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Abstract

Embodied agents require internal models that support interventional reasoning,1

not merely correlational prediction. We present POLICYGRID, an embodied2

world model that learns causal structure online through its own actions. Unlike3

traditional approaches that treat causal discovery as preprocessing, POLICYGRID4

integrates causal learning directly into the policy loop: agents actively probe the5

environment to resolve causal uncertainty while simultaneously optimizing for6

competing objectives. This enables agents to adapt their causal understanding as7

they act, expanding their behavioral repertoire beyond correlation-driven policies.8

The framework addresses a fundamental challenge in embodied AI: how can agents9

maintain reliable world models when their own interventions continuously change10

the data distribution? To validate this approach, we evaluate POLICYGRID in11

building control across synthetic simulations, public datasets, and real deployment,12

achieving F1 = 0.89 under real-world conditions and 2.8× higher policy perfor-13

mance than baselines, demonstrating that embedding causal reasoning directly into14

the policy loop yields more robust, adaptive behavior than correlation-driven world15

models.16

1 Introduction17

Embodied agents must reason causally about how their actions affect the environment. Unlike passive18

observers, agents that act in the world require internal models that predict the consequences of19

interventions [Ha and Schmidhuber, 2018, Hafner et al., 2020]. Correlational models fail when20

agents intervene because correlation does not imply causation. This fundamental limitation con-21

strains current embodied AI systems to reactive behaviors rather than principled, goal-directed22

action, despite theoretical work showing that general agents require world models for multi-step23

generalization [Richens et al., 2025].24

The challenge is acute in cyber-physical systems where agents must balance competing objectives25

under uncertainty. Standard world models capture statistical dependencies but provide no mechanism26

for reasoning about interventions. When an agent acts, these models cannot distinguish between27

spurious correlations and genuine causal relationships. The result is brittle policies that fail when the28

environment shifts.29

Current approaches to embodied decision-making either ignore causal structure entirely or treat causal30

discovery as a separate preprocessing step. This disconnect prevents embodied agents from integrating31

causal reasoning directly into their decision-making processes. Discovering causal structure alone is32

insufficient; the structure must be leveraged for principled policy generation.33

We address this gap through POLICYGRID, a unified framework that integrates interventional34

causal discovery with policy generation for embodied agents. Building on a causal discovery core,35

POLICYGRID extends beyond traditional approaches [Buesing et al., 2019, Ding et al., 2022]36
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that treat causal modeling as preprocessing. Instead, it learns causal structure through targeted37

interventions, combining constraint-based search, neural structural equation modeling, and language38

model priors. The framework then leverages these validated causal graphs to generate policies39

with explicit trade-offs between competing objectives. This produces interpretable multi-objective40

optimization.41

The framework addresses three key requirements for embodied causal reasoning: (1) discovering42

causal structure from observational and interventional data, (2) validating causal relationships through43

targeted experiments, and (3) translating causal knowledge into operational policies. By integrating44

these components, POLICYGRID enables agents to reason about the consequences of their actions45

rather than merely react to correlations. This work extends the embodied world model discourse46

by demonstrating how causal reasoning can be embedded directly within the policy loop, moving47

beyond the latent dynamics models of Hafner et al. [2020] and the meta-learning approaches of Finn48

et al. [2017] toward principled interventional reasoning [Battaglia et al., 2016, Wu et al., 2015].49

We evaluate POLICYGRID in domains where agents act, measure consequences, and balance50

competing objectives. Cyber-physical systems with rich sensors, defined actuation, and quantifiable51

trade-offs provide suitable testbeds. Building control exemplifies this class: abundant sensors, clear52

actuation channels, and energy-comfort trade-offs. We validate across synthetic simulations, the53

ASHRAE Great Energy Predictor III dataset, and live office deployment. POLICYGRID outperforms54

correlation-based approaches in both policy performance and interpretability.55

Contributions. We establish three insights for embodied causal reasoning. First, interventions56

serve dual purposes: control actions simultaneously manipulate the environment and refine the agent’s57

causal understanding. POLICYGRID treats each action as both a policy decision and an experiment58

that updates internal world models. Second, causal discovery need not precede control but can59

occur within it. Agents probe their environment to resolve structural uncertainty while optimizing60

for objectives, collapsing the traditional separation between learning and acting. Third, policies61

grounded in validated causal structure outperform correlation-based alternatives in multi-objective62

settings. Empirical validation demonstrates F1 = 0.89 for causal recovery and 2.8× hypervolume63

improvement over correlation-based methods, confirming that causal world models provide a more64

reliable foundation for multi-objective control than statistical dependencies alone.65

2 Related Work66

2.1 Causal Discovery Methods67

Causal discovery methods recover structural relationships from data. Constraint-based approaches68

like PC [Spirtes et al., 2000] test conditional independencies but fail under noise and hidden con-69

founders [Colombo et al., 2012, Glymour et al., 2019]. Structural equation models [Kalainathan70

et al., 2018, Rosseel and Loh, 2022, Monti et al., 2020] capture nonlinearities but require careful71

specification. NOTEARS [Zheng et al., 2020] reformulates structure learning as continuous opti-72

mization. Recent work incorporates language model priors [Sun and Li, 2024, Kıcıman et al., 2023]73

but sacrifices robustness. These methods treat causal discovery as offline preprocessing. Graphs74

remain fixed during deployment. Embodied agents require adaptive causal understanding through75

interaction.76

2.2 Embodied Agents and World Models77

Embodied agents require internal models to predict intervention consequences [Ha and Schmidhuber,78

2018, Hafner et al., 2020, Richens et al., 2025]. Robotics approaches use meta-learning [Finn et al.,79

2017] or physics priors [Wu et al., 2015, Battaglia et al., 2016] for adaptation. Cyber-physical80

systems employ correlation-based models [Kleissl and Agarwal, 2010, Kathirgamanathan et al., 2021,81

Czekster et al., 2022] that capture statistical dependencies but lack causal structure. Existing world82

models predict correlations, not causal effects. Correlational models fail under intervention because83

correlation does not imply causation [Glymour et al., 2019, Zhang et al., 2022]. Causal world models84

remain valid under intervention.85
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2.3 Causal Reasoning in Control86

Control systems benefit from causal reasoning. Invariant prediction [Peters et al., 2016, 2017] ensures87

stability across environments. Active discovery methods [Hauser and Bühlmann, 2012, Mooij et al.,88

2020, Zhang et al., 2023] use interventions to resolve causal orientation. Causal bandits [Lattimore89

et al., 2016] optimize intervention selection. Causal reinforcement learning explores counterfactual90

policies [Buesing et al., 2019] and goal-conditioned reasoning [Ding et al., 2022]. These approaches91

separate causal discovery from control. Discovery methods assume fixed environments. Control92

methods assume known causal structure. Embodied agents must learn causal structure through control93

actions while optimizing objectives. POLICYGRID eliminates this separation. Actions optimize94

objectives and refine causal understanding simultaneously. Each intervention serves as both a control95

decision and a causal experiment.96

3 Problem Formulation97

We frame embodied control as the task of an agent acting in a dynamic environment where decisions98

must be guided by causal structure rather than correlations. To formalize this setting, we begin with99

the set of observable variables V = {V1, . . . , Vn} measured by sensors. These variables capture the100

system’s state and are the quantities the agent must reason about. At each time step t, the environment101

also presents exogenous context Ct, such as weather or occupancy, which influences outcomes but102

cannot be controlled. The agent selects an action At from a feasible intervention set C, representing103

its direct ability to affect the environment.104

The dynamics linking these elements are unknown but assumed to follow a structural causal model105

(SCM) G = (V, E). Representing the environment in this way is necessary because we are interested106

not only in prediction but in understanding how interventions propagate. Each variable evolves107

according to108

Vi(t) = fi
(
PaG(Vi(t)), At, Ct, ϵi(t)

)
, (1)

where PaG(Vi(t)) are the parents of Vi in G, fi is an unknown structural function, and ϵi(t) is109

noise. This formalism makes explicit that trajectories depend on endogenous interactions, exogenous110

context, and the agent’s actions.111

The difficulty is that G is unobserved. Without it, the agent cannot distinguish true causal influence112

from spurious correlation, making policies fragile under shifts in context. To address this, POL-113

ICYGRID integrates causal discovery directly into the control process via the discovery module.114

The agent does not treat discovery as a preliminary offline task; instead, it iteratively builds Ĝ by115

interacting with the environment. Observational data Dobs = {V (t), Ct}Tt=1 provide a baseline116

model of dependencies, but these alone are insufficient for causal identification. Interventional data117

Dint = {V (t), At, Ct}Tt=1 are therefore used to test competing hypotheses about system structure.118

Combining both sources produces a working graph119

Ĝ = discovery_module(Dobs,Dint), (2)

which the agent treats as its current world model.120

Constructing Ĝ is only part of the problem: the ultimate goal is to act. Policies must be computed121

with respect to the discovered structure so that interventions are chosen for their causal effect rather122

than their observed association. Given context Ct and candidate actions C, the policy engine uses Ĝ123

to compute124

A∗
t = π(Ĝ, Ct) ∈ C, (3)

where π denotes a policy that optimizes multiple objectives under uncertainty. This formulation125

makes clear why discovery and policy must be coupled: without Ĝ, the agent cannot anticipate126

intervention effects; without policy, discovery has no operational value.127

The overall problem is therefore to jointly infer a causal model and optimize actions over it. Formally,128

(Ĝ, {A∗
t }Tt=1) = POLICYGRID(Dobs,Dint, C), (4)

where both components are solved within a unified embodied framework.129

Although we demonstrate this framework in building control—where dense sensing, clear actuation,130

and energy–comfort trade-offs provide a concrete setting—the formulation is not specific to that131
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Figure 1: Architecture of POLICYGRID. The discovery module (left) iteratively generates, validates, and refines
causal hypotheses; the policy engine (right) leverages the validated DAG to generate multi-objective policies.

domain. Any embodied agent facing coupled dynamics, exogenous context, and the need for multi-132

objective control can be expressed within the same problem structure.133

4 Methodology134

POLICYGRID operationalizes embodied agents by iteratively learning a causal world model from135

both observational and interventional data, and using that model to generate interpretable policies136

under competing objectives. The framework consists of two tightly coupled modules: (i) a causal137

discovery module that constructs and validates a directed acyclic graph (DAG) over observed vari-138

ables; and (ii) a causal policy engine that queries the validated DAG to evaluate and recommend139

interventions.140

4.1 Embodied World-Model Learning141

At the core of POLICYGRID is its discovery module, which closes the perception–action loop by142

refining a world model of system dynamics. Let V = {V1, . . . , Vn} denote the set of n observed143

variables (e.g., temperature, humidity, device states in a building example), and let Dobs = {vt}Tt=1144

denote a dataset of T observational measurements. The discovery module incrementally learns a DAG145

G = (V, E), where each edge e = i → j ∈ E encodes a candidate causal dependency. The process146

iterates over three stages: candidate edge generation, interventional validation, and refinement.147

Multi-method DAG construction. Candidate causal edges are proposed using three complementary148

methods: Constraint-based PC [Spirtes et al., 2000], which builds a skeleton from conditional149

independence tests (Fisher’s z-test with significance level α = 0.05) and orients edges using PC150

rules; neural SEM via SAM [Kalainathan et al., 2018] learns a weighted adjacency matrix W ∈151

Rn×n by minimizing a reconstruction loss with L1, L2, and acyclicity penalties, optimized with152

hyperparameters λ1 = 0.1, λ2 = 0.01, generator learning rate ηg = 0.01, discriminator learning rate153

ηd = 0.005, for 200 epochs and three random restarts; an LLM (GPT-3.5-turbo) [Ye et al., 2023],154

prompted with domain physics and actuator constraints to propose acyclicity-consistent edges.155

The union of the three outputs forms the candidate edge set. Each edge e is assigned a confidence156

score157

c(e) =

{
1.0, if e was previously validated,
1
3

∑3
m=1 1{e ∈ Em}, otherwise,

where Em is the edge set from method m. Low-confidence edges are prioritized for testing.158
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Interventional validation. Let Xi ∈ V be a candidate parent of Xj ∈ V . An intervention do(Xi =159

x′
i) sets Xi to a value x′

i under actuator constraints, producing interventional data Dint = {xint
k }Nint

k=1.160

The causal effect is estimated via truncated factorization:161

∆ij = E[Xj | do(Xi = x′
i)]− E[Xj | do(Xi = xi)].

The edge i → j is validated if |∆ij | > ϵ in at least one of n = 3 repeats (with threshold ϵ = 0.1);162

otherwise it is pruned. The combined dataset is163

Dcombined = Dobs ∪ {(xint
k , wk)}Nint

k=1,

where wk = 2.0 upweights interventions to reflect their higher evidential value.164

Iterative refinement. The loop repeats until (i) all candidate edges are evaluated, (ii) a budget of165

Tmax interventions is reached, or (iii) the learned DAG converges. Each cycle produces an auditable166

log of tested edges, executed actions, measured effects ∆ij , and graph updates. Historical intervention167

cost and risk are tracked to ensure the learned world model remains interpretable and accountable.168

4.2 Causal Policy Engine169

The validated DAG Ĝ serves as a causal world model that the policy engine uses to generate control170

strategies. Using the DAG and its associated structural information, the engine evaluates candidate171

actions to predict their expected effects on relevant objectives. For illustration in building control,172

these objectives include occupant comfort and energy use, with metrics such as degree-hours (DH)173

and kilowatt-hours (kWh). More generally, objectives can be defined for any cyber-physical domain174

with measurable trade-offs.175

Formally, over a prediction horizon H ,176

DH =

H∑
t=1

∆t max
(
0, |Tzone(t)− Tsp| − δ

)
, kWh =

H∑
t=1

PHVAC(t)∆t,

where Tzone(t), Tsp, δ, and PHVAC(t) illustrate domain-specific instantiations of the general framework.177

Unlike a closed-loop controller, the engine does not execute actions directly. Instead, it evaluates178

them offline using Ĝ, selecting policies that strike a balance across objectives. Past intervention data179

act as regularizers: actions that are likely to cause excessive cost or risk due to spurious edges are180

penalized. To ensure robust policy selection, the engine applies thresholds on the estimated causal181

effects, requiring that the magnitude |∆| > 0.05 with p < 10−3.182

Each recommended action is directly traceable to causal pathways in Ĝ and to the interventions183

that validated those edges. Cost and risk summaries provide transparent feedback on operational184

consequences, supporting accountable decision-making in safety-critical domains.185

5 Experiments186

We evaluate POLICYGRID in two stages: (i) we assess the framework’s ability to recover causal187

structure across a spectrum of controlled setups, and (ii) we benchmark its performance in leveraging188

this structure for embodied decision-making under uncertainty. While we collected a wide range189

of evaluation results, for clarity and due to space constraints, the main text focuses on Structural190

Hamming Distance (SHD) for causal recovery and hypervolume/Pareto metrics for control; the191

complete set of results and comparisons is provided in Appendix A.4.192

5.1 Causal Structure Recovery193

To assess the causal discovery module within POLICYGRID, we designed six progressively complex194

setups (Appendix A.1): a base simulation with low noise and full observability; a noisy simulation195

with high-variance Gaussian perturbations; a hidden-variable simulation where selected confounders196

are latent; a real-world dataset with labeled dependencies (ASHRAE HVAC operations [Howard197

et al., 2019]); a physical testbed with office-scale equipment where controlled interventions were198

performed; and a large-scale emulator for testing scalability and edge cases. While several of these199
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environments involve building systems, they are intended primarily as challenging benchmarks for200

testing causal recovery in embodied, sensor-rich systems.201

We compared POLICYGRID’s discovery module against ten representative methods (Appendix A.2)202

spanning constraint-based, score-based, invariant prediction, bandit-based, and neural approaches,203

including PC, SAM, ICP, JCI, Causal Bandits, ABCD, GIES, IID, NOTEARS, and LLM-based priors.204

Structural recovery was evaluated using standard metrics (Appendix A.3)—Structural Hamming205

Distance (SHD), F1, and precision–recall—with intervention cost and operational risk additionally206

reported for real and physical setups. Only SHD results are shown in the main text; the remaining207

metrics appear in Appendix A.4.208

5.2 Embodied Control Performance209

We then evaluated the full POLICYGRID framework in four embodied control scenarios: the base210

simulation, the noisy simulation, the hidden-variable setting, and the large-scale emulator. The211

framework was compared against three baselines: (i) a variant without causal structure (POLICYGRID212

W/O DAG); (ii) a proportional–integral–derivative controller (ASHRAE-PID) tuned to standard213

setpoints [Standard, 1992]; and (iii) a correlation-based heuristic controller.214

Evaluation considered two complementary perspectives. From an efficiency standpoint, we measured215

paired differences in mean resource consumption across policy pairs, with confidence intervals and216

significance testing (Appendix A.4.5). From a robustness standpoint, we examined operational217

performance via violation rate of imposed constraints and the hypervolume of the Pareto frontier.218

Only hypervolume and Pareto frontier results are presented in the main text; the remaining results are219

reported in Appendix A.4.220

While the discovery module has been validated on a physical testbed, the full POLICYGRID frame-221

work was not deployed on hardware due to feasibility and safety constraints: extended embodied222

interventions can pose risks to both equipment and occupants. Safe deployment strategies—such223

as shadow-mode testing, staged rollouts, digital twins, and human-in-the-loop safeguards—remain224

important directions for future work.225

6 Results226

We evaluate POLICYGRID on our experimental setup, emphasizing: (i) fidelity of learned causal227

world models and (ii) policy effectiveness and operational performance across simulation scenarios228

under multi-objective constraints. Detailed robustness, observation-only, and ablation analyses are229

provided in Appendix A.4.230

6.1 Causal World Model Fidelity231

Figure 2 and Table 1 report Structural Hamming Distance (SHD) between learned and ground truth232

graphs across six setups. POLICYGRID achieves the lowest SHD in all cases, with exact recovery233

in Base, Hidden-Variable, and Physical (SHD = 0), and low error in Noisy (2), ASHRAE (1), and234

Large-Sim (13).235

Baselines varied in accuracy. PC achieved relatively low SHD in simpler setups (Base: 4, Physical:236

2) but degraded under complexity (Large-Sim: 49). IID and ABCD followed similar trends, reaching237

SHD of 56 and 53 in Large-Sim. SAM, GIES, and NOTEARS generally produced higher errors238

across all setups.239

Overall, SHD increased with setup complexity, especially beyond the Physical case, reflecting240

the difficulty of recovering structure in larger and noisier systems. By comparison, POLICYGRID241

maintained lower SHD throughout, indicating that iterative interventions and physical priors improved242

robustness across conditions.243

6.2 Policy Performance and Operational Metrics244

We evaluated four controllers: ASHRAE-PID, Correlation-based, POLICYGRID without causal245

DAG, and full POLICYGRID on the Base, Noisy, Hidden-Variable, and Large-Sim setups. Table 2246

reports two primary metrics: hypervolume (hv), which summarizes the area of the Pareto front over247

6



Figure 2: Structural Hamming Distance (SHD) performance comparison across eleven causal discovery methods
over six experimental setups of increasing complexity. The plot demonstrates how structural accuracy
degrades as problem complexity increases, with the annotated inflection region highlighting where most
traditional methods begin to fail. PolicyGRID (red dotted line) maintains consistently low SHD values across
all complexity levels, demonstrating superior robustness to challenging conditions including noise, hidden
confounders, and large-scale scenarios.

energy and comfort trade-offs (higher values indicate better trade-offs), and violation rate (V%),248

defined as the percentage of time comfort bounds are exceeded (lower values are preferred).249

Across all setups, POLICYGRID obtains the highest hypervolume and the lowest violation rates.250

Removing the causal DAG leads to lower hypervolume and higher violation rates, showing the251

importance of causal structure for policy quality. Both ASHRAE-PID and Correlation baselines252

remain below 10 hv and exhibit higher violations.253

Figure 3 and 4 illustrate Pareto frontier points across controllers. POLICYGRID consistently254

places operating points in the low energy, low comfort violation region. Even at its least favorable255

configurations, its comfort violation levels remain below those of the best baselines. ASHRAE-PID256

and Correlation cluster in the high-energy, high-discomfort regime, while the DAG ablation tends to257

reduce energy at the cost of high comfort violations.258

7 Discussions259

Our results highlight the advantages of integrating causally structured world models into embodied260

agents operating in dynamic, sensor-rich environments. The discovery module of POLICYGRID261

reliably recovers DAGs across varying noise levels, latent confounders, and increasing system262

complexity, outperforming baseline methods that either overfit to noise or fail under hidden variables.263

These validated causal graphs provide a principled foundation for decision-making under uncertainty.264
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Table 1: Structural Hamming Distance (SHD) results for eleven causal discovery methods across six benchmark
experimental setups. Bold values indicate the best (lowest) SHD performance for each setup. Lower SHD
values indicate better structural alignment with ground truth DAGs. PolicyGRID achieves perfect or near-
perfect reconstruction (SHD ≤ 2) across all setups, significantly outperforming existing methods, particularly
in complex scenarios like Physical and Large-Scale simulations where traditional approaches show substantial
degradation.

Method Base Noisy Hidden ASHRAE Physical Large-Scale
PC 4 4 4 4 2 49
SAM 8 6 8 4 7 21
LLM 7 7 7 4 2 17
GIES 6 10 8 4 2 22
JCI 8 3 8 13 6 28
ABCD 5 8 6 4 8 23
Causal Bandits 8 5 9 8 7 43
ICP 5 5 4 2 6 39
IID 4 4 4 12 2 56
NOTEARS 8 9 3 6 4 26
PolicyGRID 0 2 0 1 0 13

Table 2: Operational performance of POLICYGRID across four simulation setups. Each policy is evaluated
on two metrics: (i) violation rate, the fraction of time comfort constraints are violated (lower is better), and
(ii) hypervolume, the dominated area in the energy–comfort objective space (higher is better). These metrics
quantify the quality of multi-objective trade-offs achieved by each policy.

Policy Base Noisy Hidden-Vars Large-Sim

hv↑ V↓ hv↑ V↓ hv↑ V↓ hv↑ V↓
ASHRAE 8.81 8.85 8.87 8.86 9.12 9.34 8.93 8.95
Correlation 8.81 19.87 8.76 20.81 8.79 21.13 8.82 20.78
PolicyGRID (w/o DAG) 18.72 24.13 20.42 24.21 19.87 23.98 20.41 24.24
PolicyGRID 24.55 6.82 21.90 7.37 20.91 7.41 24.06 7.53

hv=Hypervolume, V=Violation %

When incorporated into the full framework, the learned causal backbone enables adaptive trade-off265

management between competing objectives. Unlike correlation-driven heuristics or conservative266

baseline controllers, which maintain relatively fixed trade-offs, POLICYGRID actively explores the267

objective frontier. Methods lacking causal directionality and confounder awareness often misattribute268

relationships, resulting in unintended constraint violations despite apparently stable performance269

metrics. By contrast, the causal backbone guides policies that balance objectives reliably and270

predictably.271

Ablation studies without the causal DAG further emphasize the importance of structural guidance:272

while certain performance gains may still be achieved, the absence of validated causal relationships273

leads to higher constraint violations and reduced reliability. Overall, these findings demonstrate274

that embedding causal reasoning directly into the policy loop enhances adaptability, robustness, and275

safety for embodied agents. Although evaluated in the context of building-like environments, the276

principles extend broadly to any cyber-physical or embodied system where interventions influence277

the environment and reliable multi-objective decision-making is critical.278

8 Limitations and Future Work279

While POLICYGRID demonstrates strong performance across our benchmarks, several directions280

remain open. Iterative interventional validation in the discovery module can be computationally281

demanding at scale, and approximate discovery methods or hierarchical strategies may improve282

efficiency without sacrificing fidelity; because POLICYGRID builds directly on the world models pro-283

duced by the discovery module, advances in scalable discovery will translate to more responsive and284

adaptive control. Accurate sensing and intervention logs are also essential: although the framework285
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Figure 3: Pareto frontier analysis for Large-Sim building control scenario comparing energy consumption versus
comfort violations across four control policies. PolicyGRID (blue circles) leverages causal DAG structure to
achieve optimal energy-comfort trade-offs, significantly outperforming industry standard ASHRAE baseline
(teal triangles), correlation-based control (orange diamonds), and ablated PolicyGRID without DAG structure
(purple squares). Lower-left region represents optimal performance zone.

shows robustness under noise, uncertainty-aware inference and automated fault detection will further286

enhance reliability in real deployments. Similarly, the current approach assumes relative stationarity,287

and incorporating online adaptation and continual causal learning would allow POLICYGRID to288

adjust under non-stationary dynamics.289

Finally, while our evaluation focused on energy-comfort trade-offs in building-like environments,290

the framework is broadly applicable to other embodied systems where interventions influence the291

environment. Natural next steps include extending to robotics, autonomous transportation, assistive292

technologies, and other cyber-physical domains, as well as broadening the policy layer to support293

richer multi-objective criteria, safety constraints, and human-in-the-loop feedback.294

9 Conclusion295

We presented POLICYGRID, a framework for embodied agents that integrates iterative causal dis-296

covery with policy generation, enabling adaptive, interpretable, and robust decision-making under297

uncertainty. Across a range of simulation and real-world benchmarks, POLICYGRID demonstrates298

that embedding causal structure directly into the policy loop improves multi-objective performance299

while maintaining alignment with system dynamics. These results underscore the value of causally300

structured world models for reasoning about interventions in partially observable, noisy, and com-301

plex environments. Future directions include multi-agent coordination, continual causal learning,302

and integration with richer perceptual modalities, extending POLICYGRID beyond building-like303

domains to general embodied AI systems that interact safely and effectively with humans and their304

environments.305
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A Appendix425

A.1 Simulation Setup Details426

We evaluated POLICYGRID’s causal discovery module against all benchmark methods listed in427

Section 5 across six progressively complex setups, spanning synthetic simulations, dataset-driven428

benchmarks, and physical deployments. Each setup was designed to test robustness under varying429

levels of observability, stochasticity, latent confounding, and system scale. Synthetic and dataset-430

driven setups (Base, Noisy, Hidden, ASHRAE) were run for 60 iterations, while the physical setup431

used 15 iterations due to hardware constraints. To quantify causal complexity across setups, we432

define a symbolic score433

C = n+ αm+ βr + γh+ δz,

where n is the number of observed variables, m the number of intervenable variables, and434

r, h, z ∈ {0, 1} indicate the presence of noise, hidden confounders, and spatial coupling, respectively.435

The weights α–δ encode the relative difficulty contributed by each factor. This metric enables436

structured, quantitative comparisons of causal recovery performance across diverse embodied-system437

benchmarks (Table 3), reflecting realistic challenges in partially observable, noisy, and intervention-438

rich environments [Fisher et al., 2019, Zhang et al., 2022, Peters et al., 2017].

Table 3: Complexity Characterization of Experimental Setups
Setup Complexity Expression Big O Notation
Base n O(n)
Noisy n+ β O(n+ β)
Hidden n+ γ O(n+ γ)
ASHRAE n+ αm+ β + γ O(n+m)
Physical n+ αm+ β + γ + δ O(n+m+ z)
Large-Scale nz + αm+ β + γ + δ O(nz +m)

439

A.1.1 Base Simulation (5 Variables)440

Complexity: O(n)441

The base setup evaluated performance under ideal conditions using a fully observable smart HVAC442

simulation with five variables: temperature (T), humidity (H), air quality (AQ), energy consumption443

(E), and occupant satisfaction (S). A ground truth DAG was manually defined based on domain444

knowledge. Data were generated via a custom simulator enabling batch runs and direct interventions.445

Energy use was estimated by nearest-neighbor interpolation over EnergyPlus data [Crawley et al.,446

2001], with fallbacks from ASHRAE 90.1 [Nambiar et al., 2023] and Seem’s part-load model [Seem,447

1987]. Models incorporated temperature drift, ASHRAE 62.1 humidity control [Ashrae, 1989],448

and EPA-based ventilation energy [Sadrizadeh et al., 2022]. Occupant satisfaction followed ISO449

7730 [International Organization for Standardization, 2005], combining PMV/PPD metrics with450

psychrometric inputs, and was penalized for excess energy use.451

Table 4: Base Simulation tracks temperature, humidity, and air quality (inputs) alongside energy use and
occupant satisfaction (outputs); each variable has set units and ranges, and the first three causally drive the last
two.

Variable Type Variable Range and Units

Input Variables
Temperature (T ) 18-30°C
Humidity (H) 30-70%
Air Quality (AQ) 0-500 AQI

Output Variables Energy Consumption (E) 0-100% (normalized index)
Overall Satisfaction (S) 0-100%

A.1.2 Noisy Simulation (5 Variables)452

Complexity: O(n+ β)453
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This setup extended the base by adding Gaussian noise to sensor readings to test robustness against454

realistic measurement uncertainty. Noise levels matched typical sensor specs: ±0.2◦C for temperature,455

±2% RH for humidity [AG, 2022], and ±15 AQI for air quality [Industries, 2020]. Noise affected456

only observed values, keeping control variables precise to mimic real automation. The temperature457

range was also expanded to 18-40◦C to evaluate stability under extreme conditions.458

A.1.3 Simulation with Hidden Variables (5 Variables)459

Complexity: O(n+ γ)460

This setup added latent confounders in the base setup to simulate partial observability typical in461

real buildings. Hidden variables such as HVAC efficiency, building envelope properties, occupancy462

patterns, window states, and outdoor conditions were unobserved by the algorithms but influenced463

observed variables and outcomes. Energy consumption and occupant satisfaction reflected time-464

varying effects from building physics and occupancy-driven demand, including adaptive comfort and465

window use.466

A.1.4 Real-World Dataset (ASHRAE; 5 Variables)467

Complexity: O(n+m)468

We used the ASHRAE Great Energy Predictor III dataset [Howard et al., 2019] to evaluate POLI-469

CYGRID and the other benchmark methods on real-world energy data from over 1,400 buildings.470

Six physical variables were selected: outdoor temperature, dew point, pressure, energy use, square471

footage, and construction year. Preprocessing involved daily aggregation, weather-building merging,472

KNN imputation, outlier removal, and robust scaling. A ground truth DAG was defined using473

domain expertise and physical laws. As real interventions were unavailable, we used Random For-474

est surrogates trained on observational data to simulate interventions and predict effects on causal475

children.476

A.1.5 Physical Deployment (5 Variables)477

Complexity: O(n+m+ z)478

This setup validated POLICYGRID and the benchmark methods under real-world hardware constraints479

using environmental sensors, power monitors, and standardized comfort tools in a controlled space.480

Two Govee H5179 sensors measured temperature (±0.3°C) and humidity (±3%), while a BME680481

provided additional readings including IAQ. Three Kasa KP125M plugs monitored power with 0.1 W482

resolution, reporting cumulative energy usage with 1% accuracy, and acted as actuators. PMV/PPD483

comfort scores followed ISO 7730 [International Organization for Standardization, 2005] using484

fixed occupant parameters. Satisfaction combined thermal and air quality metrics, following ISO485

7730 standards [International Organization for Standardization, 2005]. Interventions were capped486

at 1000/day, spaced by ≥ 300s with a 600s stabilization window. Effects were quantified using487

Cohen’s d [Diener, 2010]. Data were time-synced, Govee readings averaged, and energy consumption488

data from the Kasa plugs summed. Preprocessing used KNN imputation (k=5), IQR-based outlier489

removal, and Min-Max normalization [Mining, 2006]. While this setup demonstrates feasibility,490

scaling interventions in occupied buildings remains a practical constraint and is a direction for future491

deployment work.492

A.1.6 Large-Scale Simulation (13 Variables)493

Complexity: O(nz +m) Five inter-connected EnergyPlus zones (13 state vars each) expose control494

of temperature, humidity, IAQ, occupancy, HVAC set-points, and lighting. A central coordinator495

issues zone- and building-level interventions, captures full state, and aggregates energy, comfort, IAQ,496

and satisfaction metrics, reusing the single-room psychrometric and energy models while realistic497

schedules drive coupled dynamics for benchmarking.498

A.2 Baseline Methods499

To evaluate POLICYGRID, we benchmarked it against ten baseline causal discovery methods span-500

ning constraint-based, score-based, Bayesian, invariance-based, optimization-driven, and LLM-based501
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approaches. Each was run under identical conditions with standardized datasets, iteration budgets,502

and evaluation metrics (Section A.3). Implementations came from verified sources (e.g., causal-learn,503

CDT) with default or grid-tuned parameters.504

Table 5 summarizes the baseline methods against which POLICYGRID was benchmarked. All505

implementations were drawn from official repositories or verified third-party libraries (e.g., causal-506

learn, CDT), with default or grid-tuned parameters used consistently across runs.507

Table 5: Overview of benchmark methods used for causal discovery and intervention planning. The table
summarizes ten representative approaches spanning constraint-based, score-based, neural, and language model-
driven techniques.

Method Description Ref
PC Constraint-based method using conditional independence tests to

recover causal skeleton and orientations.
Spirtes
et al.
[2000]

SAM Structural agnostic model learning causal graphs via adversarial
training and sparsity constraints.

Kalainathan
et al.
[2018]

GIES Score-based algorithm extending Greedy Equivalence Search to
interventional settings.

Hauser
and
Bühlmann
[2012]

JCI Unified framework treating interventions as observed variables
for joint learning.

Mooij
et al.
[2020]

ABCD Active Bayesian approach using expected information gain for
iterative interventions.

Toth
et al.
[2022]

Causal Bandits Sequential decision-making using bandit feedback to optimize
interventions.

Lattimore
et al.
[2016]

NOTEARS-I Continuous optimization extending NOTEARS for interventional
data.

Zheng
et al.
[2020]

ICP Identifies causal predictors invariant across multiple environments. Peters
et al.
[2016]

IID Active learning selecting interventions based on entropy reduc-
tion.

Zhang
et al.
[2023]

LLM Large language models proposing causal edges via domain knowl-
edge reasoning.

Sun
and Li
[2024]

A.3 Evaluation Metric Details508

Learned graphs and policies from POLICYGRID were evaluated along two dimensions: (i) structural509

fidelity to a known or reference causal model, and (ii) practical implications of incorrect causal510

assumptions for downstream decision-making.511

A.3.1 Structural Accuracy512

Structural accuracy metrics quantify how closely the learned DAG Ĝ = (V̂ , Ê) approximates the513

ground truth DAG G∗ = (V ∗, E∗). True positives (TP), false positives (FP), false negatives (FN),514

and true negatives (TN) were computed based on edge presence and orientation. These values provide515

a foundation for further structural metrics.516

15



A.3.2 Structural Hamming Distance (SHD)517

SHD measures the total number of edge modifications—additions, deletions, or reversals—required518

to convert Ĝ into G∗. Formally,519

SHD(G∗, Ĝ) =
∑
i,j

|A∗
ij − Âij |,

where A∗ and Â are the adjacency matrices of the ground truth and learned DAGs.520

A.3.3 Cost and Risk Metrics521

To evaluate the operational impact of false positive edges, we define cost and risk metrics based on522

historical or simulated interventions. For each false positive edge e, the edge-level cost is523

edge_cost(e) =
1

|Ie|
∑
i∈Ie

(α · sat_loss(i) + β · energy_increase(i)) ,

where Ie is the set of interventions associated with edge e, α = β = 0.6, and the components are524

sat_loss(i) = max
(
0,

Spre,i − Spost,i

Spre,i

)
·1Spre,i>0, energy_increase(i) = max

(
0,

Epost,i − Epre,i

Epre,i

)
·1Epre,i>0.

The aggregate cost and confidence-weighted risk for method m are defined as525

Cost(m) =

{
1

|Êm\E∗|

∑
e∈Êm\E∗ edge_cost(e), |Êm \ E∗| > 0

0, otherwise
526

Risk(m) =

{
1

|Êm\E∗|

∑
e∈Êm\E∗ confidence(e) · edge_cost(e), |Êm \ E∗| > 0

0, otherwise
527

These metrics were computed for intervention-capable methods (e.g., GIES, ABCD, JCI, ICP, Causal528

Bandits, IID, NOTEARS) using interventions observed in the system. Effects were filtered to529

include only those with magnitude |∆| > 0.05 and t-test confidence p < 0.001, corresponding to530

confidence = 0.9.531

A.3.4 Pareto Frontiers532

For multi-objective evaluation, we construct Pareto frontiers over the set of candidate policies Π with533

objective vectors {fπ}π∈Π. A solution fπ is Pareto optimal if no other policy improves one objective534

without worsening another:535

P = {fπ ∈ {fπ} | fπ′ s.t. fπ′ ≤ fπ and fπ′ ̸= fπ} .

A.3.5 Hypervolume536

The hypervolume metric quantifies the volume of objective space dominated by the Pareto-optimal537

solutions relative to a reference point r dominated by all solutions:538

HV(P, r) = Volume
( ⋃

f∈P

[f1, r1]× · · · × [fm, rm]
)
,

where m is the number of objectives. Higher hypervolume indicates better overall multi-objective539

performance, allowing direct comparison of the effectiveness of different policy sets.540

A.4 Extended Experimental Results541

A.4.1 Observation-Only Performance542

Table 6 summarizes observation-only results for 11 methods across six experimental setups.543

POLICYGRID-O, which applies the full POLICYGRID discovery module (merging PC, SAM,544
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and LLM outputs) without interventions or iterative refinement, performs competitively across sce-545

narios. It achieves the best or near-best SHD and F1 scores in multiple settings, including the Noisy,546

Hidden Variables, and Physical setups. These observation-only findings illustrate that ensemble547

learning improves causal structure recovery from passive data but remains limited under noise, latent548

confounders, and partial observability. Cost and risk metrics are omitted here because they rely on549

active interventions. Subsequent sections show that full POLICYGRID discovery module, leveraging550

targeted interventions, consistently outperforms these passive baselines.551

Table 6: Observation-only performance of 11 methods across six scenarios. For each method and scenario, we
report SHD (lower is better) and F1 score (higher is better).

Method Base Noisy Hidden Vars ASHRAE Physical Large Sim

SHD F1 SHD F1 SHD F1 SHD F1 SHD F1 SHD F1

PC 4 0.60 4 0.60 4 0.60 4 0.6 2 0.88 49 0.33
SAM 8 0.33 6 0.25 8 0.20 4 0.33 7 0.36 21 0.16
LLM 7 0.36 7 0.36 7 0.36 4 0.6 2 0.86 17 0.45
GIES 4 0.6 4 0.60 4 0.67 5 0.29 5 0.71 19 0.34
JCI 6 0.40 6 0.50 4 0.67 2 0.75 6 0.50 48 0.37
ABCD 5 0.44 6 0.50 6 0.25 2 0.75 4 0.71 54 0.41
Causal Bandits 4 0.60 4 0.67 4 0.75 3 0.67 5 0.71 48 0.37
ICP 5 0.44 5 0.55 2 0.80 3 0.67 6 0.50 23 0.26
IID 2 0.8 6 0.57 5 0.62 2 0.80 6 0.50 28 0.15
NOTEARS 3 0.73 6 0.25 4 0.67 4 0.5 6 0.57 44 0.46
PolicyGRID-O 5 0.62 2 0.86 3 0.8 4 0.67 2 0.86 37 0.43

Note: SHD = Structural Hamming Distance, F1 = F1 Score

A.4.2 Core Metrics Results552

Table 7: Precision, Recall, and F1 score for causal edge recovery across six experimental setups: Base, Noisy,
Hidden, ASHRAE, Physical, and Large-Sim. Each method was evaluated on its ability to recover the true causal
graph under varying data conditions. Bolded values indicate the highest F1 score per setup. Note: P = Precision,
R = Recall, F1 = F1 Score

Method Base Noisy Hidden ASHRAE Physical Large-Sim

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

PC 0.75 0.50 0.60 0.75 0.50 0.60 0.67 0.67 0.67 0.67 0.40 0.50 1.00 0.75 0.88 0.24 0.55 0.33
SAM 0.33 0.33 0.33 0.50 0.17 0.25 0.25 0.17 0.20 1.00 0.20 0.33 0.67 0.25 0.36 0.67 0.09 0.16
LLM 0.40 0.33 0.36 0.40 0.33 0.36 0.40 0.33 0.36 0.60 0.60 0.60 1.00 0.75 0.86 0.78 0.32 0.45
GIES 0.50 0.33 0.40 0.25 0.33 0.29 0.38 0.50 0.43 0.67 0.40 0.50 0.80 1.00 0.89 0.50 0.45 0.48
JCI 0.40 0.67 0.50 0.67 1.00 0.80 0.38 0.50 0.43 0.10 0.20 0.13 0.75 0.38 0.50 0.43 0.86 0.58
ABCD 0.67 0.33 0.44 0.00 0.00 0.00 0.50 0.33 0.40 0.67 0.40 0.50 0.50 0.25 0.34 0.48 0.73 0.58
C. Bandits 0.33 0.33 0.33 0.57 0.67 0.62 0.20 0.17 0.18 0.25 0.20 0.22 0.67 0.25 0.36 0.11 0.14 0.12
ICP 0.67 0.33 0.44 0.67 0.33 0.44 0.75 0.50 0.60 0.80 0.80 0.80 0.75 0.38 0.50 0.16 0.18 0.17
IID 0.60 1.00 0.75 0.60 1.00 0.75 0.60 1.00 0.75 0.27 0.80 0.40 0.80 1.00 0.89 0.28 1.00 0.44
NOTEARS 0.25 0.17 0.20 0.33 0.50 0.40 0.71 0.83 0.77 0.33 0.20 0.25 0.83 0.63 0.71 0.43 0.59 0.50
POLICYGRID 1.00 1.00 1.00 0.75 1.00 0.86 1.00 1.00 1.00 1.00 0.80 0.89 1.00 1.00 1.00 0.80 0.55 0.65

Table 7 reports precision, recall, and F1 scores across all six setups. POLICYGRID discovery553

module consistently achieves the highest F1 scores, including perfect recovery in Base, Hidden, and554

Physical, and strong performance in more challenging scenarios like Noisy (0.86), ASHRAE (0.89),555

and Large-Sim (0.65). While POLICYGRID performs well on graphs with 1̃3 variables, scaling to556

higher-dimensional or highly coupled systems will require architectural and runtime optimization.557

Performance among baselines varies. PC performs well in simpler setups (F1 = 0.88 in Physical) but558

drops under scale (Large-Sim, 0.33). LLM-based priors peak in Physical (0.86) but are less consistent559

elsewhere. JCI shows mixed performance, with moderate scores in Noisy (0.80) and Large-Sim560

(0.58), but low performance in ASHRAE (0.13). SAM and Causal Bandits generally remain below561

0.40 across most setups. IID and ICP achieve higher recall but lower precision, with F1 peaking at562
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0.89 (Physical) and 0.80 (ASHRAE), respectively. Overall, POLICYGRID demonstrates the most563

consistent and effective performance across diverse conditions.564

A.4.3 Risk–Cost Analysis565

Table 8 shows normalized intervention risk and cost across the six setups. POLICYGRID discovery566

module records zero risk and cost in Base, Hidden, ASHRAE, and Physical, and near-zero values567

in Noisy (risk = 0.036, cost = 0.022) and Large-Sim (risk = 0.001, cost = 0.026). Baseline methods568

exhibit higher risk and cost across multiple scenarios. For example, ABCD incurs the highest cost569

in ASHRAE (0.885), and GIES shows elevated risk in Noisy (0.452). These outcomes indicate570

that POLICYGRID consistently selects low-risk, low-cost interventions, even under noisy, partially571

observable, or complex settings.572

Table 8: Normalized intervention risk and cost for each method across six experimental setups: Base, Noisy,
Hidden, ASHRAE, Physical, and Large-Sim. Lower values indicate fewer risks and lower costs associated with
the interventions selected by each causal discovery approach. Bold values indicate the lowest risk or cost in each
setup.

Method Base Noisy Hidden ASHRAE Physical Large-Sim

Risk Cost Risk Cost Risk Cost Risk Cost Risk Cost Risk Cost

GIES 0.439 0.472 0.452 0.486 0.056 0.06 0.054 0.067 0.175 0.218 0.033 0.046
JCI 0.447 0.480 0.470 0.505 0.066 0.071 0.196 0.245 0.269 0.336 0.05 0.1
ABCD 0.460 0.495 0.439 0.472 0.083 0.089 0.708 0.885 0.161 0.201 0.018 0.030
Causal Bandits 0.443 0.476 0.453 0.487 0.053 0.057 0.24 0.3 0.014 0.018 0.031 0.1
ICP 0.05 0.1 0.05 0.1 0.05 0.1 0.1 0.1 0.250 0.312 0.024 0.037
IID 0.449 0.483 0.445 0.479 0.074 0.080 0.182 0.227 0.151 0.188 0.024 0.037
NOTEARS 0.441 0.475 0.455 0.490 0.033 0.036 0.1 0.1 0.08 0.1 0.024 0.038
POLICYGRID 0.000 0.000 0.036 0.022 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.026

Note: Lower Risk and Cost values are better

A.4.4 Ablation Studies573

We performed ablations on the Large-Sim setup to quantify the contribution of key components of574

POLICYGRID discovery module. As shown in Table 9, removing components such as the edge575

ranker or LLM-guided interventions consistently reduces F1, increases SHD, and raises intervention576

cost. The ranking mechanism focuses exploration on high-confidence edges, while LLM-guided577

interventions reduce unnecessary actions. A minimal system, which disables all intelligent discovery578

components, highlights the performance gap and demonstrates the complementary value of each579

design element.580

A.4.5 Paired Differences with Statistical Tests581

Paired comparisons at matched operating points between POLICYGRID and baseline methods are582

summarized in Table 10. Each entry reports the mean ∆kWh, 95% confidence interval, and p-value.583

Across all setups, POLICYGRID consistently reduces energy consumption relative to ASHRAE-584

PID, correlation-based, and ablated (POLICYGRID w/o DAG) policies. Differences are statistically585

significant in nearly all cases (p ≤ 0.05), with mean reductions ranging from approximately 0.45 to586

15.7 kWh. These results demonstrate the robustness and effectiveness of POLICYGRID in embodied587

decision-making under varied operating conditions, beyond building-specific tasks.588

A.5 LLM Prompting589

POLICYGRID uses GPT-3.5-turbo [Ye et al., 2023] to generate causal graphs and interventions590

grounded in physical building principles. A fixed system message defines the model’s role as a causal591

discovery and intervention design expert and enforces a strict JSON output format, while dynamic592

user messages specify variables and constraints like acyclicity and physical plausibility (see example593

in A.5 for hypothesis generation prompt and A.5 for intervention design prompt). The LLM infers594

causal hypotheses by reasoning over variable names, descriptions, and units [Petroni et al., 2019,595
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Table 9: Ablation study on Large-Sim for the discovery module of POLICYGRID. Top: hypothesis generator
ablations. Middle: intervention component ablations. Bottom: minimal system vs. full discovery module of
POLICYGRID.

Configuration Prec. ↑ Rec. ↑ F1 ↑ SHD ↓ Cost ↓ Risk ↓
PC + LLM 0.778 0.318 0.452 17 0.222 0.049
PC + SAM 0.500 0.318 0.389 22 0.500 0.250
PC only 0.667 0.273 0.387 19 0.333 0.111
LLM only 0.800 0.182 0.296 19 0.200 0.040
SAM + LLM 0.500 0.136 0.214 22 0.500 0.250
SAM only 0.000 0.000 0.000 24 1.000 1.000

No edge ranking 0.609 0.636 0.622 17 0.391 0.153
No LLM interventions 0.522 0.545 0.533 21 0.478 0.229
No edge validation 0.579 0.500 0.537 19 0.421 0.177
No dataset update 0.636 0.318 0.424 19 0.364 0.132
No ranking + intervention 0.571 0.545 0.558 19 0.429 0.184
No intervention + update 0.684 0.591 0.634 15 0.316 0.100

Minimal system 0.583 0.318 0.412 20 0.417 0.174
PolicyGRID (discovery module) 0.800 0.550 0.650 13 0.026 0.001

Table 10: Paired differences in energy consumption (∆kWh) between POLICYGRID and baseline methods
across four simulation setups. Each entry reports the mean ∆kWh, 95% confidence interval (CI), and p-value,
highlighting statistically significant improvements of POLICYGRID over alternative policies.

Setup Policy Pair Mean ∆kWh 95% CI p-value

Base

POLICYGRID vs ASHRAE 15.624 [15.574, 15.674] 0.050
POLICYGRID vs POLICYGRID (w/o DAG) 5.836 [5.786, 5.886] 0.050

POLICYGRID vs Correlation 15.729 [15.679, 15.779] 0.050
ASHRAE vs POLICYGRID (w/o DAG) -9.788 [-9.838, -9.738] 0.050

ASHRAE vs Correlation 0.105 [0.055, 0.155] 0.050
POLICYGRID (w/o DAG) vs Correlation 9.893 [9.843, 9.943] 0.050

Noisy

POLICYGRID vs ASHRAE 12.936 [12.886, 12.986] 0.050
POLICYGRID vs POLICYGRID (w/o DAG) 1.459 [1.409, 1.509] 0.050

POLICYGRID vs Correlation 13.041 [12.991, 13.091] 0.050
ASHRAE vs POLICYGRID (w/o DAG) -11.477 [-11.527, -11.427] 0.050

ASHRAE vs Correlation 0.105 [0.055, 0.155] 0.050
POLICYGRID (w/o DAG) vs Correlation 11.582 [11.532, 11.632] 0.050

Hidden-Vars

POLICYGRID vs ASHRAE 11.924 [11.874, 11.974] 0.050
POLICYGRID vs POLICYGRID (w/o DAG) 0.447 [0.397, 0.497] 0.050

POLICYGRID vs Correlation 12.029 [11.979, 12.079] 0.050
ASHRAE vs POLICYGRID (w/o DAG) -11.477 [-11.527, -11.427] 0.050

ASHRAE vs Correlation 0.105 [0.055, 0.155] 0.050
POLICYGRID (w/o DAG) vs Correlation 11.582 [11.532, 11.632] 0.050

Large-Sim

POLICYGRID vs ASHRAE 11.423 [11.373, 11.473] 0.050
POLICYGRID vs POLICYGRID (w/o DAG) -0.053 [-0.103, -0.003] 0.150

POLICYGRID vs Correlation 11.529 [11.479, 11.579] 0.050
ASHRAE vs POLICYGRID (w/o DAG) -11.477 [-11.527, -11.427] 0.050

ASHRAE vs Correlation 0.105 [0.055, 0.155] 0.050
POLICYGRID (w/o DAG) vs Correlation 11.582 [11.532, 11.632] 0.050

Kıcıman et al., 2023], producing a causal graph GLLM. It is configured with temperature 1.0 and top-p596

0.8 to balance creativity and domain accuracy.597
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(a) Base (b) Noisy (c) Hidden-Vars
Figure 4: Pareto frontier comparison across Base, Noisy, and Hidden-Vars setups with same control policies
and legend as Figure 3.

LLM Prompting for Base Experimental Setup

System Message:
You are an expert in causal discovery analyzing a smart room environment with

5 variables.
Generate a causal DAG based on physical principles and environmental systems.
Return your answer as a JSON object with this format exactly:
{"nodes": ["Temperature", "Humidity", "AirQuality", "EnergyConsumption", "

OverallSatisfaction"],
"edges": [["source", "target"], ...]}

User Message:
Analyze this dataset with variables: Temperature, Humidity, AirQuality,

EnergyConsumption, OverallSatisfaction

Rules:
1. Include directed edges based on likely causal mechanisms
2. No cycles or self-loops allowed
3. Focus on primary physical relationships

598

LLM Prompting for Intervention Design

System Message:
Design a physical intervention to test if {source} causes changes in {target}.

DEVICE CONSTRAINTS:
- Heater: ON/OFF only (affects Temperature)
- Humidifier: ON/OFF only (affects Humidity)
- Fan: ON/OFF only (affects Temperature, Humidity, AirQuality)

Return JSON:
{{

"variables": [{{
"variable": "{source}",
"action": "increase/decrease"

}}],
"expected_effects": {{

"{target}": "increase/decrease"
}},
"reasoning": "Brief_explanation"

}}

User Message:
Design intervention to test {source} --> {target} causality using binary

device control.

599

20



NeurIPS Paper Checklist600

1. Claims601

Question: Do the main claims made in the abstract and introduction accurately reflect the602

paper’s contributions and scope?603

Answer: [Yes]604

Justification: The abstract and Section 1 clearly state the central contributions: introducing605

POLICYGRID, integrating causal discovery (GRID) with embodied control, and evaluating606

across six benchmarks. The claims align with theoretical framing and experimental results.607

2. Limitations608

Question: Does the paper discuss the limitations of the work performed by the authors?609

Answer: [Yes]610

Justification: Section 8 discusses computational intensity of iterative interventions, sensitiv-611

ity to sensing quality, assumptions of stationarity, and the scope of evaluation.612

3. Theory assumptions and proofs613

Question: For each theoretical result, does the paper provide the full set of assumptions and614

a complete (and correct) proof?615

Answer: [NA]616

Justification: The paper does not provide new theoretical proofs; instead it develops and617

evaluates a practical causal discovery and control framework. Formalism (e.g., causal DAG618

definitions, intervention cost functions) is stated in Section 3, but no theorems or proofs are619

claimed.620

4. Experimental result reproducibility621

Question: Does the paper fully disclose all the information needed to reproduce the main622

experimental results of the paper?623

Answer: [Yes]624

Justification: Section 5 and Appendix A provide dataset descriptions, simulation setups,625

evaluation metrics (e.g., SHD, hypervolume, violation rate), and baseline comparisons.626

Experimental setups (base, noisy, hidden variable, large-scale simulations, ASHRAE dataset,627

physical testbed) are described in sufficient detail.628

5. Open access to data and code629

Question: Does the paper provide open access to the data and code, with sufficient instruc-630

tions to faithfully reproduce the main experimental results?631

Answer: [Yes]632

Justification: An anonymized code and data repository link will be made available upon ac-633

ceptance and is planned for the camera-ready version. Public datasets (e.g., ASHRAE Great634

Energy Predictor III) are already openly accessible, and full instructions for reproducing635

results will be provided in the repository.636

6. Experimental setting/details637

Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-638

rameters, how they were chosen, type of optimizer, etc.)?639

Answer: [Yes]640

Justification: Hyperparameters for neural SEMs, intervention budgets, and optimizer choices641

are reported in Section 4. For public datasets, the train/test splits follow standard protocols642

(e.g., ASHRAE competition splits).643

7. Experiment statistical significance644

Question: Does the paper report error bars suitably and correctly defined or other appropriate645

information about the statistical significance of the experiments?646

Answer: [Yes]647
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Justification: Results include 95% confidence intervals and p-values for paired comparisons648

(see Table 10). Error bars are defined over repeated runs with random seeds. Figure 2 which649

reports Structural Hamming Distance (SHD) between learned and ground truth graphs across650

six setups, does not include error bars because they would obfuscate the main takeaway651

from the figure.652

8. Experiments compute resources653

Question: For each experiment, does the paper provide sufficient information on the com-654

puter resources (type of compute workers, memory, time of execution) needed to reproduce655

the experiments?656

Answer: [No]657

Justification: All experiments were run on standard desktop and workstation machines658

without requiring specialized compute (e.g., cloud clusters or large GPU farms). Since659

results can be reproduced on regular hardware, we did not include detailed compute resource660

reporting.661

9. Code of ethics662

Question: Does the research conducted in the paper conform, in every respect, with the663

NeurIPS Code of Ethics?664

Answer: [Yes]665

Justification: The work complies with the NeurIPS Code of Ethics. Experiments are on666

simulated and publicly available datasets, plus a controlled office testbed with no human667

subject data.668

10. Broader impacts669

Question: Does the paper discuss both potential positive societal impacts and negative670

societal impacts of the work performed?671

Answer: [Yes]672

Section 7 highlights positive impacts (energy efficiency, interpretability, robustness in673

embodied systems) and potential risks (over-reliance on faulty sensors, privacy concerns if674

extended to occupant modeling). Mitigation strategies are discussed.675

11. Safeguards676

Question: Does the paper describe safeguards for responsible release of data or models that677

have a high risk for misuse?678

Answer: [NA]679

Justification: The released models and code would not pose dual-use risks such as generative680

misuse. Only causal discovery and control modules for physical systems are to be released.681

12. Licenses for existing assets682

Question: Are the creators or original owners of assets (e.g., code, data, models) properly683

credited and are the license and terms of use explicitly mentioned and properly respected?684

Answer: [Yes]685

Justification: Public datasets (ASHRAE) are cited with original licenses, and baselines (PC,686

NOTEARS, ICP, SAM, GIES) are properly referenced with software citations.687

13. New assets688

Question: Are new assets introduced in the paper well documented and is the documentation689

provided alongside the assets?690

Answer: [Yes]691

Justification: The live office testbed setup is detailed in Appendix A.4 and the dataset will692

be released with metadata, sensor specifications, and intervention protocols as noted earlier.693

14. Crowdsourcing and research with human subjects694

Question: For crowdsourcing experiments and research with human subjects, does the paper695

include the full text of instructions given to participants and details about compensation?696

Answer: [NA]697

22



Justification: The work does not involve crowdsourcing or human subject experiments. Only698

building sensor data and simulations are used.699

15. Institutional review board (IRB) approvals700

Question: Does the paper describe potential risks incurred by study participants, and whether701

IRB approvals were obtained?702

Answer: [NA]703

Justification: The work does not involve human subjects. All experiments are with simulated704

environments or non-identifiable building data.705

16. Declaration of LLM usage706

Question: Does the paper describe the usage of LLMs if it is an important, original, or707

non-standard component of the core methods in this research?708

Answer: [Yes]709

Justification: Section 4 and Appendix A.5 note that domain-informed priors are incorporated710

using LLM-guided constraints. This usage is central to GRID’s discovery loop and is fully711

described. No LLMs were used for writing beyond editing assistance.712
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