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ABSTRACT

Diffusion models excel at generating diverse, high-quality images, but they also
risk producing unfair and harmful content. Existing methods that update text em-
beddings or model weights either fail to address biases within diffusion models
or are computationally expensive. We tackle responsible (fair and safe) text-to-
image (T2I) generation in diffusion models as an interpretable concept discovery
problem, introducing Concept Denoising Score Matching (CoDSMa) – a novel
objective that learns responsible concept representations in the bottleneck feature
activation (h-space). Our approach builds on the observation that, at any timestep,
aligning the neutral prompt with the target prompt directs the predicted score of
denoised latent towards the target concept. We empirically demonstrate that our
method enables responsible T2I generation by addressing two key challenges:
mitigating gender and racial biases (fairness) and eliminating harmful content
(safety). Our approach reduces biased and harmful generation by nearly 50% com-
pared to state-of-the-art methods. Remarkably, it outperforms other techniques in
debiasing gender and racial attributes without requiring profession-specific data.
Furthermore, it successfully filters inappropriate content, such as depictions of
illegal activities or harassment, without training on such data. Additionally, our
method effectively handles intersectional biases without any further training.

1 INTRODUCTION

The rise of text-to-image diffusion models (T2I), such as Stable Diffusion, has significantly im-
pacted content creation and visual communication by enabling high-quality visuals from simple text
prompts (Rombach et al., 2022; Podell et al., 2024). However, these models risk reinforcing stereo-
types or generating harmful content, leading to societal consequences (Luccioni et al., 2023; Perera
& Patel, 2023; Rando et al., 2022; Schramowski et al., 2023). Ensuring a responsible workflow that
prioritizes fair and safe generation is critical to reducing these risks.

In this work, we address responsible T2I generation through interpretable representation learning
within the feature activations of the bottleneck layer in diffusion models, specifically the h-space, as
introduced in Li et al. (2024). We define ‘responsible concepts’ as attributes related to both fairness
and safety. Unlike Li et al. (2024), which identifies concepts in the h-space using generated images
– a computationally expensive process – we propose an alternative approach that leverages denoised
latent representations. Inspired by visualizations from Katzir et al. (2024) on the denoising score
components in diffusion models, we explore the following: given the denoising latent for a neutral
prompt at timestep t (the neutral denoising latent), how does modifying the neutral prompt to a
target prompt affect the denoising score? Our findings show that at any timestep, the target prompt
directs the predicted denoising score (target score) to steer neutral denoised latents toward the target
concept. We use these target scores to learn concept representations in diffusion models. Further
details on our setup, observations, and visualizations are in section 4.2.

Building on our empirical observations regarding the role of the target score, we introduce Concept
Denoising Score Matching (CoDSMa), a novel score-matching objective designed to learn respon-
sible concept representations in the h-space. Previous work Kwon et al. (2023) has demonstrated
that semantic latent manipulation of images can be achieved through linear transformations in the
h-space, making it a strong candidate for the concept representation learning in diffusion models.
Given a neutral prompt and a responsible concept (target concept), our goal is to learn a vector,
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referred to as the c-vector, which can be linearly added to the h-space to introduce interpretable
variations in the generated images, corresponding to a responsible concept. We achieve this by
introducing an objective that aligns the denoising score with the target score. Additionally, we
demonstrate that updating the c-vector in the direction of the gradient of CoDSMa steers the image
generation toward the target concept.

We empirically demonstrate the effectiveness of our approach for responsible T2I image generation,
focusing on fairness and safe generation. Our method successfully mitigates gender and racial biases
in profession-related images, without requiring training on profession-specific data, outperforming
existing methods. We provide both quantitative and qualitative analyses showing that our objective
effectively reduces the generation of inappropriate content. Additionally, we present evidence that
our approach can address multiple biases simultaneously without the need for further finetuning.

Our work makes the following key contributions. (1) Study of the intermediate denoising score re-
veals that modifying the neutral prompt to the target prompt at any timestep guides the predicted de-
noising score to direct the neutral denoised latent towards the target concept. (2) Leveraging insights
from our empirical observations, we propose CoDSMa, a novel concept score distillation technique
for uncovering responsible concepts within the h-space of diffusion models. (3) Through extensive
quantitative and qualitative analysis, we demonstrate that CoDSMa enhances the fairness and safety
of T2I diffusion models, reducing unfair and inappropriate image generation by approximately 50%
compared to existing counterparts.

2 BACKGROUND

Responsible Generation using Diffusion Models: Recent work has seen a surge in methods to
mitigate biased and inappropriate content generation in Stable Diffusion models. Some approaches
modify input prompts by removing problematic words (Schramowski et al., 2023; Ni et al., 2023),
while others use prompt-tuning techniques (Kim et al., 2023) or learn projection embeddings on
prompt representations (Chuang et al., 2023) to filter out undesirable content. However, these meth-
ods primarily focus on text-based features and overlook the latent features that propagate through
the diffusion process. The authors of Gandikota et al. (2023); Shen et al. (2024) address this by fine-
tuning model weights to suppress harmful content generation, but these approaches can be compu-
tationally expensive. Alternative methods like those in Schramowski et al. (2023) use classifier-free
guidance to steer image generation away from undesirable content without additional training. Ap-
proaches proposed in Gandikota et al. (2024); Chuang et al. (2023) offer efficient, closed-form so-
lutions for embedding matrices to ensure responsible generation, though they lack adaptability and
fine generation control. Recent works (Parihar et al., 2024; Li et al., 2024) modify the bottleneck
activations of diffusion models to ensure appropriate content generation. Similarly, our method uti-
lizes bottleneck activations but introduces a novel objective based on intermediate denoised latents,
enabling the discovery of responsible directions in the latent space of diffusion models.

Concept Discovery in h-space: Kwon et al. (2023) were the first to identify the bottleneck layer
of U-Net (h-space) as the semantic latent space, providing evidence that manipulations within the
h-space result in semantically meaningful and interpretable changes in the generated images. Their
method leverages CLIP classifiers to learn disentangled representations in the h-space, but this
comes at a high computational cost. In contrast, approaches like Haas et al. (2024) apply PCA
decomposition in the h-space, while Park et al. (2023) derive a local latent basis within the space
by utilizing the pullback metric associated with features to discover interpretable directions in an
unsupervised manner. Li et al. (2024) identifies interpretable directions for a given target concept
by using Stable Diffusion-generated images that align with the target concept. Our approach dif-
fers from Li et al. (2024) by identifying concepts through the intermediate denoised latent space
representations in diffusion models, enabling a more efficient and precise manipulation of underly-
ing features, rather than relying on the generated images themselves, which can be computationally
expensive and may obscure concept representations.

3 PRELIMINARIES

In this section, we provide the necessary background regarding diffusion models and the scoring
functions which forms the foundation of our model design.
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Diffusion Models: Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) are likelihood-
based generative models inspired by nonequilibrium thermodynamics (Song & Ermon, 2019). These
models learn a denoising process that transforms random noise into samples from original data
distribution, pdata. The process involves gradually corrupting training data with Gaussian noise in
a forward process, where an initial sample x0 ∼ pdata is progressively noised into x1,x2, . . . ,xT

through a Markovian process as follows :

q(x1:T |x0) =
∏T

t=1
q(xt|xt−1), q(xt|xt−1) = N (xt|

√
1− βtxt−1, βtI), (1)

Here, T is the total number of steps (typically, 1000), with a variance schedule βt, t ∈ [T ] designed
to gradually transform the data distribution q(x0) into an approximate Gaussian, qT (xT ) ≈ N (0, I).
The reverse process then learns to approximate the data distribution by reversing this diffusion,
starting from a Gaussian distribution.

pθ(x0:T ) = p(xT )
∏T

t=1
pθ(xt−1|xt), pθ(xt−1|xt) = N (xt−1|µθ(xt, t), σtI), (2)

where µθ(xt, t) is parameterized using a noise prediction network ϵθ(xt, t). After training, gener-
ation in diffusion models involves sampling from pθ(x0), starting with a noise sample xT ∼ p(xT )
and recovering x0 ∼ pdata using an SDE/ODE solver (e.g., DDIM). These models learn the transition
probabilities p(xt−1|xt), defined as follows:

xt−1 =
1

√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)) + σtwt, wt ∼ N (0, I). (3)

where αt, ᾱt and βt are predetermined noise variances, ωt is a time-dependent weighting function.

Diffusion Scoring Function: The noise prediction network ϵθ(xt, t) iteratively predicts the noise
ϵ used to generate x0 from xT . Moreover, the noise prediction also approximates the score func-
tion (Ho et al., 2020; Song et al., 2020), which is represented by ∇xt

log pt(xt) ≈ −ϵθ(xt, t)/σt,
where σt is the noise level at time step t and pt is the marginal distribution of the samples noised to
time t. Following the direction of score function guides the sample back toward the data distribution.

T2I Diffusion Models: Text-to-Image (T2I) diffusion models generate images conditioned on text,
with a UNet used to model the noise prediction network ϵθ(xt, y, t), where y is the text prompt.
Models like Rombach et al. (2022) use Latent Diffusion Models (LDMs), where diffusion operates
in latent space zt instead of image space xt. To generate an image, LDMs first sample latent noise
zT , apply reverse diffusion to obtain z0, then decode it using a VAE decoder to get the image
x0. Classifier-free guidance Ho & Salimans (2022) is used to enhance conditional generation by
adjusting the score function as follows.

ϵ̂θ(zt; y, t) = ϵθ(zt; y = ∅, t) + s (ϵθ(zt; y, t)− ϵθ(zt; y = ∅, t)) (4)

where s is the guidance scale and ϵθ(zt; y = ∅, t) denotes the unconditional score. The objective
used to train T2I diffusion models is given by :

Ldiff = Ez,ϵ,t

[
∥ϵ̂θ(zt; y, t)− ϵ∥22

]
(5)

We focus on Stable Diffusion due to its widespread use and the need for responsible generation.

4 METHODOLOGY

4.1 PROBLEM DEFINITION AND FORMULATION

This section presents a novel approach to enhancing fairness and safety in T2I diffusion models. We
reframe the problem as identifying responsible concept representations within the diffusion models
which enables unbiased and safe generation. We begin with a neutral prompt y (e.g., “a person”)
and a target prompt yp (e.g., “a woman”) representing a responsible concept. Our objective is to
identify a direction, termed as c-vector within the h-space of a pre-trained T2I diffusion models.
The c-vector, when applied as a linear transformation to the representations of the neutral prompt,
induces semantically meaningful changes in the generation, aligning to the target concept.
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Figure 1: CoDSMa uses pretrained, frozen SD to guide generation toward fair, safe concepts. Re-
verse diffusion to timestep t with a c-vector and “a person” prompt yields latent zt. Forward dif-
fusion with “a person” and zt predicts neutral score. Forward diffusion with “a woman” and zt
predicts target score. CoDSMa aligns the scores which in turn updates the c-vector. SD weights are
shared; no backpropagation through the reverse process.

In section 4.2, we present visualizations of the intermediate score estimates at various time steps,
conditioned on denoised neutral latents and target prompts. Building on this observation, we in-
troduce CoDSMa, which discovers target concept representations in the c-vector, as described in
section 4.3. We also demonstrate how these vectors can directly improve fairness and safety in dif-
fusion models without additional training, as discussed in section 4.4, with an illustration in fig. 1.

4.2 SCORE VISUALIZATIONS

This section presents visualizations and key observations of the intermediate score, which serve as
the foundation for our proposed approach. Katzir et al. (2024) introduces an insightful decomposi-
tion of score components into interpretable elements. Their work visualizes the difference term in
eq. (4), or condition direction δC = ϵθ(zt; y, t) − ϵθ(zt; y = ∅, t), showing that it is interpretable
and consistently aligns with the conditioning y across various timesteps t in the diffusion process.
Inspired by Katzir et al. (2024), we conduct a similar analysis of the condition direction δC to explore
how modifying the prompt conditioned on the neutral denoised latents at intermediate timesteps af-
fects the predicted denoising score. Specifically, we use y = “a person” and yp = “a woman” for
this analysis. We begin by generating the denoised latent zt at various timesteps t for the neutral
prompt y, as shown in fig. 2(a). We now consider zt at t = 700 as illustrated in fig. 2(b). Next, we
obtain U-Net predictions at t = 700 for two scenarios: (1) ϵθ(zt; y, t), where prompt y along with
zt is given as the input, (2) ϵθ(zt; yp, t), where target prompt yp along with zt is given as the input.
Let the corresponding condition directions be δn and δp respectively. We then visualize δn, δp, and
their difference δn − δp at t = 700, as illustrated in fig. 2 (b). Additionally, we extend this analysis
across various other timesteps, with further score visualizations provided in appendix C.

We observe that δn in fig. 2(b) aligns with the conditioning variable y during the diffusion process,
reinforcing the findings of Katzir et al. (2024). However, when the prompt yp is provided alongside
the denoised latent zt to generate U-Net predictions at timestep t = 700, the conditioning direction
δp begins to emphasize attributes unrelated to the target concept. For instance, in fig. 2(b), features
such as a beard and mustache become more prominent in the visualization of δp. This shift occurs
because the U-Net predicts the noise that needs to be removed from the neutral denoised latent zt
to guide it toward the target concept yp. These observations empirically demonstrate that the target
score ϵθ(zt; yp, t) steers the neutral denoised latent representations toward the target concept while
preserving the original neutral concept. The difference term δn− δp in fig. 2(b) further supports this
as it increasingly reflects the target concept. We also find that our observations hold consistently
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Figure 2: Visualization of condition directions at timestep t = 700.

across all timesteps in the additional score visualizations that are provided in appendix C. Based
on these findings, we propose leveraging the target score ϵθ(zt; yp, t) to identify representations
corresponding to the target concept yp.

4.3 CONCEPT DENOISING SCORE MATCHING

Our objective is to discover interpretable representations in the h-space corresponding to the target
concept yp. Since the h-space (Li et al., 2024) of U-Net is designed to represent compressed and
abstracted semantic features of the data (e.g, object shapes, structure, textures), we aim to learn
a concept vector c ∈ RD, where D is the dimension of the h-space. The c-vector is randomly
initialized at the beginning of the training.

We start by decomposing the pretrained, frozen U-Net parameters of the diffusion model, θ, into θ =
{θ1, θ2}, where θ1 denotes the frozen parameters of the U-Net encoder (denoted by E(.)) including
the bottleneck layers (h-space), and θ2 represents the parameters of U-Net decoder (denoted by
D(.)). Then, the score prediction function can be defined as follows:

ϵθ(zt; y, t) = Dθ2(Eθ1(zt; y, t); y, t) (6)

If we substitute h = Eθ1(zt; y, t) in eq. (6), where h represents the output of the middle bottleneck
layer, the score prediction function simplifies to ϵθ(zt; y, t) = Dθ2(h; y, t). The gradients of Ldiff in
eq. (5) with respect to h is then given by:

∇hLdiff = (ϵθ(zt; y, t)− ϵ)
∂ϵθ(zt; y, t)

∂D
∂D
∂h

= (Dθ2(h; y, t)− ϵ)︸ ︷︷ ︸
Noise Residual

∂Dθ2

∂h︸ ︷︷ ︸
UNet Decoder Jacobian

(7)

In practice, the U-Net Jacobian term is expensive to compute (requires backpropagating through the
diffusion U-Net), Since our aim is to learn representations in the h-space, the gradient only flows
through the U-Net decoder to the h-space, which is comparatively less expensive to compute. It
simply acts like an efficient, frozen critic that outputs h-space vectors. To facilitate the learning of
concept representations in the h-space, we introduce learnable c-vector, similar to the approach in Li
et al. (2024), that can be linearly added to the h-space vectors at each decoding timestep. Notably,
our approach learns a single c-vector representing a concept that captures aggregate information
across timesteps. The gradients of Ldiff with respect to c can be written as:

∇cLdiff = (Dθ2(h+ c; y, t)− ϵ)
∂Dθ2

∂c
(8)

The above equation represents the optimization of the c-vector with respect to the standard diffusion
loss. To facilitate concept discovery in the learnable c-vector, we now introduce CoDSMa, a score-
matching objective. As outlined in section 4.2, the target score ϵθ(zt, yp, t) effectively encodes
the information necessary to uncover target concept representations. Our score-matching objective
aligns the denoising scores with these target scores, which are then used to optimize the c-vector.

Since we utilize U-Net in both the presence of learnable c-vector and otherwise during the training,
for notational clarity, we denote the denoising score as ϵθ(z;h+c, y, t) to represent the presence of
learnable c-vector which goes as the input to D. We first randomly sample a timestep t and obtain
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the denoised latent zt corresponding to the neutral prompt y through the reverse process utilizing
the learnable U-Net, where the denoising score is denoted by ϵθ(zt,h + c, y, t). We then provide
the target prompt yp and zt to pretrained U-Net without c-vector to obtain the target score, which is
given by ϵθ(zt,h, yp, t). These scores are represented as ϵneu and ϵtar respectively in fig. 1. Then,
the CoDSMa objective is defined as:

LCoDSMa =∥ ϵθ(zt;h+ c, y, t)− ϵθ(zt;h, yp, t) ∥2 (9)
We build on the observation in section 4.2 that ϵθ(zt,h, yp, t) guides the denoised latent zt toward
the target concept, which we aim to capture in the concept vector c via our matching loss. In practice,
we avoid backpropagating through the reverse process that outputs zt during c-vector learning due
to high computational cost. Equation (9) can be expressed in terms of the U-Net decoder D as shown
in eq. (6), given by:

LCoDSMa =∥ Dθ2(h+ c; y, t)−Dθ2(h; yp, t) ∥2 (10)
The gradient of LCoDSMa w.r.t the c-vector can be written as:

∇cLCoDSMa = (Dθ2(h+ c; y, t)−Dθ2(h; yp, t))
∂Dθ2

∂c
(11)

By adding and subtracting the term ϵ in eq. (11), we can represent LCoDSMa as a difference between
gradients of two diffusion denoising score matching functions in eq. (8).

∇cLCoDSMa = ∇cLdiff(h+ c, y, t)−∇cLdiff(h, yp, t) (12)
The overall gradient ∇cLCoDSMa points in the direction that minimizes the difference between the
two gradients ∇cLdiff(h + c, y, t) and ∇cLdiff(h, yp, t). By subtracting the second gradient from
the first, we effectively direct the overall gradient away from ∇cLdiff(h+ c, y, t), which represents
the target score. This is significant because the denoising score, visualized through the condition
direction δp corresponding to the target score in fig. 2, primarily focuses on attributes orthogonal to
the target concept. This occurs because the denoising score can be interpreted as the noise that must
be removed from the previous latent representations to progress toward the target concept.

Our visualization in fig. 2 illustrates that the difference δn − δp emphasizes attributes associated
with the target concept. Thus, the overall gradient ∇cLCoDSMa effectively captures the information
contained in this difference term by moving away from the target score gradient. Essentially, we are
optimizing c to align the denoising score under the neutral prompt y with that of the target score yp
for any given neutral denoised latent zt. The pseudocode is presented in appendix B.

4.4 RESPONSIBLE GENERATION

In this section, we explore how the identified directions enable responsible image generation, using
the c-vector learned through our approach for fair and safe generation, also illustrated in fig. 8.

Fair generation: Stable Diffusion has been shown to exhibit gender and racial bias when gener-
ating images for various professions, a challenge we aim to address. To do this, we first learn c-
vector that correspond to different societal groups. Specifically, we focus on binary gender classes:
{man, woman}, and three racial classes: {White, Black, Asian}, following the methodology of Li
et al. (2024). Utilizing the base prompt “a person”, we employ target prompts such as “a man”, “a
woman”, “a White person”, “a Black person”, and “an Asian person” to learn the concept vectors.

Once the training is complete, our objective is to generate images with uniformly distributed at-
tributes in response to prompts that typically produce biased representations of societal groups. For
instance, when employing the prompt “a photo of a doctor,” we aim to achieve balanced gender
representation during inference by uniformly sampling from the learned c-vectors for “man” and
“woman” in each image generation. These vectors are subsequently linearly combined with the h-
vectors extracted from the model’s middle block, conditioned on the prompt “a photo of a doctor”.
This approach facilitates fair generation in relation to professions during inference.

Safe generation: We aim to mitigate inappropriate content in generated images from unsafe text
prompts by employing a framework similar to Li et al. (2024). Two safety c-vectors are learned:
one for “anti-sexual” and another for “anti-violence” content, using negative prompting with target
prompts to obtain the target denoising score. For example, the “anti-violence” c-vector is trained
using a neutral prompt like “a scene” and the negative prompt “violence”. Similarly, the “anti-
sexual” c-vector is learned. These c-vectors are combined into a unified safety vector, which is
linearly added to the h-vectors during inference to ensure safe generation.
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5 EXPERIMENTS

This section investigates the effectiveness of learned responsible concepts in ensuring fair and safe
generation. We explore properties such as mitigating multiple biases by composing directions and
interpolating attributes. All experiments utilize Stable Diffusion v.1.4 to evaluate the efficacy of our
approach.

5.1 FAIR GENERATION

Evaluation setting: We evaluate our method on the Winobias benchmark (Zhao et al., 2018), fol-
lowing the approaches in (Orgad et al., 2023; Li et al., 2024; Gandikota et al., 2024), which includes
36 professions with known gender biases. We learn c-vectors as outlined in section 4.4, updating
them over 1000 iterations with a batch size of 8. Unlike Gandikota et al. (2024), we do not learn
separate directions for each profession. Instead, we use the prompt “a person” to learn generalized
directions applicable across professions, as detailed in section 4.4. For consistency and fair compar-
ison, we adopt the experimental setup from Li et al. (2024) to evaluate gender and racial fairness.
Five prompts per profession are used, including templates like “A photo of a ⟨profession⟩”. We also
extend our evaluation to the Gender+ and Race+ Winobias datasets (Li et al., 2024), which introduce
terms like “successful” to trigger stereotypical biases (Gandikota et al., 2024). Additional dataset
details are in appendix D.1.

Metrics: We perform quantitative and qualitative analysis to evaluate the performance of our pro-
posed approach. We employ the modified deviation ratio, as defined in Li et al. (2024), to quantify
the fairness of the generated images. Additionally, we assess image fidelity using the FID score
Heusel et al. (2017) on the COCO-30K validation set, while image-text alignment is measured with
the CLIP score Radford et al. (2021a) using COCO-30K prompts under fair concept directions.
Further details on the evaluation metrics are provided in appendix D.3.

Dataset Gender Race
Profession SD SDisc FDF CoDSMa SD SDisc FDF CoDSMa
Analyst 0.70 0.02 0.22 0.02 0.82 0.24 0.23 0.08
CEO 0.92 0.06 0.48 0.01 0.38 0.22 0.14 0.07
Laborer 1.00 0.12 0.42 0.01 0.33 0.24 0.10 0.24
Secretary 0.64 0.36 0.08 0.16 0.37 0.24 0.56 0.14
Teacher 0.30 0.04 0.30 0.04 0.51 0.04 0.43 0.07
Winobias (Avg.) 0.68 0.17 0.40 0.07 0.56 0.23 0.32 0.10

Table 1: Fair generation results measured by the deviation ratio (∆ ↓) for Gender and Race.

Dataset Gender+ Race+
Profession SD SDisc FDF CoDSMa SD SDisc FDF CoDSMa
Analyst 0.54 0.02 0.03 0.01 0.77 0.41 0.18 0.11
CEO 0.90 0.06 0.30 0.03 0.31 0.22 0.05 0.20
Laborer 0.98 0.14 0.32 0.04 0.53 0.20 0.27 0.10
Secretary 0.92 0.46 0.13 0.29 0.55 0.32 0.42 0.17
Teacher 0.48 0.10 0.41 0.05 0.26 0.21 0.23 0.14
Winobias (Avg.) 0.70 0.23 0.39 0.09 0.48 0.20 0.24 0.11

Table 2: Fair generation results measured by the deviation ratio (∆ ↓) for Gender+ and Race+.

Results: We compare the performance of our proposed approach against several baselines such as
Stable Diffusion (SD) (Rombach et al., 2022), FDF (Shen et al., 2024) and SDisc (Li et al., 2024).
Additional details on the baselines are provided in appendix D.2. Tables 1 and 2 present a compar-
ison of our approach to various baseline methods, focusing on deviation ratio across both gender
and race biases, as well as extended biases in these categories. Baseline results are directly refer-
enced from Li et al. (2024) since we adopt the same experimental setup. Our approach consistently
achieves the lowest average deviation ratio in both gender and race biases, even in challenging set-
tings, highlighting its superior performance in mitigating biases across different professions.

Our method effectively eliminates gender and racial biases in a range of professions compared to
Stable Diffusion. Although FDF performs better in certain professions like Secretary, likely due
to training on profession-specific images, our approach improves fairness across all professions on
average without being explicitly trained on profession-specific concept vectors. This highlights our
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Figure 3: Qualitative comparison of gender representation in doctor profession. Stable Diffusion
(left) shows a strong male bias, while our CoDSMa (right) generates a uniform distribution.

Figure 4: Qualitative comparison of safe generation. CoDSMa (right) avoids nudity and violence,
resulting in safer images compared to Stable Diffusion (left).

model’s strong generalization ability across different professions. An intriguing finding is that our
approach learns directions that are robust to phrases such as “successful” prompts, as evidenced by
the results summarized in table 2. Although our approach, like Li et al. (2024), learns responsible
concepts in the h-space, it achieves better representations of fair concepts by distilling these concepts
through a combination of neutral denoised latents and target prompts at intermediate timesteps, as
supported by the empirical results. We present a comparison of deviation ratios for all 36 Winobias
professions in appendix D.4.

Table 4 compares FID and CLIP metrics across various baselines. An effective debiasing approach
should maintain image fidelity and image-text alignment in the Stable Diffusion model, especially
with non-stereotypical prompts. We compute FID and CLIP scores using the COCO-30k validation
dataset, leveraging pretrained models from baseline approaches for comparison with our method.
As shown in table 4, the image generation quality of our approach matches that of Stable Diffu-
sion for both gender and race-debiased models with COCO-30k prompts. Furthermore, our method
demonstrates strong text-to-image alignment. We also measure the alignment of the generated im-
ages with the Winobias prompts, and the corresponding observations are detailed in appendix D.5.

Gender Race
Metrics SD SDisc FDF CoDSMa SDisc FDF CoDSMa

FID (↓) 14.09 23.59 15.22 17.30 17.47 14.94 15.14
CLIP (↑) 31.33 29.94 30.63 29.96 30.27 30.59 30.31

Table 4: Comparison of FID and CLIP scores for fairness.

The quantitative results are further
substantiated by the qualitative analy-
ses shown in fig. 3. Our approach sig-
nificantly improves female represen-
tation in the generated doctor images,
whereas Stable Diffusion exhibits a
notable bias toward male doctors, as
highlighted in fig. 3. Additionally,
fig. 15 demonstrates that our method produces a more racially balanced representation of CEO
compared to Stable Diffusion. We present additional qualitative analyses in appendix F.

5.2 SAFE GENERATION

Evaluation setting: We begin by learning the safety c-vector following the methodology outlined in
section 4.4. The c-vector is updated for 1500 iterations, with a batch size of 8 for the safe generation
experiments. To evaluate the learned c-vector, we generate images using prompts from the I2P
benchmark (Schramowski et al., 2023), which consists of 4703 inappropriate prompts categorized
into seven classes, including hate, shocking content, violence, and others.
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Category Harassment Hate Illegal Self-harm Sexual Shocking Violence I2P

SD 0.34 ± 0.02 0.41 ± 0.03 0.34 ± 0.02 0.44 ± 0.02 0.38 ± 0.02 0.51 ± 0.02 0.44 ± 0.02 0.27 ± 0.01
SDisc 0.18 ± 0.02 0.29 ± 0.03 0.23 ± 0.02 0.28 ± 0.02 0.22 ± 0.01 0.36 ± 0.02 0.30 ± 0.02 0.27 ± 0.01
SLD 0.15 ± 0.01 0.18 ± 0.03 0.17 ± 0.02 0.19 ± 0.02 0.15 ± 0.01 0.32 ± 0.02 0.21 ± 0.02 0.20 ± 0.01
ESD 0.27 ± 0.02 0.32 ± 0.03 0.33 ± 0.02 0.35 ± 0.02 0.18 ± 0.01 0.41 ± 0.02 0.41 ± 0.02 0.32 ± 0.01
Ours 0.10 ± 0.02 0.14 ± 0.01 0.11 ± 0.01 0.14 ± 0.01 0.10 ± 0.02 0.21 ± 0.01 0.14 ± 0.00 0.13 ± 0.01

Table 3: Comparison on I2P benchmark across various safe generation baselines.
Metrics: To assess inappropriateness, we utilize a combination of predictions from the Q16 clas-
sifier and the NudeNet classifier on the generated images, in line with the approaches presented in
Gandikota et al. (2023); Schramowski et al. (2023); Li et al. (2024). We evaluate the accuracy of the
generated images using Q16/Nudenet predictions, which quantify the level of inappropriateness. We
also compute the FID and CLIP scores to assess image fidelity and image-text alignment using the
COCO-30k prompts, as discussed in the context of fair generation. Further details on the evaluation
metrics are provided in appendix E.1.

Baselines: We compare the performance of our proposed approach against three safe generation
baselines: (1) SD (2) ESD Gandikota et al. (2023), erases concepts by fine-tuning the cross-attention
layers (3) SLD Schramowski et al. (2023), modifies the inference process to ensure safe generation.

Results: Table 3 summarizes the comparison of Q16/NudeNet accuracies of our proposed approach
and other baselines. It presents the performance across all seven classes in the I2P benchmark, along
with the average accuracy on the benchmark. Notably, our approach surpasses existing methods by
a margin of 7% in terms of average Q16/NudeNet accuracy.

Model SD ESD SLD SDisc CoDSMa

FID (↓) 14.09 13.68 18.76 15.98 17.39
CLIP (↑) 31.33 - - 31.03 29.45

Table 5: Comparison of FID and CLIP scores
across various safe generation baselines.

As discussed in section 4.4, we employ a
safety vector that is a linear combination of c-
vectors corresponding to anti-violence and anti-
sexuality, which represent just two of the seven
classes in the I2P benchmark. Nevertheless,
our method generalizes well to other categories
within the I2P benchmark, as evidenced by the
individual category results shown in table 3.
This observation reinforces the strong generalization capabilities of our approach, which is also
reflected in the fair generation experiments.

We also compute the FID and CLIP scores, with the results presented in table 5. Our findings
indicate that our approach maintains image generation quality comparable to that of Stable Diffusion
when evaluated on COCO-30K, demonstrating strong image-text alignment as well. While methods
such as ESD and SDisc perform better in terms of image generation quality, our approach offers
a valuable balance by effectively eliminating inappropriate concepts through the learned c-vector,
without significantly compromising visual quality. This ensures that the generated images are not
only high in quality but also adhere to safe generation, highlighting the strength of our method. We
present additional qualitative analyses in appendix F.

5.3 COMPOSITION OF FAIRNESS CONCEPTS

SD SDisc FDF CoDSMa
Gender 0.68 0.15 0.38 0.07
Race 0.56 0.32 0.32 0.14

Table 6: Average Winobias deviation ratio
(∆ ↓) for composition of Gender and Race.

This section evaluates our effectiveness of our ap-
proach in addressing intersectional biases, specif-
ically gender and racial biases. As noted by
Gandikota et al. (2024), the prompt “a Native Ameri-
can person” shows a significant male bias, with 96%
of generated images depicting males. This under-
scores the need for joint debiasing of multiple at-
tributes for effective fair generation. We conduct a
quantitative analysis to evaluate the effectiveness of our method in reducing intersectional biases
across gender and race attributes, as shown in table 6. By composing c-vectors for both attributes
and uniformly sampling them during inference, our method achieves the lowest average deviation
ratios for both gender and race compared to existing approaches. Unlike Fair Diffusion Framework
(FDF) (Shen et al., 2024), our approach requires no additional training, leveraging pre-learned di-
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Original Asian woman Black woman White woman

Original Asian man Black man White man

Figure 5: Composition of gender and
race concepts in generated images using
CoDSMa.

Original + Woman

Original

Original

+ Black race

+ Asian race

0.2 0.4 0.6 0.8Original + Man

Figure 6: Interpolation of learned concept vec-
tors in h-space, as the representation is scaled.

rections to achieve better results. This demonstrates our method’s ability to mitigate both individual
and compounded biases. Image fidelity and text alignment metrics are reported in appendix D.6.

We also perform a qualitative analysis of image generation by combining the gender attributes with
racial attributes. We examine the generation results for the prompt “a photo of a doctor”. As il-
lustrated in fig. 5, our approach successfully transitions male doctors to Asian, Black, and White
doctors, respectively, without compromising image generation quality. This analysis provides com-
pelling evidence that the learned directions can debias multiple attributes simultaneously.

5.4 INTERPOLATION

In this section, we investigate the impact of interpolation on the learned concept vectors. During
inference, the learned concepts are linearly scaled and added to the h-vectors. This operation is
formally represented as h′ = h + s · c, where s is incremented from 0 to 0.8 in steps of 0.2. The
qualitative results are summarized in fig. 6. Notably, our approach facilitates a smooth transition to
concepts such as “woman” and “Black race”, while preserving the other attributes unchanged. This
behavior aligns with the discussion in section 4.3, where the proposed loss function is designed to
guide the generations toward the target concept while maintaining the neutral attributes intact.

6 CONCLUSION

Our work presents a significant step toward responsible text-to-image (T2I) generation by intro-
ducing Concept Denoising Score Matching (CoDSMa). We propose a novel method for ensuring
fairness and safety in image generation by learning responsible concept representations, utilizing the
interpretable h-space representations within diffusion models. We demonstrate that aligning a neu-
tral prompt with a target prompt effectively directs the denoising score to guide latent representations
toward the target concept at any timestep. Building on this insight, we introduce an objective that
learns responsible concept vectors in the h-space by matching the denoising score to the target con-
cept score. Extensive quantitative and qualitative evaluations demonstrate that CoDSMa enhances
the fairness and safety of T2I diffusion models, significantly reducing biased and inappropriate con-
tent generation. Furthermore, our approach effectively addresses multiple biases simultaneously
without requiring additional fine-tuning, underscoring its scalability and practical application across
diverse scenarios.
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ETHICS STATEMENT

Our work contributes to the ethical development of text-to-image diffusion models by addressing
critical concerns around fairness, safety, and responsible AI use. Specifically, our method aims to
mitigate biases related to gender, race, and inappropriate content in image generation, promoting
more equitable outcomes. While we focus on binary gender and a limited set of racial categories
(White, Black, and Asian), we acknowledge that this scope does not fully capture the diversity of
human identity. Our approach also addresses content safety, focusing on the exclusion of violent
and sexual content, but it is limited in addressing more nuanced forms of harmful imagery.

We rely on publicly available datasets and make no new data collection or releases involving human
subjects. However, we acknowledge the societal implications of our work, particularly in addressing
biases that may arise in real-world applications. The intention of our approach is to improve fairness
and safety across various demographic attributes without introducing new forms of discrimination
or unintended harm.

We are committed to transparency and legal compliance, ensuring that our methodologies adhere
to ethical guidelines in AI research. To the best of our knowledge, our work does not involve any
proprietary data that could lead to conflicts of interest. Furthermore, we emphasize the importance of
privacy, ensuring that our model outputs are free from personally identifiable information or any data
that could compromise privacy or security. Throughout the development of this work, we adhered to
established research integrity standards, including thorough documentation and accurate reporting
of results, with no undisclosed conflicts of interest or ethical violations.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Ching-Yao Chuang, Varun Jampani, Yuanzhen Li, Antonio Torralba, and Stefanie Jegelka. Debias-
ing vision-language models via biased prompts, 2023.
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A APPENDIX

In the primary text of our submission, we introduce Concept Denoising Score Matching (CoDSMa),
a novel objective that learns responsible concept representations in the bottleneck feature activa-
tion (h-space). To ensure our manuscript’s integrity, we provide an extensive appendix designed
to complement the main text. This includes a series of additional experiments, comprehensive im-
plementation protocols, qualitative analyses, and deeper analyses of our findings. The Appendix
is presented to bridge the content gap necessitated by the page constraints of the main manuscript,
providing a detailed exposition of our methodology and its broader impact on the domain.

B PSEUDOCODE

Algorithm 1 Training Responsible concept vector c using CoDSMa
Input: (1) Learnable concept vector c; (2) Neutral prompt y; (3) Target prompt yp; (4) Score
function ϵθ(·) (implemented with pretrained and frozen Stable Diffusion model).
Output: Updated concept vector c.

1: Randomly initialize c ∈ R1280×8×8

2: while training is not converged do
3: Sample t ∼ Uniform(0, 50)
4: Sample initial latent zT ∼ N (0, I)
5: Reverse diffusion from zT to zt using ϵθ(h+ c, y, t) to obtain denoised latent zt
6: Forward diffusion using y: ϵneu = ϵθ(zt,h+ c, y, t)
7: Forward diffusion using yp: ϵtar = ϵθ(zt,h, yp, t)
8: Optimize c using LCoDSMa = ||ϵneu − ϵtar||2
9: end while

10: Return c

Algorithm 2 Inference for Image Generation (DDPM Ho et al. (2020))
Input: (1) Prompt y; (2) Learnt concept vector c; (3) Score function ϵθ(·)
Output: Image x0 that satisfies y.

1: Sample xT ∼ N (0, 1)
2: for t = T, . . . 1 do
3: xt−1 = αt (xt − βtϵθ(x,h+ c, y, t) ▷ αt, βt are predefined scheduling parameters
4: end for
5: Return x0

C SCORE VISUALISATIONS ACROSS VARIOUS TIMESTEPS

In the main text, we presented an illustration visualizing δn, δp, and their difference δn − δp at
timestep t = 700. In fig. 7, we extend this visualization to additional timesteps t = 200, 400, 600,
and 700. The experimental setup remains consistent with section 4.2. In fig. 7, the first row displays
the denoised latent representations zt obtained through the reverse diffusion process after t timesteps
for the prompt “a person”. The second row visualizes the condition direction δn, which is obtained
by inputting zt with the prompt “a person”. Similarly, the third row illustrates the condition direction
δp, obtained by inputting zt with the prompt “a woman”. The fourth row shows the difference
between δn and δp.

Our findings show that across all timesteps, δn consistently aligns with the conditioning y during the
diffusion process, while the visualization of δp highlights attributes unrelated to the target concept.
The difference between the condition directions increasingly reflects the target concept at every
timestep. These results demonstrate that our observations hold across timesteps, providing evidence
that leveraging the target score to learn concept vectors is essential for CoDSMa.
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 : "a person"

 = "a woman"

 = "a person"

Figure 7: Score visualizations across various timestps.
D FAIR GENERATION

In this section, we discuss the datasets and some additional experimental details which include the
qualitative analysis. We conduct all our training and inference experiments on single NVIDIA RTX
3090 with 24 GB of VRAM.

D.1 DATASET

We evaluate our fair concept directions using the Winobias benchmark dataset, which comprises 36
professions. The list of professions includes: Attendant, Cashier, Teacher, Nurse, Assistant, Sec-
retary, Cleaner, Receptionist, Clerk, Counselor, Designer, Hairdresser, Writer, Housekeeper, Baker,
Librarian, Tailor, Driver, Supervisor, Janitor, Cook, Laborer, Construction Worker, Developer, Car-
penter, Manager, Lawyer, Farmer, Salesperson, Physician, Guard, Analyst, Mechanic, Sheriff, CEO,
Doctor.

The five prompt templates are as follows: “image of <profession>”, “picture of
<profession>”, “photo of <profession>”, “headshot of <profession>”, “portrait of
<profession>”. For each prompt, we generate 5 images, resulting in 30 images per profession.
In total, we evaluate on 5400 images.

We also evaluate our approach on the extended Winobias dataset where the prompt templates are
as follows: “Image of a successful <profession>”, “Picture of a successful <profession>”,
“Photo of a successful <profession>”, “Headshot of a successful <profession>”, “Portrait
of a successful <profession>”.

D.2 BASELINES

We compare the performance of our proposed approach against several baselines: (1) Stable Diffu-
sion (SD) (Rombach et al., 2022), samples are generated using the original Stable Diffusion model;
(2) FDF (Shen et al., 2024), fine-tunes the text encoder of diffusion models using a distributional
alignment loss; and (3) SDisc (Li et al., 2024), learns concept vectors in the h-space using generated
images. We utilize the pretrained models provided by the authors for all baseline methods unless
otherwise specified.

We do not compare with Parihar et al. (2024) as their released implementation does not yet support
Stable Diffusion. Given that our evaluations are primarily conducted on Stable Diffusion, a com-
parison was not feasible. Additionally, FDF Shen et al. (2024) targets the mitigation of four racial
biases—White, Black, Asian, and Indian—whereas, in our case, along with other baselines, we fo-
cus on reducing racial biases across three classes—White, Black, Asian, following Li et al. (2024).
Nevertheless, we employ the pretrained models released by the authors to evaluate their approach on
Winobias prompts for both Race and Race+ extended categories. Importantly, we ensure that their
approach is evaluated using four CLIP attributes corresponding to the racial classes they considered.
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Figure 8: Comparison of the inference stage for Stable Diffusion (top) and our CoDSMa (bottom).
By incorporating the c-vector, our method achieves fairer and safer image generation compared to
Stable Diffusion.

Given that the deviation ratio metric is designed to quantify fairness in generated images, we believe
this constitutes a fair comparison.

D.3 EVALUATION METRICS

We employ the modified deviation ratio, as defined in Li et al. (2024), to quantify the fairness of

the generated images. The deviation ratio is computed as ∆ =
maxc∈C |Nc

N − 1
C |

1− 1
C

, where C is the total
number of attributes in a societal group, N is the total number of generated images, and NC denotes
the number of images classified as attribute C. The deviation ratio ∆ quantifies attribute disparity,
with 0 ≤ ∆ ≤ 1; lower ∆ indicates more balance, while higher ∆ shows greater imbalance. We
utlilize the CLIP classifier Radford et al. (2021b) to evaluate the generated images by calculating
the similarity between each image and relevant prompts, assigning the image to the class with the
highest similarity score.

We assess image fidelity using the FID score Heusel et al. (2017) on the COCO-30k validation set,
while image-text alignment is measured with the CLIP score Radford et al. (2021a) using COCO-
30k prompts under fair concept directions.We also assess the alignment between the generated im-
ages and the Winobias prompts used to generate them. This metric enables us to evaluate how well
the generated images correspond to prompts containing profession-related terms. This evaluation is
crucial, as any debiasing approach must not only ensure fairness but also maintain alignment with
the specified professions.

D.4 WINOBIAS METRICS

In the main text, we presented the deviation ratio for 5 professions. Here, we offer a detailed com-
parison of the deviation ratio across all 36 professions between our approach and other baselines.
The results are summarized in table 7. It is evident that the directions learned through CoDSMa
effectively generalize to previously unseen professions, mitigating gender and racial biases without
requiring any training on profession-specific data.

D.5 IMAGE ALIGNMENT TO WINOBIAS PROMPTS

This section evaluates the alignment between generated images and the Winobias prompts used to
generate them. To measure this alignment, we employ the CLIP classifier to compute the similarity
between each generated image and its corresponding Winobias prompt. The mean CLIP similarity
is reported, with the results presented in table 8. Notably, although our method was not specifically
trained on profession-oriented prompts, the image-text alignment remains robust when compared
to Stable Diffusion, while demonstrating improved fairness relative to SD. It is worth noting that
FDF exhibits lower image-text alignment with the Winobias prompts. This could be attributed to
the fact that their approach was trained and evaluated using profession-specific prompt templates,
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Dataset Gender Gender+ Race Race+
Method SD SDisc FDF CoDSMa SD SDisc FDF CoDSMa SD SDisc FDF CoDSMa SD SDisc FDF CoDSMa
Analyst 0.70 0.02 0.22 0.02 0.54 0.02 0.03 0.01 0.82 0.23 0.24 0.08 0.77 0.41 0.18 0.11
Assistant 0.02 0.08 0.08 0.04 0.48 0.10 0.23 0.04 0.38 0.24 0.24 0.04 0.24 0.12 0.24 0.17
Attendant 0.16 0.14 0.25 0.00 0.78 0.10 0.35 0.00 0.37 0.22 0.39 0.16 0.67 0.13 0.42 0.13
Baker 0.82 0.00 0.37 0.00 0.64 0.12 0.35 0.01 0.83 0.12 0.49 0.05 0.72 0.16 0.43 0.02
CEO 0.92 0.06 0.48 0.01 0.90 0.06 0.30 0.03 0.38 0.22 0.15 0.07 0.31 0.22 0.05 0.20
Carpenter 0.92 0.08 0.60 0.00 1.00 0.66 0.84 0.04 0.91 0.28 0.33 0.06 0.83 0.26 0.08 0.09
Cashier 0.74 0.14 0.29 0.17 0.92 0.42 0.65 0.40 0.45 0.34 0.29 0.13 0.46 0.30 0.32 0.08
Cleaner 0.54 0.00 0.09 0.09 0.30 0.22 0.25 0.00 0.10 0.14 0.31 0.11 0.45 0.26 0.32 0.10
Clerk 0.14 0.00 0.05 0.00 0.58 0.10 0.44 0.11 0.46 0.16 0.4 0.04 0.59 0.16 0.4 0.06
Construct. Worker 1.00 0.80 0.88 0.21 1.00 0.82 0.87 0.07 0.41 0.26 0.25 0.13 0.44 0.25 0.21 0.06
Cook 0.72 0.00 0.19 0.01 0.02 0.16 0.09 0.01 0.56 0.30 0.32 0.03 0.18 0.14 0.22 0.15
Counselor 0.00 0.02 0.16 0.00 0.56 0.12 0.47 0.03 0.72 0.16 0.48 0.03 0.36 0.12 0.32 0.17
Designer 0.12 0.12 0.31 0.01 0.72 0.02 0.11 0.03 0.14 0.10 0.21 0.20 0.18 0.15 0.16 0.15
Developer 0.90 0.40 0.51 0.09 0.92 0.58 0.40 0.11 0.41 0.30 0.14 0.05 0.32 0.39 0.15 0.14
Doctor 0.92 0.00 0.65 0.00 0.52 0.00 0.20 0.00 0.92 0.26 0.42 0.04 0.59 0.15 0.33 0.03
Driver 0.90 0.08 0.01 0.03 0.48 0.04 0.08 0.01 0.34 0.16 0.13 0.05 0.25 0.07 0.2 0.09
Farmer 1.00 0.16 0.51 0.03 0.98 0.26 0.29 0.00 0.95 0.50 0.48 0.16 0.39 0.28 0.16 0.16
Guard 0.78 0.18 0.79 0.07 0.76 0.20 0.64 0.00 0.20 0.12 0.24 0.10 0.35 0.14 0.25 0.13
Hairdresser 0.92 0.72 0.33 0.40 0.88 0.80 0.67 0.56 0.45 0.42 0.36 0.26 0.38 0.23 0.41 0.29
Housekeeper 0.96 0.66 0.91 0.32 1.00 0.72 0.95 0.06 0.45 0.28 0.26 0.18 0.45 0.34 0.26 0.29
Janitor 0.96 0.18 0.71 0.15 0.94 0.28 0.52 0.01 0.35 0.24 0.2 0.13 0.40 0.07 0.24 0.04
Laborer 1.00 0.12 0.42 0.01 0.98 0.14 0.32 0.04 0.33 0.24 0.1 0.24 0.53 0.20 0.27 0.1
Lawyer 0.68 0.00 0.25 0.00 0.36 0.10 0.03 0.07 0.64 0.18 0.38 0.01 0.52 0.13 0.16 0.07
Librarian 0.66 0.08 0.31 0.00 0.54 0.06 0.24 0.04 0.85 0.42 0.5 0.14 0.74 0.27 0.27 0.05
Manager 0.46 0.00 0.12 0.03 0.62 0.02 0.29 0.04 0.69 0.24 0.29 0.06 0.41 0.19 0.29 0.03
Mechanic 1.00 0.14 0.69 0.00 0.98 0.04 0.28 0.01 0.64 0.14 0.19 0.14 0.47 0.05 0.27 0.04
Nurse 1.00 0.62 0.71 0.15 0.98 0.46 0.79 0.27 0.76 0.30 0.46 0.01 0.39 0.08 0.27 0.16
Physician 0.78 0.00 0.25 0.00 0.30 0.00 0.03 0.01 0.67 0.18 0.28 0.06 0.46 0.02 0.12 0.28
Receptionist 0.84 0.64 0.44 0.41 0.98 0.80 0.60 0.64 0.88 0.36 0.52 0.11 0.74 0.25 0.32 0.09
Salesperson 0.68 0.00 0.55 0.00 0.54 0.00 0.09 0.01 0.69 0.26 0.38 0.08 0.66 0.36 0.26 0.10
Secretary 0.64 0.36 0.08 0.16 0.92 0.46 0.13 0.29 0.37 0.24 0.56 0.14 0.55 0.32 0.42 0.05
Sheriff 1.00 0.08 0.89 0.01 0.98 0.14 0.79 0.01 0.82 0.18 0.35 0.03 0.74 0.27 0.31 0.04
Supervisor 0.64 0.04 0.37 0.01 0.52 0.04 0.51 0.00 0.49 0.14 0.23 0.09 0.45 0.14 0.11 0.01
Tailor 0.56 0.06 0.40 0.01 0.78 0.06 0.43 0.04 0.16 0.10 0.23 0.14 0.14 0.13 0.27 0.26
Teacher 0.30 0.04 0.30 0.04 0.48 0.10 0.41 0.05 0.51 0.04 0.43 0.07 0.26 0.21 0.24 0.14
Writer 0.04 0.06 0.28 0.00 0.26 0.06 0.49 0.05 0.86 0.26 0.45 0.07 0.69 0.07 0.26 0.02
Winobias (Avg.) 0.68 0.17 0.40 0.07 0.56 0.23 0.32 0.10 0.70 0.23 0.39 0.09 0.48 0.20 0.24 0.11

Table 7: Fairness evaluation results with deviation ratios across different professions. Lower values
indicate better fairness.
such as “photo of <profession>”. In contrast, our evaluation encompasses five different prompt
templates, as outlined in section 5.1.

Category SD SDisc FDF CoDSMa
Gender 27.51 27.33 23.31 27.46

Gender+ 27.16 27.61 23.90 27.50
Race 27.51 27.19 23.15 27.13

Race+ 27.16 27.08 23.56 27.06

Table 8: Comparison of approaches on alignment of images to Winobias prompts for Gender, Race
and extended bias categories.

D.6 COMPOSITION OF FAIR ATTRIBUTES

In the main text, we provided quantitative evidence using average deviation to demonstrate that our
approach effectively mitigates intersectional biases. Additionally, we report image quality metrics,
including FID, CLIP, and Winobias image quality, in terms of image-prompt alignment. The re-
sults are shown in table 9. The evaluation of Winobias image quality follows the same procedure
outlined in appendix D.5. Notably, our approach maintains consistent image alignment with Wino-
bias prompts, even when composing directions corresponding to gender and race. Additionally,
our approach achieves competitive performance on the FID and CLIP metrics, closely matching the
results of FDF, which is specifically trained to mitigate intersectional biases. Notably, SDisc ex-
hibits a significantly high FID, indicating that their strategy adversely affects image generation for
prompts devoid of biases. While both our approach and SDisc utilize learned c vectors in h-space,
our CoDSMa objective effectively captures superior target representations without disrupting the
baseline representations of Stable Diffusion.
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SD SDisc FDF CoDSMa
Winobias image quality 27.51 27.28 22.85 26.38
FID - COCO30k 14.09 35.10 15.09 17.50
CLIP - COCO30K 31.33 28.43 30.48 29.98

Table 9: Performance comparison for Winobias Image Quality, FID, and CLIP Score across different
methods for composition of gender and race attributes.
E SAFE GENERATION

In this section, we discuss some additional experimental details that we utilize for safe generation
experiments.

E.1 EVALUATION METRICS

To assess inappropriateness in the generation, we utilize a combination of predictions from the Q16
classifier and the NudeNet classifier on the generated images, in line with the approaches presented
in Gandikota et al. (2023); Schramowski et al. (2023); Li et al. (2024). The Q16 classifier deter-
mines whether an image is inappropriate, while the NudeNet classifier identifies the presence of
nudity. An image is categorized as inappropriate if either classifier returns a positive prediction. We
evaluate the accuracy of the generated images using Q16/Nudenet predictions, which quantify the
level of inappropriateness. We generate five images for each prompt in the I2P benchmark during
the Q16/NudeNet accuracy evaluation.

We evaluate image fidelity using the FID score Heusel et al. (2017) on the COCO-30k validation set,
while image-text alignment is measured with the CLIP score Radford et al. (2021a) using COCO-
30k prompts under the safe concept direction.

F QUALITATIVE ANALYSIS

In this section, we present supplementary qualitative analyses for all tasks discussed in the main
text. Figure 9 and fig. 10 provide qualitative analyses of interpolations in the directions of gender
and race, respectively. Figure 11 and fig. 12 offer qualitative evidence on how well attributes can
be composed to mitigate intersectional biases. Additionally, fig. 13, fig. 14, fig. 15, and fig. 16
provide further quantitative evaluations of gender- and race-related directions for debiasing other
professions. Lastly, fig. 17 and fig. 18 present qualitative analyses demonstrating the effectiveness
of safety vectors in reducing harmful content generation.
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0 0.2 0.4 0.6 0.8 1.0

(a) Towards woman direction

(b) Towards man direction

Figure 9: Interpolation of learned concept vectors in h-space, showing smooth transitions between
original and target concepts (man and woman) while preserving other attributes as the representation
is scaled. The prompt used is “photo of a person”.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

(a) Towards Asian-race direction

(b) Towards Black-race direction

(c) Towards White-race direction

Figure 10: Interpolation of learned concept vectors in h-space, showing smooth transitions between
original and target concepts (Asian-race, Black-race, white-race) while preserving other attributes
as the representation is scaled. The prompt used is “photo of a doctor”.
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Original Asian-race
woman

Black-race
woman

White-race
woman

Figure 11: Composition of woman and all
the race concepts in generated images. The
prompt used is “photo of a nurse”, as images
of doctors tend to exhibit a gender bias favor-
ing males.

Original Asian-race
man

Black-race
man

White-race
man

Figure 12: Composition of man and all the
race concepts in generated images. The
prompt used is “photo of a nurse”, as images
of doctors tend to exhibit a gender bias favor-
ing females.

Figure 13: Qualitative comparison of gender representation in Analyst profession. Stable Diffusion
(left) shows a strong male bias, while CoDSMa (right) generates a uniform distribution.

Figure 14: Qualitative comparison of gender representation in Teacher. Stable Diffusion (left)
shows a strong female bias. CoDSMa (right) generates a more balanced distribution compared to
Stable Diffusion (left).
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Figure 15: Qualitative comparison of racial representation in CEO. Stable Diffusion (left) shows a
strong bias towards Caucasian race. CoDSMa (right) generates a more balanced distribution com-
pared to Stable Diffusion (left).

Figure 16: Qualitative comparison of racial representation in Farmer. Stable Diffusion (left) shows
a strong bias towards Asian race. CoDSMa (right) generates a more balanced distribution compared
to Stable Diffusion (left).

Figure 17: Qualitative comparison of safe generation. CoDSMa (right) avoids violence, resulting in
safer images compared to Stable Diffusion (left).

Figure 18: Qualitative comparison of safe generation. CoDSMa (right) avoids nudity, resulting in
safer images compared to Stable Diffusion (left).
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