require releasing code, the conference does require all submis-775

sions to provide some reasonable avenue for reproducibility, which may depend on the776

nature of the contribution. For example777

(a) If the contribution is primarily a new algorithm, the paper should make it clear how778

to reproduce that algorithm.779

(b) If the contribution is primarily a new model architecture, the paper should describe780

the architecture clearly and fully.781

(c) If the contribution is a new model (e.g., a large language model), then there should782

either be a way to access this model for reproducing the results or a way to reproduce783

the model (e.g., with an open-source dataset or instructions for how to construct784

the dataset).785

(d) We recognize that reproducibility may be tricky in some cases, in which case786

authors are welcome to describe the particular way they provide for reproducibility.787

In the case of closed-source models, it may be that access to the model is limited in788

some way (e.g., to registered users), but it should be possible for other researchers789

to have some path to reproducing or verifying the results.790

5. Open access to data and code791
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Question: Does the paper provide open access to the data and code, with sufficient instruc-792

tions to faithfully reproduce the main experimental results, as described in supplemental793

material?794

Answer: [Yes]795

Justification: Our code can be made publicly available after the paper is published.796

Guidelines:797

• The answer NA means that paper does not include experiments requiring code.798

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/799

public/guides/CodeSubmissionPolicy) for more details.800

• While we encourage the release of code and data, we understand that this might not be801

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not802

including code, unless this is central to the contribution (e.g., for a new open-source803

benchmark).804

• The instructions should contain the exact command and environment needed to run to805

reproduce the results. See the NeurIPS code and data submission guidelines (https:806

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.807

• The authors should provide instructions on data access and preparation, including how808

to access the raw data, preprocessed data, intermediate data, and generated data, etc.809

• The authors should provide scripts to reproduce all experimental results for the new810

proposed method and baselines. If only a subset of experiments are reproducible, they811

should state which ones are omitted from the script and why.812

• At submission time, to preserve anonymity, the authors should release anonymized813

versions (if applicable).814

• Providing as much information as possible in supplemental material (appended to the815

paper) is recommended, but including URLs to data and code is permitted.816

6. Experimental Setting/Details817

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-818

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the819

results?820

Answer: [Yes]821

Justification: We provided a detailed description of the experimental setup and metrics.822

Guidelines:823

• The answer NA means that the paper does not include experiments.824

• The experimental setting should be presented in the core of the paper to a level of detail825

that is necessary to appreciate the results and make sense of them.826

• The full details can be provided either with the code, in appendix, or as supplemental827

material.828

7. Experiment Statistical Significance829

Question: Does the paper report error bars suitably and correctly defined or other appropriate830

information about the statistical significance of the experiments?831
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• The method for calculating the error bars should be explained (closed form formula,843
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well as details about compensation (if any)?972
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• We recognize that the procedures for this may vary significantly between institutions998

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the999

guidelines for their institution.1000

• For initial submissions, do not include any information that would break anonymity (if1001

applicable), such as the institution conducting the review.1002
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