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Abstract

Deep learning methods have demonstrated promising outcomes in predicting BI-
RADS scores from mammography images. However, the interpretability of these
images can vary, leading to discrepancies even among radiologists. Given the
inherent complexity of mammography images, training classification models solely
based on image labels often yields subpar performance. To overcome this challenge,
we curated 2313 mammogram images and their corresponding captions from two
mammography atlases. Our proposed approach employs a multi-modal model that
leverages a pretrained PubMedBERT for the language component. By training
this model on image-text pairs using contrastive learning, we empower our vision
encoder to assimilate the rich information embedded within the captions, thereby
enhancing its comprehension of mammography findings. Subsequently, we fine-
tune the vision encoder using two datasets for BI-RADS prediction, achieving
superior performance compared to models trained without pretraining, particularly
when labeled samples are scarce. The enhancement in the 3-class average F1 score
varies, ranging from +1% to +14%, depending on the number of training samples.
Specifically, a +1% increase was noted when utilizing 40K training samples, while
a +14% increase was observed with 1K samples. Furthermore, our experimental
findings reveal that 2K image-text pairs from mammography atlases can be more
informative than 2K labeled samples even for the label prediction, where the
average margin is +1.1% when more than 10K training samples are present, which
underscores the significance of incorporating textual information for modeling
medical image data. As a result, our work provides a vision-language model
for mammography and highlights the textual information from mammography
atlases. The training code, pre-trained model weights, and data extraction scripts
are publicly available at: https://github.com/igulluk/MAM-CLIP

1 Introduction

Breast cancer stands as a prominent cause of mortality across various cancer types. In 2020, the World
Health Organization reported that 2.26 million individuals received a diagnosis of breast cancer [1].
Mammography, MRI, and ultrasound imaging techniques are commonly employed in both diagnosis
and screening practices for breast cancer. Mammography, in particular, is widely utilized due to its
rapid image capture capability, making it especially suitable for routine clinical evaluations. This
study focuses on the development of models based on mammography images.

Mammography imaging involves capturing two primary views: the cranio-caudal (CC) and the
mediolateral-oblique (MLO) views. Each patient undergoes four image captures in practice: LCC and
LMLO for the left breast, and RCC and RMLO for the right breast. The findings in mammography
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Table 1: BI-RADS Scores and Corresponding Descriptions
BI-RADS Score Diagnosis Description
BI-RADS 1 Negative No finding, normal
BI-RADS 2 Benign Definite benign finding
BI-RADS 3 Probably Benign Finding are benign with probability > %98
BI-RADS 0 Incomplete Further information is needed for diagnosis
BI-RADS 4 Suspicious findings Findings have possibility of malignancy (%3–%94)
BI-RADS 5 Highly suspicious of malignancy Findings have possibility of malignancy (>%95)
BI-RADS 6 Positive Biopsy proven malignancy

are typically reported using the Breast Imaging Reporting and Data System (BI-RADS) [2], which
serves as the standard tool.

The BI-RADS system categorizes Mammography images into seven different classes to indicate the
risk of breast cancer. The BI-RADS scores and their corresponding risks are detailed in Table 1. This
study aims to predict BI-RADS scores from mammography images.

In recent years, researchers have focused on developing deep learning models for breast cancer
detection and BI-RADS score prediction [3, 4, 5, 6]. In [4], authors utilized segmentation masks
of breast lesions and selected small patches based on their intersection with the lesions. These
smaller patches were then used to propose deep convolutional models for BI-RADS classification.
Moreover, in [6], separate models were trained for BI-RADS and density classification for each
view—LCC, LMLO, RCC, and RMLO. Subsequently, the LightGBM algorithm [7] was employed
for final prediction.

In a separate study, authors proposed models for breast cancer detection by leveraging electronic health
records in addition to mammogram images [8]. In [3], deep convolutional models were suggested
for both small patch-based and whole-image classification of breast cancer using mammogram
images. Furthermore, the combination of mammography images and clinical factors for estimating
the malignancy of microcalcifications is proposed in [5].

Furthermore, researchers have been developing vision-language models in the medical domain at
large [9, 10, 11, 12, 13]. These models have demonstrated utility either through fine-tuning for
specific tasks or excelling at question answering using images. However, these works often utilize
datasets with either very few or no mammography images. Moreover, the captions accompanying the
images may lack detailed explanations of diseases, as they are not typically written for educational
purposes. This underscores the value of our image-text dataset. In our study, we extract images and
their captions from radiology atlases. These atlases are designed with the specific aim of educating
radiologists, resulting in captions that are rich in information and meticulously explain details within
the images to aid clinicians in accurate diagnosis.

In contrast to classical computer vision datasets like ImageNet [14], medical images often require
more nuanced interpretation. This is particularly true for BI-RADS classification, where the inter-
pretation by clinicians can be crucial. The presence of the BI-RADS 0 class, indicating a need for
further information, adds to the complexity. Clinicians may assign a BI-RADS 0 label to images for
various reasons, which could potentially have strong associations with other classes. To tackle this
challenge, we developed a multi-modal model capable of accepting mammogram images along with
corresponding captions from mammography atlases. This approach enables our models to capture
complex information in breast images and potential reasons behind how and why images are labeled
with specific BI-RADS scores. Our results demonstrate a significant improvement in BI-RADS
classification through the integration of vision-language information.

2 Methodology

2.1 Vision-Language Model

Our objective is to train a vision-language model similar to the CLIP model [15], wherein images
and their captions share similar representations, measured by cosine similarity. For the language
component, we employ the PubMedBERT model [16] with pretrained parameters. For the visual
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Figure 1: Model Overview. We first extract mammogram images and corresponding captions from
Mammography Atlases and train a vision language model using contrastive and masked langauge
modeling loss. Note that text encoder is pretrained PubMedBERT. Then we fine-tune vision encoder
for our BI-RADS and density classification tasks on two datasets.

part, we utilize a ConvNext model [17] pretrained on ImageNet. Our observations indicate that
using high-resolution mammography images is crucial for achieving better classification performance.
Therefore, we opt not to use pretrained transformer-based vision encoders from Vision-Language
Models such as Med-Flamingo [9] and BiomedCLIP [10], as they are trained on low-resolution
images. Additionally, we find that ResNet-based models [18] exhibit relatively lower accuracy
compared to ConvNext models. Consequently, we also refrain from using ResNet-based vision
encoders from models like MedCLIP [11], PMC-CLIP [12], and PMC-VQA [13].

We adopt the training methodology outlined in PMC-CLIP [12], where the authors train the vision-
language model using InfoNCE loss to enhance image-text pair similarity, along with masked
language modeling (MLM) loss. The MLM loss helps in making the vision encoder as predictive as
possible for masked language tokens.

To formalize, let’s denote the visual encoder ConvNext model and PubMedBert model as Φvis and
Φtext respectively. Lets denote the current batch as follows:

B = {(I1, T1), (I2, T2), ..., (IN, TN)} where (Ii, Ti) represents the ith image and text pair. Following
the convention in [12] we denote the image representations by vi = Φvis(Ii) and text representations
by Ti = Φtext(Ti) where vi ∈ Rd, Ti ∈ Rl×d. note that l stands for text length and d stands for the
embedding dimension. Moreover, lets denote the [CLS] token representation by ti ∈ Rd. We denote
the cosine similarity between vi and tj by sij Then the contrastive learning loss becomes

Lcontrastive =
–1
N

N∑
i=1

log
(

exp(sii)∑N
j=1 exp(sij)

)
–

1
N

N∑
i=1

log
(

exp(sii)∑N
j=1 exp(sji)

)
Moreover, in line with the masked language modeling approach described in [12], we randomly mask
words with a specific probability and make predictions for those masked words using not only the text
itself but also the vision embedding from the visual encoder. Specifically, we employ a transformer
fusion model denoted as Φfusion, which takes the image embedding and masked text embedding to
predict the ground truth text sequence. Let’s denote the prediction of the fusion model for the masked
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Figure 2: Number of patients for each classes in the classification datasets are provided. As it can be
seen EMBED dataset is highly imbalanced in terms of BI-RADS labels. Also, there is no BI-RADS
6 patient in TEKNOFEST dataset.

token as pi = Φ(vi, Timasked). If the ground truth is yi, then the overall MLM loss can be formulated
as follows:

LMLM = EB[LCE(yi, pi))]
where LCE is the cross entropy loss and the expectation is taken over the all masked tokens in the
batch. Then with a specific choice of weight for the MLM loss λ, the overall loss for the pretraining
can be formulated as follows:

L = Lcontrastive + λ · LMLM

2.2 Pretraining Dataset Preparation

We extract mammography images and corresponding captions from two mammography atlases: Atlas
of Mammography [19] and ACR BI-RADS ATLAS [20]. For Atlas of Mammography we used a
python library named PyMuPDF [21] to extract the images and captions. On the other hand, we
needed to use additional python library named pytesseract [22] to get the text from the images. If a
caption describes more than one image, then we pair those images with the same caption as different
image-caption pairs. Python scripts for extracting the image-text pairs are available in our code.

3 Classification Datasets

Our final goal is to predict BI-RADS class. To evaluate the performance of our models we utilize two
different datasets: The Emory Breast Imaging Dataset (EMBED) [23] and TEKNOFEST, Artificial
Intelligence in Healthcare Competition 2023 dataset [24].

EMBED: In the original dataset, there are different modalities than MLO and CC. However, we only
utilize MLO and CC modalities. In addition, this dataset exhibits significant imbalance, as ∼%73
of the total images have BI-RADS 1 label. To address this imbalance, we limited the number of
images with BI-RADS 1 or BI-RADS 2 label with 25,000 for each class. Furthermore, we exclude
the BI-RADS 3 class from our experiments. The final label distributions are depicted in Fig. 2.

TEKNOFEST: TEKNOFEST dataset [25] was prepared for the Artificial Intelligence in Health
Competition in 2023 [26] by the Republic of Turkey Ministry of Health. It comprises data from
10,735 patients, with four different images available for each patient: RMLO, RCC, LMLO, and
LCC. Thus, a total of 42,940 images are included in the dataset, and the label distributions can be
found in Fig. 2. The original DICOM files are scheduled to be made publicly available in 2024 by
the Republic of Turkey Ministry of Health. Subsequently, preprocessed PNG files will be accessible
upon request. Interested parties can obtain access to the data by contacting the corresponding author.
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Figure 3: TEKNOFEST dataset classification results are provided. For each number of training
samples n (1,3,5,10,20,30,All(44) x1000) our vision-language pretraining outperforms ImageNet
pretrained model and the difference between two models is very large for small number of training
samples. Note that all experiments are done using 4-fold cross validation.

The preprocessing of DICOM images from both datasets mentioned above is performed using a
YOLOX model [27]. This model is utilized to crop the breast from the background of the original
DICOM images. Further details regarding this preprocessing step can be found in the code.

4 Experiments

We first train our multi-modal model using image-text pairs and select the best checkpoint in terms
of validation loss. We then fine-tuned ImageNet pretrained models and the vision encoder of the
Vision-Language Model (VLM) on two classification datasets. During the experiments, we merged
images with a BI-RADS 6 label into the BI-RADS 5 class, treating them as if they had a BI-RADS
5 label. Additionally, we excluded the BI-RADS 3 class, which only exists in the EMBED dataset.
Consequently, we worked with 5 different BI-RADS classes in the experiments. We conducted 4-fold
cross-validation for all experiments.

4.1 Implementation Details

For the visual and text encoders, we initialize an ImageNet pretraiend ConvNext [17] and pretrained
PubmedBERT [16], respectively. Unlike many other multi-modal models, our image resolution
is relatively high at 1024×768 pixels. We use a batch size of 64, AdamW optimizer [28] with a
learning rate of 1e-4, and conduct training for 25 epochs. All experiments are performed using a
single NVIDIA A100 GPU.

4.2 Results

For BI-RADS classification, we conducted a 5-class classification task. Additionally, we examined
performance on a simplified set of 3 generic classes, where we grouped BI-RADS 1 and BI-RADS 2
together, as well as BI-RADS 4 and BI-RADS 5. Therefore, the final 3 classes are: BI-RADS 1,2 |
BI-RADS 0 | BI-RADS 4,5. This formulation can be useful for clinical applications, as it allows us to
interpret these classes as benign, needing further information, and malignant, respectively.

We computed class-based F1 scores and illustrated the average F1 scores for both 3 classes and
5 classes. The results for the TEKNOFEST and EMBED datasets are displayed in Fig. 3 and
Fig. 4, respectively. Across both datasets, pretraining on mammogram images and texts led to an
improvement in overall performance, even with varying numbers of training samples.
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Figure 4: EMBED dataset classification results. For each number of training samples, our vision-
language pretraining outperforms ImageNet pretrained model. Note that all experiments are done
using 4-fold cross validation.

Table 2: 3-Class Average F1 Performance on TEKNOFEST dataset, ImageNet-Pretrained models
have 2000 more training samples in each case. For sample sizes larger than 10K, we observe that
integrating textual knowledge with 2,313 samples provides more valuable insights than adding 2K
labeled samples.

Model and # of Samples Average F1 Average F1 Model and # of Samples
ImageNet-Pretrained 3K 0.597±0.012 0.597±0.015 VLM-Pretrained(Ours) 1K
ImageNet-Pretrained 5K 0.654± 0.008 0.646± 0.007 VLM-Pretrained(Ours) 3K
ImageNet-Pretrained 12K 0.668±0.008 0.685±0.004 VLM-Pretrained(Ours) 10K
ImageNet-Pretrained 22K 0.692±0.007 0.701±0.003 VLM-Pretrained(Ours) 20K
ImageNet-Pretrained 32K 0.697±0.006 0.711±0.008 VLM-Pretrained(Ours) 30K
ImageNet-Pretrained All(43K) 0.700±0.008 0.706±0.002 VLM-Pretrained(Ours) 41K

4.3 Assessing Textual Information: Captions vs. Labels

From the previous results, we observe an improvement in performance when using image-text pair
pretraining. Furthermore, we experimentally demonstrate that captions accompanying images in the
pretraining dataset can provide more informative cues than the labels of images in the classification
dataset, despite the task being label prediction. In our pretraining dataset, comprising 2313 image-
text pairs, we conducted experiments where the ImageNet-pretrained model had 2000 more data
samples than our VLM-pretrained model for the classification task. As shown in Table 2, for cases
where n > 10000, adding an additional 2000 samples did not yield as much improvement in results
as pretraining with the original 2313 samples, even though the pretraining images come from a
completely different source and distribution. This suggests that captions in mammography atlases
can provide more guidance to deep models than labels of the images, owing to the complexities of
mammography images.

5 Conclusion

In conclusion, we have demonstrated that explanations accompanying mammogram images, as found
in mammography atlases, can play a crucial role in image classification tasks. Unlike other pretrained
large models, leveraging only around 2300 image-text pairs from mammography atlases can lead to
significant performance improvements, highlighting the informative nature of the captions in these
atlases. Furthermore, our experiments indicate that these captions can often be more informative than
the labels themselves. We have presented results for two new mammography datasets, underscoring
the effectiveness of incorporating explanatory information in image classification tasks.
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