
Regret-Free Reinforcement Learning for Temporal Logic Specifications

Rupak Majumdar 1 Mahmoud Salamati 1 Sadegh Soudjani 1 2

Abstract
Learning to control an unknown dynamical sys-
tem with respect to high-level temporal specifi-
cations is an important problem in control the-
ory. We present the first regret-free online algo-
rithm for learning a controller for linear temporal
logic (LTL) specifications for systems with un-
known dynamics. We assume that the underlying
(unknown) dynamics is modeled by a finite-state
and action Markov decision process (MDP). Our
core technical result is a regret-free learning algo-
rithm for infinite-horizon reach-avoid problems
on MDPs. For general LTL specifications, we
show that the synthesis problem can be reduced
to a reach-avoid problem once the graph structure
is known. Additionally, we provide an algorithm
for learning the graph structure, assuming knowl-
edge of a minimum transition probability, which
operates independently of the main regret-free al-
gorithm. Our LTL controller synthesis algorithm
provides sharp bounds on how close we are to
achieving optimal behavior after a finite number
of learning episodes. In contrast, previous algo-
rithms for LTL synthesis only provide asymptotic
guarantees, which give no insight into the tran-
sient performance during the learning phase.

1. Introduction
We consider the problem of learning an optimal control pol-
icy for a stochastic system, whose dynamics are unknown,
with respect to linear temporal logic (LTL) specifications.
This is a core problem in control and robotics, with a rich
body of existing techniques. A fundamental approach to
the problem is to apply reinforcement learning (RL): the
agent maintains a model of the world learned through ex-
ploration, and computes a sequence of approximations to an
optimal control policy that maximizes the probability that

1MPI-SWS, Kaiserslautern, Germany 2University of Birming-
ham, Birmingham, UK. Correspondence to: Mahmoud Salamati
<msalamati@mpi-sws.org>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

the temporal specification is satisfied (Icarte et al., 2018;
Camacho et al., 2019; Hasanbeig et al., 2019; Kazemi et al.,
2022; Hahn et al., 2019; Oura et al., 2020; Cai et al., 2021;
Bozkurt et al., 2021; Sickert et al., 2016; Alur et al., 2022;
Fu & Topcu, 2014; Voloshin et al., 2022). In the limit, the
approximations converge to the optimal policy.

In practice, it is not enough to know that approximations
converge in the limit; we would prefer to know how close
our current policy is to the optimal one, and to stop learning
when the policy is close to optimal. One way to quantify this
is through regret minimization (Auer et al., 2008; Agarwal
et al., 2014; Srinivas et al., 2012; Dann et al., 2017). For
an online learning algorithm, intuitively, regret is defined as
the difference between the accumulated rewards collected
by an optimal policy and the algorithm during learning. A
learning algorithm is called regret-free if the regret grows
sublinearly with the number of episodes.

In this paper, we propose the first regret-free learning algo-
rithm for policy synthesis against LTL objectives. We con-
sider the class of systems whose dynamics can be captured
by a finite-state and action Markov decision process (MDP)
with unknown transition probabilities and fixed initial state
sinit. The objective is to synthesize a policy that maximizes
the probability of satisfying a given LTL specification ϕ.
Let π∗ denote an optimal policy, meaning that applying π∗

maximizes the satisfaction probability for ϕ. Our online
algorithm produces a sequence of policies π1, π2, . . . , one
per episode. Let v∗(sinit) and vk(sinit) denote, respectively,
the satisfaction probabilities of π∗ and πk when starting
from sinit. After passing K > 0 episodes, we define the
regret asR(K) :=

∑K
k=1(v∗(sinit)−vk(sinit)), the accumu-

lated difference between the satisfaction probabilities under
the optimal and learned policy. Our algorithm ensures that
limK→∞R(K)/K = 0.

We first state our algorithm for reach-avoid specifications,
the subset of LTL specifications that require a set of goal
states must be visited while avoiding hitting a set of bad
states. In every episode, our algorithm (1) computes an
interval MDP (iMDP) by taking all the collected state ob-
servations into account; (2) finds an optimistic policy over
the computed iMDP to solve the reach-avoid problem; and
(3) executes the computed policy before an episode-specific
deadline is reached. We prove that the regret of our al-

1

Regret-Free Reinforcement Learning for Temporal Logic Specifications

Graph identification
(Alg. 5)

Regret-free policy synthesis
(Alg. 1)

Agent
st+1 ∼ T (· | st, πk(st))

Alg. 2

Eq. (10)

πk

Hk

State observations

δ

ϕ

sinit

pmin

Figure 1: Overview of the approach: the LTL specification
ϕ along with the graph learned through the application of
Alg. 5 are used to reduce the general synthesis problem into
a reach-avoid problem. The confidence parameter δ ∈ (0, 1)
and the lower bound on the minimum transition probability
pmin ∈ (0, 1) are used to compute the regret bound for
Alg. 1 and the sample complexity for Alg. 5, respectively.
Applying Alg. 1 yields a policy πk (using Alg. 2) and an
episode length Hk (using Eq. (7)), both of which are passed
to the agent for execution in episode k ≥ 1. The agent, mod-
eled as a finite MDP with transition function T , executes
the policy πk for at most Hk time steps starting at state sinit,
and passes the observed transitions back to the policy.

gorithm grows sublinearly with respect to the number of
episodes.

Next, for a general LTL specification, we show that the syn-
thesis problem can be reduced to a reach-avoid problem if
we know the graph structure of the MDP. Finally, we pro-
vide a polynomial algorithm for learning the graph structure
of the MDP based only on having a positive lower bound
on its non-zero transition probabilities. Fig. 1 provides an
overview of our proposed online policy learning algorithm.
Policy learning can be stopped after k∗ ≥ 1 episodes if the
average regret R(k∗)/k∗ becomes sufficiently small, indi-
cating that the learned policy’s satisfaction probability is
nearly optimal on average, with confidence at least 1 − δ.
This can be verified using our proposed regret bounds.

There exist regret-free algorithms for solving infinite-
horizon policy synthesis problems, but they cannot be ap-
plied to our problem as we will discuss in more detail in
Sec. 2. Our primary objective is to minimize the regret with
respect to an optimal policy that maximizes the satisfaction
probability of a specification. The regret for each episode
is naturally bounded by one, which gives the regret bound
of O(K) for any arbitrary learning algorithm. To achieve
a regret-free algorithm, we define an episode-specific dead-
line that categorizes learning episodes as fast or slow. We
prove that the number of slow episodes exceeding the dead-
line grows sublinearly. The deadline is set such that the
regret from fast episodes also grows sublinearly. Thus, the
total regret of our algorithm increases sublinearly, making

it regret-free. We utilize a reset mechanism that enables a
systematic trade-off between exploration and exploitation,
and can be applied to non-communicating MDPs. This
is unlike the previous work by Tarbouriech et al. (2020),
which is limited to strictly positive cost structures and prop-
erties with satisfaction probability one, and surpasses the
limitations of UCRL2-like algorithms, which require the un-
derlying MDP to be communicating. The ability to handle
non-communicating MDPs is key since the product of an
MDP and an automaton for the temporal specification makes
in general the product MDP to be non-communicating.

We have implemented our algorithm with empirical eval-
uation on reach-avoid specifications in a gridworld envi-
ronment reported in App. C. In particular, we compare the
performance and convergence of our algorithm to the sam-
ple complexity and convergence of a PAC-MDP algorithm
for LTL (Perez et al., 2024), and show that our algorithm
convergences faster within a smaller number of episodes.

2. Related Work
We discuss existing results in four related domains.

Reinforcement Learning for LTL Specifications With-
out Guarantees: In recent years, substantial research has
focused on the policy synthesis problem for systems mod-
eled as finite MDPs with unknown transition probabilities,
where the objective is to satisfy tasks specified by LTL for-
mulas. Early results focused only on finite-horizon LTL
specifications. Icarte et al. (2018) introduced reward ma-
chines, which use finite state automata to encode finite-
horizon specifications along with specialized (deep) Q-
learning algorithms. Camacho et al. (2019) later formal-
ized the automatic derivation of reward machines for finite-
horizon LTL specifications. The development of good-for-
MDP automata, such as limit deterministic Büchi automata
(LDBA), for representing LTL formulas has led to signif-
icant advances in reinforcement learning for the full class
of LTL specifications, including the infinite-horizon ones
(Sickert et al., 2016; Hahn et al., 2020; Kazemi et al., 2022;
Hasanbeig et al., 2023). Typically, one has to first trans-
late the given LTL formula into an appropriate automaton,
such as an LDBA, and then compute the product of this
automaton with the MDP to formulate the final (discounted)
learning problem. This formulation ensures that, with a suffi-
ciently large discount factor (depending on system dynamics
and the specification), applying standard RL algorithms will
lead the policy to converge asymptotically to the optimal
one (Kazemi et al., 2022; Bozkurt et al., 2021; Oura et al.,
2020). Translation of the LTL formula to an average objec-
tive for RL using the automaton construction is also studied
by Kazemi et al. (2025). However, these methods do not
provide a finite-time performance, and the required discount
factor is not known in advance.

2

Regret-Free Reinforcement Learning for Temporal Logic Specifications

Reinforcement Learning for LTL Specifications With
Guarantees: The two most popular metrics for evaluating
the performance of learning algorithms are probably ap-
proximately correct (PAC) and regret bounds. Fu & Topcu
(2014) have provided a PAC learning algorithm for synthe-
sizing policies to satisfy finite-horizon LTL specifications
over finite MDPs with unknown transition probabilities.
However, the sample complexity of the algorithm scales
explicitly with the horizon length, rendering it unsuitable
for infinite-horizon LTL specifications. Subsequently, a
surprising negative result was established: full LTL is not
PAC-learnable (Yang et al., 2022; Alur et al., 2022). A
closer analysis reveals that this result primarily stems from
the assumption of an unknown minimum transition proba-
bility. By instead assuming a known minimum transition
probability, Voloshin et al. (2022) proposed a PAC-learnable
policy synthesis method that relies on access to a generative
model capable of sampling from any arbitrary state-action
pair. In many realistic scenarios, this is impractical since
initializing the MDP at arbitrary states is not feasible. Our
proposed algorithm does not require access to a generative
model. Recently, Perez et al. (2024) have also proposed
another PAC learning algorithm that does not rely on a gen-
erative model. However, there is still no regret-free online
algorithm for policy synthesis to satisfy LTL specifications.

Regret-Free Reinforcement Learning for Communicat-
ing MDPs: UCRL and UCRL2 are well-known regret-free
learning algorithms developed for communicating MDPs
(Auer et al., 2008; Auer & Ortner, 2007). The definition
of regret in the context of communicating MDPs is par-
ticularly well-suited to our objective: it is evaluated over
an infinite sequence of states without discounting future
observations, which aligns closely with the requirements
of infinite-horizon LTL specifications. A key advantage
of learning in communicating MDPs is that it can proceed
indefinitely without requiring environment resets. However,
in the setting we consider, even if the underlying MDP is
communicating, its product with the automaton representing
the specification may result in a non-communicating MDP
(Kazemi et al., 2022). Fruit et al. (2018) address this by
proposing a regret-free algorithm for non-communicating
MDPs where the initial state lies within a non-transient
subset of states. In contrast, our setting assumes a fixed
initial state from a transient subset, rendering algorithms
like UCRL2–which are tailored for communicating MDPs–
inapplicable.

Regret-Free Reinforcement Learning for Non-
Communicating MDPs: Goal-oriented reinforcement
learning is a key class of problems in RL, often formulated
as a shortest path problem (SPP) for MDPs with unknown
transition probabilities. Recent theoretical results include
the works by Tarbouriech et al. (2020) and Rosenberg
et al. (2020). In particular, the online learning algorithm

proposed by Tarbouriech et al. (2020) provides sublinear
regret bounds for the accumulated cost in MDPs, assuming
that (1) there exists a proper policy under which the system
reaches the goal with probability one, and that (2) all costs
are positive. The authors argue that these two restrictions
can be relaxed by assuming the knowledge of an upper
bound on the accumulated cost and by perturbing the costs.
However, none of these workarounds can be applied to
our setting, as we are interested in computing the regret
bounds with respect to the satisfaction probability under an
optimal policy. Nevertheless, relaxing the aforementioned
restrictions results in the algorithm by Tarbouriech et al.
(2020) giving a regret bound of O(K2/3), which is strictly
larger than our regret bound of O(K1/2), with K being the
number of episodes.

3. Preliminaries
Notation: For a matrix X ∈ Rm×n, we de-
fine the infinity norm of the matrix by ‖X‖∞ :=
max1≤i≤m

∑n
j=1 |X(i, j)|. For a vector x ∈ Rn, we de-

fine the `1 and `∞ norms as ‖x‖1 :=
∑n
i=1 |x(i)| and

‖x‖∞ := max1≤i≤n |x(i)|, respectively. Given two in-
tegers a, b with a ≤ b, we denote the set of integers
{a, a+1, . . . , b} by [a; b]. For a set S, we denote by S+ the
set of all non-empty finite sequences from the elements of
S. Let ∅ denote the empty set. For a sequence σ ∈ S+, we
define the corresponding last element by last(σ). The set of
positive integers is denoted by N and the set of non-negative
integers by N0. We use |A| to denote the cardinality of a set
A (i.e., the number of its elements).

MDPs: For a set X , we write ∆(X) for the set of probabil-
ity distributions over X . Let AP be a fixed set of atomic
propositions. A labeled MDP M = (S,A, T, sinit, L,AP)
consists of a finite set S of states, a finite set A of actions,
a transition function T : S × A → ∆(S), an initial state
sinit ∈ S, and a labeling function L : S → 2AP that maps
states to subsets of atomic propositions AP . The underly-
ing graph of an MDP M is defined as χ(M) = (S,A,E),
where (s, a, s′) ∈ E if and only if T (s′|s, a) > 0.

An iMDP is defined similarly to an MDP, but instead of a
single transition probability, each transition is specified by
an interval of possible probabilities. Formally, an iMDP is
a tupleM = (S,A, T , sinit, L,AP), where T : S × A →
I(S) is an interval transition function, and I(S) denotes
the set of mappings that assign to each s′ ∈ S a closed
interval [l(s′), u(s′)] ⊆ [0, 1], such that

∑
s′∈S l(s

′) ≤ 1 ≤∑
s′∈S u(s′).

A policy for the MDP is a mapping π : S+ → ∆(A) that
gives a probability distribution π(σ) ∈ ∆(A) for select-
ing the next action depending on σ ∈ S+, which is the
nonempty finite sequence of states representing the past

3

Regret-Free Reinforcement Learning for Temporal Logic Specifications

history. A policy π is memoryless if π(σ) = π(s) for all
σ ∈ S+ ending in s and for all s ∈ S. Let Π denote the set
of all deterministic positional policies overM , that is the set
of functions π : S → A. By fixing a policy π ∈ Π, the MDP
M reduces to a Markov chain C = (S, P, sinit, L,AP),
where P : S → ∆(S) is formed by composing the pol-
icy π with the transition function T .

A key concept for checking satisfaction of specifications
is maximal end components (MECs) of the MDP (Baier
& Katoen, 2008). These components are sub-MDPs that
are probabilistically closed, meaning that (1) there exists a
positional policy under which the probability of reaching
any state from any other state in the MEC is equal to one,
and (2) the MEC cannot be exited under any positional
policy. An MDP is said to be communicating if it consists
of a single MEC that includes all states.

Linear Temporal Logic: We consider specifications in Lin-
ear Temporal Logic (LTL) (Baier & Katoen, 2008). Formu-
las in LTL are constructed inductively over a set of atomic
propositions AP according to the syntax

ψ := p | ¬ψ | ψ1 ∧ ψ2 | ©ψ | ψ1 U ψ2,

where p ∈ AP . The semantics of LTL is defined on infinite
sequences of elements from 2AP . Let σ = σ0, σ1, . . .
be an infinite sequence of elements from 2AP and define
σ[i] = σi, σi+1, . . . for any i ∈ N0. Then the satisfaction
relation between σ and a property ψ, expressed in LTL, is
denoted by σ |= ψ. We have σ |= p if p ∈ σ0. Furthermore,
σ |= ¬ψ if σ 6|= ψ and σ |= ψ1 ∧ ψ2 if σ |= ψ1 and
σ |= ψ2. For next operator, σ |= ©ψ holds if σ[1] |=
ψ. The until operator σ |= ψ1 U ψ2 holds if ∃i ∈ N0 :
σ[i] |= ψ2, and ∀j ∈ N0, j < i, σ[j] |= ψ1. We define
derived operators such as disjunction (∨), eventually (♦),
and globally (�) in the usual way.

Maximum Probability of Satisfaction: Take an MDP M
and an LTL specification ϕ. A path s0, s1, . . . of M with
s0 = sinit satisfies ϕ if L(s0), L(s1), . . . |= ϕ. For every
policy π, the set of paths starting at sinit that satisfy ϕ is
measurable. Thus, we can define Pπsinit(ϕ), the probability
that M under policy π satisfies ϕ, where with abuse of
notation, we write ϕ for the set of paths satisfying ϕ. Define
the optimal probability of satisfying ϕ with v∗(sinit) =
supπ Pπsinit(ϕ), and let π∗ denote the optimal policy, i.e.,
v∗(sinit) = Pπ∗sinit(ϕ). We assume that the specification is
satisfiable with positive probability, i.e., v∗(sinit) > 0. This
is without loss of generality since any learning algorithm
for the case v∗(sinit) = 0 has a zero regret.

Regret Analysis: Our aim is to learn the optimal policy π∗

that maximizes Pπsinit(ϕ). Learning takes place over consec-
utive episodes. In episode k, we learn a policy πk, and write
vk(sinit) = Pπk

sinit(ϕ), which is the probability of satisfying
the specification ϕ under the policy πk.

We define the regret of the learning algorithm as

R(K) :=

K∑
k=1

(v∗(sinit)− vk(sinit)), (1)

where K is the number of episodes, and the normalized
regret as

Ra(K) =
R(K)

K
. (2)

A learning algorithm is called regret-free if its regret R(K)
grows sublinearly with respect to the number of episodes K,
i.e., if Ra(K)→ 0 as K →∞. A regret-free algorithm can
achieve arbitrary small values of normalized regret. Suppose
we fix a threshold ε ∈ (0, 1) and terminate the learning
algorithm once the corresponding normalized regret goes
below ε. We can consider the smallest number of episodes
k∗ ∈ N after which Ra(k∗) < ε with confidence 1− δ as a
complexity metric for the proposed learning algorithm with
parameters δ, ε ∈ (0, 1).

4. Regret-Free Learning for Until Formulas
We first consider the special case of regret-free learning
for MDPs with unknown (but fixed) transition function and
until formulas that correspond to reach-avoid specifications.

For two distinct atomic propositions Goal and Avoid, we
consider the until formula (also called a reach-avoid for-
mula) of the form ϕ = ¬Avoid U Goal. Let Mϕ =
(S,A, T, sinit, L, {Goal,Avoid }) be the MDP obtained by
making states satisfying Goal and Avoid absorbing. We use
G andB to denote the sets of states which satisfy the atomic
propositions Goal and Avoid, respectively. For notational
convenience, we write M instead of Mϕ for the remainder
of this section.

Problem 1. [Regret-Free Learning for Until Formulas]
Given an MDP M with an unknown transition function,
an until formula ϕ = ¬Avoid U Goal, a confidence pa-
rameter δ ∈ (0, 1), and a minimum transition probability
pmin ∈ (0, 1), find an online learning algorithm such
that with confidence at least (1−δ), the regret defined by
Eq. (1) grows sublinearly with the number of episodes
K.

4.1. Methodology

Alg. 1 shows our learning algorithm. It uses the paradigm
of optimism in the face of uncertainty. Learning takes place
over consecutive environmental episodes. Each episode is
a finite sequence s1, a1, s2, a2, . . . sH that starts from the
initial state of M , i.e., s1 = sinit, and ends if either an
absorbing state in G is reached, meaning that sH ∈ G, or
an episode-specific deadline is reached.

4

Regret-Free Reinforcement Learning for Temporal Logic Specifications

Algorithm 1 Regret-free algorithm for until formulas
(ZeroReg)

Input: State and action sets S and A, initial state sinit,
sets G and B, confidence parameter δ ∈ (0, 1), minimum
transition probability pmin
Initialization: Set t = 1, s1 = sinit
for episodes k = 1, 2, . . . do

Construct iMDPMk:
tk ← t
Set Nk(s, a) := |{t < tk : st = s, at = a}|
For all s, s′ ∈ S and a ∈ A compute the empirical
transition function

T̂k(s′|s, a) :=
|{t < tk : st = s, at = a, st+1 = s′}|

max{1, Nk(s, a)}

Define the iMDPMk = (S,A, Tk, sinit, L,AP) with
the set of transition functions Tk satisfying Eq. (3)
Compute policy π̃k:
Use Alg. 2 to find an optimistic MDP M̃k and a policy
π̃k, i.e., (M̃k, π̃k) = EVI(S,A,G,B, Tk, tk, pmin)
Execute policy π̃k:
Compute the deadline Hk using Eq. (7)
while st /∈ G and (t− tk) ≤ Hk do

if st /∈ B then
Observe the next state st+1 by executing π̃k(st)

else
st+1 ← sinit

end if
t← t+ 1

end while
end for

Each episode proceeds as follows: (1) construct an iMDP
from observations such that it contains the true MDP with
high confidence; (2) identify an optimistic MDP and com-
pute an optimistic policy; and (3) execute the policy and
collect data until termination. We describe each of these
steps in detail below.

Constructing an iMDP from observations: The main ob-
jective of this step is to use the collected data–namely,
the visited state-action pairs (st, at) and the corresponding
transitions (st, at, st+1)–to compute an empirical transition
function and construct an iMDP that contains the true MDP
with high confidence.

Let δ ∈ (0, 1) be a given confidence parameter, tk be the
time point at which kth episode begins, and Nk(s, a) de-
note the number of times the state-action pair (s, a) has
been visited before the start of the kth episode. Let T̂k and
Mk denote the empirical transition function and the set of
statistically plausible MDPs, respectively, both computed
using the observations before the start of the kth episode. In

Algorithm 2 Extended value iteration (EVI)

Input: State and action sets S and A, sets G and B, set
of plausible transition functions Tk, start time of the kth

episode tk, minimum transition probability pmin
Set l = 0, µ̃0(s) = 0 for s /∈ G and µ̃0(s) = 1 for s ∈ G
repeat
l← l + 1
for s ∈ S do

for a ∈ A do
T̃k(.|s, a) = InnerMax(s, a, Tk, µ̃l−1)

end for
π̃k(s) = arg maxa∈A

∑
s′∈S T̃k(s′|s, a)µ̃l−1(s′)

µ̃l(s) =
∑
s′∈S T̃k(s′|s, π̃k(s))µ̃l−1(s′)

end for
until ‖µ̃l − µ̃l−1‖∞ < min(1

2tk
, p
|S|
min)

Construct the MDP M̃k = (S,A, T̃k, sinit, L,AP)
Results: (M̃k, π̃k) = EVI(S,A,G,B, Tk, tk, pmin)

particular, we defineMk = (S,A, Tk, sinit, L) as the iMDP
with interval transition function Tk, such that, with proba-
bility at least (1 − δ/3), every transition function F ∈ Tk
satisfies

‖F (.|s, a)− T̂k(.|s, a)‖1 ≤ βk(s, a), (3)

where

βk(s, a) :=

√
8|S| log(2|A|N+

k (s, a)/δ)

N+
k (s, a)

, (4)

andN+
k (s, a) := max(1, Nk(s, a)). Intuitively, we pick the

confidence bound δ on the right hand side of Eq. (3), such
that the corresponding inequality holds with high confidence.
More concretely, we have the following result.
Lemma 4.1. Let E :=

⋂∞
k=1{M ∈ Mk}. Then P(E) ≥

1− δ/3.

The above lemma states that the true MDPM lies within the
iMDPMk, constructed from observations, with high prob-
ability. Next, we describe the policy synthesis procedure
based onMk.

Computing optimistic policy: Given an iMDP constructed
from the observations in the previous step, an optimistic
MDP is a specific MDP selected from the uncertainty set–
defined by interval transition probabilities–that maximizes
the probability of reaching G while avoiding B. This op-
timistic MDP is then used to derive an optimistic policy
that guides exploration by assuming the most favorable dy-
namics permitted within the uncertainty bounds. In every
episode k ∈ N, we use a modified version of extended value
iteration (EVI) to compute theoptimistic MDP M̃k ∈Mk

and the optimistic policy π̃k. Alg. 2 illustrates our EVI al-
gorithm. We initialize the vector µ̃0 ∈ [0, 1]|S| by assigning

5

Regret-Free Reinforcement Learning for Temporal Logic Specifications

Algorithm 3 Computing optimistic MDP in Eq. (5)
(InnerMax)

Inputs: State-action pair (s, a), interval transition func-
tion Tk, and value vector µ̃l
Compute T̂k(.|s, a) and d(s, a) as the center and `1 radius
of Tk(.|s, a), respectively
Sort the states according to their value in µ̃l, and get S′ =
{s′1, . . . , s′n} with µ̃l(s′1) ≥ µ̃l(s′2) ≥ · · · ≥ µ̃l(s′n)
if j = 1 then
p̂(s′j) = T̂k(s, a, s′j) + d(s, a)/2

else
p̂(s′j) = T̂k(s, a, s′j)

end if
j ← n
while

∑
s′q∈S′

p̂(s′q) > 1 do
p̂(s′j) = max{0, 1−

∑
s′q∈S′\{ s′j }

p̂(s′q)}
j ← j − 1

end while
Set T̃k(s, a, s′j) = p̂(s′j) for every s′j ∈ S′.
Results: T̃k(.|s, a) = InnerMax(s, a, Tk, µ̃l)

1 to states in G and 0 to all other states. At the lth iteration,
we update the value vector µl by applying the following
Bellman operator:

µ̃l(s) = L̃kµ̃l−1 :=

max
a∈A

max
F∈Tk

∑
s′∈S

F (s′|s, a)µ̃l−1(s′), (5)

where the inner maximization is computed by running
Alg. 3.

We note that termination of Alg. 2 requires convergence
of the value vector, i.e., ‖µ̃l − µ̃l−1‖∞ < min(1

2tk
, p
|S|
min),

where l ∈ N0 denotes the iteration number of the EVI
algorithm. This condition is guaranteed due to the contrac-
tion property of the Bellman operator defined in Eq. (5)
(see Sec. 3.3 in (Bertsekas, 2012)). Once EVI algorithm is
terminated, setting ṽk = µ̃l, it follows that for every s ∈ S,

ṽk(s) + min(
1

2tk
, p
|S|
min) ≥ v∗(s), (6)

where v∗ and ṽk denote the vectors containing probabilities
of reaching G, when policies π̃k and π∗ are followed on
MDPs M̃k and M , respectively (see Thm. 7 in (Auer et al.,
2008),).

Executing the policy and collecting data: Once a policy
is computed, it will be executed throughout the episode
for a specified duration, referred to as the deadline. After
constructing M̃k and computing the corresponding policy
π̃k for episode k, we determine the deadline Hk, which is
defined as

Hk = min{n > 1 | ‖Q̃nk‖∞ ≤ k
− 1

q }, (7)

where q > 1 denotes an integer, and Q̃k ∈
R(|S|−|G|)×(|S|−|G|) is a substochastic matrix defined over
the set of states S \G as follows:

Q̃k(s, s′) =

P̃k(s, s′) s /∈ B and s′ ∈ S \G
1 s ∈ B and s′ = sinit

0 s ∈ B and s′ 6= sinit.

(8)

Note that we intentionally set the transition probability from
B to sinit to 1 to account for the reset mechanism. Addi-
tionally, since Q̃k is substochastic, limn→∞ ‖Q̃nk‖∞ = 0,
ensuring that Hk is finite for every episode k ∈ N.

As described in Alg. 1, the kth episode terminates either
upon reaching a state in G or when its duration reaches
the deadline Hk. During the episode, we record the visited
state-action pairs (st, at) along with the resulting transitions
(st, at, st+1). These transitions are then used to construct
the iMDP at the beginning of the next episode, as previously
explained.

Regret bound analysis: The following theorem states that
Alg. 1 is regret free.

Theorem 4.2. With probability at least (1− 2δ), Alg. 1 has
regret

R(K) = 8|S|

√
8|A|KαK log

(
2|A|KαK

δ

)

+ 2

√
2KαK log

(
6(KαK)2

δ

)
+

1

2
αK(1 + log(KαK))

+

√
2KαK log

(
1

δ

)

+ 2
√
K + 2

√
2KαK log

(
2(KαK)2

δ

)
, (9)

where αK := max1≤k≤K Hk.

Remark 4.3. The quantity αK grows at most logarithmically
with respect to the number of episodes K (see Lem. 4.4).
Therefore, the regret bound in Eq. (9) grows sublinearly
with respect to the number of episodes.

4.2. Proof Sketch for Thm. 4.2

Every episode starts at sinit and ends by either (i) exceed-
ing the deadline, corresponding to slow episodes, or (ii)
by reaching one of the MECs in G, corresponding to fast
episodes. It is important to note that every visit to states
within MECs in B triggers an artificial reset action, which
sets sinit as the next immediate state.

6

Regret-Free Reinforcement Learning for Temporal Logic Specifications

To bound the total accumulated regret R(K), we define
R(K) =

∑K
k=1 ∆k, where ∆k = v∗(sinit)− vk(sinit). Our

analysis partitions episodes into slow and fast, correspond-
ing to episodic regrets ∆s

k and ∆f
k, respectively. Note that

for a fast episode, ∆s
k = 0, and for a slow episode, ∆f

k = 0.

For the slow episodes, we use the obvious upper bound

∆s
k ≤ 1.

For the fast episodes, since it is possible that a run ends in
one of MECs in B before reaching G, we need to define a
reset transition which takes the states inB to sinit. Therefore,
every episode k can be broken to Ik ∈ N intervals such that
the first Ik − 1 intervals start from sinit and end at B, and
the Ithk interval starts from sinit and ends at G.

We denote the ith interval of the kth episode—during which
the policy π̃k is applied—by ρk,i, and define the correspond-
ing value as

vk,i(sinit) =

{
1 if last(ρk,i) ∈ G
0 if last(ρk,i) ∈ B.

(10)

We use the fact that v∗(sinit) − vk(sinit) ≤ Ik(v∗(sinit) −
vk(sinit)) (since Ik ≥ 1) and define

∆f
k ≤ Ik(v∗(sinit)− vk(sinit))

=

Ik∑
i=1

v∗(sinit)− vk,i(sinit)

+

Ik∑
i=1

vk,i(sinit)− vk(sinit).

To obtain an upper bound on ∆f
k, we overapproximate the

difference v∗(sinit) − vk(sinit) in every episode, since the
exact values of v∗(sinit) and vk(sinit) are not known. This is
achieved by leveraging ideas from upper confidence bound
algorithms, such as UCRL2, and by relating vk(sinit) to the
cumulative sum

∑Ik
i=1 vk,i(sinit).

We define the decomposed regret terms

∆f1
k =

Ik∑
i=1

v∗(sinit)− vk,i(sinit),

and

∆f2
k =

Ik∑
i=1

vk,i(sinit)− vk(sinit).

The proof sketch for our regret analysis proceeds as follows.
We first show that the sum

∑K
k=1 ∆f

k grows logarithmically
with the number of episodes (Lems. 4.4 to 4.6). To this

end, we decompose the sum into two parts,
∑K
k=1 ∆f1

k and∑K
k=1 ∆f2

k , and show that both grow sublinearly in K. To
bound

∑K
k=1 ∆f1

k , we prove that (1) αK grows sublinearly
with K (Lem. 4.4), and (2)

∑K
k=1 ∆f1

k grows sublinearly
with K and linearly with the maximum episode length αK
(Lem. 4.5). To complete the bound on

∑K
k=1 ∆f

k, we show
that

∑K
k=1 ∆f2

k also grows sublinearly (Lem. 4.6). Next,
we show that the sum over the slow episodes,

∑K
k=1 ∆s

k, is
sublinear inK, since (1) the number of slow episodes grows
only sublinearly with K (Lem. 4.7), and (2) each ∆s

k ≤ 1
by definition. Combining all these bounds, we conclude that
the total regret satisfies R(K) = O(

√
K).

The following lemma provides an upper bound on the maxi-
mum episode length, which grows logarithmically with the
episode number.

Lemma 4.4. With probability at least (1− δ/6), we have

αK ≤
⌈
3Λ log(2

√
K)
⌉
, (11)

where Λ = |S| log(δ/6)

log(1−p|S|min)
.

Now, we proceed by showing why
∑K
k=1 ∆f1

k grows sublin-
early with K.

Lemma 4.5. With probability at least (1− 5δ/6), we have

K∑
k=1

∆f1
k ≤ 4|S|

√
8|A|KαK log

(
2|A|KαK

δ

)

+ 2

√
2KαK log

(
6(KαK)2

δ

)
+

1

2
αK(1 + log(KαK)). (12)

In order to prove the sublinear bound over
∑K
k=1 ∆f2

k , we
make use of the Azuma-Hoeffding inequality (see Lem. B.2).
The following lemma provides a sublinear bound over the
sum of ∆f2

k .

Lemma 4.6. With probability at least (1− δ/6), we have

K∑
k=1

∆f2
k ≤

√
2KαK log

1

δ
. (13)

Note that knowing that αK grows logarithmically with K
(Lem. 4.4), we have that

∑K
k=1 ∆f1

k and
∑K
k=1 ∆f2

k , and
therefore

∑K
k=1 ∆f

k grow sublinearly with K.

The next lemma states a bound over the accumulated regret
associated with the slow episodes.

7

Regret-Free Reinforcement Learning for Temporal Logic Specifications

Lemma 4.7. With probability at least (1− δ), we have

K∑
k=1

∆s
k ≤ 2

√
K + 2

√
2KαK log

(
2(KαK)2

δ

)

+ 4|S|

√
8|A|KαK log

(
2|A|KαK

δ

)
. (14)

5. Regret-Free Learning for LTL
In this section, we study the policy synthesis problem for
MDPs with an unknown transition function against LTL
specifications.

Problem 2. [Regret-Free Learning for General LTL For-
mulas] Given an MDP M with an unknown transition
function, minimum transition probability pmin ∈ (0, 1),
an LTL specification ϕ, and a confidence parameter
δ ∈ (0, 1), find an online learning algorithm such that
with confidence at least (1− δ) the resulting regret de-
fined by Eq. (1) grows sublinearly with respect to the
number of episodes K.

We transform the policy synthesis problem for general LTL
specifications into a synthesis problem for an until (reach-
avoid) formula, for which one can use the regret-free online
algorithm proposed in Sec. 4.

Given an LTL formula ϕ, one can construct a deterministic
Rabin automaton (DRA) whose language corresponds to all
infinite sequences of system behaviors satisfying ϕ. This
automaton, denoted by Aϕ = (Q,Σ, γ, qinit, F), consists
of a finite set of states Q, a finite alphabet Σ = 2AP , a
transition function γ : Q × Σ → Q, an initial state qinit,
and an accepting condition F = {(Ji,Ki) | i = 1, . . . ,m},
consisting of subsets Ji andKi ofQ. An infinite sequence σ
is accepted by Aϕ if there exists at least one pair (J,K) ∈ F
such that inf(σ)∩J = ∅ and inf(σ)∩K 6= ∅, where inf(σ)
is the set of states that appear infinitely often in σ.

For a given LTL specification and an MDP, the corre-
sponding optimal policy, in general, belongs to the class
of (deterministic) non-positional policies, that are map-
pings from the finite paths over the MDP into the set of
actions. One can restrict the set of policies to positional
policies by constructing the corresponding product MDP,
obtained as the product between the MDP M and the au-
tomaton Aϕ. Given an MDP M = (S,A, T, sinit, L,AP)
and a DRA Aϕ = (Q,Σ, γ, qinit, F), we denote the product
MDP by the tuple Mϕ = (S×, A×, T×, s×init, L

×,AP×),
where S× = S × Q, A× = A, s×init = (sinit, qinit),
AP× = AP , L× : (s, q) 7→ L(s) for every (s, q) ∈ S ×Q,
and T× : S× → ∆(S×) taking the form

T×((s, q), a, (s′, q′)) =

{
T (s, a, s′) q′ = γ(q, L(s′))

0 otherwise.

In App. A, we show a polynomial algorithm for learning
the underlying graph of the MDP M , i.e., χ(M), using
the knowledge of pmin (see Alg. 5). Knowledge of χ(M)
directly gives the graph for the product MDP Mϕ, that is
χ(Mϕ) = (S×, A×, E×), where ((s, q), a, (s′, q′)) ∈ E×
if and only if

((s, q), a, (s′, q′)) ∈ E× ⇔
(s, a, s′) ∈ E and q′ ∈ γ(q, L(s′)). (15)

Let D ⊂ S denote the set of states of a specific MEC
C within Mϕ. We say C is an accepting maximal end
component (AMECs) within Mϕ if and only if

D ∩
m⋃
i=1

S ×Ki 6= ∅, and D ∩
m⋃
i=1

S × Ji = ∅. (16)

We denote the set of all states corresponding to the accept-
ing and non-accepting MECs within Mϕ by G× and B×,
respectively.

Alg. 4 outlines our proposed online regret-free algorithm for
solving the policy synthesis problem against LTL specifica-
tions. First, we compute a DRA Aϕ that accepts ϕ. We can
run Alg. 5 and use Eq. (15) to get the underlying graph of
M and Mϕ, respectively. Once we know the graph of Mϕ,
we can use Algorithm 47 from (Baier & Katoen, 2008) to
characterize all of the MECs in Mϕ. Next, we include the
states within accepting and non-accepting MECs into G×

and B×, resepectively. Finally, we run Alg. 1 to maximize
the probability of reaching G× while avoiding B×, using
confidence parameter δ/2, state set S×, action set A×, and
initial state s×init. The following theorem states that Alg. 4 is
regret-free.
Theorem 5.1. With probability at least (1− δ), Alg. 4 has
regret R(K) = O(

√
K).

6. Discussion and Conclusions
In this paper, we proposed a regret-free algorithm for the
control policy synthesis problem over unknown MDPs
against infinite-horizon LTL specifications. The defined
regret quantifies the accumulated deviation from the opti-
mal probability of satisfying the LTL specification. We first
propose a regret-free algorithm for until (reach-avoid) for-
mulas, and then extend this approach to solve the synthesis
problem for general LTL specifications by leveraging the
knowledge of a minimum transition probability. This proba-
bility is used to design an efficient graph-learning algorithm
with arbitrary precision.

Acknowledgements
This research is supported by the following grants: EIC
101070802, ERC 101089047, DFG project 389792660 and

8

Regret-Free Reinforcement Learning for Temporal Logic Specifications

Algorithm 4 Regret-free learning algorithm for general LTL
specifications

Input: State and action sets S and A, initial state sinit,
LTL specification ϕ, confidence parameter δ ∈ (0, 1),
minimum transition probability pmin ∈ (0, 1)
Construct a DRA Aϕ = (Q,Σ, γ, qinit, F) which accepts
ϕ
Run Alg. 5 to get the connection graph χ(M), i.e.,
χ(M) = GraphLearn(S,A, sinit, δ/2, pmin)
Compute the graph χ(Mϕ) using Eq. (15)
Compute MECs within Mϕ using Alg. 47 in (Baier &
Katoen, 2008)
G× ← ∅
B× ← ∅
for MEC C inside Mϕ with state space D do

Use Eq. (16) to check if C is an AMEC
if C is an AMEC then
G× ← G× ∪D

else
B× ← B× ∪D

end if
end for
Run Alg. 1 with state and action sets S× and A×, initial
state s×init, sets G× and B×, confidence parameter δ/2,
and minimum transition probability pmin, to compute
and update the policy over Mϕ

TRR 248–CPEC.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. Our work is mathematical/algorith-
mic. While there may be many potential societal conse-
quences of our work, we feel none of them must be specifi-
cally highlighted here.

References
Agarwal, A., Hsu, D., Kale, S., Langford, J., Li, L., and

Schapire, R. Taming the monster: A fast and simple
algorithm for contextual bandits. In Proceedings of the
31st International Conference on Machine Learning, vol-
ume 32 of Proceedings of Machine Learning Research,
pp. 1638–1646, Bejing, China, 22–24 Jun 2014. PMLR.

Alur, R., Bansal, S., Bastani, O., and Jothimurugan, K. A
framework for transforming specifications in reinforce-
ment learning. In Principles of Systems Design: Essays
Dedicated to Thomas A. Henzinger on the Occasion of
His 60th Birthday, pp. 604–624. Springer, 2022.

Auer, P. and Ortner, R. Logarithmic Online Regret Bounds

for Undiscounted Reinforcement Learning, pp. 49–56.
The MIT Press, September 2007.

Auer, P., Jaksch, T., and Ortner, R. Near-optimal regret
bounds for reinforcement learning. Advances in neural
information processing systems, 21, 2008.

Baier, C. and Katoen, J.-P. Principles of model checking.
MIT press, 2008.

Bertsekas, D. P. Dynamic Programming and Optimal Con-
trol, Volume 2. Athena Scientific, Belmont, MA, 4th
edition, 2012.

Bozkurt, A. K., Wang, Y., Zavlanos, M. M., and Pajic, M.
Model-free reinforcement learning for stochastic games
with linear temporal logic objectives. In 2021 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pp. 10649–10655. IEEE Press, 2021.

Cai, M., Xiao, S., Li, B., Li, Z., and Kan, Z. Reinforce-
ment learning based temporal logic control with maxi-
mum probabilistic satisfaction. In 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pp. 806–812. IEEE Press, 2021.

Camacho, A., Icarte, R. T., Klassen, T. Q., Valenzano, R. A.,
and McIlraith, S. A. LTL and beyond: Formal languages
for reward function specification in reinforcement learn-
ing. In International Joint Conference on Artificial Intel-
ligence, 2019.

Dann, C., Lattimore, T., and Brunskill, E. Unifying PAC
and regret: uniform PAC bounds for episodic reinforce-
ment learning. In Proceedings of the 31st International
Conference on Neural Information Processing Systems,
NIPS’17, pp. 5717–5727, Red Hook, NY, USA, 2017.
Curran Associates Inc.

Fruit, R., Pirotta, M., and Lazaric, A. Near optimal
exploration-exploitation in non-communicating Markov
decision processes. In Proceedings of the 32nd Inter-
national Conference on Neural Information Processing
Systems, NIPS’18, pp. 2998–3008, Red Hook, NY, USA,
2018. Curran Associates Inc.

Fu, J. and Topcu, U. Probably approximately correct MDP
learning and control with temporal logic constraints. In
Robotics: Science and Systems X, University of Califor-
nia, Berkeley, USA, July 12-16, 2014, 2014.

Hahn, E. M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A.,
and Wojtczak, D. Omega-regular objectives in model-free
reinforcement learning. In Tools and Algorithms for the
Construction and Analysis of Systems: 25th International
Conference, TACAS 2019, Held as Part of the European
Joint Conferences on Theory and Practice of Software,
ETAPS 2019, Prague, Czech Republic, April 6–11, 2019,

9

Regret-Free Reinforcement Learning for Temporal Logic Specifications

Proceedings, Part I, pp. 395–412, Berlin, Heidelberg,
2019. Springer-Verlag.

Hahn, E. M., Perez, M., Schewe, S., Somenzi, F., Trivedi,
A., and Wojtczak, D. Good-for-MDPs automata for prob-
abilistic analysis and reinforcement learning. In Interna-
tional Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, pp. 306–323. Springer,
2020.

Hasanbeig, H., Kroening, D., and Abate, A. Certified rein-
forcement learning with logic guidance. Artificial Intelli-
gence, 322:103949, 2023.

Hasanbeig, M., Kantaros, Y., Abate, A., Kroening, D., Pap-
pas, G. J., and Lee, I. Reinforcement learning for tempo-
ral logic control synthesis with probabilistic satisfaction
guarantees. In 2019 IEEE 58th Conference on Decision
and Control (CDC), pp. 5338–5343. IEEE Press, 2019.

Icarte, R. T., Klassen, T. Q., Valenzano, R. A., and McIlraith,
S. A. Using reward machines for high-level task specifi-
cation and decomposition in reinforcement learning. In
International Conference on Machine Learning, 2018.

Kazemi, M., Perez, M., Somenzi, F., Soudjani, S., Trivedi,
A., and Velasquez, A. Translating omega-regular speci-
fications to average objectives for model-free reinforce-
ment learning. In Proceedings of the 21st International
Conference on Autonomous Agents and Multiagent Sys-
tems, AAMAS ’22, pp. 732–741, Richland, SC, 2022.

Kazemi, M., Perez, M., Somenzi, F., Soudjani, S., Trivedi,
A., and Velasquez, A. Average reward reinforcement
learning for omega-regular and mean-payoff objectives.
arXiv preprint arXiv:2505.15693, 2025.

Kearns, M. and Singh, S. Near-optimal reinforcement learn-
ing in polynomial time. Machine Learning, 49:209–232,
2002.

Latouche, G. and Ramaswami, V. Introduction to Matrix
Analytic Methods in Stochastic Modeling. Society for
Industrial and Applied Mathematics, 1999.

Oura, R., Sakakibara, A., and Ushio, T. Reinforcement
learning of control policy for linear temporal logic speci-
fications using limit-deterministic generalized büchi au-
tomata. IEEE Control Systems Letters, 4(3):761–766,
July 2020. ISSN 2475-1456.

Perez, M., Somenzi, F., and Trivedi, A. A PAC learning al-
gorithm for LTL and omega-regular objectives in MDPs.
In Proceedings of the Thirty-Eighth AAAI Conference
on Artificial Intelligence and Thirty-Sixth Conference
on Innovative Applications of Artificial Intelligence and
Fourteenth Symposium on Educational Advances in Arti-
ficial Intelligence, AAAI’24/IAAI’24/EAAI’24. AAAI
Press, 2024.

Rosenberg, A., Cohen, A., Mansour, Y., and Kaplan, H.
Near-optimal regret bounds for stochastic shortest path.
In International Conference on Machine Learning, pp.
8210–8219. PMLR, 2020.

Sickert, S., Esparza, J., Jaax, S., and Křetı́nský, J. Limit-
deterministic büchi automata for linear temporal logic. In
Computer Aided Verification, pp. 312–332, Cham, 2016.
Springer International Publishing.

Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M. W.
Information-theoretic regret bounds for gaussian process
optimization in the bandit setting. IEEE Transactions on
Information Theory, 58(5):3250–3265, 2012.

Tarbouriech, J., Garcelon, E., Valko, M., Pirotta, M., and
Lazaric, A. No-regret exploration in goal-oriented rein-
forcement learning. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pp. 9428–
9437. PMLR, 13–18 Jul 2020.

Voloshin, C., Le, H. M., Chaudhuri, S., and Yue, Y. Policy
optimization with linear temporal logic constraints. In
Advances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022.

Yang, C., Littman, M. L., and Carbin, M. On the
(in)tractability of reinforcement learning for ltl objec-
tives. In Proceedings of the Thirty-First International
Joint Conference on Artificial Intelligence, IJCAI-22, pp.
3650–3658. International Joint Conferences on Artificial
Intelligence Organization, 2022.

10

Regret-Free Reinforcement Learning for Temporal Logic Specifications

Algorithm 5 Graph learning algorithm (GraphLearn)

Input: State and action sets S andA, initial state sinit, confidence δ ∈ (0, 1), minimum transition probability pmin ∈ (0, 1)
Initialization: t← 1, E ← ∅, n(s, a) = 0 for every (s, a) ∈ S ×A, and N(s, a, s′) = 0 for every (s, a, s′) ∈ S ×A×S
Compute a lower bound for n∗ using Eq. (17)
Set L := |S| log(δ/6)

log(1−p|S|min)

Compute policies:
for s ∈ S \ sinit do

Compute a policy π(s) under which s is reachable from sinit with positive probability: π(s) = Reach(S,A, s, , δ, pmin)
end for
for (s, a) ∈ S ×A do
π(s)(s)← a
Collect enough samples by executing the computed policies:
while n(s, a) < n∗ do
st ← sinit
for 1 ≤ t ≤ L do

Execute the action at = π(s)(st) and observe the next state st+1

n(st, at)← n(st, at) + 1
N(st, at, st+1)← N(st, at, st+1) + 1
t← t+ 1
if st = s then

break
end if

end for
end while
Verify existence of transitions:
for s′ ∈ S do

if N(s, a, s′) > 0 then
E ← E ∪ { (s, a, s′) }

end if
end for

end for
Results: χ(M) = GraphLearn(S,A, sinit, δ, pmin)

A. Graph Identification
In this section, we show how to leverage the knowledge of the minimum transition probability pmin ∈ (0, 1) of a given
MDP M to identify its underlying graph with a desired level of confidence. The following lemma provides a bound on the
minimum number of samples required to verify the existence of a specific transition in M .

Lemma A.1. (Voloshin et al., 2022) For any transition (s, a, s′) ∈ S×A×S, let F̂n(s′|s, a) denote the empirical estimation
of transition probability–associated with the actual transition probability T (s′|s, a)–after observing (s, a) for n times.
Given a positive lower bound over the minimum transition probability pmin ∈ (0, 1) and a confidence parameter δ ∈ (0, 1),
we have (s, a, s′) /∈ E with confidence at least (1− δ/2) if F̂n∗(s′|s, a) = 0, for

n∗ ≥ ψ−1(pmin), (17)

where ψ(n) =
√

1
2ζ(n) + 7

3ζ(n), and ζ(n) = 1
n−1 log

(
8
δn

2|S|2|A|pmin
)

if n > 1.

Alg. 5 outlines our proposed algorithm to learn the graph for a given MDP. We leverage pmin and δ to compute the minimum
number of required samples n∗ using Eq. (17), and a horizon L ∈ N, after which the execution of episodes is stopped. The
process consists of two main steps: (1) for every state s ∈ S, we apply Alg. 6, that is inspired by the ω−PAC algorithm
(Perez et al., 2024), to obtain a policy π(s), under which s is reachable from sinit with positive probability; (2) for each
action a ∈ A, we execute π(s) until the pair (s, a) has been visited at least n∗ many times. Upon reaching (s, a), we collect

11

Regret-Free Reinforcement Learning for Temporal Logic Specifications

Algorithm 6 Reachability policy synthesis for graph learning (Reach)

Inputs: State and action sets S and A, target state s∗ ∈ S \ {sinit}, confidence parameter δ ∈ (0, 1), minimum transition
probability pmin ∈ (0, 1)
n(s, a)← 0 for every (s, a) ∈ S ×A
N(s, a, s′)← 0 for every (s, a, s′) ∈ S ×A× S
Compute C3 and H using Eq. (20)
G← { s∗ }
while True do

for (s, a) ∈ S ×A do
if n(s, a) < c then

T̂ (s, a, s′) =

{
1 if s′ = s

0 Otherwise
G← G ∪ { s }

else
T̂ (s, a, s′) = N ′(s,a,s′)

n′(s,a)

end if
end for
M̂ = (S,A, T̂, sinit, L̂, ÂP), with ÂP = {Goal}, and L̂(s∗) = {Goal } and L̂(s) = ∅ if s 6= s∗

Compute optimal policy π(s∗) for M̂ by solving the corresponding linear program (see Sec. 10.6.1 in (Baier & Katoen,
2008))
For M̂ , compute SH ⊆ S as the set of states that are reachable from sinit within 2H time steps
if n(s, a) ≥ C3 for every (s, a) ∈ SH ×A then

break
end if
s1 ← sinit
for 1 ≤ t ≤ 2H do

Execute the action at = π(s∗)(st) and observe the next state st+1

n(st, at)← n(st, at) + 1
N(st, at, st+1)← N(st, at, st+1) + 1

end for
end while
Results: π(s∗) = Reach(S,A, s∗, δ, pmin)

the resulting outgoing transitions by simulating the MDP. Since the initial state of the MDP is fixed at sinit 6= s, we use
π(s) to reach s, enabling us to observe the outgoing transitions from (s, a). Additionally, the horizon L is used to prevent
unlimited exploration if the sample trajectory is trapped in one of the MECs not containing s. Once n(s, a) ≥ n∗, we verify
whether the transition (s, a, s′) belongs to E, by checking if N(s, a, s′) > 0 for every s′ ∈ S.

Sample complexity analysis. To provide a sample complexity for Alg. 5, we need to (1) provide a bound over the minimum
number of samples required by the method used for finding π(s) to enable providing a bound over the minimum number
of required samples, and (2) calculate the horizon L such that it offers a formal bound on the length of trajectories before
getting stuck in an MEC. For (1), we must use undiscounted RL formulations such as E3 (Kearns & Singh, 2002) and
ω-PAC (Perez et al., 2024), which explicitly handle the exploration-exploitation trade-off. For (2), given a certain confidence
level, we can derive an upper bound on the number of steps after which, with high confidence, one of the MECs is reached
and every state within that particular MEC is explored. The following theorem quantifies the sample complexity of Alg. 5.

Theorem A.2. Let the horizon L for an MDP M be defined as the smallest time t ∈ N such that with probability at least
(1− δ/6) a trajectory of length t starting from the initial state sinit visits every state in some MEC within M . Also, let C
denote the minimum number of time steps after which the graph learned by Alg. 5 is correct with confidence at least (1− δ).
We have

12

Regret-Free Reinforcement Learning for Temporal Logic Specifications

L ≤ |S| log(δ/6)

log(1− p|S|min)
and (18)

C ≤ |S|C1 + |S||A|LC2, (19)

where

C1 := H

⌈
max

(
18C3|S||A|

p
|S|
min

,
162(C3|S||A| − log(δ/12))

p
2|S|
min

)⌉
and

C2 := min

t ∈ N|
(
t

n∗

)(
1

2
p
|S|
min

)n∗ (
1− p

|S|
min

2

)t−n∗
> 1− δ

6

 ,

with

C3 :=

⌈
−9 log(δ/12|S||A|)

p
|S|
min

⌉
, and H := |S| log(p

|S|
min/18)

log(1− p|S|min)
. (20)

Proof. Using the same reasoning as in the proof of Lem. B.1, we have L ≤ |S| log(δ/6)

log(1−p|S|min)
, where the confidence level is

set to (1− δ/6). Regarding the sample complexity for computing policies π(s) for every s ∈ S, we note that either G is not
reachable, or the minimum reachability probability is p|S|min. Thus, to ensure that s is reachable with positive probability, the

computed policy must be ε-optimal with ε < p
|S|
min. By setting the confidence to (1− δ/6) and the precision to ε =

p
|S|
min

18 ,
we can directly apply the sample complexity result from ω-PAC (Perez et al., 2024) to obtain C1 (see Thm. 2 in (Perez et al.,
2024)). This ensures that the resulting policy achieves a positive reachability probability (greater than p|S|min/2) after C1 time
steps. Since we need to compute reachability policies for every state s ∈ S, this takes |S|C1 time steps.

Next, C2 gives the minimum number of trials after which the probability of visiting a specific state s at least n∗ times is at
least (1− δ/6). For every state-action pair (s, a) ∈ |S| × |A|, we must run episodes of length L, which requires |S||A|LC2

time steps.

Since the confidence for computing L, C1, and C2 is (1− δ/6), and for n∗ it is (1− δ/2), the overall confidence becomes
(1−δ). Therefore, the total number of samples required to achieve an overall confidence of (1−δ) is |S|C1+|S||A|LC2.

B. Proofs
B.1. Proof of Lem. 4.1

We adopt notation similar to that used in the proof of Lem. 3 in (Tarbouriech et al., 2020) to improve clarity. We want to
bound the probability of the event EC :=

⋃∞
k=1{M /∈Mk}. Let Bn(s, a) be the `1-ball centered at T̂k(.|s, a) with radius

βk(s, a), where (s, a) is visited at least n times before episode k. Then, EC ⊆
⋃

(s,a)

⋃∞
n=0 {T (. | s, a) /∈ Bn(s, a) }.

Using Boole’s inequality, we get P(EC) ≤
∑

(s,a)

∑∞
n=0 P(T (.|s, a) /∈ Bn(s, a)).

For n ≥ 0, define εn(s, a) :=
√

2
n+ log(5|S||A|(n+)2(2(|S|+1) − 2)/δ), where n+ := max(n, 1). Following (Tarbouriech

et al., 2020) and Weissman’s inequality, we have εn(s, a) ≤ βn(s, a) almost surely, and for n ≥ 1: P(T (.|s, a) /∈
Bn(s, a)) ≤ δ/(5|S||A|n2), and equals zero for n = 0.

Thus, P(EC) ≤
∑

(s,a)

∑∞
n=1

δ
5n2|S||A| = π2

6 ·
δ
5 < δ/3. This concludes the proof.

B.2. Proof of Lem. 4.4

In order to prove Lem. 4.4, we need to first ensure the existence of a (high-probability) bound on the number of steps
required to reach G from states in S \ B, when we enable reset. Note that the set B also includes every MEC whose
intersection with G is empty. In App. A, we discuss details of an algorithm for learning the MDP graph χ(M) up to any
desired confidence, using the knowledge of the minimum transition probability pmin. Given χ(M), we can efficiently

13

Regret-Free Reinforcement Learning for Temporal Logic Specifications

identify all MECs within M that do not intersect with G and include them in B. The following lemma provides an upper
bound for the time required to reach G from any state in S \B, when a reset transition is enabled upon visiting states in B.

Lemma B.1. Let λ̃k(s) denote the time to reach G from state s in an (artificial) MDP M̃ ′k, obtained by connecting B to
sinit with probability 1 in M̃k. Then, with confidence at least (1− δ/6), we have for every s ∈ S \B that

λ̃k(s) ≤ Λ := |S| log(δ/6)

log(1− p|S|min)
. (21)

Proof. First, we note that by including every state from which G is unreachable into B, it is guaranteed that policy π̃k(s)

takes every s ∈ S \ B to G, with probability at least p|S|min. This is ensured by Eq. (6), since v∗(s) ≥ p
|S|
min for every

s ∈ S \B. Now, enabling the reset transition from B to sinit with probability 1, under π̃k, G becomes reachable from every
state s ∈ S with probability 1. In the worst-case scenario, every state in the corresponding Markov chain must be visited at
least once. Visiting every state requires following a path of length at most |S|, which occurs with probability p|S|min. After l
attempts of traversing this path, the probability of success at least once is given by 1− (1− p|S|min)l. If l ≥ log(δ/6)

log(1−p|S|min)
, then

1− (1− p|S|min)l ≥ 1− δ/6. Finally, since each of the l attempts takes |S| steps in the worst case, the total number of steps
is bounded by |S| × l = |S| log(δ/6)

log(1−p|S|min)
. Furthermore, since M̃k is chosen optimistically, the time to reach G in M̃k is no

greater than that in the true MDP M . Therefore, with probability at least (1− δ/6), we have that λ̃k(s) ≤ Λ.

Now, we are ready to prove Lem. 4.4. First, using the Markov’s inequality (since x 7→ xr is a non-decreasing mapping for
non-negative reals), we have

P(λ̃k(s) ≥ Hk − 1) ≤ E[λ̃k(s)r]

(Hk − 1)r
.

Now, we note that by Lem. 15 in (Tarbouriech et al., 2020), we have if λ̃k(s) ≤ λ for every s ∈ S \ (G∪B) and λ ≥ 2, then

E(λ̃k(s)r) ≤ 2(rλ)r,

for any r ≥ 1. Therefore, substituting λ with Λ (defined in Eq. (21)), we will have

P(λ̃k(s) ≥ Hk − 1) ≤ 2(rΛ)r

(Hk − 1)r
, (22)

Note that there exists y ∈ S such that

‖Q̃Hk−2‖∞ = 1>y Q̃
Hk−21 = P(λ̃k(y) > Hk − 2) = P(λ̃k(y) ≥ Hk − 2). (23)

By definition of Hk we have ‖Q̃Hk−2‖∞ > 1/
√
k. Combining this with Eqs. (22), (23) yields

2(rΛ)r

(Hk − 1)r
> 1/

√
k,

which implies that
Hk − 1 < rΛ(2

√
k)1/r.

By selecting r =
⌈
log(2

√
k)
⌉

, we get

Hk − 1 < dlog(2
√
k)eΛ(2

√
k)

1

dlog(2
√

k)e ≤
⌈
3Λ log(2

√
k)
⌉
.

Hence
αK ≤

⌈
3Λ log(2

√
K)
⌉
.

Since λ̃k(s) ≤ Λ holds with confidence at least (1 − δ/6), the overall confidence is also maintained at a level at least
(1− δ/6).

14

Regret-Free Reinforcement Learning for Temporal Logic Specifications

B.3. Proof of Lem. 4.5

In order to prove Lem. 4.5, we make use of the Azuma-Hoeffding inequality, which is stated below for the sake of
completeness.

Lemma B.2 (Azuma-Hoeffding inequality, Hoeffding 1963). Let X1, X2, . . . be a martingale difference sequence with
|Xl| ≤ c for all l. Then for all γ > 0 and n ∈ N ,

P{
n∑
l=1

Xl ≥ γ} ≤ exp(− γ2

2nc2
).

Now, we are ready to prove Lem. 4.5. We proceed by showing why
∑K
k=1 ∆f1

k grows sublinearly with K. In order to
reformulate the regret, we define the following reward function r : S → {0, 1}

r(s) =

{
0 s /∈ G
1 s ∈ G.

(24)

Further, for the time step h within episode k we define

Θk,h(sk,h) := ṽk(sk,h)−
Hk,Ik(h)−1∑

t=h

r(sk,t)

where Ik : [1;Hk]→ [1; Ik] maps the time points in episode k into the corresponding interval, and Hk,i denotes the length
of the ith interval within the kth episode for 1 ≤ i ≤ Ik and Hk,0 = 1. Therefore, we have

K∑
k=1

∆f1
k =

K∑
k=1

Ik∑
i=1

Θk,Hk,i−1
(sk,Hk,i−1

).

Let us further define
Φk,h := ṽk(sk,h+1)−

∑
y∈S

p(y | sk,h, π̃k(sk,h))ṽk(y), (25)

where p(.|., .) corresponds to the transition probability in the true MDP M . Similarly, we denote by p̃k(.|., .) for the
transition probability in the optimistic MDP M̃k. Note that for sk,h ∈ G ∪B, we have Θk,h(sk,h) = 0. For sk,h /∈ G ∪B,
we have

Θk,h(sk,h) = ṽk(sk,h)−
Hk,Ik(h)−1∑

t=h

r(sk,t) ≤ L̃kṽk(sk,h) + εk −
Hk,Ik(h)−1∑

t=h

r(sk,t)

=
∑
y∈S

p̃k(y | sk,h, π̃k(sk,h))ṽk(y) + εk − r(sk,h)−
Hk,Ik(h)−1∑
t=h+1

r(sk,t)

=
∑
y∈S

(p̃k(y | sk,h, π̃k(sk,h))− p(y | sk,h, π̃k(sk,h)))ṽk(y)

+
∑
y∈S

p(y | sk,h, π̃k(sk,h))ṽk(y) + εk −
Hk,Ik(h)−1∑
t=h+1

r(sk,t)

≤ 2βk(sk,h, π̃k(sk,h))× 1 + (
∑
y∈S

p(y | sk,h, π̃k(sk,h))ṽk(y)− ṽk(sk,h+1))

+ εk + (ṽk(sk,h+1)−
Hk,Ik(h)−1∑
t=h+1

r(sk,t))

≤ 2βk(sk,h, π̃k(sk,h)) + Φk,h + εk + Θk,h+1(sk,h+1),

15

Regret-Free Reinforcement Learning for Temporal Logic Specifications

where the first inequality follows from the termination condition of Alg. 2, the fact that r(sk,t) = 0 for every sk,t /∈ G ∪B
for the second equality, ṽk(y) ≤ 1 for every y ∈ S for the third equality, definition of βk (Eq. (4)) for the second inequality,
and definition of Φk,h (Eq. (25)) for the last inequality. Also, note that By telescopic sum we get

Θk,Hk,i
(sk,Hk,i

) =

Hk,i+1−2∑
h=Hk,i

(Θk,h(sk,h)−Θk,h+1(sk,h+1)) + Θk,Hk,i+1−1(sk,Hk,i+1−1)

≤
Hk,i+1−2∑
h=1

(2βk(sk,h, π̃k(sk,h)) + Φk,h + εk) + Θk,Hk,i+1−1(sk,Hk,i+1−1)

≤
Hk,i+1−2∑
h=1

2βk(sk,h, π̃k(sk,h)) +

Hk,i+1−2∑
h=1

Φk,h +Hk,i+1εk,

where we used the arguments we made in the previous step of the proof to establish the first inequality, the fact that
Θk,Hk,i+1−1(sk,Hk,i+1−1) = 0 by definition as sk,tk,i+1−1 ∈ G ∪ B for every 1 ≤ i ≤ Ik for the last inequality. By
summing over all of the episodes we have

K∑
k=1

Ik∑
i=1

Θk,Hk,i−1
(sk,Hk,i−1

)

≤
K∑
k=1

Ik∑
i=1

Hk,i−1∑
h=Hk,i−1

Φk,h + 2

K∑
k=1

Ik∑
i=1

Hk,i−1∑
h=Hk,i−1

βk(sk,h, π̃k(sk,h)) +

K∑
k=1

Hkεk. (26)

In order to bound the first term, we note that

K∑
k=1

Ik∑
i=1

Hk,i−1∑
h=Hk,i−1

Φk,h =

K∑
k=1

tk+1−1∑
h=tk

Φk,h.

Therefore, we can write

P

 K∑
k=1

tk+1−1∑
h=tk

Φk,h ≥ 2

√√√√2(

K∑
k=1

Hk) log

(
2(
∑K
k=1Hk)2

δ

)
≤ P

(
K∑
k=1

tk+1−1∑
h=tk

Φk,h ≥ 2

√
2n log

(
2n2

δ

)
∩

K∑
k=1

Hk = n

)
.

Let Gq denote the history of all random events up to (and including) step h of episode k, i.e., q =
∑k−1
k′=1Hk′ + h. We

have E(Φk,h | Gq) = 0, and furthermore Hk is selected at the beginning of episode k, and so it is adapted with respect to
Gq. Hence Φk,h is a martingale difference with |Φk,h| ≤ 1. Therefore, by Azuma-Hoeffding’s inequality, we have with
probability 1− δ

3

K∑
k=1

tk+1−1∑
h=tk

Φk,h ≤ 2

√√√√2

(
K∑
k=1

Hk

)
log

(
6(
∑K
k=1Hk)2

δ

)
.

Now, we proceed to bound the second term in Eq. (26). We can write

K∑
k=1

Hk−1∑
h=1

1√
N+
k (sk,h, π̃k(sk,h))

≤
∑
s,a

N+
K∑

n=1

√
1

n
≤ 2
√
|S||A|

√∑
s,a

N+
K(s, a) ≤ 2

√
|S||A|tK .

Therefore, we obtain
K∑
k=1

Hk−1∑
h=1

βk(sk,h, π̃k(sk,h)) ≤ 2|S|

√
8|A|tK log

(
2|A|tk
δ

)
.

16

Regret-Free Reinforcement Learning for Temporal Logic Specifications

Finally, we bound the last term in Eq. (26).

K∑
k=1

Hkεk ≤
TK,1∑
t=1

αK
2t
≤ αK

2
(1 + log(KαK)),

where αK = max1≤k≤K Hk. Putting everything together yields that inequality (12) holds with probability at least 1− 5δ/6.

B.4. Proof of Lem. 4.6

We define Xk,i := vk(sinit)− vk,i(sinit). Note that E(Xk,i) = 0 and |Xk,i| ≤ 1 for every 1 ≤ k ≤ K and 1 ≤ i ≤ Ik. We
have

∆f2
k =

Ik∑
i=1

vk(sinit)− vk,i(sinit) =

Ik∑
i=1

Xk,i.

Therefore by application of the Azuma-Hoeffding lemma and using the fact that Kαk ≥
∑K
k=1 Ik we get

P

[
K∑
k=1

∆f2
k ≥

√
2KαK log(

6

δ
)

]
≤ exp

[
−

2KαK log(6
δ)

2
∑K
k=1 Ik

]
≤ exp

[
− log(

6

δ
)

]
= δ/6.

In Lem. 4.4, we have already shown that αK grows logarithmically with K which proves that
∑K
k=1 ∆f2

k grows sublinearly
with K with confidence at least (1− δ/6).

B.5. Proof of Lem. 4.7

Let FK :=
∑K
k=1 ∆s

k and λk and λ̃k denote the hitting times of policy π̃k in the true and optimistic models, respectively.
We define

Γk,h(sk,h) = 1λk(sk,h)>Hk−h − P(λ̃k(sk,h) > Hk − h).

Note that we have

FK =

K∑
k=1

1λk(sk,1)>Hk−1 =

K∑
k=1

Γk,1(sk,1) +

K∑
k=1

P(λ̃k(sinit) > Hk − 1).

Let p̃′k(.|., .) denote the transition probability in the optimistic model M̃ ′k (that is the optimistic MDP constructed from
M̃k by connecting states in B into sinit). Similarly, let p′(.|., .) denote the transition probability in the MDP M ′ϕ (that
is the MDP constructed from Mϕ by connecting states in B into sinit). Since for 1 ≤ h ≤ Hk − 1, 1λk(sk,h)>Hk−h =
1λk(sk,h+1)>Hk−h−1 we have

Γk,h(sk,h) = 1λk(sk,h+1)>Hk−h−1 −
∑
y∈S

p̃′k(y | sk,h, π̃k(sk,h))P(λ̃k(y) > Hk − h− 1)

≤ 1λk(sk,h+1)>Hk−h−1 − (
∑
y∈S

p̃′k(y | sk,h, π̃k(sk,h))− p′(y | sk,h, π̃k(sk,h)))P(λ̃k(y) > Hk − h− 1)

−
∑
y∈S

p′(y | sk,h, π̃k(sk,h))P(λ̃k(y) > Hk − h− 1)

≤ 1λk(sk,h+1)>Hk−h−1 + 2βk(sk,h, π̃k(sk,h))−
∑
y∈S

p′(y | sk,h, π̃k(sk,h))P(λ̃k(y) > Hk − h− 1)

= Γk,h+1(sk,h+1) + ψk,h + 2βk(sk,h, π̃k(sk,h)),

where we established the first inequality by adding and subtracting the term p′(y | sk,h, π̃k(sk,h)))P(λ̃k(y) > Hk − h− 1),
the second inequality by using the definition of βk (Eq. (3)), and the last equality by using the following definition

ψk,h = P(λ̃k(sk,h+1) > Hk − h− 1)−
∑
y∈S

p′(y | sk,h, π̃k(sk,h))P(λ̃k(y) > Hk − h− 1).

17

Regret-Free Reinforcement Learning for Temporal Logic Specifications

Also, we have

Γk,Hk
(sk,Hk

) = 1λk(sk,Hk
)>0 − P(λ̃k(sk,Hk

> 0)) = 1λk(sk,Hk
)>0 − 1λ̃k(sk,Hk

>0) = 1sk,Hk
/∈G − 1sk,Hk

/∈G = 0.

Using the telescopic sum we get

Γk,1(sk,1) =

Hk−1∑
h=1

(Γk,h(sk,h)− Γk,h+1(sk,h+1)) + Γk,Hk
(sk,Hk

) ≤
Hk−1∑
h=1

ψk,h + 2

Hk−1∑
h=1

βk(sk,h, π̃k(sk,h)),

where the last inequality is achieved by knowing Γk,Hk
(sk,Hk

) = 0. Therefore, by summing over all episodes we get

FK ≤
K∑
k=1

Hk−1∑
h=1

ψk,h + 2

K∑
k=1

Hk−1∑
h=1

βk(sk,h, π̃k(sk,h)) +

K∑
k=1

P(λ̃k(sinit) > Hk − 1).

Let Gq denote the history of all random events up to (and including) step h of episode k, i.e., q =
∑k−1
k′=1Hk + h. We have

E(ψk,h | Gq) = 0, and furthermore Hk is selected at the beginning of episode k, and so it is adapted with respect to Gq.
Hence ψk,h is a martingale difference with |ψk,h| ≤ 1. Therefore, using similar arguments as in proof of Lem. 4.5, by
Azuma-Hoeffding’s inequality, we have with probability 1− 2δ

3

K∑
k=1

Hk−1∑
h=1

ψk,h ≤ 2

√√√√2

(
K∑
k=1

Hk

)
log

(
3(
∑K
k=1Hk)2

δ

)
≤ 2

√
2KαK log

(
3(KαK)2

δ

)
.

Further, in the same vein as proof of Lem. 4.5 we have

K∑
k=1

Hk−1∑
h=1

βk(sk,h, π̃k(sk,h)) ≤ 2|S|

√
8|A|KαK log

(
2|A|KαK

δ

)
.

Now, we need to bound
∑K
k=1 P(λ̃k(sinit) > Hk − 1). Using Thm. 2.5.3 in (Latouche & Ramaswami, 1999), we have

K∑
k=1

P(λ̃k(sinit) > Hk − 1) =

K∑
k=1

1sinitQ̃
Hk−1
k 1,

where 1s denotes the |S| − 1-sized one-hot vector at the position of state s ∈ S. Finally, from Holder’s inequality, we have

K∑
k=1

P(λ̃k(sinit) > Hk − 1) =

K∑
k=1

1sinitQ̃
Hk−1
k 1

≤
K∑
k=1

‖1sinit‖1‖Q̃
Hk−1
k 1‖∞ ≤

K∑
k=1

‖Q̃Hk−1
k 1‖∞.

Therefore, by the choice of Hk = min{n > 1 | ‖Q̃nk‖∞ ≤ 1√
k
} we get

K∑
k=1

P(λ̃k(sinit) > Hk − 1) ≤
K∑
k=1

1√
k
≤ 2
√
K.

Putting everything together yields that inequality (14) holds with probability at least 1− δ.

B.6. Proof of Thm. 4.2

Let Y(f,1), Y(f,2), and Y(s) denote the events under which Eqs. (12), (13), and (14) hold, respectively. By Lems. 4.5 and
4.6, we have P(Y(f,1) ∩ Y(f,2)) ≥ 1− 5δ/6− δ/6 = 1− δ. Moreover, from Lem. 4.7, we know that P(Y(s)) ≥ 1− δ.

Now, let Yr denote the event under which inequality (9) holds. Since Y(f,1) ∩ Y(f,2) ∩ Y(s) ⊆ Yr, it follows that
P(Yr) ≥ 1− δ − δ = 1− 2δ.

18

Regret-Free Reinforcement Learning for Temporal Logic Specifications

Figure 2: Map of the gridworld example with l = 6. The blue and green cells define the initial state (sinit) and target state
(G), respectively. The red cells correspond to walls. The objective of the agent is to reach G without hitting the walls.

Figure 3: Variations of the empirical normalized regret, R(K)/K, when our proposed algorithm is applied to the gridworld
example with l = 6.

B.7. Proof of Thm. 5.1

Let Yg and Yr denote the events, under which the learned graph is correct, and the bound over the regret given by
Eq. (9) holds (after substituting S,A,Λ with S×, A×,Λ×, respectively). From the results of Thms. 4.2 and A.2, we have
P(Yg) = P(Yr) ≥ 1− δ/2. Then,

P(Yg ∩ Yr) = 1− P(Yg ∪ Yr) ≥ 1− δ/2− δ/2 = 1− δ.

C. Experimental Evaluation
In this section, we evaluate an implementation of our algorithm. The experiments are performed on a laptop with core
i7 CPU at 3.10GHz, with 8GB of RAM. We implement Alg. 1 to obtain the results, assuming that the underlying graph
structure is known. This assumption is justified by the fact that, for a fixed system dynamics, Alg. 5 needs to be executed
only once to learn the corresponding graph with the desired confidence. The resulting graph can then be reused for verifying
any LTL specification.

We considered a reach-avoid policy synthesis problem in the gridworld example described in Fig. 2. The world is
characterized by l ∈ N≥4 that denotes the number of cells per column and row. The agent can move using the cardinal
directions, i.e., A = { right , left , up, down }. Movement along an intended direction succeeds with probability 0.9 and fails

19

Regret-Free Reinforcement Learning for Temporal Logic Specifications

Figure 4: Comparison of the empirical normalized regret between our proposed regret-free algorithm and the ω-PAC
algorithm (Perez et al., 2024) for the gridworld example with l = 4.

with probability 0.1. In case of failure, the agent does not move. Walls are considered to be absorbing, i.e., the agent will
not be able to move after hitting a wall. We have conducted experiments to (1) evaluate the empirical performance of our
algorithcm, (2) observe how episode length vary throughout the run of our algorithm, and (3) assess the sample complexity
of our method.

Empirical performance: Fig. 3 illustrates the variations of empirical mean for the normalized regret R(K)/K for our
regret-free algorithm which is run for the gridworld example with l = 6. We set δ = 0.1 over 10 runs. Furthermore, we
group all of the cells associated with the wall into an absorbing state B, such that we have |S| = 17 and |A| = 4. The
considered specification is ϕ = ¬Avoid U Goal, where G is marked as Goal and walls are marked as Avoid. It can be
observed that the empirical mean of the regret drops very quickly, which implies that the algorithm successfully finds an
optimal policy within the few first episodes.

We also compare the performance of our proposed method with the ω-PAC algorithm of (Perez et al., 2024), which is the
only existing method that supports guaranteed policy synthesis against infinite-horizon temporal specifications. The ω-PAC
algorithm takes a confidence parameter δ ∈ (0, 1) and a precision parameter ε ∈ (0, 1) and provides a policy which has
ε-optimal satisfaction probability with confidence (1− δ). Fig. 4 illustrates that our proposed algorithm converges much
faster. We believe that this is because our algorithm uses the intermediate confidence bounds, while the ω-PAC algorithm
waits until enough many samples are collected, and only then updates its policy.

Episode length variations: Fig. 5 illustrates the variations in Hk for different episodes. Initially, our algorithm assigns
very small values to Hk, since the expected time to reach G in the optimistic MDP is small. As the empirical transition
probabilities become more precise, the estimation over the expected time to reach G takes more accurate values.

Sample complexity: Although our method and ω-PAC algorithm provide different guarantees, we relate them through
definition of a related complexity metric. The sample complexity of the ω-PAC algorithm is characterized with C that is
the number of learning episodes with non-ε-optimal satisfaction probability.We define k∗reg(δ, ε) as the smallest number of
episodes k for which our regret-free algorithm satisfies R(k)

k ≤ εwith confidence (1−δ). Furthermore, we define k∗PAC(δ, ε)

as the minimum number of episodes after which the ω-PAC algorithm satisfies Ckk ≤ ε with confidence (1 − δ). Fig. 6
illustrates the variations of k∗reg(0.1, 0.1) and k∗PAC(0.1, 0.1) for gridworld example with 4 ≤ l ≤ 16. Note that changes in
l influences the size of the state space (|S| = (l − 2)2 + 1) and also the (minimum) ε-recurrence time Tε = (l − 2)2 + 1,
which is required by the ω-PAC algorithm. Furthermore, we set pmin = 0.01. It can be observed that our algorithm provides
a tighter bound specially for the larger examples.

20

Regret-Free Reinforcement Learning for Temporal Logic Specifications

Figure 5: Variations of the computed deadline, Hk, when our proposed algorithm is applied to the gridworld example with
l = 6.

Figure 6: Comparison of the theoretical sample complexities for our proposed algorithm and the ω-PAC algorithm (Perez
et al., 2024) for the gridworld example with various sizes (4 ≤ l ≤ 16).

21

