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ABSTRACT

We present a novel game-theoretic formulation of Non-Negative Matrix Factoriza-
tion (NNMF), a popular data-analysis method with many scientific and engineering
applications. The game-theoretic formulation is shown to have favorable scal-
ing and parallelization properties, while retaining reconstruction and convergence
performance comparable to the traditional Multiplicative Updates (Lee & Seung,
1999) algorithm.

1 INTRODUCTION

Non-Negative Matrix Factorization (NNMF) (Gillis, 2020) is a matrix decomposition method that
approximates a low-rank non-negative matrix X ∈ RI×J

≥0 , using two non-negative matrices W ∈
RI×K
≥0 , and H ∈ RK×J

≥0 , of predetermined rank K according to: X 'WH. The non-negative rank
K of the non-negative matrix X can be higher than the traditional matrix rank over the real field.

NNMF has a long history of use in both scientific and engineering settings due to its tendency to
reveal interesting properties about the underlying data. For example, Lee & Seung (1999) popularized
NNMF after applying it to natural images, showing that it can learn meaningful visual representations
”the parts of objects”. NNMF has also been applied to large-scale textual corpora to learn topic-models
(Lee & Seung, 1999; Pauca et al., 2004), online recommendation systems Luo et al. (2014) and to
high-throughput omics data for time-course analysis (Stein-O’Brien et al., 2018). By constraining
factors to be non-negative, we obtain values that are plausible in the real-world (e.g. word-counts or
chemical concentrations are always non-negative) and therefore more interpretable.

Recently Gemp et al. (2020; 2021), reformulated the classic Principal Components Analysis (PCA)
Jolliffe (2002) algorithm as a K-player game, to show that it can be be massively scaled and
implemented in a distributed manner. Inspired by their work, we present a novel game-theoretic
formulation of Non-Negative Matrix Factorization (NNMF) and provide an empirical analysis of our
formulation against a traditional NNMF algorithm (Lee & Seung, 1999).

2 BACKGROUND

Principal Components Analysis (PCA) is a popular data-analysis algorithm that uses an orthogonal
linear transformation to transform a set of observations X ∈ Rn×d to a new coordinate system, such
that the projections of the data onto the new coordinates have decreasing variance. In other words,
the first coordinate (known as the first principal component) is the direction of maximal variance of
the data, the second (orthogonal) coordinate is the direction of second-highest variance of the data,
and so on. (See (Jolliffe, 2002) for a comprehensive review.)

PCAs are typically calculated in one of two ways: (1) using the eigen-decomposition of the covariance
matrix Σ of the data matrix X or (2) using the singular value decomposition (SVD) of the data matrix
X. Using the former method, let the data matrix be X ∈ Rn×d, and its covariance matrix be
Md×d = 1

nX
TX. PCA then reduces to the eigenvalue problem MV = V Λ, where Λ is a diagonal

matrix comprised of eigenvalues (known as PC loadings) and the columns of the orthonormal matrix
V provides the sought PC directions.
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2.1 GAME-THEORETIC PCA FORMULATION

In a recent work, Gemp et al. (2020) showed how the top-k right singular vectors of an n-observation
data matrix X ∈ Rn×d can be calculated by a k-player game. Alternatively, if one is working with
a minibatch Xt of n′ < n observations, the top-k right singular vectors are given by the top-k
eigenvectors of the positive semidefinite sample covariance matrix Σ = E[ 1

n′Xt
TXt] .

In their game formulation, each of k players receives access to minibatches of the data and ‘owns’
one of the k (approximate) eigenvectors v̂i. Each player then tries to maximize a utility function
ui(v̂i|v̂j<i) that is unique to them:

max
v̂>
i v̂i=1

{
ui(v̂i|v̂j<i) =

Variance︷ ︸︸ ︷
v̂>i Σv̂i−

∑
j<i

⊥-penalty︷ ︸︸ ︷
〈v̂i,Σv̂j〉2

〈v̂j ,Σv̂j〉

}
(1)

Here, all expressions involving the inequality (j < i) indicate that players with a lower index
(‘parents’) have already played before the current (‘child’) player. As shown above, utility functions
consist of two terms that balance competing objectives: one that tries to maximize the variance cap-
tured by the player’s eigenvector, and the other that tries to maximally orthogonalize this eigenvector
to all parent eigenvectors. To reduce underspecification, eigenvectors are restricted to lie on the unit
sphere (v̂(t)i ∈ Sd−1).

Algorithm 1 PCA game (Gemp et al., 2020)
1: Given: data minibatches Xt ∈ Rm×d, total iterations T , initial vector v̂0i ∈ Sd−1 (unit sphere in
d− 1 dimensions), and step size α.

2: v̂i ← v̂0i
3: for t = 1 : T do
4: ∇v̂i ← 2Xt

>
[
Xtv̂i −

∑
j<i

〈Xtv̂i,Xtv̂j〉
〈Xtv̂j ,Xtv̂j〉Xtv̂j

]
5: ∇R

v̂i
← ∇v̂i − 〈∇v̂i , v̂i〉v̂i

6: v̂′i ← v̂i + α∇R
v̂i

7: v̂i ← v̂′i/||v̂′i||
8: broadcast(v̂i) to all other players
9: end for

10: return v̂i

The complete algorithm is given in Algorithm 1. At each iteration, each player updates their
eigenvector v̂i using a fixed step size Riemannian gradient ascent update∇R

v̂i
, that ensures that each

iterate lies on the acceptable manifold (Bonnabel, 2013). The different utility functions and order of
play results in player-i owning the eigenvector v̂i associated with the ith largest eigenvalue λi. In
addition to the above formulation that assumes ordered play, Gemp et al. (2020) empirically show
that simultaneous play also converges to Nash equilibrium.

3 NNMF AS A MULTIPLAYER GAME

Before we formulate NNMF as a game, we describe traditional algorithms used for it.

3.1 TRADITIONAL ALGORITHMS FOR NNMF

In its most general form, NNMF is an optimization problem that involves minimizing some loss
function L(X,WH) that penalizes the divergence between the original data matrix X and its
reconstruction WH.

We will work with the following square Frobenius norm penalty for the rest of this manuscript, though
more sophisticated objectives, including those that include various regularization terms, are possible
(Berry et al., 2007):

minimize
wi,k,hk,j≥0

||X−WH||2F (2)
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This optimization formulation is non-convex and obtaining globally optimum solutions is known
to be NP-Hard (Vavasis, 2010). However, interest in NNMF has led to the development of many
empirically successful algorithms for finding local optima. These algorithms fall into three general
classes (see Berry et al. (2007) for a thorough treatment):

Non-negative Alternating Least squares (NALS): While the optimization in Equation 2 is not
convex in both W and H, it is indeed convex in each term taken individually (biconvex). NALS
solves a least-squares problem alternatively for W and H, projecting the iterates into the positive
orthant at each iteration, till convergence is observed.

Projected Gradient (PG): Similar to NALS, PG performs a gradient ascent step on W and H alter-
natively, and projects the resulting iterates into the positive orthant at each iteration, till convergence
is observed.

Algorithm 2 Multiplicative updates (Lee & Seung, 1999)
1: Given: data matrix, X ∈ RI×J , latent dimension K, maximum iterations T , randomly initialized

W0 ∈ RI×K
++ and H0 ∈ RK×J

++ .
2: for t = 1 : T epochs do

3: Ht+1 ← Ht � ((Wt)TV)

((Wt)TWtHt)

4: Wt+1 ←Wt � (V(Ht+1)T )

(WtHt+1(Ht+1)T )
5: end for
6: return Wt and Ht

Note: � and X/Y are elementwise multiplication and division respectively.

Multiplicative updates (MU): In PG, the choice of gradient step size is typically done heuristically.
As an improvement, (Lee & Seung, 1999) popularized a variant of PG that uses an adaptive step size
and results in a multiplicative update for W and H at each iteration. The complete algorithm is given
in Algorithm 2.

3.2 GAME-THEORETIC NNMF FORMULATION
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Figure 1: NNMF as a multiplayer game: NNMF is formulated as a game between I row-players,
each owning one row of the W matrix, that play with J column-players, each owning one column
of the H matrix. In each interaction, one row-player i and one column-player j maximize their
respective utilities to better reconstruct one element of the data-matrix X[i,j]. Additional games
between the column players can be introduced to nudge the game towards desirable solutions, such
as orthogonal rows for H.

To set up NNMF as a game, we define two sets of players, I row-players and J column-players and
their respective utilities. Each of the I row-players owns a row W[i,:] of the W matrix, and each the
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J column-players owns a column H[:,j] of the H matrix. Therefore, each player owns a length-K
non-negative vector.

Taking inspiration from the game formulation of PCA (Gemp et al., 2020), we now define a utility
function for each player, such that a player’s local actions (i.e. best response) achieve a global
optimization objective. The primary interaction in this game is between row-players playing column-
players and vice-versa. The utility function in these interactions is given by:

u(i,j) = −`(i, j) = −1

2
[X[i,j] − (W[i,:])

TH[:,j]]
2 (3)

In other words, the ith row-player and jth column-player cooperate to try to reconstruct the (i, j)th

element of the data matrix X. The NNMF game algorithm is summarized in Algorithm 3.

The formulation described up to this point can be regarded as a graphical game on a bipartite graph
with row-players and column players comprising the two disjoint sets. We now relax the bipartite
structure to a more general graphical game where there are interactions between some identical
players, similar to replicator or winner-take-all dynamics from evolutionary game theory (Sandholm,
2010). Column players (owning columns of the H matrix) now have self-games as a way to induce
certain forms of regularization that aid interpretation of the resulting matrix H. For example, to
encourage non-overlapping rows in H, we could have a column player play against itself in such
a way that the smallest element of the column-vector it owns is set to zero. A more aggressive
regularization strategy towards the same goal could be that all but the largest element of the column-
vector stay non-zero after the self-interaction (i.e. all elements besides the largest element become
zero). Henceforth, we call these strategies J-min and J-max respectively, In practice, instead of
setting an element of the column-vector to zero, we multiply it by 0.99 to shrink it to 0 iteratively. (In
our experiments, we did not see any significant changes in the convergence behavior for shrinkage
multipliers in the range [0.9, 0.999].)

Algorithm 3 NNMF game (simultaneous play)
1: Given: data matrix, X ∈ RI×J , latent dimensionK, maximum iterations T , step size η, randomly

initialized W0 ∈ RI×K
++ and H0 ∈ RK×J

++ .
2: for t = 1 : T epochs do
3: for i = shuffle(1 : I) do
4: for j = shuffle(1 : J) do
5: ∇t

W ← −[X[i,j] − (Wt
[i,:])

THt
[:,j]] (Ht

[:,j])
T

6: ∇t
H ← −[X[i,j] − (Wt

[i,:])
THt

[:,j]] (Wt
[i,:])

T

7: Wt+1
[i,:] ← max[0,Wt

[i,:] − η∇
t
W ]

8: Ht+1
[:,j] ← max[0,Ht

[:,j] − η∇
t
H ]

9: end for
10: end for
11: end for
12: return Wt and Ht

4 ANALYSIS

4.1 EMPIRICAL ANALYSIS:

To validate our new game-theoretic formulation of NNMF, we empirically compare it with the
traditional Multiplicative Updates (MU) algorithm using synthetic datasets.

Synthetic dataset generator: For all experiments, we set the number and dimension of our
observations to be I = 100 and J = 20 respectively, resulting in a data matrix Xsyn ∈ RI×J . We
set the true number of latent factors to K = 3, and generate a random Uniform(0, 1) non-negative
mixing matrix Wsyn ∈ RI×K

++ . We generate the non-negative basis matrix Hsyn ∈ RK×J
++ by

applying a Gaussian filter (window-length=3) to the rows of a K × J random matrix with elements
drawn from a Uniform(0, 1) distribution. Xsyn is then obtained multiplying Wsyn and Hsyn
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Figure 2: Synthetic data for experiments: Data matrix Xsyn ∈ RI×J reconstructed from matrix
multiplication of Hsyn ∈ RK×J

++ and Wsyn ∈ RI×K
++ .

(Figure 2).

Figure 3: Convergence of algorithm variants: Game-theoretic variants of NNMF (η = 0.001)
have convergence rates comparable to the traditional Multiplicative Updates (MU) algorithm.

Experiment: We generate a synthetic dataset and compare its decomposition using MU algorithm to
the one obtained using our game-theoretic NNMF algorithm and its two regularized variants, J-min
and J-max, Section 3.2 (using a fixed gradient step size of η = 0.001 across all NNMF executions).
We find that the convergence trajectories of the MU and NNMF-Game algorithms are comparable,
and that the recovered basis matrices Ĥsyn look quite similar (Figure 3). Next, we examine the
evolution of the non-negative basis (row) vectors that comprise the basis matrix Ĥsyn by plotting a
low-dimensional projection of the trajectories of the iterates (Figure 5). This reveals trajectories that
appear smooth for the (adaptive step size) MU algorithm and relatively jagged for our (fixed step size)
NNMF game variants. Finally, we compare the reconstruction performance (Error = ||X− X̂||2)
of these algorithms across 10 new independently randomly generated synthetic datasets, with 4
randomly initialized episodes for each. We find that the performance of the game-theoretic NNMF
variants and that of the traditional MU algorithm is not significantly different (Figure 6).

4.2 PARALLELIZATION AND SCALING PROPERTIES

The game-theoretic formulation of NNMF has several favorable parallelization and scaling properties:
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Figure 4: Ground truth vs. Recovered Bases: Basis matrices Hsyn recovered from MU and
Game variants look similar, up to permutations of order (colors). The J-min and J-max variants
only show slight effects of regularization, possibly because the ground-truth basis is not exactly
orthogonal.

Data sharding: Each row-player and each column-player only require access to their respective
row or column of the data matrix X. In Algorithm 3 only a single element of the data matrix is
required for every row-column player interaction. If each row-player and each column-player make
a local copy of their associated row or column of the data-matrix, that would be sufficient for all
possible row-column interactions they have. Furthermore, if we assume ordered play in row-column
interactions, only the leader need hold the data matrix. They can then share the required ground-truth
matrix element with the other player during the interaction. In our formulation, we assume that each
(row or column) player is on a separate computational core. However, the algorithm is indifferent to
the actual distribution of players across computational cores. This distribution can be arbitrary or be
dictated by some optimal trade-off between inter-core communication cost and per-core memory
cost.

Computational cost: The computational cost, in floating point operations (FLOPS), of multiplying
one I ×K matrix with a K × J matrix is O(IJK). Therefore one MU iteration (Algo. 2) costs
O(IJK) [((Wt)TV)] + O(IK2 + JK2) [((Wt)TWtHt)] + O(KJ) [X/Y] + O(KJ) [�] for

the H update. A similar calculation applies to the W update.

One NNMF iteration (Algorithm 3) involves IJ row-column player interactions, each with a cost
O(K) [∇t

W ← −[X[i,j] − (Wt
[i,:])

THt
[:,j]] (Ht

[:,j])
T ] +

O(K) [ Wt+1
[i,:] ←Wt

[i,:] − η∇
t
W ] for the W[i,:] update. A similar calculation applies for the H

update. Together over all (i, j) pairs, this amounts toO(IJK) cost per iteration, which is comparable
with the cost of the MU update for small K, while being highly parallelizable.

5 DISCUSSION

We present a game formulation of the popular Non-negative Matrix Factorization algorithm with
favorable parallelization and scaling properties. The game structure admits variants that can induce
certain forms of interpretability-enhancing regularization such as encouraging rows in the recovered
basis matrix Ĥ to be orthogonal. We provide empirical evidence that our algorithms have convergence
and reconstruction performance similar to those of the traditional Multiplicative Updates (MU) (Lee
& Seung, 1999) algorithm. Visual inspection of convergence trajectories for rows of the recovered
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Figure 5: Iterate trajectories across algorithms show signatures of congestion, but vary in
smoothness: Trajectories for Multiplicative Updates (MU) [orange], NNMF game vanilla [purple],
Jmin [green], and Jmax [blue] variants (using same initialization as in Figure 4). Each algorithm
has K = 3 trajectories associated with it, one for each row of the recovered basis matrix Ĥsyn, each
starting at a • marker and ending at a × marker. Trajectories are observed to be relatively smooth for
the (adaptive step-size) MU algorithm and relatively jagged for the (fixed step-size) NNMF game
variants. For any algorithm, iterates across trajectories seem to moving away from each other, which
might be a signature of congestion (similar to that for the PCA game (Gemp et al., 2020)). Low
dimensional space is generated using common Principal Component (PC) space obtained from PCA
of all Ĥsyn basis vectors from all algorithms stacked together. PC1, PC2 and PC3 explain 69, 15 and
8 percent of the total variance of the data respectively.

Figure 6: Reconstruction error of algorithm variants evaluated over multiple randomly gen-
erated synthetic datasets: Game-theoretic NNMF variants result in reconstruction errors that are
not consistently significantly different compared to reconstruction errors from the traditional MU
algorithm. Error bars represent ± 1 s. d., calculated over 4 random initializations.
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basis matrix Ĥ reveals that iterates tend to vary relatively smoothly for the (adaptive step-size) MU
algorithm but relatively jaggedly for our (fixed step-size) NNMF game variants.

For future work, we plan to expand empirical results to include more diverse datasets, minibatching,
formally analyse the convergence properties of the graphical game variants introduced in this paper
through the lens of cooperative game theory, and explore adaptive learning rate and additional
regularization strategies that could result in smoother convergence trajectories and additional desirable
properties in the recovered factor matrices. Our approach is related to the all-at-once formulation
of NNMF (Acar et al., 2011; Flores Garrido, 2008) and could benefit from more recent work on
accelerated iterative algorithms for NNMF (Gillis & Glineur, 2012; Ang & Gillis, 2019). Exploring
extensions to the more general Tensor Factorization (Cichocki et al., 2007) setting, and connections
to Message Passing algorithms (Kim et al., 2010) are other directions that seem promising.
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