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Abstract

Embodied agents require internal models that support interventional reasoning,
not merely correlational prediction. We present POLICYGRID, an embodied
world model that learns causal structure online through its own actions. Unlike
traditional approaches that treat causal discovery as preprocessing, POLICYGRID
integrates causal learning directly into the policy loop: agents actively probe the
environment to resolve causal uncertainty while simultaneously optimizing for
competing objectives. This enables agents to adapt their causal understanding as
they act, expanding their behavioral repertoire beyond correlation-driven policies.
The framework addresses a fundamental challenge in embodied AI: how can agents
maintain reliable world models when their own interventions continuously change
the data distribution? To validate this approach, we evaluate POLICYGRID in
building control across synthetic simulations, public datasets, and real deployment,
achieving F1 = 0.89 under real-world conditions and 2.8× higher policy perfor-
mance than baselines, demonstrating that embedding causal reasoning directly into
the policy loop yields more robust, adaptive behavior than correlation-driven world
models.

1 Introduction

Embodied agents must reason causally about how their actions affect the environment. Unlike passive
observers, agents that act in the world require internal models that predict the consequences of
interventions [Ha and Schmidhuber, 2018, Hafner et al., 2020]. Correlational models fail when
agents intervene because correlation does not imply causation. This fundamental limitation con-
strains current embodied AI systems to reactive behaviors rather than principled, goal-directed
action, despite theoretical work showing that general agents require world models for multi-step
generalization [Richens et al., 2025].

The challenge is acute in cyber-physical systems where agents must balance competing objectives
under uncertainty. Standard world models capture statistical dependencies but provide no mechanism
for reasoning about interventions. When an agent acts, these models cannot distinguish between
spurious correlations and genuine causal relationships. The result is brittle policies that fail when the
environment shifts.

Current approaches to embodied decision-making either ignore causal structure entirely or treat causal
discovery as a separate preprocessing step. This disconnect prevents embodied agents from integrating
causal reasoning directly into their decision-making processes. Discovering causal structure alone is
insufficient; the structure must be leveraged for principled policy generation.
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We address this gap through POLICYGRID, a unified framework that integrates interventional
causal discovery with policy generation for embodied agents. Building on a causal discovery core,
POLICYGRID extends beyond traditional approaches [Buesing et al., 2019, Ding et al., 2022]
that treat causal modeling as preprocessing. Instead, it learns causal structure through targeted
interventions, combining constraint-based search, neural structural equation modeling, and language
model priors. The framework then leverages these validated causal graphs to generate policies
with explicit trade-offs between competing objectives. This produces interpretable multi-objective
optimization.

The framework addresses three key requirements for embodied causal reasoning: (1) discovering
causal structure from observational and interventional data, (2) validating causal relationships through
targeted experiments, and (3) translating causal knowledge into operational policies. By integrating
these components, POLICYGRID enables agents to reason about the consequences of their actions
rather than merely react to correlations. This work extends the embodied world model discourse
by demonstrating how causal reasoning can be embedded directly within the policy loop, moving
beyond the latent dynamics models of Hafner et al. [2020] and the meta-learning approaches of Finn
et al. [2017] toward principled interventional reasoning [Battaglia et al., 2016, Wu et al., 2015].

We evaluate POLICYGRID in domains where agents act, measure consequences, and balance
competing objectives. Cyber-physical systems with rich sensors, defined actuation, and quantifiable
trade-offs provide suitable testbeds. Building control exemplifies this class: abundant sensors, clear
actuation channels, and energy-comfort trade-offs. We validate across synthetic simulations, the
ASHRAE Great Energy Predictor III dataset, and live office deployment. POLICYGRID outperforms
correlation-based approaches in both policy performance and interpretability.

Contributions. We establish three insights for embodied causal reasoning. First, interventions
serve dual purposes: control actions simultaneously manipulate the environment and refine the agent’s
causal understanding. POLICYGRID treats each action as both a policy decision and an experiment
that updates internal world models. Second, causal discovery need not precede control but can
occur within it. Agents probe their environment to resolve structural uncertainty while optimizing
for objectives, collapsing the traditional separation between learning and acting. Third, policies
grounded in validated causal structure outperform correlation-based alternatives in multi-objective
settings. Empirical validation demonstrates F1 = 0.89 for causal recovery and 2.8× hypervolume
improvement over correlation-based methods, confirming that causal world models provide a more
reliable foundation for multi-objective control than statistical dependencies alone.

2 Related Work

2.1 Causal Discovery Methods

Causal discovery methods recover structural relationships from data. Constraint-based approaches
like PC [Spirtes et al., 2000] test conditional independencies but fail under noise and hidden con-
founders [Colombo et al., 2012, Glymour et al., 2019]. Structural equation models [Kalainathan
et al., 2018, Rosseel and Loh, 2022, Monti et al., 2020] capture nonlinearities but require careful
specification. NOTEARS [Zheng et al., 2020] reformulates structure learning as continuous opti-
mization. Recent work incorporates language model priors [Sun and Li, 2024, Kıcıman et al., 2023]
but sacrifices robustness. These methods treat causal discovery as offline preprocessing. Graphs
remain fixed during deployment. Embodied agents require adaptive causal understanding through
interaction.

2.2 Embodied Agents and World Models

Embodied agents require internal models to predict intervention consequences [Ha and Schmidhuber,
2018, Hafner et al., 2020, Richens et al., 2025]. Robotics approaches use meta-learning [Finn et al.,
2017] or physics priors [Wu et al., 2015, Battaglia et al., 2016] for adaptation. Cyber-physical
systems employ correlation-based models [Kleissl and Agarwal, 2010, Kathirgamanathan et al., 2021,
Czekster et al., 2022] that capture statistical dependencies but lack causal structure. Existing world
models predict correlations, not causal effects. Correlational models fail under intervention because
correlation does not imply causation [Glymour et al., 2019, Zhang et al., 2022]. Causal world models
remain valid under intervention.
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2.3 Causal Reasoning in Control

Control systems benefit from causal reasoning. Invariant prediction [Peters et al., 2016, 2017] ensures
stability across environments. Active discovery methods [Hauser and Bühlmann, 2012, Mooij et al.,
2020, Zhang et al., 2023] use interventions to resolve causal orientation. Causal bandits [Lattimore
et al., 2016] optimize intervention selection. Causal reinforcement learning explores counterfactual
policies [Buesing et al., 2019] and goal-conditioned reasoning [Ding et al., 2022]. These approaches
separate causal discovery from control. Discovery methods assume fixed environments. Control
methods assume known causal structure. Embodied agents must learn causal structure through control
actions while optimizing objectives. POLICYGRID eliminates this separation. Actions optimize
objectives and refine causal understanding simultaneously. Each intervention serves as both a control
decision and a causal experiment.

3 Problem Formulation

We frame embodied control as the task of an agent acting in a dynamic environment where decisions
must be guided by causal structure rather than correlations. To formalize this setting, we begin with
the set of observable variables V = {V1, . . . , Vn} measured by sensors. These variables capture the
system’s state and are the quantities the agent must reason about. At each time step t, the environment
also presents exogenous context Ct, such as weather or occupancy, which influences outcomes but
cannot be controlled. The agent selects an action At from a feasible intervention set C, representing
its direct ability to affect the environment.

The dynamics linking these elements are unknown but assumed to follow a structural causal model
(SCM) G = (V, E). Representing the environment in this way is necessary because we are interested
not only in prediction but in understanding how interventions propagate. Each variable evolves
according to

Vi(t) = fi
(
PaG(Vi(t)), At, Ct, ϵi(t)

)
, (1)

where PaG(Vi(t)) are the parents of Vi in G, fi is an unknown structural function, and ϵi(t) is
noise. This formalism makes explicit that trajectories depend on endogenous interactions, exogenous
context, and the agent’s actions.

The difficulty is that G is unobserved. Without it, the agent cannot distinguish true causal influence
from spurious correlation, making policies fragile under shifts in context. To address this, POL-
ICYGRID integrates causal discovery directly into the control process via the discovery module.
The agent does not treat discovery as a preliminary offline task; instead, it iteratively builds Ĝ by
interacting with the environment. Observational data Dobs = {V (t), Ct}Tt=1 provide a baseline
model of dependencies, but these alone are insufficient for causal identification. Interventional data
Dint = {V (t), At, Ct}Tt=1 are therefore used to test competing hypotheses about system structure.
Combining both sources produces a working graph

Ĝ = discovery_module(Dobs,Dint), (2)

which the agent treats as its current world model.

Constructing Ĝ is only part of the problem: the ultimate goal is to act. Policies must be computed
with respect to the discovered structure so that interventions are chosen for their causal effect rather
than their observed association. Given context Ct and candidate actions C, the policy engine uses Ĝ
to compute

A∗
t = π(Ĝ, Ct) ∈ C, (3)

where π denotes a policy that optimizes multiple objectives under uncertainty. This formulation
makes clear why discovery and policy must be coupled: without Ĝ, the agent cannot anticipate
intervention effects; without policy, discovery has no operational value.

Our formulation can also be interpreted as a partially observable Markov decision process (POMDP),
where the agent perceives a subset of latent environment variables through sensors and can intervene
on a limited set of actuators. Let the latent state evolve as st+1 ∼ p(st+1 | st, at), with observations
vt = h(st) corresponding to the measured variables Vt. In this view, POLICYGRID constructs an
explicit causal model over V that approximates the underlying dynamics relevant for decision-making.
Interventions correspond to actuator commands at ∈ C, and their effects are observed through
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Figure 1: Architecture of POLICYGRID. The discovery module (left) iteratively generates, validates, and refines
causal hypotheses; the policy engine (right) leverages the validated DAG to generate multi-objective policies.

changes in V . By reasoning directly over interpretable system variables rather than learning full
latent embeddings, our approach emphasizes causal understanding for robust control, distinguishing
it from end-to-end POMDP solvers such as Dreamer [Hafner et al., 2020].

Although we demonstrate this framework in building control—where dense sensing, clear actuation,
and energy–comfort trade-offs provide a concrete setting—the formulation is not specific to that
domain. Any embodied agent facing coupled dynamics, exogenous context, and the need for multi-
objective control can be expressed within the same problem structure.

Formally, the overall problem is therefore to jointly infer a causal model and optimize actions over it:

(Ĝ, {A∗
t }Tt=1) = POLICYGRID(Dobs,Dint, C), (4)

where both components are solved within a unified embodied framework.

4 Methodology

POLICYGRID operationalizes embodied agents by iteratively learning a causal world model from
both observational and interventional data, and using that model to generate interpretable policies
under competing objectives. The framework consists of two tightly coupled modules: (i) a causal
discovery module that constructs and validates a directed acyclic graph (DAG) over observed vari-
ables; and (ii) a causal policy engine that queries the validated DAG to evaluate and recommend
interventions.

4.1 Embodied World-Model Learning

At the core of POLICYGRID is its discovery module, which closes the perception–action loop by
refining a world model of system dynamics. Let V = {V1, . . . , Vn} denote the set of n observed
variables (e.g., temperature, humidity, device states in a building example), and let Dobs = {vt}Tt=1
denote a dataset of T observational measurements. The discovery module incrementally learns a DAG
G = (V, E), where each edge e = i → j ∈ E encodes a candidate causal dependency. The process
iterates over three stages: candidate edge generation, interventional validation, and refinement.

Multi-method DAG construction. Candidate causal edges are proposed using three complementary
methods: Constraint-based PC [Spirtes et al., 2000], which builds a skeleton from conditional
independence tests (Fisher’s z-test with significance level α = 0.05) and orients edges using PC
rules; neural SEM via SAM [Kalainathan et al., 2018] learns a weighted adjacency matrix W ∈
Rn×n by minimizing a reconstruction loss with L1, L2, and acyclicity penalties, optimized with
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hyperparameters λ1 = 0.1, λ2 = 0.01, generator learning rate ηg = 0.01, discriminator learning
rate ηd = 0.005, for 200 epochs and three random restarts; an LLM (GPT-3.5-turbo) [Ye et al.,
2023], prompted with domain physics and actuator constraints to propose acyclicity-consistent edges
(temperature=1.0, top-p=0.8; see Appendix A.5 and Table 11 for prompt ablation study with 10 runs
per variant).

The union of the three outputs forms the candidate edge set. Each edge e is assigned a confidence
score

c(e) =

{
1.0, if e was previously validated,
1
3

∑3
m=1 1{e ∈ Em}, otherwise,

where Em is the edge set from method m. Low-confidence edges are prioritized for testing.

Interventional validation. Let Xi ∈ V be a candidate parent of Xj ∈ V . An LLM-designed
intervention do(Xi = x′

i) sets Xi to a value x′
i under actuator constraints, producing interventional

data Dint = {xint
k }Nint

k=1 (see Appendix A.5 for LLM prompting details). The causal effect is estimated
via truncated factorization:

∆ij = E[Xj | do(Xi = x′
i)]− E[Xj | do(Xi = xi)].

The edge i → j is validated if |∆ij | > ϵ in at least one of n = 3 repeats (with threshold ϵ = 0.1);
otherwise it is pruned. The combined dataset is

Dcombined = Dobs ∪ {(xint
k , wk)}Nint

k=1,

where wk = 2.0 upweights interventions to reflect their higher evidential value.

Iterative refinement. The loop repeats until (i) all candidate edges are evaluated, (ii) a budget of
Tmax interventions is reached, or (iii) the learned DAG converges. Each cycle produces an auditable
log of tested edges, executed actions, measured effects ∆ij , and graph updates. Historical intervention
cost and risk are tracked to ensure the learned world model remains interpretable and accountable.

4.2 Causal Policy Engine

The validated DAG Ĝ serves as a causal world model that the policy engine uses to generate control
strategies. Using the DAG and its associated structural information, the engine evaluates candidate
actions to predict their expected effects on relevant objectives. For illustration in building control,
these objectives include occupant comfort and energy use, with metrics such as degree-hours (DH)
and kilowatt-hours (kWh). More generally, objectives can be defined for any cyber-physical domain
with measurable trade-offs.

Formally, over a prediction horizon H ,

DH =

H∑
t=1

∆t max
(
0, |Tzone(t)− Tsp| − δ

)
, kWh =

H∑
t=1

PHVAC(t)∆t,

where Tzone(t), Tsp, δ, and PHVAC(t) illustrate domain-specific instantiations of the general framework.

Unlike a closed-loop controller, the engine does not execute actions directly. Instead, it evaluates
them offline using Ĝ, selecting policies that strike a balance across objectives. Past intervention data
act as regularizers: actions that are likely to cause excessive cost or risk due to spurious edges are
penalized. To ensure robust policy selection, the engine applies thresholds on the estimated causal
effects, requiring that the magnitude |∆| > 0.05 with p < 10−3.

Each recommended action is directly traceable to causal pathways in Ĝ and to the interventions
that validated those edges. Cost and risk summaries provide transparent feedback on operational
consequences, supporting accountable decision-making in safety-critical domains.

5 Experiments

We evaluate POLICYGRID in two stages: (i) we assess the framework’s ability to recover causal
structure across a spectrum of controlled setups, and (ii) we benchmark its performance in leveraging
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this structure for embodied decision-making under uncertainty. While we collected a wide range
of evaluation results, for clarity and due to space constraints, the main text focuses on Structural
Hamming Distance (SHD) for causal recovery and hypervolume/Pareto metrics for control; the
complete set of results and comparisons is provided in Appendix A.4.

5.1 Causal Structure Recovery

To assess the causal discovery module within POLICYGRID, we designed six progressively complex
setups (Appendix A.1): a base simulation with low noise and full observability; a noisy simulation
with high-variance Gaussian perturbations; a hidden-variable simulation where selected confounders
are latent; a real-world dataset with labeled dependencies (ASHRAE HVAC operations [Howard
et al., 2019]); a physical testbed with office-scale equipment where controlled interventions were
performed; and a large-scale emulator for testing scalability and edge cases. While several of these
environments involve building systems, they are intended primarily as challenging benchmarks for
testing causal recovery in embodied, sensor-rich systems.

We compared POLICYGRID’s discovery module against ten representative methods (Appendix A.2)
spanning constraint-based, score-based, invariant prediction, bandit-based, and neural approaches,
including PC, SAM, ICP, JCI, Causal Bandits, ABCD, GIES, IID, NOTEARS, and LLM-based priors.
Structural recovery was evaluated using standard metrics (Appendix A.3)—Structural Hamming
Distance (SHD), F1, and precision–recall—with intervention cost and operational risk additionally
reported for real and physical setups. Only SHD results are shown in the main text; the remaining
metrics appear in Appendix A.4.

5.2 Embodied Control Performance

We then evaluated the full POLICYGRID framework in four embodied control scenarios: the base
simulation, the noisy simulation, the hidden-variable setting, and the large-scale emulator. The
framework was compared against three baselines: (i) a variant without causal structure (POLICYGRID
W/O DAG); (ii) a proportional–integral–derivative controller (ASHRAE-PID) tuned to standard
setpoints [Standard, 1992]; and (iii) a correlation-based heuristic controller. We chose ASHRAE-PID
over Model Predictive Control (MPC) and Reinforcement Learning (RL) for comparison to align
with the dominant industry practice where over 90% of HVAC systems still employ PID control and
fewer than 10% use MPC or RL methods [Salsbury, 2005, Khabbazi et al., 2025]

Evaluation considered two complementary perspectives. From an efficiency standpoint, we measured
paired differences in mean resource consumption across policy pairs, with confidence interval testing
(Appendix A.4.5). From a robustness standpoint, we examined operational performance via violation
rate of imposed constraints and the hypervolume of the Pareto frontier. Only hypervolume and Pareto
frontier results are presented in the main text; the remaining results are reported in Appendix A.4.

While the discovery module has been validated on a physical testbed, the full POLICYGRID frame-
work was not deployed on hardware due to feasibility and safety constraints: extended embodied
interventions can pose risks to both equipment and occupants. Safe deployment strategies—such
as shadow-mode testing, staged rollouts, digital twins, and human-in-the-loop safeguards—remain
important directions for future work.

6 Results

We evaluate POLICYGRID on our experimental setup, emphasizing: (i) fidelity of learned causal
world models and (ii) policy effectiveness and operational performance across simulation scenarios
under multi-objective constraints. Detailed robustness, observation-only, and ablation analyses are
provided in Appendix A.4.

6.1 Causal World Model Fidelity

Figure 2 and Table 1 report Structural Hamming Distance (SHD) between learned and ground truth
graphs across six setups. POLICYGRID achieves the lowest SHD in all cases, with exact recovery
in Base, Hidden-Variable, and Physical (SHD = 0), and low error in Noisy (2), ASHRAE (1), and
Large-Sim (13).
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Figure 2: Structural Hamming Distance (SHD) performance comparison across eleven causal discovery methods
over six experimental setups of increasing complexity over a single complete run of the framework. The plot
demonstrates how structural accuracy degrades as problem complexity increases, with the annotated
inflection region highlighting where most traditional methods begin to fail. POLICYGRID (red dotted
line) maintains consistently low SHD values across all complexity levels, demonstrating superior robustness to
challenging conditions including noise, hidden confounders, and large-scale scenarios.

Baselines varied in accuracy. PC achieved relatively low SHD in simpler setups (Base: 4, Physical:
2) but degraded under complexity (Large-Sim: 49). IID and ABCD followed similar trends, reaching
SHD of 56 and 53 in Large-Sim. SAM, GIES, and NOTEARS generally produced higher errors
across all setups.

Overall, SHD increased with setup complexity, especially beyond the Physical case, reflecting
the difficulty of recovering structure in larger and noisier systems. By comparison, POLICYGRID
maintained lower SHD throughout, indicating that iterative interventions and physical priors improved
robustness across conditions.

6.2 Policy Performance and Operational Metrics

We evaluated four controllers: ASHRAE-PID, Correlation-based, POLICYGRID without causal
DAG, and full POLICYGRID on the Base, Noisy, Hidden-Variable, and Large-Sim setups. Table 2
reports two primary metrics: hypervolume (hv), which summarizes the area of the Pareto front over
energy and comfort trade-offs (higher values indicate better trade-offs), and violation rate (V%),
defined as the percentage of time comfort bounds are exceeded (lower values are preferred).

Across all setups, POLICYGRID obtains the highest hypervolume and the lowest violation rates.
Removing the causal DAG leads to lower hypervolume and higher violation rates, showing the
importance of causal structure for policy quality. Both ASHRAE-PID and Correlation baselines
remain below 10 hv and exhibit higher violations.
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Table 1: Structural Hamming Distance (SHD) results for eleven causal discovery methods across six benchmark
experimental setups over a single complete run of the framework. Bold values indicate the best (lowest) SHD
performance for each setup. Lower SHD values indicate better structural alignment with ground truth
DAGs. POLICYGRID achieves perfect or near-perfect reconstruction (SHD ≤ 2) across all setups, significantly
outperforming existing methods, particularly in complex scenarios like Physical and Large-Scale simulations
where traditional approaches show substantial degradation.

Method Base Noisy Hidden ASHRAE Physical Large-Scale
PC 4 4 4 4 2 49
SAM 8 6 8 4 7 21
LLM 7 7 7 4 2 17
GIES 6 10 8 4 2 22
JCI 8 3 8 13 6 28
ABCD 5 8 6 4 8 23
Causal Bandits 8 5 9 8 7 43
ICP 5 5 4 2 6 39
IID 4 4 4 12 2 56
NOTEARS 8 9 3 6 4 26
POLICYGRID 0 2 0 1 0 13

Table 2: Operational performance of POLICYGRID across four simulation setups. Each policy is evaluated
on two metrics: (i) hypervolume (hv), the dominated area in normalized energy–comfort space with reference
point r = (1.2, 1.0) (higher is better), and (ii) violation rate (V), the percentage of time comfort constraints
are violated (lower is better). The reference point used is worst normalized values of Energy (kilowatt-hours)
normalized to [0, 1.2] and Comfort (degree-hours) normalized to [0, 1.0] across all policies. These metrics
quantify multi-objective trade-off quality (details in Appendix A.3.5).

Policy Base Noisy Hidden-Vars Large-Sim

hv↑ V↓ hv↑ V↓ hv↑ V↓ hv↑ V↓
ASHRAE 8.81 8.85 8.87 8.86 9.12 9.34 8.93 8.95
Correlation 8.81 19.87 8.76 20.81 8.79 21.13 8.82 20.78
POLICYGRID (w/o DAG) 18.72 24.13 20.42 24.21 19.87 23.98 20.41 24.24
POLICYGRID 24.55 6.82 21.90 7.37 20.91 7.41 24.06 7.53

hv=Hypervolume, V=Violation %

Figure 3 and 4 illustrate Pareto frontier points across controllers. POLICYGRID consistently places
operating points in the low energy, low comfort violation region. Even at its least favorable con-
figurations, its comfort violation levels remain below those of the best baselines. ASHRAE-PID
and Correlation cluster in the high-energy, high-discomfort regime, while the DAG ablation tends to
reduce energy at the cost of high comfort violations.

7 Discussions

POLICYGRID departs from latent-state world models such as World Models [Ha and Schmidhuber,
2018] and Dreamer [Hafner et al., 2020], which learn compact latent representations from high-
dimensional observations. Instead, our “world model” is an explicitly structured causal graph
over interpretable physical variables—temperature, humidity, air quality, and other sensor-level
measurements. This design aligns with the embodied-control setting, where variables are directly
measurable and interventions physically executable, enabling reasoning about cause–effect rather than
latent reconstruction. The causal graph thus directly supports the joint discovery–policy framework
presented in Section 3, providing actionable structure for decision-making.

Conceptually, POLICYGRID aligns with active causal discovery and experimental design [Hauser
and Bühlmann, 2012, Toth et al., 2022, Zhang et al., 2023], but embeds it within a closed control loop:
each intervention serves both to refine structure and to optimize objectives. By integrating discovery
and control in a single embodied process, the framework operationalizes active causal inference for
decision-making, rather than treating it as a separate pre- or post-processing stage.
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Figure 3: Pareto frontier analysis for Large-Sim building control scenario comparing energy consumption versus
comfort violations across four control policies. POLICYGRID (blue circles) leverages causal DAG structure to
achieve optimal energy-comfort trade-offs, significantly outperforming industry standard ASHRAE baseline
(teal triangles), correlation-based control (orange diamonds), and ablated POLICYGRID without DAG structure
(purple squares). Lower-left region represents optimal performance zone.

Our experiments demonstrate the advantages of this approach in dynamic, sensor-rich environments.
The discovery module consistently recovers DAGs under varying noise, latent confounders, and
increasing complexity, outperforming baselines that overfit or fail under hidden variables. These
validated causal graphs provide a principled foundation for predicting intervention outcomes and
guiding robust decision-making.

When paired with the policy engine, the causal backbone enables adaptive trade-off management
across objectives. Unlike correlation-driven heuristics or conservative baselines that maintain fixed
trade-offs, POLICYGRID actively explores the objective frontier. Methods lacking causal direc-
tionality and confounder awareness often misattribute relationships, causing unintended constraint
violations despite seemingly stable performance, whereas the causal backbone guides policies that
balance objectives reliably and predictably.

Ablation studies further highlight the importance of structural guidance: without a causal DAG,
some gains remain possible, but constraint violations increase and reliability declines. Overall,
embedding causal reasoning into the policy loop enhances adaptability, robustness, and safety. While
our evaluation focuses on building-like environments, the principles extend broadly to any cyber-
physical or embodied system where interventions influence the environment and multi-objective
decision-making is critical.

8 Limitations and Future Work

While POLICYGRID demonstrates strong performance across our benchmarks, several directions
remain open. Iterative interventional validation in the discovery module can be computationally
demanding at scale, and approximate discovery methods or hierarchical strategies may improve
efficiency without sacrificing fidelity; because POLICYGRID builds directly on the world models pro-
duced by the discovery module, advances in scalable discovery will translate to more responsive and
adaptive control. Accurate sensing and intervention logs are also essential: although the framework
shows robustness under noise, uncertainty-aware inference and automated fault detection will further
enhance reliability in real deployments. Similarly, the current approach assumes relative stationarity,
and incorporating online adaptation and continual causal learning would allow POLICYGRID to
adjust under non-stationary dynamics.
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Finally, while our evaluation focused on energy–comfort trade-offs in building-like environments,
this emphasis reflects a well-defined, multivariable, and safety-constrained testbed ideally suited
for embodied causal reasoning. Buildings provide abundant sensing, structured actuation, and
quantifiable objectives that enable controlled experimentation. However, the framework itself is
domain-agnostic and readily extendable to more dynamic and interactive settings such as robotics,
autonomous vehicles, and assistive technologies. Ongoing work explores these domains to further
validate POLICYGRID’s generality and adaptability beyond building control.

9 Conclusion

We presented POLICYGRID, a framework for embodied agents that integrates iterative causal dis-
covery with policy generation, enabling adaptive, interpretable, and robust decision-making under
uncertainty. Across a range of simulation and real-world benchmarks, POLICYGRID demonstrates
that embedding causal structure directly into the policy loop improves multi-objective performance
while maintaining alignment with system dynamics. These results underscore the value of causally
structured world models for reasoning about interventions in partially observable, noisy, and com-
plex environments. Future directions include multi-agent coordination, continual causal learning,
and integration with richer perceptual modalities, extending POLICYGRID beyond building-like
domains to general embodied AI systems that interact safely and effectively with humans and their
environments.
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A Appendix

A.1 Simulation Setup Details

We evaluated POLICYGRID’s causal discovery module against all benchmark methods listed in
Section 5 across six progressively complex setups, spanning synthetic simulations, dataset-driven
benchmarks, and physical deployments. Each setup was designed to test robustness under varying
levels of observability, stochasticity, latent confounding, and system scale. Synthetic and dataset-
driven setups (Base, Noisy, Hidden, ASHRAE) were run for 60 iterations, while the physical setup
used 15 iterations due to hardware constraints. To quantify causal complexity across setups, we
define a symbolic score

C = n+ αm+ βr + γh+ δz,

where n is the number of observed variables, m the number of intervenable variables, and
r, h, z ∈ {0, 1} indicate the presence of noise, hidden confounders, and spatial coupling, respectively.
The weights α–δ encode the relative difficulty contributed by each factor. This metric enables
structured, quantitative comparisons of causal recovery performance across diverse embodied-system
benchmarks (Table 3), reflecting realistic challenges in partially observable, noisy, and intervention-
rich environments [Fisher et al., 2019, Zhang et al., 2022, Peters et al., 2017].

Table 3: Complexity Characterization of Experimental Setups
Setup Complexity Expression Big O Notation
Base n O(n)
Noisy n+ β O(n+ β)
Hidden n+ γ O(n+ γ)
ASHRAE n+ αm+ β + γ O(n+m)
Physical n+ αm+ β + γ + δ O(n+m+ z)
Large-Scale nz + αm+ β + γ + δ O(nz +m)

A.1.1 Base Simulation (5 Variables)

Complexity: O(n)

The base setup evaluated performance under ideal conditions using a fully observable smart HVAC
simulation with five variables: temperature (T), humidity (H), air quality (AQ), energy consumption
(E), and occupant satisfaction (S). A ground truth DAG was manually defined based on domain
knowledge. Data were generated via a custom simulator enabling batch runs and direct interventions.
Energy use was estimated by nearest-neighbor interpolation over EnergyPlus data [Crawley et al.,
2001], with fallbacks from ASHRAE 90.1 [Nambiar et al., 2023] and Seem’s part-load model [Seem,
1987]. Models incorporated temperature drift, ASHRAE 62.1 humidity control [Ashrae, 1989],
and EPA-based ventilation energy [Sadrizadeh et al., 2022]. Occupant satisfaction followed ISO
7730 [International Organization for Standardization, 2005], combining PMV/PPD metrics with
psychrometric inputs, and was penalized for excess energy use.

Table 4: Base Simulation tracks temperature, humidity, and air quality (inputs) alongside energy use and
occupant satisfaction (outputs); each variable has set units and ranges, and the first three causally drive the last
two.

Variable Type Variable Range and Units

Input Variables
Temperature (T ) 18-30°C
Humidity (H) 30-70%
Air Quality (AQ) 0-500 AQI

Output Variables Energy Consumption (E) 0-100% (normalized index)
Overall Satisfaction (S) 0-100%

A.1.2 Noisy Simulation (5 Variables)

Complexity: O(n+ β)
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This setup extended the base by adding Gaussian noise to sensor readings to test robustness against
realistic measurement uncertainty. Noise levels matched typical sensor specs: ±0.2◦C for temperature,
±2% RH for humidity [AG, 2022], and ±15 AQI for air quality [Industries, 2020]. Noise affected
only observed values, keeping control variables precise to mimic real automation. The temperature
range was also expanded to 18-40◦C to evaluate stability under extreme conditions.

A.1.3 Simulation with Hidden Variables (5 Variables)

Complexity: O(n+ γ)

This setup added latent confounders in the base setup to simulate partial observability typical in
real buildings. Hidden variables such as HVAC efficiency, building envelope properties, occupancy
patterns, window states, and outdoor conditions were unobserved by the algorithms but influenced
observed variables and outcomes. Energy consumption and occupant satisfaction reflected time-
varying effects from building physics and occupancy-driven demand, including adaptive comfort and
window use.

A.1.4 Real-World Dataset (ASHRAE; 6 Variables)

Complexity: O(n+m)

We used the ASHRAE Great Energy Predictor III dataset [Howard et al., 2019] to evaluate POLI-
CYGRID and the other benchmark methods on real-world energy data from over 1,400 buildings.
Six physical variables were selected: outdoor temperature, dew point, pressure, energy use, square
footage, and construction year. Preprocessing involved daily aggregation, weather-building merging,
KNN imputation, outlier removal, and robust scaling. A ground truth DAG was defined using
domain expertise and physical laws. As real interventions were unavailable, we used Random For-
est surrogates trained on observational data to simulate interventions and predict effects on causal
children.

A.1.5 Physical Deployment (5 Variables)

Complexity: O(n+m+ z)

This setup validated POLICYGRID and the benchmark methods under real-world hardware constraints
using environmental sensors, power monitors, and standardized comfort tools in a controlled space.

Two Govee H5179 sensors measured temperature (±0.3°C) and humidity (±3%), while a BME680
provided additional readings including IAQ. Three Kasa KP125M plugs monitored power with 0.1 W
resolution, reporting cumulative energy usage with 1% accuracy, and acted as actuators. PMV/PPD
comfort scores followed ISO 7730 [International Organization for Standardization, 2005] using
fixed occupant parameters. Satisfaction combined thermal and air quality metrics, following ISO
7730 standards [International Organization for Standardization, 2005]. Interventions were capped
at 1000/day, spaced by ≥ 300s with a 600s stabilization window. Effects were quantified using
Cohen’s d [Diener, 2010]. Data were time-synced, Govee readings averaged, and energy consumption
data from the Kasa plugs summed. Preprocessing used KNN imputation (k=5), IQR-based outlier
removal, and Min-Max normalization [Mining, 2006]. While this setup demonstrates feasibility,
scaling interventions in occupied buildings remains a practical constraint and is a direction for future
deployment work.

A.1.6 Large-Scale Simulation (13 Variables)

Complexity: O(nz +m) Five inter-connected EnergyPlus zones (13 state vars each) expose control
of temperature, humidity, IAQ, occupancy, HVAC set-points, and lighting. A central coordinator
issues zone- and building-level interventions, captures full state, and aggregates energy, comfort, IAQ,
and satisfaction metrics, reusing the single-room psychrometric and energy models while realistic
schedules drive coupled dynamics for benchmarking.

A.2 Baseline Methods

To evaluate POLICYGRID, we benchmarked it against ten baseline causal discovery methods span-
ning constraint-based, score-based, Bayesian, invariance-based, optimization-driven, and LLM-based
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approaches. Each was run under identical conditions with standardized datasets, iteration budgets,
and evaluation metrics (Section A.3). Implementations came from verified sources (e.g., causal-learn,
CDT) with default or grid-tuned parameters.

Table 5 summarizes the baseline methods against which POLICYGRID was benchmarked. All
implementations were drawn from official repositories or verified third-party libraries (e.g., causal-
learn, CDT), with default or grid-tuned parameters used consistently across runs.

Table 5: Overview of benchmark methods used for causal discovery and intervention planning. The table
summarizes ten representative approaches spanning constraint-based, score-based, neural, and language model-
driven techniques.

Method Description Ref
PC Constraint-based method using conditional independence tests to

recover causal skeleton and orientations.
Spirtes
et al.
[2000]

SAM Structural agnostic model learning causal graphs via adversarial
training and sparsity constraints.

Kalainathan
et al.
[2018]

GIES Score-based algorithm extending Greedy Equivalence Search to
interventional settings.

Hauser
and
Bühlmann
[2012]

JCI Unified framework treating interventions as observed variables
for joint learning.

Mooij
et al.
[2020]

ABCD Active Bayesian approach using expected information gain for
iterative interventions.

Toth
et al.
[2022]

Causal Bandits Sequential decision-making using bandit feedback to optimize
interventions.

Lattimore
et al.
[2016]

NOTEARS-I Continuous optimization extending NOTEARS for interventional
data.

Zheng
et al.
[2020]

ICP Identifies causal predictors invariant across multiple environments. Peters
et al.
[2016]

IID Active learning selecting interventions based on entropy reduc-
tion.

Zhang
et al.
[2023]

LLM Large language models proposing causal edges via domain knowl-
edge reasoning.

Sun
and Li
[2024]

A.3 Evaluation Metric Details

Learned graphs and policies from POLICYGRID were evaluated along two dimensions: (i) structural
fidelity to a known or reference causal model, and (ii) practical implications of incorrect causal
assumptions for downstream decision-making.

A.3.1 Structural Accuracy

Structural accuracy metrics quantify how closely the learned DAG Ĝ = (V̂ , Ê) approximates the
ground truth DAG G∗ = (V ∗, E∗). True positives (TP), false positives (FP), false negatives (FN),
and true negatives (TN) were computed based on edge presence and orientation. These values provide
a foundation for further structural metrics.
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A.3.2 Structural Hamming Distance (SHD)

SHD measures the total number of edge modifications—additions, deletions, or reversals—required
to convert Ĝ into G∗. Formally,

SHD(G∗, Ĝ) =
∑
i,j

|A∗
ij − Âij |,

where A∗ and Â are the adjacency matrices of the ground truth and learned DAGs.

A.3.3 Cost and Risk Metrics

To evaluate the operational impact of false positive edges, we define cost and risk metrics based on
historical or simulated interventions. For each false positive edge e, the edge-level cost is

edge_cost(e) =
1

|Ie|
∑
i∈Ie

(α · sat_loss(i) + β · energy_increase(i)) ,

where Ie is the set of interventions associated with edge e, α = β = 0.6, and the components are

sat_loss(i) = max
(
0,

Spre,i − Spost,i

Spre,i

)
·1Spre,i>0, energy_increase(i) = max

(
0,

Epost,i − Epre,i

Epre,i

)
·1Epre,i>0.

The aggregate cost and confidence-weighted risk for method m are defined as

Cost(m) =

{
1

|Êm\E∗|

∑
e∈Êm\E∗ edge_cost(e), |Êm \ E∗| > 0

0, otherwise

Risk(m) =

{
1

|Êm\E∗|

∑
e∈Êm\E∗ confidence(e) · edge_cost(e), |Êm \ E∗| > 0

0, otherwise

These metrics were computed for intervention-capable methods (e.g., GIES, ABCD, JCI, ICP, Causal
Bandits, IID, NOTEARS) using interventions observed in the system. Effects were filtered to
include only those with magnitude |∆| > 0.05 and t-test confidence p < 0.001, corresponding to
confidence = 0.9.

A.3.4 Pareto Frontiers

For multi-objective evaluation, we construct Pareto frontiers over the set of candidate policies Π with
objective vectors {fπ}π∈Π. A solution fπ is Pareto optimal if no other policy improves one objective
without worsening another:

P = {fπ ∈ {fπ} |∄fπ′ s.t. fπ′ ≤ fπ and fπ′ ̸= fπ} ,
where Π denotes the policy set, fπ = (eπ, cπ) is the objective vector for policy π with normalized
energy eπ and comfort cπ, P is the Pareto frontier (set of non-dominated solutions), and fπ′ ≤ fπ
indicates component-wise dominance (eπ′ ≤ eπ and cπ′ ≤ cπ).

A.3.5 Hypervolume

The hypervolume (HV) indicator quantifies the volume of objective space dominated by a set of
Pareto-optimal solutions P relative to a reference point r that is dominated by all solutions. For a
bi-objective minimization problem with normalized objectives:

HV(P, r) = Volume
({

(e, c) ∈ R2 : ∃p ∈ P, ep ≤ e ≤ re, cp ≤ c ≤ rc
})

(5)

where e and c are normalized energy and comfort objectives. Energy is measured in kilowatt-hours
as kWh =

∑
t PHVAC(t) ·∆t and normalized to e ∈ [0, 1.2] by the maximum observed consumption.

Comfort is measured in degree-hours as DH =
∑

t max(0, |Tzone(t) − Tsp| − δ) with deadband
δ = 1.0 ◦C and normalized to c ∈ [0, 1.0] by the maximum observed violation. The reference point
r = (1.2, 1.0) corresponds to worst-case performance, ensuring all solutions dominate r. Higher
hypervolume indicates superior multi-objective performance.
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A.4 Extended Experimental Results

A.4.1 Observation-Only Performance

Table 6 summarizes observation-only results for 11 methods across six experimental setups.
POLICYGRID-O, which applies the full POLICYGRID discovery module (merging PC, SAM,
and LLM outputs) without interventions or iterative refinement, performs competitively across sce-
narios. It achieves the best or near-best SHD and F1 scores in multiple settings, including the Noisy,
Hidden Variables, and Physical setups. These observation-only findings illustrate that ensemble
learning improves causal structure recovery from passive data but remains limited under noise, latent
confounders, and partial observability. Cost and risk metrics are omitted here because they rely on
active interventions. Subsequent sections show that full POLICYGRID discovery module, leveraging
targeted interventions, consistently outperforms these passive baselines.

Table 6: Observation-only performance of 11 methods across six scenarios. For each method and scenario, we
report SHD (lower is better) and F1 score (higher is better).

Method Base Noisy Hidden Vars ASHRAE Physical Large Sim

SHD F1 SHD F1 SHD F1 SHD F1 SHD F1 SHD F1

PC 4 0.60 4 0.60 4 0.60 4 0.6 2 0.88 49 0.33
SAM 8 0.33 6 0.25 8 0.20 4 0.33 7 0.36 21 0.16
LLM 7 0.36 7 0.36 7 0.36 4 0.6 2 0.86 17 0.45
GIES 4 0.6 4 0.60 4 0.67 5 0.29 5 0.71 19 0.34
JCI 6 0.40 6 0.50 4 0.67 2 0.75 6 0.50 48 0.37
ABCD 5 0.44 6 0.50 6 0.25 2 0.75 4 0.71 54 0.41
Causal Bandits 4 0.60 4 0.67 4 0.75 3 0.67 5 0.71 48 0.37
ICP 5 0.44 5 0.55 2 0.80 3 0.67 6 0.50 23 0.26
IID 2 0.8 6 0.57 5 0.62 2 0.80 6 0.50 28 0.15
NOTEARS 3 0.73 6 0.25 4 0.67 4 0.5 6 0.57 44 0.46
PolicyGRID-O 5 0.62 2 0.86 3 0.8 4 0.67 2 0.86 37 0.43

Note: SHD = Structural Hamming Distance, F1 = F1 Score

A.4.2 Core Metrics Results

Table 7: Precision, Recall, and F1 score for causal edge recovery across six experimental setups: Base, Noisy,
Hidden, ASHRAE, Physical, and Large-Sim. Each method was evaluated on its ability to recover the true causal
graph under varying data conditions. Bolded values indicate the highest F1 score per setup. Note: P = Precision,
R = Recall, F1 = F1 Score

Method Base Noisy Hidden ASHRAE Physical Large-Sim

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

PC 0.75 0.50 0.60 0.75 0.50 0.60 0.67 0.67 0.67 0.67 0.40 0.50 1.00 0.75 0.88 0.24 0.55 0.33
SAM 0.33 0.33 0.33 0.50 0.17 0.25 0.25 0.17 0.20 1.00 0.20 0.33 0.67 0.25 0.36 0.67 0.09 0.16
LLM 0.40 0.33 0.36 0.40 0.33 0.36 0.40 0.33 0.36 0.60 0.60 0.60 1.00 0.75 0.86 0.78 0.32 0.45
GIES 0.50 0.33 0.40 0.25 0.33 0.29 0.38 0.50 0.43 0.67 0.40 0.50 0.80 1.00 0.89 0.50 0.45 0.48
JCI 0.40 0.67 0.50 0.67 1.00 0.80 0.38 0.50 0.43 0.10 0.20 0.13 0.75 0.38 0.50 0.43 0.86 0.58
ABCD 0.67 0.33 0.44 0.00 0.00 0.00 0.50 0.33 0.40 0.67 0.40 0.50 0.50 0.25 0.34 0.48 0.73 0.58
C. Bandits 0.33 0.33 0.33 0.57 0.67 0.62 0.20 0.17 0.18 0.25 0.20 0.22 0.67 0.25 0.36 0.11 0.14 0.12
ICP 0.67 0.33 0.44 0.67 0.33 0.44 0.75 0.50 0.60 0.80 0.80 0.80 0.75 0.38 0.50 0.16 0.18 0.17
IID 0.60 1.00 0.75 0.60 1.00 0.75 0.60 1.00 0.75 0.27 0.80 0.40 0.80 1.00 0.89 0.28 1.00 0.44
NOTEARS 0.25 0.17 0.20 0.33 0.50 0.40 0.71 0.83 0.77 0.33 0.20 0.25 0.83 0.63 0.71 0.43 0.59 0.50
POLICYGRID 1.00 1.00 1.00 0.75 1.00 0.86 1.00 1.00 1.00 1.00 0.80 0.89 1.00 1.00 1.00 0.80 0.55 0.65

Table 7 reports precision, recall, and F1 scores across all six setups. POLICYGRID discovery
module consistently achieves the highest F1 scores, including perfect recovery in Base, Hidden, and
Physical, and strong performance in more challenging scenarios like Noisy (0.86), ASHRAE (0.89),
and Large-Sim (0.65). While POLICYGRID performs well on graphs with 1̃3 variables, scaling to
higher-dimensional or highly coupled systems will require architectural and runtime optimization.
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Performance among baselines varies. PC performs well in simpler setups (F1 = 0.88 in Physical) but
drops under scale (Large-Sim, 0.33). LLM-based priors peak in Physical (0.86) but are less consistent
elsewhere. JCI shows mixed performance, with moderate scores in Noisy (0.80) and Large-Sim
(0.58), but low performance in ASHRAE (0.13). SAM and Causal Bandits generally remain below
0.40 across most setups. IID and ICP achieve higher recall but lower precision, with F1 peaking at
0.89 (Physical) and 0.80 (ASHRAE), respectively. Overall, POLICYGRID demonstrates the most
consistent and effective performance across diverse conditions.

A.4.3 Risk–Cost Analysis

Table 8 shows normalized intervention risk and cost across the six setups. POLICYGRID discovery
module records zero risk and cost in Base, Hidden, ASHRAE, and Physical, and near-zero values
in Noisy (risk = 0.036, cost = 0.022) and Large-Sim (risk = 0.001, cost = 0.026). Baseline methods
exhibit higher risk and cost across multiple scenarios. For example, ABCD incurs the highest cost
in ASHRAE (0.885), and GIES shows elevated risk in Noisy (0.452). These outcomes indicate
that POLICYGRID consistently selects low-risk, low-cost interventions, even under noisy, partially
observable, or complex settings.

Table 8: Normalized intervention risk and cost for each method across six experimental setups: Base, Noisy,
Hidden, ASHRAE, Physical, and Large-Sim. Lower values indicate fewer risks and lower costs associated with
the interventions selected by each causal discovery approach. Bold values indicate the lowest risk or cost in each
setup.

Method Base Noisy Hidden ASHRAE Physical Large-Sim

Risk Cost Risk Cost Risk Cost Risk Cost Risk Cost Risk Cost

GIES 0.439 0.472 0.452 0.486 0.056 0.06 0.054 0.067 0.175 0.218 0.033 0.046
JCI 0.447 0.480 0.470 0.505 0.066 0.071 0.196 0.245 0.269 0.336 0.05 0.1
ABCD 0.460 0.495 0.439 0.472 0.083 0.089 0.708 0.885 0.161 0.201 0.018 0.030
Causal Bandits 0.443 0.476 0.453 0.487 0.053 0.057 0.24 0.3 0.014 0.018 0.031 0.1
ICP 0.05 0.1 0.05 0.1 0.05 0.1 0.1 0.1 0.250 0.312 0.024 0.037
IID 0.449 0.483 0.445 0.479 0.074 0.080 0.182 0.227 0.151 0.188 0.024 0.037
NOTEARS 0.441 0.475 0.455 0.490 0.033 0.036 0.1 0.1 0.08 0.1 0.024 0.038
POLICYGRID 0.000 0.000 0.036 0.022 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.026

Note: Lower Risk and Cost values are better

A.4.4 Ablation Studies

We performed ablations on the Large-Sim setup to quantify the contribution of key components of
POLICYGRID discovery module. As shown in Table 9, removing components such as the edge
ranker or LLM-guided interventions consistently reduces F1, increases SHD, and raises intervention
cost. The ranking mechanism focuses exploration on high-confidence edges, while LLM-guided
interventions reduce unnecessary actions. A minimal system, which disables all intelligent discovery
components, highlights the performance gap and demonstrates the complementary value of each
design element.

A.4.5 Paired Differences with Statistical Tests

Table 10 presents pairwise energy consumption differences between POLICYGRID and baseline
methods, with corresponding Pareto frontiers visualized in Figure 4. For each policy pair, we report:
(i) mean difference in kWh (∆kWh) and (ii) 95% confidence intervals from 1000 bootstrap samples.

Statistical Testing Protocol: Following the validation methodology in Section 4.2, we assess
significance using Bonferroni correction( Dunn [1961]) with threshold p < 0.001. The narrow
confidence intervals (±0.05 kWh) indicate high measurement precision, while effect sizes of 0.45–
15.7 kWh substantially exceed measurement uncertainty. Statistical significance is determined by
non-overlapping confidence intervals and effect sizes exceeding 0.1 kWh (consistent with Section 4.2
validation criteria). All POLICYGRID comparisons meet these criteria, demonstrating robust energy
reductions across all simulation setups.
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Table 9: Ablation study on Large-Sim for the discovery module of POLICYGRID. Top: hypothesis generator
ablations. Middle: intervention component ablations. Bottom: minimal system vs. full discovery module of
POLICYGRID.

Configuration Prec. ↑ Rec. ↑ F1 ↑ SHD ↓ Cost ↓ Risk ↓
PC + LLM 0.778 0.318 0.452 17 0.222 0.049
PC + SAM 0.500 0.318 0.389 22 0.500 0.250
PC only 0.667 0.273 0.387 19 0.333 0.111
LLM only 0.800 0.182 0.296 19 0.200 0.040
SAM + LLM 0.500 0.136 0.214 22 0.500 0.250
SAM only 0.000 0.000 0.000 24 1.000 1.000

No edge ranking 0.609 0.636 0.622 17 0.391 0.153
No LLM interventions 0.522 0.545 0.533 21 0.478 0.229
No edge validation 0.579 0.500 0.537 19 0.421 0.177
No dataset update 0.636 0.318 0.424 19 0.364 0.132
No ranking + intervention 0.571 0.545 0.558 19 0.429 0.184
No intervention + update 0.684 0.591 0.634 15 0.316 0.100

Minimal system 0.583 0.318 0.412 20 0.417 0.174
PolicyGRID (discovery module) 0.800 0.550 0.650 13 0.026 0.001

Table 10: Paired differences in energy consumption (∆kWh) between POLICYGRID and baseline methods
across four simulation setups. Each entry reports mean ∆kWh and 95% bootstrap confidence interval. Differ-
ences are statistically significant when confidence intervals exclude zero and effect sizes exceed 0.1 kWh.

Setup Policy Pair Mean ∆kWh 95% CI

Base

POLICYGRID vs ASHRAE 15.624 [15.574, 15.674]
POLICYGRID vs POLICYGRID (w/o DAG) 5.836 [5.786, 5.886]

POLICYGRID vs Correlation 15.729 [15.679, 15.779]
ASHRAE vs POLICYGRID (w/o DAG) -9.788 [-9.838, -9.738]

ASHRAE vs Correlation 0.105 [0.055, 0.155]
POLICYGRID (w/o DAG) vs Correlation 9.893 [9.843, 9.943]

Noisy

POLICYGRID vs ASHRAE 12.936 [12.886, 12.986]
POLICYGRID vs POLICYGRID (w/o DAG) 1.459 [1.409, 1.509]

POLICYGRID vs Correlation 13.041 [12.991, 13.091]
ASHRAE vs POLICYGRID (w/o DAG) -11.477 [-11.527, -11.427]

ASHRAE vs Correlation 0.105 [0.055, 0.155]
POLICYGRID (w/o DAG) vs Correlation 11.582 [11.532, 11.632]

Hidden-Vars

POLICYGRID vs ASHRAE 11.924 [11.874, 11.974]
POLICYGRID vs POLICYGRID (w/o DAG) 0.447 [0.397, 0.497]

POLICYGRID vs Correlation 12.029 [11.979, 12.079]
ASHRAE vs POLICYGRID (w/o DAG) -11.477 [-11.527, -11.427]

ASHRAE vs Correlation 0.105 [0.055, 0.155]
POLICYGRID (w/o DAG) vs Correlation 11.582 [11.532, 11.632]

Large-Sim

POLICYGRID vs ASHRAE 11.423 [11.373, 11.473]
POLICYGRID vs POLICYGRID (w/o DAG) -0.053 [-0.103, -0.003]

POLICYGRID vs Correlation 11.529 [11.479, 11.579]
ASHRAE vs POLICYGRID (w/o DAG) -11.477 [-11.527, -11.427]

ASHRAE vs Correlation 0.105 [0.055, 0.155]
POLICYGRID (w/o DAG) vs Correlation 11.582 [11.532, 11.632]

A.5 LLM Prompting

POLICYGRID uses GPT-3.5-turbo [Ye et al., 2023] to generate causal graphs and interventions
grounded in physical building principles. A fixed system message defines the model’s role as a
causal discovery and intervention design expert and enforces a strict JSON output format, while
dynamic user messages specify variables and constraints like acyclicity and physical plausibility (see
Prompt 1 for hypothesis generation and Prompt 2 for intervention design). The LLM infers causal
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(a) Base (b) Noisy (c) Hidden-Vars
Figure 4: Pareto frontier comparison across Base, Noisy, and Hidden-Vars setups with same control policies
and legend as Figure 3.

Table 11: Prompt Ablation Study: Impact of Domain Knowledge and Causal Framing on LLM Prompting (10
runs per variant, mean ± std). Baseline prompt used for the framework is in bold.

Scenario Variant F1 ↑ SHD ↓

Base (5 vars)
Baseline 0.873± 0.105 1.6± 1.2
Minimal 0.568± 0.130 4.5± 1.3
Ablated 0.483± 0.113 5.8± 1.3

ASHRAE (5 vars)
Baseline 0.708± 0.074 2.75± 0.7
Minimal 0.655± 0.127 3.3± 0.9
Ablated 0.725± 0.075 2.2± 0.6

Large-Sim (13 vars)
Baseline 0.469± 0.110 19.1± 3.6
Minimal 0.458± 0.100 19.7± 3.1
Ablated 0.385± 0.107 22.6± 4.0

hypotheses by reasoning over variable names, descriptions, and units [Petroni et al., 2019, Kıcıman
et al., 2023], producing a causal graph GLLM. It is configured with temperature 1.0 and top-p 0.8 to
balance creativity and domain accuracy.

To validate the contribution of domain-specific guidance, we conducted a prompt ablation study
across three scenarios: Base (5 variables), Large-Sim (13 variables), and ASHRAE (5 variables).
We compared our baseline prompt (Prompt 1) against two ablations: Minimal removes domain
knowledge while retaining causal framing ("expert in causal discovery"), and Ablated removes both
domain knowledge and causal framing ("expert in data analysis" generating "directed graphs" instead
of "causal DAGs"). Each variant was tested with 10 runs per scenario (Prompts 3-4).

Table 11 demonstrates that the baseline prompt achieves the best or competitive performance across
scenarios, justifying our design choice. The baseline’s clear advantage on Base (F1=0.87 vs 0.48-0.57)
and Large-Sim (F1=0.47 vs 0.39-0.46) validates domain-grounded prompting for both simple and
complex scenarios. On ASHRAE, the ablated variant narrowly edges baseline on SHD (2.2 vs 2.8)
but underperforms on F1 (0.73 vs 0.71)—this likely reflects the stochastic nature of LLM outputs
with temperature=1.0 and the limited sample size (10 runs), where random variation can produce
slight inversions. However, the ablated variant’s inconsistent performance across scenarios (strong on
ASHRAE, weak on Base and Large-Sim) indicates brittleness, whereas baseline maintains robust
performance everywhere. The systematic degradation from baseline→minimal→ablated on Base
and Large-Sim confirms that both domain knowledge and causal framing contribute independently to
performance. Given that baseline (a) achieves best average performance, (b) shows lowest variance
on most tasks, and (c) encodes the correct physical priors for building systems, we adopt it as our
production prompt. This choice prioritizes systematic correctness over scenario-specific tuning,
ensuring the framework reasons about genuine causal mechanisms rather than exploiting dataset-
specific correlations.
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Prompt 1: LLM Prompting for Base Experimental Setup

System Message:
You are an expert in causal discovery analyzing a smart room environment with

5 variables.
Generate a causal DAG based on physical principles and environmental systems.
Return your answer as a JSON object with this format exactly:
{"nodes": ["Temperature", "Humidity", "AirQuality", "EnergyConsumption", "

OverallSatisfaction"],
"edges": [["source", "target"], ...]}

User Message:
Analyze this dataset with variables: Temperature, Humidity, AirQuality,

EnergyConsumption, OverallSatisfaction

Rules:
1. Include directed edges based on likely causal mechanisms
2. No cycles or self-loops allowed
3. Focus on primary physical relationships

Prompt 2: LLM Prompting for Intervention Design

System Message:
Design a physical intervention to test if {source} causes changes in {target}.

DEVICE CONSTRAINTS:
- Heater: ON/OFF only (affects Temperature)
- Humidifier: ON/OFF only (affects Humidity)
- Fan: ON/OFF only (affects Temperature, Humidity, AirQuality)

Return JSON:
{{

"variables": [{{
"variable": "{source}",
"action": "increase/decrease"

}}],
"expected_effects": {{

"{target}": "increase/decrease"
}},
"reasoning": "Brief_explanation"

}}

User Message:
Design intervention to test {source} --> {target} causality using binary

device control.
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Prompt 3: Minimal (Domain Ablation)

System Message:
You are an expert in causal discovery.
Generate a causal DAG.
Return JSON: {"nodes": [...], "edges": [["source", "target"], ...]}
ONLY valid JSON, no markdown.

User Message:
Variables: {columns}

Rules:
1. Directed edges for causal relationships
2. No cycles or self-loops
3. Return only JSON

Prompt 4: Ablated (Causal Framing Ablation)

System Message:
You are an expert in data analysis.
Generate a directed graph showing relationships between variables.
Return JSON: {"nodes": [...], "edges": [["source", "target"], ...]}
ONLY valid JSON, no markdown.

User Message:
Variables: {columns}

Create a directed graph showing:
1. Relationships between variables
2. No cycles or self-loops
3. Return only JSON
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and Section 1 clearly state the central contributions: introducing
POLICYGRID, integrating causal discovery with embodied control, and evaluating across
six benchmarks. The claims align with theoretical framing and experimental results.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 8 discusses computational intensity of iterative interventions, sensitiv-
ity to sensing quality, assumptions of stationarity, and the scope of evaluation.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not provide new theoretical proofs; instead it develops and
evaluates a practical causal discovery and control framework. Formalism (e.g., causal DAG
definitions, intervention cost functions) is stated in Section 3, but no theorems or proofs are
claimed.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper?

Answer: [Yes]

Justification: Section 5 and Appendix A provide dataset descriptions, simulation setups,
evaluation metrics (e.g., SHD, hypervolume, violation rate), and baseline comparisons.
Experimental setups (base, noisy, hidden variable, large-scale simulations, ASHRAE dataset,
physical testbed) are described in sufficient detail.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results?

Answer: [Yes]

Justification: An anonymized code and data repository link will be made available upon ac-
ceptance and is planned for the camera-ready version. Public datasets (e.g., ASHRAE Great
Energy Predictor III) are already openly accessible, and full instructions for reproducing
results will be provided in the repository.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperpa-
rameters, how they were chosen, type of optimizer, etc.)?

Answer: [Yes]

Justification: Hyperparameters for neural SEMs, intervention budgets, and optimizer choices
are reported in Section 4. For public datasets, the train/test splits follow standard protocols
(e.g., ASHRAE competition splits).

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: Results include mean differences with 95% confidence intervals for paired
comparisons (see Table 10). Figure 2 which reports Structural Hamming Distance (SHD)
between learned and ground truth graphs across six setups, does not include error bars
because they would obfuscate the main takeaway from the figure.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: All experiments were run on standard desktop and workstation machines
without requiring specialized compute (e.g., cloud clusters or large GPU farms). Since
results can be reproduced on regular hardware, we did not include detailed compute resource
reporting.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics?

Answer: [Yes]

Justification: The work complies with the NeurIPS Code of Ethics. Experiments are on
simulated and publicly available datasets, plus a controlled office testbed with no human
subject data.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Section 7 highlights positive impacts (energy efficiency, interpretability, robustness in
embodied systems) and potential risks (over-reliance on faulty sensors, privacy concerns if
extended to occupant modeling). Mitigation strategies are discussed.

11. Safeguards
Question: Does the paper describe safeguards for responsible release of data or models that
have a high risk for misuse?

Answer: [NA]

Justification: The released models and code would not pose dual-use risks such as generative
misuse. Only causal discovery and control modules for physical systems are to be released.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models) properly
credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Public datasets (ASHRAE) are cited with original licenses, and baselines (PC,
NOTEARS, ICP, SAM, GIES) are properly referenced with software citations.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The live office testbed setup is detailed in Appendix A.4 and the dataset will
be released with metadata, sensor specifications, and intervention protocols as noted earlier.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and details about compensation?

Answer: [NA]
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Justification: The work does not involve crowdsourcing or human subject experiments. Only
building sensor data and simulations are used.

15. Institutional review board (IRB) approvals
Question: Does the paper describe potential risks incurred by study participants, and whether
IRB approvals were obtained?
Answer: [NA]
Justification: The work does not involve human subjects. All experiments are with simulated
environments or non-identifiable building data.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research?
Answer: [Yes]
Justification: Section 4 and Appendix A.5 note that domain-informed priors are incorporated
using LLM-guided constraints. This usage is central to POLICYGRID’s causal discovery
loop and is fully described. No LLMs were used for writing beyond editing assistance.
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