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ABSTRACT

From social networks to supply chains, more and more aspects of how humans,
firms and organizations interact is mediated by artificial learning agents. As the
influence of machine learning systems grows, it is paramount that we study how
to imbue our modern institutions with our own values and principles. Here we
consider the problem of allocating goods to buyers who have preferences over
them in settings where the seller’s aim is not to maximize their monetary gains,
but rather to advance some notion of social welfare (e.g. the government trying
to award construction licenses for hospitals or schools). This problem has a long
history in economics, and solutions take the form of auction rules. Researchers
have proposed reliable auction rules that work in extremely general settings, and
in the presence of information asymmetry and strategic buyers. However, these
protocols require significant payments from participants resulting in low aggregate
welfare. Here we address this shortcoming by casting auction rule design as a
statistical learning problem, and trade generality for participant welfare effectively
and automatically with a novel deep learning network architecture and auction
representation. Our analysis shows that our auction rules outperform state-of-the
art approaches in terms of participants welfare, applicability, robustness.

1 INTRODUCTION

More and more aspects of our lives are mediated by artificial learning agents; from social networks,
to job hunting, and from route planning, to international trade, adaptive systems have become a
centerpiece of modern institutions. As we manage the increased influence of artificial intelligence
(AI), it is paramount that we are able to imbue our new institutions with our values, and trust
them to implement detailed rules and protocols that embody these principles, even in complex,
information-asymmetric scenarios with strategic participants.

Here we focus on the problem of designing a protocol for assigning bundles of goods or licenses to
strategic buyers who have private valuations over them, and where the seller does not necessarily
care about maximizing their proceeds from the sale, but is rather concerned with maximizing some
notion of total participant welfare.

This problem has a long history in economics, and solutions take the form of auctions protocols:
after bidders report their valuation for the various bundles to the seller, the auction rule prescribes
who gets which bundle, and how much each participant owes the seller. In particular, we highlight
the Vickrey-Clarke-Groves (VCG) auction (Clarke, 1971; Vickrey, 1961) which promotes truthful
reports from buyers, and works in extremely general settings. VCG auctions, however, come at the
cost of significant transfer from buyers to sellers, resulting in low aggregate participant welfare. This
last observation has inspired VCG redistribution schemes, that is, modified VCG auction rules that
recover some participant welfare trading away the general applicability of the original protocol (Guo
& Conitzer, 2010). These redistribution schemes, however, are hard to design, and often come with
overly restrictive assumptions on participants preferences or behavior or on the nature of the goods
up for sale.

Here we address these limitations by proposing a learning approach to auction rule design. We show
that casting auction design as a learning problem allows us to trade setting generality for participant
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welfare effectively and automatically, and without need for overly restrictive assumptions (See Tab. 1
for a qualitative comparison).

We start from the often reasonable assumption that bidders’ valuations for the goods up for sale
cannot take any value, but rather are sampled from an unknown and fixed probability distribution
(e.g. it is very unlikely anyone would pay $500,000 for a burrito). We introduce a representation
of bidders’ preferences and a network architecture that can be used to learn auction rules that a)
incentivize truthful reports from participants, b) result in the social-welfare-maximizing allocation of
the goods or bundles up for sale, and c) place minimal economic burden on participants (i.e. extract
minimal payments).

We show that our approach can learn truthful mechanisms under a wide variety of settings, including
various “bidding languges” (Nisan, 2000) (i.e. the set or outcomes that bidders can have preferences
over), arbitrary distributions of valuations, and arbitrary numbers of participants. Furthermore, our
detailed analysis shows that the auction rules we learn outperform state-of-the art approaches to
auction design in terms or participants welfare and robustness.

Auctions are a pillar of economics and remain the protocol of choice to allocate goods, services,
and licenses in many applications world-wide. Here we show that, under reasonable assumptions,
designing auctions that result in desirable allocations, and high participants’ welfare can be cast
as an optimization problem, and thus modern learning methods can be brought to bear. Our work
provides an example of how we can imbue desirable values in learning agents and trust them to
mediate complex interactions among humans, firms or other artificial agents in accordance to those
values.

2 BACKGROUND AND NOTATION
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Figure 1: Example of Auction representation and network architecture (best viewed in color). In this
example we construct our auction representation for a multi-unit auction with decreasing marginal utilities with
five participants, and three objects. The input tensor is of size (n− 1)× |K| × 2|K|+ 1 = 4× 3× 7. Darker
shades of red indicate higher valuations. This representation is processed with a 2-layer CNN that extracts a
per-player distributed representation of preferences and a 2-Layer MLP (shared weights across the players). The
resulting embeddings are sum-pooled to build ordering invariance, and a rectified linear decoder outputs a single
positive number as output.

In this section we provide some background, and introduce specific notation that will enable us to
formally state the problem we tackle.

Auction design: Auctions are protocols to allocate bundles of goods to strategic buyers who have
private valuations for them. The auction rules we consider prescribe that buyers report their prefer-
ences to the seller (e.g. telling them how much they value each bundle), at which point the seller uses
an allocation rule k, and a payment rule t to determine who gets which bundle, and how much each
participant owes. Thus the auction rules we consider are fully specified by a choice of allocation rule
and payment rule.
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More formally, consider a set I of items ordered absolutely (that is, everyone agrees on which is
item 1, 2 and so on), and let P(I) be the power set of I (i.e. the set of all possible bundles). An
allocation of the items is a function k : N → P(I) mapping each participant i to a bundle of items
k(i) ⊆ I , such that for any i 6= j we have k(i) ∩ k(j) = ∅ (i.e. no item is allocated more than
once), we further denote with K the set of all possible allocations. A payment (or transfer) rule is
a function t : N → R that maps each player to an amount they owe the seller; payments can be
negative indicating a transfer of money from the seller to the buyer. Finally, let vi : K → R+ be
the valuation of participant i for allocation k; as it is standard in the auction setting, we let vi only
depend on the bundle assigned to i (i.e. all allocations where i gets items 1 and 3 have the same
valuations: i does not care who among participants j and w gets item 2).

Bidding languages: Auction rules are often bespoke to specific settings, and the differentiating factor
frequently resides in how bundles can be constructed and valued; bidding languages (Nisan, 2000)
allow us to formally specify these restrictions, and ensure that allocations remain computable. In
this paper we consider 3 distinct bidding languages: 1) Multi-unit auctions with decreasing marginal
utility: 2) Heterogeneous objects with unit demand, and 3) Hierarchical bundles.

In multi-unit auctions with decreasing marginal utilities, we assume that many indistinguishable units
of the same product (e.g. oil barrels) are up for sale, and that participants valuation for a bundle
only depends on how many units are in the bundle and not which ones, since all units are the same.
Furthermore we assume that bundles with more units cannot be valued less than bundles with fewer
units.

In auctions for heterogeneous objects with unit demand, we assume that various distinct products are
available for sale (e.g. subscriptions to various cable channels), and that participants have distinct
valuation for each individual item available. Furthermore, we let the valuation of a bundle coincide
with that of its most valuable component (e.g. any bundle that includes HBO will be valued as much
as HBO since participants can only watch one TV channel at the time).

Finally, in hierarchical bundles, we consider distinct products and allow participants to have valuations
over specific groupings. Imagine that the items for sale are two pairs of trousers and two blazers,
each matching one pair of trousers. We could let participants express their valuations for each item of
clothing individually, for the two matching suits, or for all four items together, assuming no one is
interested in purchasing mismatching suits. More formally, we arrange the items for sale on a binary
tree and let participants express preferences for leaf nodes (i.e. individual objects), or any sub-tree.

Efficient allocation: As we stated in the introduction, here we focus on constructing a protocol to
allocate goods to strategic buyers that have preferences over them in pursuit of some notion of total
welfare. It is thus a natural choice to allocate bundles “efficiently”, that is, so as to maximize the total
welfare of participants (before payments): k∗ = arg maxk∈K

∑
i vi(k).

Strategic behavior: Selecting the welfare maximizing allocation is difficult when the institutions we
design do not have access to the true valuation profile of each participant, but rather can only trust what
they report. This asymmetry in information leads to strategic behavior, that is, participants will report
whatever preference θi maximizes their utility ui under the auction rule (note that ui is a function of
both allocation and payment). Formally, let θ−i indicate all reports, truthful or otherwise, from all
agents but i; then a strategic participant i will report: θi = arg maxθ∈Θi

ui(k
∗(θ−i, θ), t(θ−i, θ)). In

general θi 6= vi.

Truthful mechanisms: In the presence of strategic participants, and for our choice of alloca-
tion function, it is possible to select a payment rule that makes reporting one’s true prefer-
ences the dominant strategy. That is, for any agent i, and for all possible reports, or misre-
ports, from other players θ1, . . . , θi−1, θi+1, . . . , θn, the best course of action is to tell the truth:
arg maxθ∈Θi

ui(k
∗(θ−i, θ), t(θ−i, θ)) = vi, ∀θ−i.

VCG mechanism and Groves payment rule: We restrict our attention to auctions that are both
efficient and truthful. All auction rules with these properties are members of the Groves family, and
their payment rule can be written as (Groves, 1973; Green & Laffont, 1979; 1977):

t(i) = t(vi, v−i) = h(v−i)−
∑
j 6=i

vj(k
∗(v−i, vi)), (1)
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where, h : Θ−i → R is any function that only depends on the reported types of agents other than
i, and k∗ is the efficient allocation. Within this family, the VCG auction rule satisfies two further
properties: 1) individual rationality: buyers are never worse off by choosing to participate, i.e.
ui ≥ 0, and 2) weak budget balance: the seller does not need to subsidize the sale

∑
i t(i) ≥ 0.

The VCG auction is defined by the following choice of h: hV CG(θ−i) =
∑
j 6=i vj(k

∗(θ−i)) and
resulting payment rule:

t(vi, v−i) =
∑
j 6=i

vj(k
∗(v−i))−

∑
j 6=i

vj(k
∗(v−i, vi)). (2)

Problem statement We aim to design truthful, and efficient auctions that minimize the sum of
payments collected by the seller, while keeping the auction individually-rational and weakly budget
balanced.

3 METHODS

Setting considered Guo & Conitzer Manisha et al. G-CNN (ours) R-CNN (ours)

No assumptions on ρ NO YES YES YES
ρ is not known analytically NO YES YES YES
No restrictions on # of participants NO NO YES YES
Guarantees no-deficit YES NO NO NO
Guarantees indiv. rationality YES YES NO YES
Multi-unit auctions YES NO YES YES
Unit-demand auctions NO YES YES YES
Hierarchical bundles auctions NO NO YES YES

Table 1: Qualitative results. The method we present here can be applied in more general settings than
previously proposed alternatives. Our models: G-CNN: learns a Groves payment rule directly using our data
representation and network architecture. R-CNN: learns a VCG redistribution payment rule using our data
representation and network architecture. ρ indicates the distribution of valuation profiles.

We show how the problem of completing the Groves payment rule can be cast as a learning problem.
We introduce our novel representation of efficient auctions, and a network architecture to learn
minimum-payment, truthful auctions. We also point the reader to (Dütting et al., 2017) for a related
approach, and the literature around optimal auction design, which focuses on maximizing the seller’s
proceeds, rather than participants welfare (Myerson, 1981; Riley & Samuelson, 1981).

3.1 LOSS FUNCTION

As stated in the introduction, we depart from the very general settings of the VCG auction by
assuming that participants valuations are not arbitrary, but rather are sampled from a unknown, but
fixed, probability distribution ρ.

Our objective is then equivalent to completing the payment rule t(i) of a Groves mechanism so
that, in expectation over valuation profiles sampled from ρ, we minimize the sum total of payments
received by the mechanism. Minimizing payments without any further constraint will result in
mechanisms that make t(i) arbitrarily negative, and therefore require a subsidy to operate (i.e. they
are not budget balanced). Thus we incorporate a non-deficit constraint. Similarly, we include an
individual rationality constraint for all players. The resulting “ideal” mechanism design problem we
wish to solve is:

h∗ = arg min
h∈H

Evi∼ρ

[
n∑
i=1

ti

]

s.t.

[
n∑
i=1

ti

]
≥ 0, and, vi(k∗)− ti ≥ 0, (3)

where t(i) is like in Eq. 1. As mentioned above, we assume we do not have access to the true
distribution ρ, so that we cannot solve this minimization analytically. As is standard in statistical
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learning, we assume access to a data-set of L n-player profiles D = {(vl1, . . . , vln|l = 1, . . . , L},
sampled i.i.d. from ρ. We use Lagrange-like multipliers λb, and λr to encode the non-deficit, and
individual rationality constraints, and minimize the empirical version of our loss:

ĥ = arg min
h∈H

L∑
l=1

n∑
i=1

t(i)l

+λb

(
min

{
n∑
i=1

t(i)l, 0

})2

(4)

+λr

n∑
i=1

((
min

{
vli(k

∗)− t(i)l, 0
})2)

.

Concretely, we introduce two distinct ways to learn a Groves payments rule. The same representation,
loss function and network architecture are used in both settings.

Selecting a Groves payment rule: First, we investigate constructing a neural network to implement
ĥ directly and minimize the empirical loss in Eq. 4, given a data-set of valuation profiles.

Learning a VCG redistribution mechanism: Second, we learn a VCG redistribution mechanism.
In this case, we use a neural network to implement a redistribution function r(·), and let ĥ(·) =
hVCG(·)− r(·)1. Note that in this case individual rationality can be guaranteed by simply ensuring
that r(·) takes non-negative values, since VCG is already individually rational.

3.2 AUCTION REPRESENTATION

Representing auctions We introduce a novel representation of auctions that supports learning
Groves payment rules with Deep Neural Networks. Fig. 1 shows an example of our representation
and architecture for an auction with three objects and five participants.

First we note that when computing t(i) the function we wish to learn takes as input valuations
from “other” players v−i, and has no knowledge of player i’s profile (see Eq. 1). We construct
our representation as follows: first, we construct an “allocation oracle” to compute the efficient
allocation k∗ for any set of valuations (this is easy to construct given our choice of bidding languages;
see (Nisan, 2000) for details on how to construct such an oracle). Second, we choose to represent
each of the v−i as outcomes of |K| counter-factual auctions, each for the most valuable p bundles
with p = 1, . . . , |K|. The idea here is to provide information about the relative rank of each bundle
valuation.

Precisely, given a data-set of realized valuation profiles D, and an allocation oracle, we construct,
for each player i a tensor with shape |K| × (n− 1)× 2|K|+ 1. Each |K| × (n− 1) slice contains
matrix V−i ∈ R|K|×(n−1)

+ with non-negative entries (m, j) representing the valuation of player
j for bundle m (that is vi(km), where km allocates m, and nothing else, to j). Each successive
channel p is constructed by considering a counter-factual auction where the n − 1 players bid
for the p most valuable bundles. In particular, the second channel contains the allocation matrix
k∗1 ∈ {0, 1}|K|×(n−1) with entries (m, j) = 1 if bidder j is allocated bundle m in this auction, and
zero otherwise. The third channel represents the amount of utility realized by each player for this
allocation before payments (i.e. the element-wise product between the first and second channels).
Similarly, the fourth channel contains k∗2 : the allocation for two bundles, and the fifth channel contains
the element-wise product between channels 1 and 4, and so on until all bundles are considered. We
alter this representation slightly to in multi-unit auctions with decreasing marginal utilities. In this
case we let V−i be a matrix with shape |B|×(n−1), withB the set of available items, and containing,
for each player, the marginal utility of adding one item to their bundle.

A network architecture to learn Groves payment rules Given our auction representation, we
propose an architecture to learn a Groves payment rule that satisfies the following: a) anonymity:

1This is referred to as a “redistribution” mechanism since it can be viewed as collecting the VCG payments
before “redistributing” some money back to participants.
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the same exact function is applied to each player, b) robustness to ordering: t(i) does not change if
players j and w swap valuations.

For each player i, we construct the input tensor of size |K|×(n−1)×(2|K|+1) described above and
pass it through a 2-layer CNN. The first layer uses 64 filters of spatial size 1× 1 so as to construct an
embedding of each individual bid (how soon each bundle is allocated, and how much utility it realizes
can be readily extracted from a single “column” in our representation). The second CNN layer has 64
filters of size |K| × 1. The CNN’s output thus has size 1× (n− 1)× 64, and contains an embedding
of each of the n− 1 players’ preferences. We follow our CNN with a 2-Layer, 64 hidden and output
units MLP, which we apply independently to each of the (n − 1) player preference embeddings
to produce a new embedding for each player. We then sum-pool over the n − 1 players (which
guarantees the desired robustness properties), and apply a linear decoder (with ReLU rectification) to
output a single value for either ĥ directly, or for a redistribution function r. It is worth noting that
this architecture is a DeepSets network applied to a graph of n− 1 nodes with a single global output,
where node functions are our CNN+MLP and the aggregator function is a sum (Zaheer et al., 2017;
Battaglia et al., 2018).

3.3 EXPERIMENTAL PROCEDURE AND BASELINES

Baselines We consider four baselines. 1) VCG auctions, the most commonly used Groves mechanism:
a truthful, efficient, weakly budget balanced and individually rational auction. 2) Guo & Conitzer
(2010) a provably optimal-in-expectation linear VCG redistribution mechanism, which requires
n < |K|, analytical knowledge of ρ, and only handles multi-unit auctions. 3) Manisha et al. (2018) a
VCG redistribution learned using a MLP architecture that requires n < |K|, and only works with
unit-demand valuations. 4) MLP based architecture lastly, we compare to a 2-layer, 128-hidden-unit
MLP that operates on a flattened version of the same data as our method to empirically support our
choice of representation and architecture.

Experimental procedure For each combination of number of participants, valuation distribution
and bidding language considered, we construct sample auctions (i.e. valuation profiles for all
participants, expressed in the appropriate language) and collect training and validation data-sets
containing 100,000 and 2,000 auctions respectively. For each auction, we construct the representation
described in Sec. 3.2, and train the auction design network above using Adam SGD (Kingma &
Ba, 2015) with a learning rate of 10−5, mini-batches of size 256, and for 250,000 iterations. In all
experiments we set λb = λr = 100 (see Eq. 4). After training, we use our held-out test set to report
performance. The number of objects for sale were as follows: with non-decreasing marginal utilities:
15 objects, with heterogeneous objects and unit-demand: 8 objects, and with hierarchical bundles: 8
component objects (resulting in 15 bundles).

4 RESULTS

Qualitative comparison with alternative methods We start with a qualitative comparison with two
existing alternative methods to automatically construct VCG redistribution protocols, and highlight
how our method can be applied in more general settings in Tab. 1. A quantitative comparison with
these two methods (in the settings in which they can be applied) shows how our methods also leads
to better performance in practice. Importantly, while our method does not guarantee we will find
auctions that are weakly budget balanced and individually rational, our quantitative results show
that, in practice, we find zero, or next-to-zero violations of these constraints, and in particular the
individual rationality constraint is never violated (this is expected since we are minimizing payments,
thus making participation more appealing).

Quantitative results We illustrate quantitative results on synthetic auction data-sets in Fig. 2.

Fig. 2a shows the performance of auctions learned using our two methods G-CNN (where we learn a
Groves payment rule directly), and R-CNN (where we learn a redistribution mechanism). It is clear
how the auctions we learn result in high redistributions with minimal budget balance violation (none
for R-CNN). For this experiment, valuations were sampled from a Gaussian with mean and standard
deviations sampled from two independent Gaussian distrbutions ρ = N (N (10.0, 1.0),N (2.0, 0.5)).
Furthermore, this experiment showcases the high applicability of our method (the only method to
support all three bidding languages), and our architecture’s ability to interpolate to unseen number of
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(a) ρ = N (N (10.0, 1.0),N (2.0, 0.5)). Train: n ∈ {9, 11}. Test: n = 10. Left: multi-unit auction with
decreasing marginal utilities. Middle: Heterogeneous objects with unit demand. Right: hierarchical bundles.
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(b) Left: ρ = N (N (10.0, 1.0),N (2.0, 0.5)). Middle: ρ = N (10.0, 2.0), Right: ρ = U(0.0, 1.0). n = 10.
Bidding language: Heterogeneous objects with unit-demand.

Figure 2: Each plot shows a normalized count of how many auctions (among the 2000 we used for testing)
resulted in the fraction of the VCG payments reported on the horizontal axis being “returned” to the participants.
A VCG auction would result in a score of 0%, since payments are collected and nothing is redistributed. A
score of 100% indicates that the auction is “perfectly budged balanced” meaning no net payments are extracted.
The goal of our design is to construct payment rules that concentrate the redistribution as close as possible
to 100% without ever exceeding it: concentrations around high redistribution scores indicate that participant
achieve high aggregate welfare (i.e. low net payments), while redistributions exceeding 100% indicate that the
auctioneer incurred a deficit (i.e. the weak budget balance constrained is violated). In both figures R-CNN
refers to learning a VCG redistribution scheme with our representation and architecture, whereas G-CNN refers
to the case where we learn a payment rule directly (see Sec. 2). Fig. 2a shows results for a specific choice of
ρ, and three bidding languages. Fig 2b includes results for three choices of ρ, and a fixed bidding language,
and compares the outcome of our auctions to alternative designs: MANISHA refers to the method outlined
in Manisha et al. (2018), and R-MLP and G-MLP were constructed by using the same exact loss functions and
data as R-CNN and G-CNN respectively, but using a flat representation and an MLP network (see Sec. 3).

participants: training was performed using auctions with either 9 or 11 participants, while testing
used auctions with 10 participants; no other method supports this transfer learning.

Fig. 2b shows a comparison between our method, an MLP network that operates on the same
data, so as to validate our choice of data representation and network architecture, and the work
from Manisha et al. (2018). The distributions of valuations we used for this experiment where a
Gaussian with mean and standard deviations sampled from two independent Gaussian distributions
ρ = N (N (10.0, 1.0),N (2.0, 0.5)), a Gaussian with fixed mean and standard deviation: ρ =
N (10.0, 2.0), and the uniform distribution: ρ = U(0.0, 1.0). Only unit demand auctions with n = 10
participants were used since the work from Manisha et al. requires n < |K| and does not support
other bidding languages.

We end this section with a quantitative comparison with the provably optimal in expectation redis-
tribution scheme of Guo & Conitzer (2010), in the only setting where it is applicable: multi-unit
auctions with decreasing marginal utility with valuation sampled from the uniform distribution, and
n < |K|. Specifically we consider two settings, and report performance as fractions of the aggregate
VCG payments returned (we report redistribution mean and standard deviation exclusively since
the baseline results are pulled directly from the original paper). With n = 3 R-CNN redistributes
80±1% of VCG payments with a deficit of 0±0%, G-CNN redistributes 87±1% of VCG payments
with a deficit of 0± 1%, while the redistribiton scheme of Guo & Conitzer (2010) redistributes 76%
of VCG payments, and guarantees no deficit. With n = 7 R-CNN redistributes 84 ± 6 of VCG
payments with a deficit of 0± 0%, G-CNN redistributes 95± 0% of VCG payments with a deficit
of 0 ± 1%, while the redistribiton scheme of Guo & Conitzer (2010) redistributes 94% of VCG
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payments and guarantees no deficit (mean and std. dev. over 2000 held out synthetic auctions for
G-CNN and R-CNN).

Our experiments show that auctions learned using our statistical learning formulation, data represen-
tation and network architecture result in a significantly smaller economic burden on the participants
than alternative designs, and crucially, that we are able to learn auction rules with a better trade-off
between participant welfare and budget balance violations. Furthermore, our experiments showcase
the wide applicability and robustness of our method with respect to choice of bidding languages,
number of participants, distribution of valuations, and interpolation to unseen scenarios.

5 DISCUSSION

We introduced a novel way to represent auctions, and proposed a neural architecture, to learn truthful
and efficient auctions with minimal economic burden on the participants. Our methods can be
applied on a wide variety of settings including arbitrary distributions, complex bidding languages and
variable number of participants. Our empirical analysis shows how the resulting auctions yields high
participants’ welfare and almost never require a subsidy. Moreover, restricting our auction designs to
the Groves family provides a template for constructing adaptive systems that remain firmly planted in
the theoretical foundations of economics and mechanism design.

Auction design is a pillar of economics and social sciences and the domain of choice to study how a
institution can mediate the interactions of strategic participants in pursuit of group-level aspirations
(e.g. maximize aggregate welfare). Nonetheless, very few attempts to apply machine learning ideas
to this setting have been made. Here we have shown that, under reasonable assumptions, auction
design can be turned into a statistical learning problem and modern methods can be brought to bear.
The recent renaissance of Artificial Intelligence points to a future where institutions are largely built
around adaptive systems, and where we must entrust learning agents with the automatic translation of
high-level directives into low-level incentive structures and interaction rules.
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